
R: A Language and Environment for
Statistical Computing

Reference Index

The R Core Team

Version 2.15.2 (2012-10-26)

Copyright (©) 1999–2012 R Foundation for Statistical Computing.
Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the R Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute
it under the terms of the GNU General Public License. For more information about these matters, see
http://www.gnu.org/copyleft/gpl.html.

ISBN 3-900051-07-0

Contents

1 The base package 1
base-package . 1
.bincode . 1
.Device . 2
.Machine . 2
.Platform . 5
abbreviate . 6
agrep . 8
all . 9
all.equal . 11
all.names . 12
any . 13
aperm . 14
append . 15
apply . 16
args . 17
Arithmetic . 18
array . 20
as.data.frame . 22
as.Date . 23
as.environment . 26
as.function . 27
as.POSIX* . 28
AsIs . 30
assign . 31
assignOps . 33
attach . 34
attr . 36
attributes . 37
autoload . 38
backsolve . 39
basename . 40
Bessel . 41
bindenv . 43
body . 45
bquote . 46
browser . 47
browserText . 48
builtins . 49
by . 50
c . 51

i

ii CONTENTS

call . 52
callCC . 54
CallExternal . 54
capabilities . 56
cat . 57
cbind . 58
char.expand . 61
character . 62
charmatch . 63
chartr . 64
chol . 66
chol2inv . 68
class . 69
col . 70
Colon . 71
colSums . 72
commandArgs . 74
comment . 75
Comparison . 76
complex . 78
conditions . 79
conflicts . 83
connections . 83
Constants . 91
contributors . 92
Control . 92
converters . 94
copyright . 95
crossprod . 96
Cstack_info . 97
cumsum . 97
cut . 98
cut.POSIXt . 100
data.class . 102
data.frame . 103
data.matrix . 105
date . 106
Dates . 107
DateTimeClasses . 108
dcf . 111
debug . 113
Defunct . 114
delayedAssign . 115
deparse . 116
deparseOpts . 117
Deprecated . 119
det . 119
detach . 120
diag . 122
diff . 123
difftime . 125
dim . 126

CONTENTS iii

dimnames . 127
do.call . 129
double . 130
dput . 132
drop . 133
droplevels . 134
dump . 135
duplicated . 137
dyn.load . 139
eapply . 141
eigen . 142
encodeString . 144
Encoding . 146
environment . 147
EnvVar . 149
eval . 151
exists . 154
expand.grid . 155
expression . 156
Extract . 157
Extract.data.frame . 162
Extract.factor . 165
Extremes . 166
factor . 168
file.access . 171
file.choose . 172
file.info . 173
file.path . 174
file.show . 175
files . 176
files2 . 179
find.package . 181
findInterval . 182
force . 183
Foreign . 184
formals . 187
format . 188
format.info . 190
format.pval . 191
formatC . 192
formatDL . 195
function . 197
funprog . 198
gc . 200
gc.time . 202
gctorture . 202
get . 203
getDLLRegisteredRoutines . 205
getLoadedDLLs . 206
getNativeSymbolInfo . 207
gettext . 209
getwd . 211

iv CONTENTS

gl . 212
grep . 212
grepRaw . 217
groupGeneric . 219
gzcon . 221
hexmode . 222
Hyperbolic . 223
iconv . 224
icuSetCollate . 226
identical . 228
identity . 230
ifelse . 230
integer . 231
interaction . 233
interactive . 234
Internal . 235
InternalMethods . 235
invisible . 236
is.finite . 236
is.function . 238
is.language . 239
is.object . 239
is.R . 240
is.recursive . 241
is.single . 242
is.unsorted . 242
ISOdatetime . 243
isS4 . 243
isSymmetric . 244
jitter . 245
kappa . 246
kronecker . 248
l10n_info . 249
labels . 250
lapply . 251
Last.value . 253
length . 254
levels . 256
libPaths . 257
library . 258
library.dynam . 261
license . 263
list . 264
list.files . 266
list2env . 267
load . 268
locales . 270
log . 272
Logic . 273
logical . 275
lower.tri . 276
ls . 277

CONTENTS v

make.names . 278
make.unique . 279
mapply . 280
margin.table . 281
mat.or.vec . 282
match . 283
match.arg . 284
match.call . 285
match.fun . 286
MathFun . 288
matmult . 289
matrix . 290
maxCol . 291
mean . 293
memCompress . 294
Memory . 295
Memory-limits . 296
memory.profile . 297
merge . 298
message . 300
missing . 301
mode . 302
NA . 304
name . 305
names . 306
nargs . 308
nchar . 309
nlevels . 310
noquote . 311
norm . 312
normalizePath . 313
NotYet . 314
nrow . 315
ns-dblcolon . 316
ns-hooks . 317
ns-load . 318
ns-topenv . 320
NULL . 320
numeric . 321
NumericConstants . 323
numeric_version . 324
octmode . 325
on.exit . 326
Ops.Date . 327
options . 328
order . 335
outer . 338
Paren . 339
parse . 340
paste . 341
path.expand . 343
pmatch . 343

vi CONTENTS

polyroot . 345
pos.to.env . 346
pretty . 346
Primitive . 348
print . 349
print.data.frame . 350
print.default . 351
prmatrix . 353
proc.time . 354
prod . 355
prop.table . 356
pushBack . 357
qr . 358
QR.Auxiliaries . 360
quit . 362
Quotes . 363
R.Version . 364
Random . 366
Random.user . 370
range . 371
rank . 372
rapply . 374
raw . 375
rawConnection . 376
rawConversion . 377
RdUtils . 379
readBin . 379
readChar . 382
readline . 384
readLines . 385
readRDS . 386
readRenviron . 388
real . 389
Recall . 389
reg.finalizer . 390
regex . 391
regmatches . 395
remove . 396
rep . 398
replace . 400
Reserved . 400
rev . 401
Rhome . 401
rle . 402
Round . 403
round.POSIXt . 405
row . 406
row+colnames . 407
row.names . 408
rowsum . 409
sample . 410
save . 412

CONTENTS vii

scale . 414
scan . 416
search . 420
seek . 420
seq . 422
seq.Date . 424
seq.POSIXt . 425
sequence . 426
serialize . 427
sets . 428
setTimeLimit . 429
shell . 430
shell.exec . 431
showConnections . 432
shQuote . 434
sign . 435
sink . 436
slice.index . 437
slotOp . 438
socketSelect . 439
solve . 440
sort . 441
source . 444
Special . 446
split . 449
sprintf . 451
sQuote . 454
srcfile . 456
Startup . 458
stop . 461
stopifnot . 463
strptime . 464
strsplit . 468
strtoi . 470
strtrim . 471
structure . 472
strwrap . 473
subset . 474
substitute . 476
substr . 477
sum . 479
summary . 480
svd . 481
sweep . 483
switch . 484
Syntax . 486
Sys.getenv . 487
Sys.getpid . 488
Sys.glob . 488
Sys.info . 489
Sys.localeconv . 491
sys.parent . 492

viii CONTENTS

Sys.readlink . 494
Sys.setenv . 495
Sys.setFileTime . 496
Sys.sleep . 497
sys.source . 498
Sys.time . 499
Sys.which . 500
system . 501
system.file . 503
system.time . 504
system2 . 505
t . 507
table . 508
tabulate . 510
tapply . 511
taskCallback . 513
taskCallbackManager . 515
taskCallbackNames . 516
tempfile . 517
textConnection . 518
tilde . 521
timezones . 521
toString . 523
trace . 524
traceback . 528
tracemem . 529
transform . 530
Trig . 531
try . 533
typeof . 534
unique . 535
unlink . 536
unlist . 537
unname . 539
UseMethod . 539
userhooks . 542
utf8Conversion . 544
vector . 545
Vectorize . 547
warning . 548
warnings . 549
weekdays . 550
which . 552
which.min . 553
with . 554
withVisible . 556
write . 557
writeLines . 558
xtfrm . 558
zapsmall . 559
zpackages . 560
zutils . 561

CONTENTS ix

2 The datasets package 563
datasets-package . 563
ability.cov . 563
airmiles . 564
AirPassengers . 565
airquality . 566
anscombe . 567
attenu . 568
attitude . 569
austres . 570
beavers . 570
BJsales . 571
BOD . 572
cars . 573
ChickWeight . 574
chickwts . 575
CO2 . 576
co2 . 577
crimtab . 578
discoveries . 580
DNase . 580
esoph . 581
euro . 583
eurodist . 584
EuStockMarkets . 584
faithful . 585
Formaldehyde . 586
freeny . 587
HairEyeColor . 588
Harman23.cor . 589
Harman74.cor . 589
Indometh . 590
infert . 591
InsectSprays . 592
iris . 592
islands . 594
JohnsonJohnson . 594
LakeHuron . 595
lh . 595
LifeCycleSavings . 596
Loblolly . 597
longley . 598
lynx . 599
morley . 599
mtcars . 600
nhtemp . 601
Nile . 602
nottem . 603
occupationalStatus . 604
Orange . 604
OrchardSprays . 605
PlantGrowth . 606

x CONTENTS

precip . 607
presidents . 608
pressure . 608
Puromycin . 609
quakes . 610
randu . 611
rivers . 612
rock . 612
sleep . 613
stackloss . 614
state . 615
sunspot.month . 616
sunspot.year . 617
sunspots . 617
swiss . 618
Theoph . 619
Titanic . 620
ToothGrowth . 622
treering . 622
trees . 623
UCBAdmissions . 624
UKDriverDeaths . 625
UKgas . 626
UKLungDeaths . 627
USAccDeaths . 627
USArrests . 628
USJudgeRatings . 628
USPersonalExpenditure . 629
uspop . 630
VADeaths . 630
volcano . 631
warpbreaks . 632
women . 633
WorldPhones . 633
WWWusage . 634

3 The grDevices package 637
grDevices-package . 637
adjustcolor . 637
as.graphicsAnnot . 639
as.raster . 639
axisTicks . 641
boxplot.stats . 642
bringToTop . 644
cairo . 644
check.options . 646
chull . 647
cm . 648
col2rgb . 649
colorRamp . 650
colors . 652
contourLines . 653
convertColor . 654

CONTENTS xi

densCols . 656
dev . 657
dev.capabilities . 659
dev.capture . 660
dev.flush . 660
dev.interactive . 661
dev.size . 662
dev2 . 663
dev2bitmap . 665
devAskNewPage . 667
Devices . 667
embedFonts . 668
extendrange . 669
getGraphicsEvent . 670
gray . 673
gray.colors . 673
hcl . 674
Hershey . 676
hsv . 679
Japanese . 680
make.rgb . 681
msgWindow . 682
n2mfrow . 683
nclass . 684
palette . 685
Palettes . 686
pdf . 687
pdf.options . 692
pictex . 693
plotmath . 694
png . 699
postscript . 702
postscriptFonts . 708
pretty.Date . 711
ps.options . 712
recordGraphics . 713
recordPlot . 714
rgb . 715
rgb2hsv . 716
savePlot . 718
trans3d . 719
Type1Font . 720
windows . 721
windows.options . 725
windowsFonts . 726
xfig . 727
xy.coords . 729
xyTable . 730
xyz.coords . 731

xii CONTENTS

4 The graphics package 733
graphics-package . 733
abline . 733
arrows . 735
assocplot . 736
Axis . 738
axis . 739
axis.POSIXct . 741
axTicks . 743
barplot . 744
box . 748
boxplot . 749
boxplot.matrix . 752
bxp . 753
cdplot . 755
clip . 758
contour . 759
convertXY . 761
coplot . 762
curve . 765
dotchart . 767
filled.contour . 768
fourfoldplot . 771
frame . 772
grid . 773
hist . 774
hist.POSIXt . 777
identify . 778
image . 781
layout . 783
legend . 785
lines . 790
locator . 791
matplot . 792
mosaicplot . 794
mtext . 797
pairs . 799
panel.smooth . 801
par . 802
persp . 811
pie . 814
plot . 816
plot.data.frame . 817
plot.default . 818
plot.design . 820
plot.factor . 822
plot.formula . 823
plot.histogram . 825
plot.table . 826
plot.window . 827
plot.xy . 828
points . 829

CONTENTS xiii

polygon . 833
polypath . 835
rasterImage . 837
rect . 838
rug . 839
screen . 840
segments . 842
smoothScatter . 843
spineplot . 845
stars . 847
stem . 851
stripchart . 851
strwidth . 853
sunflowerplot . 855
symbols . 857
text . 859
title . 861
units . 863
xspline . 864

5 The grid package 867
grid-package . 867
absolute.size . 868
arrow . 869
calcStringMetric . 869
convertNative . 871
dataViewport . 872
drawDetails . 873
editDetails . 874
gEdit . 875
getNames . 876
gpar . 876
gPath . 878
Grid . 879
Grid Viewports . 880
grid.add . 883
grid.arrows . 884
grid.bezier . 886
grid.cap . 888
grid.circle . 889
grid.clip . 890
grid.collection . 891
grid.convert . 892
grid.copy . 894
grid.curve . 895
grid.display.list . 897
grid.DLapply . 898
grid.draw . 899
grid.edit . 900
grid.frame . 901
grid.function . 902
grid.get . 904
grid.grab . 905

xiv CONTENTS

grid.grill . 906
grid.grob . 907
grid.layout . 908
grid.lines . 910
grid.locator . 912
grid.ls . 913
grid.move.to . 915
grid.newpage . 916
grid.null . 917
grid.pack . 918
grid.path . 919
grid.place . 921
grid.plot.and.legend . 922
grid.points . 923
grid.polygon . 924
grid.pretty . 925
grid.prompt . 926
grid.raster . 926
grid.record . 928
grid.rect . 929
grid.refresh . 931
grid.remove . 931
grid.segments . 932
grid.set . 933
grid.show.layout . 934
grid.show.viewport . 935
grid.text . 936
grid.xaxis . 938
grid.xspline . 939
grid.yaxis . 941
grobName . 943
grobWidth . 943
grobX . 944
plotViewport . 945
pop.viewport . 945
push.viewport . 946
Querying the Viewport Tree . 947
roundrect . 948
showGrob . 949
showViewport . 950
stringWidth . 951
unit . 952
unit.c . 954
unit.length . 955
unit.pmin . 955
unit.rep . 956
valid.just . 957
validDetails . 957
vpPath . 958
widthDetails . 959
Working with Viewports . 960
xDetails . 962

CONTENTS xv

xsplinePoints . 963

6 The methods package 965
methods-package . 965
.BasicFunsList . 966
as . 966
BasicClasses . 970
callGeneric . 972
callNextMethod . 973
canCoerce . 975
cbind2 . 976
Classes . 977
classesToAM . 980
className . 982
classRepresentation-class . 984
Documentation . 985
dotsMethods . 986
environment-class . 989
envRefClass-class . 990
evalSource . 991
findClass . 994
findMethods . 995
fixPre1.8 . 998
genericFunction-class . 999
GenericFunctions . 1000
getClass . 1003
getMethod . 1005
getPackageName . 1007
hasArg . 1008
implicitGeneric . 1009
inheritedSlotNames . 1011
initialize-methods . 1012
is . 1013
isSealedMethod . 1018
language-class . 1020
LinearMethodsList-class . 1021
makeClassRepresentation . 1021
method.skeleton . 1022
MethodDefinition-class . 1023
Methods . 1024
MethodsList-class . 1032
MethodWithNext-class . 1033
new . 1034
nonStructure-class . 1036
ObjectsWithPackage-class . 1037
promptClass . 1037
promptMethods . 1039
ReferenceClasses . 1040
representation . 1049
S3Part . 1050
S4groupGeneric . 1054
SClassExtension-class . 1056
selectSuperClasses . 1057

xvi CONTENTS

setClass . 1058
setClassUnion . 1062
setGeneric . 1063
setLoadActions . 1068
setMethod . 1071
setOldClass . 1074
show . 1078
showMethods . 1080
signature-class . 1082
slot . 1082
StructureClasses . 1084
testInheritedMethods . 1086
TraceClasses . 1088
validObject . 1089

7 The splines package 1093
splines-package . 1093
asVector . 1093
backSpline . 1094
bs . 1095
interpSpline . 1096
ns . 1097
periodicSpline . 1098
polySpline . 1099
predict.bs . 1100
predict.bSpline . 1101
splineDesign . 1102
splineKnots . 1103
splineOrder . 1104
xyVector . 1105

8 The stats package 1107
stats-package . 1107
.checkMFClasses . 1107
acf . 1108
acf2AR . 1110
add1 . 1111
addmargins . 1113
aggregate . 1115
AIC . 1118
alias . 1119
anova . 1121
anova.glm . 1121
anova.lm . 1123
anova.mlm . 1124
ansari.test . 1126
aov . 1129
approxfun . 1130
ar . 1132
ar.ols . 1135
arima . 1137
arima.sim . 1141
arima0 . 1142

CONTENTS xvii

ARMAacf . 1145
ARMAtoMA . 1147
as.hclust . 1147
asOneSidedFormula . 1148
ave . 1149
bandwidth . 1150
bartlett.test . 1151
Beta . 1153
binom.test . 1155
Binomial . 1156
biplot . 1158
biplot.princomp . 1159
birthday . 1160
Box.test . 1162
C . 1163
cancor . 1164
case+variable.names . 1165
Cauchy . 1166
chisq.test . 1167
Chisquare . 1170
cmdscale . 1172
coef . 1174
complete.cases . 1175
confint . 1176
constrOptim . 1177
contrast . 1179
contrasts . 1180
convolve . 1181
cophenetic . 1183
cor . 1184
cor.test . 1187
cov.wt . 1189
cpgram . 1191
cutree . 1192
decompose . 1193
delete.response . 1194
dendrapply . 1195
dendrogram . 1197
density . 1201
deriv . 1204
deviance . 1207
df.residual . 1208
diffinv . 1208
dist . 1209
Distributions . 1212
dummy.coef . 1213
ecdf . 1214
eff.aovlist . 1217
effects . 1218
embed . 1219
expand.model.frame . 1220
Exponential . 1221

xviii CONTENTS

extractAIC . 1222
factanal . 1224
factor.scope . 1227
family . 1228
FDist . 1231
fft . 1233
filter . 1234
fisher.test . 1235
fitted . 1238
fivenum . 1239
fligner.test . 1240
formula . 1241
formula.nls . 1243
friedman.test . 1244
ftable . 1246
ftable.formula . 1248
GammaDist . 1249
Geometric . 1251
getInitial . 1252
glm . 1253
glm.control . 1258
glm.summaries . 1259
hclust . 1260
heatmap . 1263
HoltWinters . 1266
Hypergeometric . 1269
identify.hclust . 1270
influence.measures . 1272
integrate . 1275
interaction.plot . 1277
IQR . 1279
is.empty.model . 1280
isoreg . 1280
KalmanLike . 1282
kernapply . 1283
kernel . 1285
kmeans . 1286
kruskal.test . 1289
ks.test . 1290
ksmooth . 1293
lag . 1294
lag.plot . 1295
line . 1296
lm . 1297
lm.fit . 1300
lm.influence . 1302
lm.summaries . 1303
loadings . 1305
loess . 1306
loess.control . 1308
Logistic . 1309
logLik . 1310

CONTENTS xix

loglin . 1312
Lognormal . 1314
lowess . 1315
ls.diag . 1316
ls.print . 1317
lsfit . 1318
mad . 1319
mahalanobis . 1320
make.link . 1321
makepredictcall . 1322
manova . 1323
mantelhaen.test . 1324
mauchly.test . 1327
mcnemar.test . 1328
median . 1329
medpolish . 1330
model.extract . 1332
model.frame . 1333
model.matrix . 1335
model.tables . 1336
monthplot . 1338
mood.test . 1340
Multinom . 1341
na.action . 1342
na.contiguous . 1343
na.fail . 1344
naprint . 1345
naresid . 1345
NegBinomial . 1346
nextn . 1348
nlm . 1349
nlminb . 1351
nls . 1354
nls.control . 1359
NLSstAsymptotic . 1360
NLSstClosestX . 1361
NLSstLfAsymptote . 1362
NLSstRtAsymptote . 1362
nobs . 1363
Normal . 1364
numericDeriv . 1366
offset . 1367
oneway.test . 1367
optim . 1369
optimize . 1374
order.dendrogram . 1376
p.adjust . 1377
pairwise.prop.test . 1379
pairwise.t.test . 1380
pairwise.table . 1381
pairwise.wilcox.test . 1381
plot.acf . 1382

xx CONTENTS

plot.density . 1383
plot.HoltWinters . 1384
plot.isoreg . 1385
plot.lm . 1387
plot.ppr . 1389
plot.profile.nls . 1390
plot.spec . 1391
plot.stepfun . 1393
plot.ts . 1394
Poisson . 1396
poisson.test . 1398
poly . 1399
power . 1400
power.anova.test . 1401
power.prop.test . 1402
power.t.test . 1404
PP.test . 1405
ppoints . 1406
ppr . 1407
prcomp . 1410
predict . 1412
predict.Arima . 1413
predict.glm . 1415
predict.HoltWinters . 1416
predict.lm . 1417
predict.loess . 1420
predict.nls . 1421
predict.smooth.spline . 1423
preplot . 1424
princomp . 1424
print.power.htest . 1427
print.ts . 1428
printCoefmat . 1428
profile . 1430
profile.nls . 1431
proj . 1432
prop.test . 1434
prop.trend.test . 1436
qqnorm . 1437
quade.test . 1438
quantile . 1440
r2dtable . 1442
read.ftable . 1443
rect.hclust . 1445
relevel . 1446
reorder.default . 1447
reorder.dendrogram . 1448
replications . 1449
reshape . 1450
residuals . 1453
runmed . 1454
rWishart . 1456

CONTENTS xxi

scatter.smooth . 1457
screeplot . 1458
sd . 1459
se.contrast . 1460
selfStart . 1462
setNames . 1463
shapiro.test . 1464
SignRank . 1465
simulate . 1466
smooth . 1468
smooth.spline . 1470
smoothEnds . 1474
sortedXyData . 1475
spec.ar . 1476
spec.pgram . 1477
spec.taper . 1479
spectrum . 1480
splinefun . 1481
SSasymp . 1484
SSasympOff . 1485
SSasympOrig . 1486
SSbiexp . 1487
SSD . 1488
SSfol . 1489
SSfpl . 1490
SSgompertz . 1491
SSlogis . 1492
SSmicmen . 1493
SSweibull . 1494
start . 1495
stat.anova . 1496
stats-deprecated . 1497
step . 1497
stepfun . 1499
stl . 1501
stlmethods . 1503
StructTS . 1504
summary.aov . 1506
summary.glm . 1508
summary.lm . 1510
summary.manova . 1511
summary.nls . 1513
summary.princomp . 1514
supsmu . 1515
symnum . 1516
t.test . 1519
TDist . 1521
termplot . 1523
terms . 1525
terms.formula . 1525
terms.object . 1526
time . 1528

xxii CONTENTS

toeplitz . 1529
ts . 1529
ts-methods . 1531
ts.plot . 1532
ts.union . 1533
tsdiag . 1534
tsp . 1535
tsSmooth . 1535
Tukey . 1536
TukeyHSD . 1537
Uniform . 1539
uniroot . 1540
update . 1542
update.formula . 1543
var.test . 1544
varimax . 1545
vcov . 1546
Weibull . 1547
weighted.mean . 1548
weighted.residuals . 1549
weights . 1550
wilcox.test . 1551
Wilcoxon . 1554
window . 1556
xtabs . 1557

9 The stats4 package 1561
stats4-package . 1561
coef-methods . 1561
confint-methods . 1562
logLik-methods . 1562
mle . 1562
mle-class . 1564
plot-methods . 1565
profile-methods . 1566
profile.mle-class . 1567
show-methods . 1567
summary-methods . 1568
summary.mle-class . 1568
update-methods . 1569
vcov-methods . 1569

10 The tcltk package 1571
tcltk-package . 1571
TclInterface . 1571
tclServiceMode . 1575
TkCommands . 1576
tkpager . 1580
tkProgressBar . 1580
tkStartGUI . 1582
TkWidgetcmds . 1582
TkWidgets . 1585
tk_choose.dir . 1587

CONTENTS xxiii

tk_choose.files . 1587
tk_messageBox . 1588
tk_select.list . 1589

11 The tools package 1591
tools-package . 1591
add_datalist . 1591
bibstyle . 1592
buildVignettes . 1593
charsets . 1594
checkFF . 1595
checkMD5sums . 1596
checkPoFiles . 1597
checkRd . 1598
checkRdaFiles . 1600
checkTnF . 1601
checkVignettes . 1602
codoc . 1603
compactPDF . 1604
delimMatch . 1606
dependsOnPkgs . 1607
encoded_text_to_latex . 1608
fileutils . 1609
getDepList . 1610
HTMLheader . 1612
HTMLlinks . 1613
installFoundDepends . 1613
md5sum . 1614
package.dependencies . 1615
package_dependencies . 1615
parseLatex . 1616
parse_Rd . 1617
pskill . 1619
psnice . 1620
QC . 1621
Rd2HTML . 1622
Rd2txt_options . 1624
Rdiff . 1626
Rdindex . 1627
RdTextFilter . 1627
Rdutils . 1628
read.00Index . 1629
readNEWS . 1630
showNonASCII . 1631
startDynamicHelp . 1632
SweaveTeXFilter . 1633
testInstalledPackage . 1634
texi2dvi . 1635
toHTML . 1636
tools-deprecated . 1637
toRd . 1637
undoc . 1638
vignetteDepends . 1639

xxiv CONTENTS

write_PACKAGES . 1640
xgettext . 1641

12 The utils package 1643
utils-package . 1643
adist . 1643
alarm . 1645
apropos . 1646
aregexec . 1647
arrangeWindows . 1649
aspell . 1650
aspell-utils . 1651
available.packages . 1653
BATCH . 1654
bibentry . 1655
browseEnv . 1659
browseURL . 1660
browseVignettes . 1661
bug.report . 1662
capture.output . 1664
choose.dir . 1665
choose.files . 1666
chooseBioCmirror . 1667
chooseCRANmirror . 1668
citation . 1668
citEntry . 1670
clipboard . 1671
close.socket . 1672
combn . 1673
compareVersion . 1674
contrib.url . 1675
count.fields . 1675
create.post . 1676
data . 1677
dataentry . 1679
debugger . 1681
demo . 1683
DLL.version . 1684
download.file . 1685
download.packages . 1687
edit . 1688
edit.data.frame . 1690
example . 1692
file.edit . 1694
file_test . 1695
findLineNum . 1695
fix . 1697
flush.console . 1698
format . 1698
getAnywhere . 1699
getFromNamespace . 1700
getS3method . 1702
getWindowsHandle . 1703

CONTENTS xxv

getWindowsHandles . 1704
glob2rx . 1705
globalVariables . 1706
head . 1707
help . 1709
help.request . 1711
help.search . 1712
help.start . 1715
INSTALL . 1716
install.packages . 1717
installed.packages . 1721
localeToCharset . 1722
ls.str . 1723
maintainer . 1724
make.packages.html . 1725
make.socket . 1726
memory.size . 1728
menu . 1729
methods . 1730
mirrorAdmin . 1731
modifyList . 1732
news . 1732
object.size . 1734
package.skeleton . 1735
packageDescription . 1737
packageStatus . 1738
page . 1740
person . 1740
PkgUtils . 1743
prompt . 1744
promptData . 1746
promptPackage . 1747
Question . 1748
rcompgen . 1750
read.DIF . 1755
read.fortran . 1757
read.fwf . 1758
read.socket . 1760
read.table . 1761
readRegistry . 1765
recover . 1766
relist . 1768
REMOVE . 1770
remove.packages . 1771
removeSource . 1771
roman . 1772
Rprof . 1773
Rprofmem . 1774
Rscript . 1775
RShowDoc . 1776
RSiteSearch . 1777
rtags . 1779

xxvi CONTENTS

Rtangle . 1780
RweaveLatex . 1782
Rwin configuration . 1785
savehistory . 1787
select.list . 1788
sessionInfo . 1789
setInternet2 . 1790
setRepositories . 1791
setWindowTitle . 1792
SHLIB . 1794
shortPathName . 1795
sourceutils . 1795
stack . 1797
str . 1798
summaryRprof . 1801
Sweave . 1802
SweaveSyntConv . 1804
tar . 1805
toLatex . 1807
txtProgressBar . 1808
type.convert . 1809
untar . 1810
unzip . 1812
update.packages . 1813
url.show . 1815
URLencode . 1816
utils-deprecated . 1817
View . 1817
vignette . 1818
winDialog . 1820
winextras . 1821
winMenus . 1821
winProgressBar . 1823
write.table . 1824
zip . 1827

Index 1829

Chapter 1

The base package

base-package The R Base Package

Description

Base R functions

Details

This package contains the basic functions which let R function as a language: arithmetic, in-
put/output, basic programming support, etc. Its contents are available through inheritance from
any environment.

For a complete list of functions, use library(help="base").

.bincode Bin a Numeric Vector

Description

Bin a numeric vector and return integer codes for the binning.

Usage

.bincode(x, breaks, right = TRUE, include.lowest = FALSE)

Arguments

x a numeric vector which is to be converted to integer codes by binning.

breaks a numeric vector of two or more cut points, sorted in increasing order.

right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.

include.lowest logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for
right = FALSE) ‘breaks’ value should be included in the first (or last) bin.

1

2 .Machine

Details

This is a ‘barebones’ version of cut.default(labels = FALSE) intended for use in other
functions which have checked the arguments passed.

Unlike cut, the breaks do not need to be unique. An input can only fall into a zero-length inter-
val if it is closed at both ends, so only if include.lowest = TRUE and it is the first (or last for
right = FALSE) interval.

Value

An integer vector of the same length as x indicating which bin each element falls into (the leftmost
bin being bin 1). NaN and NA elements of x are mapped to NA codes, as are values outside range of
breaks.

See Also

cut, tabulate

.Device Lists of Open/Active Graphics Devices

Description

A pairlist of the names of open graphics devices is stored in .Devices. The name of the active
device (see dev.cur) is stored in .Device. Both are symbols and so appear in the base namespace.

Value

.Device is a length-one character vector.

.Devices is a pairlist of length-one character vectors. The first entry is always "null device",
and there are as many entries as the maximal number of graphics devices which have been simul-
taneously active. If a device has been removed, its entry will be "" until the device number is
reused.

.Machine Numerical Characteristics of the Machine

Description

.Machine is a variable holding information on the numerical characteristics of the machine R is
running on, such as the largest double or integer and the machine’s precision.

Usage

.Machine

.Machine 3

Details

The algorithm is based on Cody’s (1988) subroutine MACHAR. As all current implementations of
R use 32-bit integers and almost all use IEC 60559 floating-point (double precision) arithmetic, all
but the last two values are the same for almost all R builds.

Note that on most platforms smaller positive values than .Machine$double.xmin can occur. On a
typical R platform the smallest positive double is about 5e-324.

Value

A list with components

double.eps the smallest positive floating-point number x such that 1 + x != 1. It equals
double.base ^ ulp.digits if either double.base is 2 or double.rounding
is 0; otherwise, it is (double.base ^ double.ulp.digits) / 2. Normally
2.220446e-16.

double.neg.eps a small positive floating-point number x such that 1 - x != 1.
It equals double.base ^ double.neg.ulp.digits if
double.base is 2 or double.rounding is 0; otherwise, it is
(double.base ^ double.neg.ulp.digits) / 2. Normally 1.110223e-16.
As double.neg.ulp.digits is bounded below by -(double.digits + 3),
double.neg.eps may not be the smallest number that can alter 1 by subtraction.

double.xmin the smallest non-zero normalized floating-point number, a power of the radix,
i.e., double.base ^ double.min.exp. Normally 2.225074e-308.

double.xmax the largest normalized floating-point number. Typically, it is equal to
(1 - double.neg.eps) * double.base ^ double.max.exp, but on
some machines it is only the second or third largest such number, being too small
by 1 or 2 units in the last digit of the significand. Normally 1.797693e+308.
Note that larger unnormalized numbers can occur.

double.base the radix for the floating-point representation: normally 2.
double.digits the number of base digits in the floating-point significand: normally 53.
double.rounding

the rounding action, one of
0 if floating-point addition chops;
1 if floating-point addition rounds, but not in the IEEE style;
2 if floating-point addition rounds in the IEEE style;
3 if floating-point addition chops, and there is partial underflow;
4 if floating-point addition rounds, but not in the IEEE style, and there is partial
underflow;
5 if floating-point addition rounds in the IEEE style, and there is partial under-
flow.
Normally 5.

double.guard the number of guard digits for multiplication with truncating arithmetic. It is
1 if floating-point arithmetic truncates and more than double digits base-
double.base digits participate in the post-normalization shift of the floating-
point significand in multiplication, and 0 otherwise.

double.ulp.digits

the largest negative integer i such that 1 + double.base ^ i != 1, except
that it is bounded below by -(double.digits + 3). Normally -52.

double.neg.ulp.digits

the largest negative integer i such that 1 - double.base ^ i != 1, except
that it is bounded below by -(double.digits + 3). Normally -53.

4 .Machine

double.exponent

the number of bits (decimal places if double.base is 10) reserved for the repre-
sentation of the exponent (including the bias or sign) of a floating-point number.
Normally 11.

double.min.exp the largest in magnitude negative integer i such that double.base ^ i is posi-
tive and normalized. Normally -1022.

double.max.exp the smallest positive power of double.base that overflows. Normally 1024.

integer.max the largest integer which can be represented. Always 2147483647.

sizeof.long the number of bytes in a C long type: 4 or 8 (most 64-bit systems, but not
Windows).

sizeof.longlong

the number of bytes in a C long long type. Will be zero if there is no such type,
otherwise usually 8.

sizeof.longdouble

the number of bytes in a C long double type. Will be zero if there is no such
type, otherwise possibly 12 (most 32-bit builds) or 16 (most 64-bit builds).

sizeof.pointer the number of bytes in a C SEXP type. Will be 4 on 32-bit builds and 8 on 64-bit
builds of R.

Note

sizeof.longdouble only tells you the amount of storage allocated for a long double (which are
used internally by R for accumulators in e.g. sum, and can be read by readBin). Often what is
stored is the 80-bit extended double type of IEC 60559, padded to the double alignment used on the
platform — this seems to be the case for the common R platforms using ix86 and x86_64 chips.

Source

Uses a C translation of Fortran code in the reference, modified by the R Core Team to defeat over-
optimization in recent compilers.

References

Cody, W. J. (1988) MACHAR: A subroutine to dynamically determine machine parameters. Trans-
actions on Mathematical Software, 14, 4, 303–311.

See Also

.Platform for details of the platform.

Examples

.Machine
or for a neat printout
noquote(unlist(format(.Machine)))

.Platform 5

.Platform Platform Specific Variables

Description

.Platform is a list with some details of the platform under which R was built. This provides means
to write OS-portable R code.

Usage

.Platform

Value

A list with at least the following components:

OS.type character string, giving the Operating System (family) of the computer. One of
"unix" or "windows".

file.sep character string, giving the file separator used on your platform: "/" on both
Unix-alikes and on Windows (but not on the once port to Classic Mac OS).

dynlib.ext character string, giving the file name extension of dynamically loadable
libraries, e.g., ".dll" on Windows and ".so" or ".sl" on Unix-alikes. (Note
for Mac OS X users: these are shared objects as loaded by dyn.load and not
dylibs: see dyn.load.)

GUI character string, giving the type of GUI in use, or "unknown" if no GUI can
be assumed. Possible values are for Unix-alikes the values given via the ‘-g’
command-line flag ("X11", "Tk"), "AQUA" (running under R.app on Mac OS
X), "Rgui" and "RTerm" (Windows) and perhaps others under alternative front-
ends or embedded R.

endian character string, "big" or "little", giving the endianness of the processor in
use. This is relevant when it is necessary to know the order to read/write bytes
of e.g. an integer or double from/to a connection: see readBin.

pkgType character string, the preferred setting for options("pkgType"). Values
"source", "mac.binary.leopard" and "win.binary" are currently in use.

path.sep character string, giving the path separator, used on your platform, e.g., ":"
on Unix-alikes and ";" on Windows. Used to separate paths in environment
variables such as PATH and TEXINPUTS.

r_arch character string, possibly "". The name of an architecture-specific directory
used in this build of R.

AQUA

.Platform$GUI is set to "AQUA" under the Mac OS X GUI, R.app. This has a number of conse-
quences:

• the DISPLAY environment variable is set to ":0" if unset.

• appends ‘/usr/local/bin’ to the PATH environment variable.

• the default graphics device is set to quartz.

6 abbreviate

• selects native (rather than Tk) widgets for the graphics = TRUE options of menu and
select.list.

• HTML help is displayed in the internal browser.

• The spreadsheet-like data editor/viewer uses a Quartz version rather than the X11 one.

See Also

R.version and Sys.info give more details about the OS. In particular, R.version$platform is
the canonical name of the platform under which R was compiled.

.Machine for details of the arithmetic used, and system for invoking platform-specific system
commands.

Examples

Note: this can be done in a system-independent way
by file.info()$isdir
if(.Platform$OS.type == "unix") {

system.test <- function(...) { system(paste("test", ...)) == 0 }
dir.exists <- function(dir)

sapply(dir, function(d) system.test("-d", d))
dir.exists(c(R.home(), "/tmp", "~", "/NO"))# > T T T F

}

abbreviate Abbreviate Strings

Description

Abbreviate strings to at least minlength characters, such that they remain unique (if they were),
unless strict=TRUE.

Usage

abbreviate(names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE, strict = FALSE,
method = c("left.kept", "both.sides"))

Arguments

names.arg a character vector of names to be abbreviated, or an object to be coerced to a
character vector by as.character.

minlength the minimum length of the abbreviations.

use.classes logical (currently ignored by R).

dot logical: should a dot (".") be appended?

strict logical: should minlength be observed strictly? Note that setting strict=TRUE
may return non-unique strings.

method a string specifying the method used with default "left.kept", see ‘Details’
below.

abbreviate 7

Details

The algorithm (method = "left.kept") used is similar to that of S. For a single string it works as
follows. First all spaces at the beginning of the string are stripped. Then (if necessary) any other
spaces are stripped. Next, lower case vowels are removed (starting at the right) followed by lower
case consonants. Finally if the abbreviation is still longer than minlength upper case letters are
stripped.

Characters are always stripped from the end of the word first. If an element of names.arg contains
more than one word (words are separated by space) then at least one letter from each word will be
retained.

Missing (NA) values are unaltered.

If use.classes is FALSE then the only distinction is to be between letters and space. This has NOT
been implemented.

Value

A character vector containing abbreviations for the strings in its first argument. Duplicates in
the original names.arg will be given identical abbreviations. If any non-duplicated elements
have the same minlength abbreviations then, if method = "both.sides" the basic internal
abbreviate() algorithm is applied to the characterwise reversed strings; if there are still dupli-
cated abbreviations and if strict=FALSE as by default, minlength is incremented by one and new
abbreviations are found for those elements only. This process is repeated until all unique elements
of names.arg have unique abbreviations.

The character version of names.arg is attached to the returned value as a names argument: no other
attributes are retained.

Warning

This is really only suitable for English, and does not work correctly with non-ASCII characters in
multibyte locales. It will warn if used with non-ASCII characters.

See Also

substr.

Examples

x <- c("abcd", "efgh", "abce")
abbreviate(x, 2)
abbreviate(x, 2, strict=TRUE)# >> 1st and 3rd are == "ab"

(st.abb <- abbreviate(state.name, 2))
table(nchar(st.abb))# out of 50, 3 need 4 letters :
as <- abbreviate(state.name, 3, strict=TRUE)
as[which(as == "Mss")]

method="both.sides" helps: no 4-letters, and only 4 3-letters:
st.ab2 <- abbreviate(state.name, 2, method="both")
table(nchar(st.ab2))
Compare the two methods:
cbind(st.abb, st.ab2)

8 agrep

agrep Approximate String Matching (Fuzzy Matching)

Description

Searches for approximate matches to pattern (the first argument) within each element of the string
x (the second argument) using the generalized Levenshtein edit distance (the minimal possibly
weighted number of insertions, deletions and substitutions needed to transform one string into an-
other).

Usage

agrep(pattern, x, max.distance = 0.1, costs = NULL,
ignore.case = FALSE, value = FALSE, fixed = TRUE,
useBytes = FALSE)

Arguments

pattern a non-empty character string or a character string containing a regular expression
(for fixed = FALSE) to be matched. Coerced by as.character to a string if
possible.

x character vector where matches are sought. Coerced by as.character to a
character vector if possible.

max.distance Maximum distance allowed for a match. Expressed either as integer, or as a
fraction of the pattern length times the maximal transformation cost (will be
replaced by the smallest integer not less than the corresponding fraction), or a
list with possible components
cost: maximum number/fraction of match cost (generalized Levenshtein dis-

tance)
all: maximal number/fraction of all transformations (insertions, deletions and

substitutions)
insertions: maximum number/fraction of insertions
deletions: maximum number/fraction of deletions
substitutions: maximum number/fraction of substitutions
If cost is not given, all defaults to 10%, and the other transformation number
bounds default to all. The component names can be abbreviated.

costs a numeric vector or list with names partially matching ‘insertions’,
‘deletions’ and ‘substitutions’ giving the respective costs for computing
the generalized Levenshtein distance, or NULL (default) indicating using unit
cost for all three possible transformations. Coerced to integer via as.integer
if possible.

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

value if FALSE, a vector containing the (integer) indices of the matches determined is
returned and if TRUE, a vector containing the matching elements themselves is
returned.

fixed logical. If TRUE (default), the pattern is matched literally (as is). Otherwise, it is
matched as a regular expression.

useBytes logical. in a multibyte locale, should the comparison be character-by-character
(the default) or byte-by-byte.

all 9

Details

The Levenshtein edit distance is used as measure of approximateness: it is the (possibly cost-
weighted) total number of insertions, deletions and substitutions required to transform one string
into another.

As from R 2.10.0 this uses tre by Ville Laurikari (http://http://laurikari.net/tre/), which
supports MBCS character matching much better than the previous version.

The main effect of useBytes is to avoid errors/warnings about invalid inputs and spurious matches
in multibyte locales. It inhibits the conversion of inputs with marked encodings, and is forced if any
input is found which is marked as "bytes".

Value

Either a vector giving the indices of the elements that yielded a match, or, if value is TRUE, the
matched elements (after coercion, preserving names but no other attributes).

Note

Since someone who read the description carelessly even filed a bug report on it, do note that this
matches substrings of each element of x (just as grep does) and not whole elements. See adist in
package utils, which optionally returns the offsets of the matched substrings.

Author(s)

Original version by David Meyer. Current version by Brian Ripley and Kurt Hornik.

See Also

grep

Examples

agrep("lasy", "1 lazy 2")
agrep("lasy", c(" 1 lazy 2", "1 lasy 2"), max = list(sub = 0))
agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2)
agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, value = TRUE)
agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, ignore.case = TRUE)

all Are All Values True?

Description

Given a set of logical vectors, are all of the values true?

Usage

all(..., na.rm = FALSE)

http://http://laurikari.net/tre/

10 all

Arguments

... zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.

na.rm logical. If true NA values are removed before the result is computed.

Details

This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this
is often unintentional.

This is a primitive function.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in ... (after coercion), after removing NAs
if requested by na.rm = TRUE.

The value returned is TRUE if all of the values in x are TRUE (including if there are no values), and
FALSE if at least one of the values in x is FALSE. Otherwise the value is NA (which can only occur if
na.rm = FALSE and ... contains no FALSE values and at least one NA value).

S4 methods

This is part of the S4 Summary group generic. Methods for it must use the signature x, ..., na.rm.

Note

That all(logical(0)) is true is a useful convention: it ensures that

all(all(x), all(y)) == all(x,y)

even if x has length zero.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

any, the ‘complement’ of all, and stopifnot(*) which is an all(*) ‘insurance’.

Examples

range(x <- sort(round(stats::rnorm(10) - 1.2, 1)))
if(all(x < 0)) cat("all x values are negative\n")

all(logical(0)) # true, as all zero of the elements are true.

all.equal 11

all.equal Test if Two Objects are (Nearly) Equal

Description

all.equal(x,y) is a utility to compare R objects x and y testing ‘near equality’. If they are
different, comparison is still made to some extent, and a report of the differences is returned. Don’t
use all.equal directly in if expressions—either use isTRUE(all.equal(....)) or identical
if appropriate.

Usage

all.equal(target, current, ...)

S3 method for class ’numeric’
all.equal(target, current,

tolerance = .Machine$double.eps ^ 0.5,
scale = NULL, check.attributes = TRUE, ...)

attr.all.equal(target, current,
check.attributes = TRUE, check.names = TRUE, ...)

Arguments

target R object.

current other R object, to be compared with target.

... Further arguments for different methods, notably the following two, for numer-
ical comparison:

tolerance numeric ≥ 0. Differences smaller than tolerance are not considered.

scale numeric scalar > 0 (or NULL). See ‘Details’.
check.attributes

logical indicating if the attributes(.) of target and current should be
compared as well.

check.names logical indicating if the names(.) of target and current should be compared
as well (and separately from the attributes).

Details

all.equal is a generic function, dispatching methods on the target argument. To see the available
methods, use methods("all.equal"), but note that the default method also does some dispatching,
e.g. using the raw method for logical targets.

Numerical comparisons for scale = NULL (the default) are done by first computing the mean abso-
lute difference of the two numerical vectors. If this is smaller than tolerance or not finite, absolute
differences are used, otherwise relative differences scaled by the mean absolute difference.

If scale is positive, absolute comparisons are made after scaling (dividing) by scale.

For complex target, the modulus (Mod) of the difference is used: all.equal.numeric is called so
arguments tolerance and scale are available.

attr.all.equal is used for comparing attributes, returning NULL or a character vector.

12 all.names

Value

Either TRUE (NULL for attr.all.equal) or a vector of mode "character" describing the differ-
ences between target and current.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also

identical, isTRUE, ==, and all for exact equality testing.

Examples

all.equal(pi, 355/113)
not precise enough (default tol) > relative error

d45 <- pi*(1/4 + 1:10)
stopifnot(
all.equal(tan(d45), rep(1,10))) # TRUE, but
all (tan(d45) == rep(1,10)) # FALSE, since not exactly
all.equal(tan(d45), rep(1,10), tol=0) # to see difference

all.names Find All Names in an Expression

Description

Return a character vector containing all the names which occur in an expression or call.

Usage

all.names(expr, functions = TRUE, max.names = -1L, unique = FALSE)

all.vars(expr, functions = FALSE, max.names = -1L, unique = TRUE)

Arguments

expr an expression or call from which the names are to be extracted.

functions a logical value indicating whether function names should be included in the
result.

max.names the maximum number of names to be returned. -1 indicates no limit (other than
vector size limits).

unique a logical value which indicates whether duplicate names should be removed
from the value.

Details

These functions differ only in the default values for their arguments.

any 13

Value

A character vector with the extracted names.

See Also

substitute to replace symbols with values in an expression.

Examples

all.names(expression(sin(x+y)))
all.names(quote(sin(x+y))) # or a call
all.vars(expression(sin(x+y)))

any Are Some Values True?

Description

Given a set of logical vectors, is at least one of the values true?

Usage

any(..., na.rm = FALSE)

Arguments

... zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.

na.rm logical. If true NA values are removed before the result is computed.

Details

This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this
is often unintentional.

This is a primitive function.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in ... (after coercion), after removing NAs
if requested by na.rm = TRUE.

The value returned is TRUE if at least one of the values in x is TRUE, and FALSE if all of the values
in x are FALSE (including if there are no values). Otherwise the value is NA (which can only occur if
na.rm = FALSE and ... contains no TRUE values and at least one NA value).

S4 methods

This is part of the S4 Summary group generic. Methods for it must use the signature x, ..., na.rm.

14 aperm

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

all, the ‘complement’ of any.

Examples

range(x <- sort(round(stats::rnorm(10) - 1.2,1)))
if(any(x < 0)) cat("x contains negative values\n")

aperm Array Transposition

Description

Transpose an array by permuting its dimensions and optionally resizing it.

Usage

aperm(a, perm, ...)
Default S3 method:
aperm(a, perm = NULL, resize = TRUE, ...)
S3 method for class ’table’
aperm(a, perm = NULL, resize = TRUE, keep.class = TRUE, ...)

Arguments

a the array to be transposed.

perm the subscript permutation vector, usually a permutation of the integers 1:n,
where n is the number of dimensions of a. When a has named dimnames, it
can be a character vector of length n giving a permutation of those names. The
default (used whenever perm has zero length) is to reverse the order of the di-
mensions.

resize a flag indicating whether the vector should be resized as well as having its ele-
ments reordered (default TRUE).

keep.class logical indicating if the result should be of the same class as a.

... potential further arguments of methods.

Value

A transposed version of array a, with subscripts permuted as indicated by the array perm. If resize
is TRUE, the array is reshaped as well as having its elements permuted, the dimnames are also per-
muted; if resize = FALSE then the returned object has the same dimensions as a, and the dimnames
are dropped. In each case other attributes are copied from a.

The function t provides a faster and more convenient way of transposing matrices.

append 15

Author(s)

Jonathan Rougier, <J.C.Rougier@durham.ac.uk> did the faster C implementation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

t, to transpose matrices.

Examples

interchange the first two subscripts on a 3-way array x
x <- array(1:24, 2:4)
xt <- aperm(x, c(2,1,3))
stopifnot(t(xt[,,2]) == x[,,2],

t(xt[,,3]) == x[,,3],
t(xt[,,4]) == x[,,4])

UCB <- aperm(UCBAdmissions, c(2,1,3))
UCB[1,,]
summary(UCB)# UCB is still a continency table

append Vector Merging

Description

Add elements to a vector.

Usage

append(x, values, after = length(x))

Arguments

x the vector to be modified.

values to be included in the modified vector.

after a subscript, after which the values are to be appended.

Value

A vector containing the values in x with the elements of values appended after the specified element
of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

16 apply

Examples

append(1:5, 0:1, after=3)

apply Apply Functions Over Array Margins

Description

Returns a vector or array or list of values obtained by applying a function to margins of an array or
matrix.

Usage

apply(X, MARGIN, FUN, ...)

Arguments

X an array, including a matrix.
MARGIN a vector giving the subscripts which the function will be applied over. E.g.,

for a matrix 1 indicates rows, 2 indicates columns, c(1, 2) indicates rows and
columns. Where X has named dimnames, it can be a character vector selecting
dimension names.

FUN the function to be applied: see ‘Details’. In the case of functions like +, %*%,
etc., the function name must be backquoted or quoted.

... optional arguments to FUN.

Details

If X is not an array but an object of a class with a non-null dim value (such as a data frame), apply
attempts to coerce it to an array via as.matrix if it is two-dimensional (e.g., a data frame) or via
as.array.

FUN is found by a call to match.fun and typically is either a function or a symbol (e.g. a backquoted
name) or a character string specifying a function to be searched for from the environment of the call
to apply.

Arguments in ... cannot have the same name as any of the other arguments, and care may be
needed to avoid partial matching to MARGIN or FUN. In general-purpose code it is good practice to
name the first three arguments if ... is passed through: this both avoids partial matching to MARGIN
or FUN and ensures that a sensible error message is given if arguments named X, MARGIN or FUN are
passed through

Value

If each call to FUN returns a vector of length n, then apply returns an array of dimension
c(n, dim(X)[MARGIN]) if n > 1. If n equals 1, apply returns a vector if MARGIN has length 1
and an array of dimension dim(X)[MARGIN] otherwise. If n is 0, the result has length 0 but not
necessarily the ‘correct’ dimension.

If the calls to FUN return vectors of different lengths, apply returns a list of length
prod(dim(X)[MARGIN]) with dim set to MARGIN if this has length greater than one.

In all cases the result is coerced by as.vector to one of the basic vector types before the dimensions
are set, so that (for example) factor results will be coerced to a character array.

args 17

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

lapply and there, simplify2array; tapply, and convenience functions sweep and aggregate.

Examples

Compute row and column sums for a matrix:
x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
dimnames(x)[[1]] <- letters[1:8]
apply(x, 2, mean, trim = .2)
col.sums <- apply(x, 2, sum)
row.sums <- apply(x, 1, sum)
rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot(apply(x, 2, is.vector))

Sort the columns of a matrix
apply(x, 2, sort)

##- function with extra args:
cave <- function(x, c1, c2) c(mean(x[c1]), mean(x[c2]))
apply(x,1, cave, c1="x1", c2=c("x1","x2"))

ma <- matrix(c(1:4, 1, 6:8), nrow = 2)
ma
apply(ma, 1, table) #--> a list of length 2
apply(ma, 1, stats::quantile)# 5 x n matrix with rownames

stopifnot(dim(ma) == dim(apply(ma, 1:2, sum)))

Example with different lengths for each call
z <- array(1:24, dim=2:4)
zseq <- apply(z, 1:2, function(x) seq_len(max(x)))
zseq ## a 2 x 3 matrix
typeof(zseq) ## list
dim(zseq) ## 2 3
zseq[1,]
apply(z, 3, function(x) seq_len(max(x)))
a list without a dim attribute

args Argument List of a Function

Description

Displays the argument names and corresponding default values of a function or primitive.

Usage

args(name)

18 Arithmetic

Arguments

name a function (a closure or a primitive). If name is a character string then the func-
tion with that name is found and used.

Details

This function is mainly used interactively to print the argument list of a function. For programming,
consider using formals instead.

Value

For a closure, a closure with identical formal argument list but an empty (NULL) body.

For a primitive, a closure with the documented usage and NULL body. Note that some primitives do
not make use of named arguments and match by position rather than name.

NULL in case of a non-function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

formals, help.

Examples

args(c)
args(graphics::plot.default)

Arithmetic Arithmetic Operators

Description

These binary operators perform arithmetic on numeric or complex vectors (or objects which can be
coerced to them).

Usage

x + y
x - y
x * y
x / y
x ^ y
x %% y
x %/% y

Arguments

x, y numeric or complex vectors or objects which can be coerced to such, or other
objects for which methods have been written.

Arithmetic 19

Details

The binary arithmetic operators are generic functions: methods can be written for them individually
or via the Ops group generic function. (See Ops for how dispatch is computed.)

If applied to arrays the result will be an array if this is sensible (for example it will not if the
recycling rule has been invoked).

Logical vectors will be coerced to integer or numeric vectors, FALSE having value zero and TRUE
having value one.

1 ^ y and y ^ 0 are 1, always. x ^ y should also give the proper limit result when either argument
is infinite (i.e., +- Inf).

Objects such as arrays or time-series can be operated on this way provided they are conformable.

For real arguments, %% can be subject to catastrophic loss of accuracy if x is much larger than y, and
a warning is given if this is detected.

%% and x %/% y can be used for non-integer y, e.g. 1 %/% 0.2, but the results are subject to
representation error and so may be platform-dependent. Because the IEC 60059 representation of
0.2 is a binary fraction slightly larger than 0.2, the answer to 1 %/% 0.2 should be 4 but most
platforms give 5.

Users are sometimes surprised by the value returned, for example why (-8)^(1/3) is NaN. For
double inputs, R makes use of IEC 60559 arithmetic on all platforms, together with the C system
function ‘pow’ for the ^ operator. The relevant standards define the result in many corner cases. In
particular, the result in the example above is mandated by the C99 standard. On many Unix-alike
systems the command man pow gives details of the values in a large number of corner cases.

Arithmetic on type double in R is supposed to be done in ‘round to nearest, ties to even’ mode, but
this does depend on the compiler and FPU being set up correctly.

Value

These operators return vectors containing the result of the element by element operations. The
elements of shorter vectors are recycled as necessary (with a warning when they are recycled only
fractionally). The operators are + for addition, - for subtraction, * for multiplication, / for division
and ^ for exponentiation.

%% indicates x mod y and %/% indicates integer division. It is guaranteed that
x == (x %% y) + y * (x %/% y) (up to rounding error) unless y == 0 where the
result of %% is NA_integer_ or NaN (depending on the typeof of the arguments).

If either argument is complex the result will be complex, otherwise if one or both arguments are
numeric, the result will be numeric. If both arguments are of type integer, the type of the result of /
and ^ is numeric and for the other operators it is integer (with overflow, which occurs at±(231−1),
returned as NA_integer_ with a warning).

The rules for determining the attributes of the result are rather complicated. Most attributes are
taken from the longer argument, the first if they are of the same length. Names will be copied from
the first if it is the same length as the answer, otherwise from the second if that is. For time series,
these operations are allowed only if the series are compatible, when the class and tsp attribute of
whichever is a time series (the same, if both are) are used. For arrays (and an array result) the
dimensions and dimnames are taken from first argument if it is an array, otherwise the second.

S4 methods

These operators are members of the S4 Arith group generic, and so methods can be written for them
individually as well as for the group generic (or the Ops group generic), with arguments c(e1, e2).

20 array

Implementation limits

R is dependent on OS services (and they on FPUs) for floating-point arithmetic. On all current R
platforms IEC 60559 (also known as IEEE 754) arithmetic is used, but some things in those stan-
dards are optional. In particular, the support for denormal numbers (those outside the range given
by .Machine) may differ between platforms and even between calculations on a single platform.

Another potential issue is signed zeroes: on IEC 60659 platforms there are two zeroes with internal
representations differing by sign. Where possible R treats them as the same, but for example direct
output from C code often does not do so and may output ‘-0.0’ (and on Windows whether it does
so or not depends on the version of Windows). One place in R where the difference might be seen
is in division by zero: 1/x is Inf or -Inf depending on the sign of zero x.

Note

** is translated in the parser to ^, but this was undocumented for many years. It appears as an index
entry in Becker et al (1988), pointing to the help for Deprecated but is not actually mentioned on
that page. Even though it had been deprecated in S for 20 years, it was still accepted in R in 2008.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

D. Goldberg (1991) What Every Computer Scientist Should Know about Floating-Point Arithmetic
ACM Computing Surveys, 23(1).
Postscript version available at http://www.validlab.com/goldberg/paper.ps Extended PDF
version at http://www.validlab.com/goldberg/paper.pdf

See Also

sqrt for miscellaneous and Special for special mathematical functions.

Syntax for operator precedence.

%*% for matrix multiplication.

Examples

x <- -1:12
x + 1
2 * x + 3
x %% 2 #-- is periodic
x %/% 5

array Multi-way Arrays

Description

Creates or tests for arrays.

http://www.validlab.com/goldberg/paper.ps
http://www.validlab.com/goldberg/paper.pdf

array 21

Usage

array(data = NA, dim = length(data), dimnames = NULL)
as.array(x, ...)
is.array(x)

Arguments

data a vector (including a list or expression vector) giving data to fill the array.
Non-atomic classed objects are coerced by as.vector.

dim the dim attribute for the array to be created, that is an integer vector of length
one or more giving the maximal indices in each dimension.

dimnames either NULL or the names for the dimensions. This must a list (or it will be
ignored) with one component for each dimension, either NULL or a character
vector of the length given by dim for that dimension. The list can be named, and
the list names will be used as names for the dimensions. If the list is shorter than
the number of dimensions, it is extended by NULLs to the length required.

x an R object.

... additional arguments to be passed to or from methods.

Details

An array in R can have one, two or more dimensions. It is simply a vector which is stored with addi-
tional attributes giving the dimensions (attribute "dim") and optionally names for those dimensions
(attribute "dimnames").

A two-dimensional array is the same thing as a matrix.

One-dimensional arrays often look like vectors, but may be handled differently by some functions:
str does distinguish them in recent versions of R.

The "dim" attribute is an integer vector of length one or more containing non-negative values: the
product of the values must match the length of the array.

The "dimnames" attribute is optional: if present it is a list with one component for each dimension,
either NULL or a character vector of the length given by the element of the "dim" attribute for that
dimension.

is.array is a primitive function.

Value

array returns an array with the extents specified in dim and naming information in dimnames. The
values in data are taken to be those in the array with the leftmost subscript moving fastest. If there
are too few elements in data to fill the array, then the elements in data are recycled. If data has
length zero, NA of an appropriate type is used for atomic vectors (0 for raw vectors) and NULL for
lists.

In the deprecated case that dims has length 0, the result will be a vector of length 1 and a warning
will be given.

Unlike matrix, array does not currently remove any attributes left by as.vector from a classed
list data, so can return a list array with a class attribute.

as.array is a generic function for coercing to arrays. The default method does so by attaching a
dim attribute to it. It also attaches dimnames if x has names. The sole purpose of this is to make it
possible to access the dim[names] attribute at a later time.

22 as.data.frame

is.array returns TRUE or FALSE depending on whether its argument is an array (i.e., has a dim
attribute of positive length) or not. It is generic: you can write methods to handle specific classes of
objects, see InternalMethods.

Note

is.array is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

aperm, matrix, dim, dimnames.

Examples

dim(as.array(letters))
array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times"
[,1] [,2] [,3] [,4]
#[1,] 1 3 2 1
#[2,] 2 1 3 2

as.data.frame Coerce to a Data Frame

Description

Functions to check if an object is a data frame, or coerce it if possible.

Usage

as.data.frame(x, row.names = NULL, optional = FALSE, ...)

S3 method for class ’character’
as.data.frame(x, ...,

stringsAsFactors = default.stringsAsFactors())

S3 method for class ’matrix’
as.data.frame(x, row.names = NULL, optional = FALSE, ...,

stringsAsFactors = default.stringsAsFactors())

is.data.frame(x)

Arguments

x any R object.

row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.

as.Date 23

optional logical. If TRUE, setting row names and converting column names (to syntactic
names: see make.names) is optional.

... additional arguments to be passed to or from methods.
stringsAsFactors

logical: should the character vector be converted to a factor?

Details

as.data.frame is a generic function with many methods, and users and packages can supply fur-
ther methods.

If a list is supplied, each element is converted to a column in the data frame. Similarly, each
column of a matrix is converted separately. This can be overridden if the object has a class which
has a method for as.data.frame: two examples are matrices of class "model.matrix" (which
are included as a single column) and list objects of class "POSIXlt" which are coerced to class
"POSIXct".

Arrays can be converted to data frames. One-dimensional arrays are treated like vectors and two-
dimensional arrays like matrices. Arrays with more than two dimensions are converted to matrices
by ‘flattening’ all dimensions after the first and creating suitable column labels.

Character variables are converted to factor columns unless protected by I.

If a data frame is supplied, all classes preceding "data.frame" are stripped, and the row names are
changed if that argument is supplied.

If row.names = NULL, row names are constructed from the names or dimnames of x, otherwise are
the integer sequence starting at one. Few of the methods check for duplicated row names. Names
are removed from vector columns unless I.

Value

as.data.frame returns a data frame, normally with all row names "" if optional = TRUE.

is.data.frame returns TRUE if its argument is a data frame (that is, has "data.frame" amongst its
classes) and FALSE otherwise.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, as.data.frame.table for the table method (which has additional arguments if
called directly).

as.Date Date Conversion Functions to and from Character

Description

Functions to convert between character representations and objects of class "Date" representing
calendar dates.

24 as.Date

Usage

as.Date(x, ...)
S3 method for class ’character’
as.Date(x, format = "", ...)
S3 method for class ’numeric’
as.Date(x, origin, ...)
S3 method for class ’POSIXct’
as.Date(x, tz = "UTC", ...)

S3 method for class ’Date’
format(x, ...)

S3 method for class ’Date’
as.character(x, ...)

Arguments

x An object to be converted.

format A character string. If not specified, it will try "%Y-%m-%d" then "%Y/%m/%d" on
the first non-NA element, and give an error if neither works.

origin a Date object, or something which can be coerced by as.Date(origin, ...)
to such an object.

tz a timezone name.

... Further arguments to be passed from or to other methods, including format for
as.character and as.Date methods.

Details

The usual vector re-cycling rules are applied to x and format so the answer will be of length that
of the longer of the vectors.

Locale-specific conversions to and from character strings are used where appropriate and available.
This affects the names of the days and months.

The as.Date methods accept character strings, factors, logical NA and objects of classes "POSIXlt"
and "POSIXct". (The last is converted to days by ignoring the time after midnight in the represen-
tation of the time in specified timezone, default UTC.) Also objects of class "date" (from package
date) and "dates" (from package chron). Character strings are processed as far as necessary for
the format specified: any trailing characters are ignored.

as.Date will accept numeric data (the number of days since an epoch), but only if origin is sup-
plied.

The format and as.character methods ignore any fractional part of the date.

Value

The format and as.character methods return a character vector representing the date. NA dates
are returned as NA_character_.

The as.Date methods return an object of class "Date".

as.Date 25

Conversion from other Systems

Most systems record dates internally as the number of days since some origin, but this is fraught
with problems, including

• Is the origin day 0 or day 1? As the ‘Examples’ show, Excel manages to use both choices for
its two date systems.

• If the origin is far enough back, the designers may show their ignorance of calendar systems.
For example, Excel’s designer thought 1900 was a leap year (claiming to copy the error from
earlier DOS spreadsheets), and Matlab’s designer chose the non-existent date of ‘January
0, 0000’ (there is no such day), not specifying the calendar. (There is such a year in the
‘Gregorian’ calendar as used in ISO 8601:2004, but that does say that it is only to be used for
years before 1582 with the agreement of the parties in information exchange.)

The only safe procedure is to check the other systems values for known dates: reports on the Internet
(including R-help) are more often wrong than right.

Note

The default formats follow the rules of the ISO 8601 international standard which expresses a day
as "2001-02-03".

If the date string does not specify the date completely, the returned answer may be system-specific.
The most common behaviour is to assume that a missing year, month or day is the current one. If
it specifies a date incorrectly, reliable implementations will give an error and the date is reported as
NA. Unfortunately some common implementations (such as ‘glibc’) are unreliable and guess at the
intended meaning.

Years before 1CE (aka 1AD) will probably not be handled correctly.

References

International Organization for Standardization (2004, 1988, 1997, . . .) ISO 8601. Data ele-
ments and interchange formats – Information interchange – Representation of dates and times.
For links to versions available on-line see (at the time of writing) http://www.qsl.net/g1smd/
isopdf.htm; for information on the current official version, see http://www.iso.org/iso/en/
prods-services/popstds/datesandtime.html.

See Also

Date for details of the date class; locales to query or set a locale.

Your system’s help pages on strftime and strptime to see how to specify their formats. Windows
users will find no help page for strptime: code based on ‘glibc’ is used (with corrections), so all
the format specifiers described here are supported, but with no alternative number representation
nor era available in any locale.

Examples

locale-specific version of the date
format(Sys.Date(), "%a %b %d")

read in date info in format ’ddmmmyyyy’
This will give NA(s) in some locales; setting the C locale
as in the commented lines will overcome this on most systems.
lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")

http://www.qsl.net/g1smd/isopdf.htm
http://www.qsl.net/g1smd/isopdf.htm
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

26 as.environment

x <- c("1jan1960", "2jan1960", "31mar1960", "30jul1960")
z <- as.Date(x, "%d%b%Y")
Sys.setlocale("LC_TIME", lct)
z

read in date/time info in format ’m/d/y’
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
as.Date(dates, "%m/%d/%y")

date given as number of days since 1900-01-01 (a date in 1989)
as.Date(32768, origin="1900-01-01")
Excel is said to use 1900-01-01 as day 1 (Windows default) or
1904-01-01 as day 0 (Mac default), but this is complicated by Excel
treating 1900 as a leap year.
So for dates (post-1901) from Windows Excel
as.Date(35981, origin="1899-12-30") # 1998-07-05
and Mac Excel
as.Date(34519, origin="1904-01-01") # 1998-07-05
(these values come from http://support.microsoft.com/kb/214330)

Experiment shows that Matlab’s origin is 719529 days before ours,
so Matlab day 734373 can be imported as
as.Date(734373, origin = "1970-01-01") - 719529
(value from http://www.mathworks.com/help/techdoc/matlab_prog/bspgcx2-1.html)

Timezone effect
z <- ISOdate(2010, 04, 13, c(0,12)) # midnight and midday UTC
as.Date(z) # in UTC
these timezone names are common
as.Date(z, tz ="NZ")
as.Date(z, tz ="HST") # Hawaii

as.environment Coerce to an Environment Object

Description

A generic function coercing an R object to an environment. A number or a character string is
converted to the corresponding environment on the search path.

Usage

as.environment(x)

Arguments

x an R object to convert. If it is already an environment, just return it. If it is a
number, return the environment corresponding to that position on the search list.
If it is a character string, match the string to the names on the search list.
If it is a list, the equivalent of list2env(x, parent=emptyenv()) is re-
turned.
If is.object(x) is true and it has a class for which an as.environment
method is found, that is used.

as.function 27

Value

The corresponding environment object.

Note

This is a primitive function.

Author(s)

John Chambers

See Also

environment for creation and manipulation, search; list2env.

Examples

as.environment(1) ## the global environment
identical(globalenv(), as.environment(1)) ## is TRUE
try(## <<- stats need not be attached

as.environment("package:stats"))
ee <- as.environment(list(a = "A", b = pi, ch = letters[1:8]))
ls(ee) # names of objects in ee
utils::ls.str(ee)

as.function Convert Object to Function

Description

as.function is a generic function which is used to convert objects to functions.

as.function.default works on a list x, which should contain the concatenation of a formal argu-
ment list and an expression or an object of mode "call" which will become the function body. The
function will be defined in a specified environment, by default that of the caller.

Usage

as.function(x, ...)

Default S3 method:
as.function(x, envir = parent.frame(), ...)

Arguments

x object to convert, a list for the default method.

... additional arguments, depending on object

envir environment in which the function should be defined

Value

The desired function.

28 as.POSIX*

Note

For ancient historical reasons, envir = NULL uses the global environment rather than the base
environment. Please use envir = globalenv() instead if this is what you want, as the special
handling of NULL may change in a future release.

Author(s)

Peter Dalgaard

See Also

function; alist which is handy for the construction of argument lists, etc.

Examples

as.function(alist(a=,b=2,a+b))
as.function(alist(a=,b=2,a+b))(3)

as.POSIX* Date-time Conversion Functions

Description

Functions to manipulate objects of classes "POSIXlt" and "POSIXct" representing calendar dates
and times.

Usage

as.POSIXct(x, tz = "", ...)
as.POSIXlt(x, tz = "", ...)

S3 method for class ’character’
as.POSIXlt(x, tz = "", format, ...)

S3 method for class ’numeric’
as.POSIXlt(x, tz = "", origin, ...)

S3 method for class ’POSIXlt’
as.double(x, ...)

Arguments

x An object to be converted.

tz A timezone specification to be used for the conversion, if one is required.
System-specific (see time zones), but "" is the current timezone, and "GMT"
is UTC (Universal Time, Coordinated).

... further arguments to be passed to or from other methods.

format character string giving a date-time format as used by strptime.

origin a date-time object, or something which can be coerced by
as.POSIXct(tz="GMT") to such an object.

as.POSIX* 29

Details

The as.POSIX* functions convert an object to one of the two classes used to represent date/times
(calendar dates plus time to the nearest second). They can convert a wide variety of objects, in-
cluding objects of the other class and of classes "Date", "date" (from package date), "chron"
and "dates" (from package chron) to these classes. Dates without times are treated as being at
midnight UTC.

They can also convert character strings of the formats "2001-02-03" and "2001/02/03" option-
ally followed by white space and a time in the format "14:52" or "14:52:03". (Formats such as
"01/02/03" are ambiguous but can be converted via a format specification by strptime.) Frac-
tional seconds are allowed. Alternatively, format can be specified for character vectors or factors:
if it is not specified and no standard format works for all non-NA inputs an error is thrown.

If format is specified, remember that some of the format specifications are locale-specific, and you
may need to set the LC_TIME category appropriately via Sys.setlocale. This most often affects
the use of %b, %B (month names) and %p (AM/PM).

Logical NAs can be converted to either of the classes, but no other logical vectors can be.

The as.double method converts "POSIXlt" objects to "POSIXct".

If you are given a numeric time as the number of seconds since an epoch, see the examples.

Character input is first converted to class "POSIXlt" by strptime: numeric input is first converted
to "POSIXct". Any conversion that needs to go between the two date-time classes requires a time-
zone: conversion from "POSIXlt" to "POSIXct" will validate times in the selected timezone. One
issue is what happens at transitions to and from DST, for example in the UK

as.POSIXct(strptime(’2011-03-27 01:30:00’, ’%Y-%m-%d %H:%M:%S’))
as.POSIXct(strptime(’2010-10-31 01:30:00’, ’%Y-%m-%d %H:%M:%S’))

are respectively invalid (the clocks went forward at 1:00 GMT to 2:00 BST) and ambiguous (the
clocks went back at 2:00 BST to 1:00 GMT). What happens in such cases is OS-specific: one should
expect the first to be NA, but the second could be interpreted as either BST or GMT (and common
OSes give both possible values). Note too (see strftime), OS facilities may not format invalid
times correctly.

Value

as.POSIXct and as.POSIXlt return an object of the appropriate class. If tz was specified,
as.POSIXlt will give an appropriate "tzone" attribute. Date-times known to be invalid will be
returned as NA.

Note

Some of the concepts used have to be extended backwards in time (the usage is proleptic). For
example, the origin of time for the "POSIXct" class, ‘1970-01-01 00:00.00 UTC’, is before UTC
was defined. More importantly, conversion is done assuming the Gregorian calendar which was
introduced in 1582 and not used universally until the 20th century. One of the re-interpretations
assumed by ISO 8601:2004 is that there was a year zero, even though current year numbering (and
zero) is a much later concept (525 AD for year numbers from 1 AD).

If you want to extract specific aspects of a time (such as the day of the week) just convert it to class
"POSIXlt" and extract the relevant component(s) of the list, or if you want a character representa-
tion (such as a named day of the week) use the format method.

If a timezone is needed and that specified is invalid on your system, what happens is system-specific
but attempts to set it will probably be ignored.

30 AsIs

See Also

DateTimeClasses for details of the classes; strptime for conversion to and from character repre-
sentations.

Sys.timezone for details of the (system-specific) naming of time zones.

locales for locale-specific aspects.

Examples

(z <- Sys.time()) # the current datetime, as class "POSIXct"
unclass(z) # a large integer
floor(unclass(z)/86400) # the number of days since 1970-01-01 (UTC)
(now <- as.POSIXlt(Sys.time())) # the current datetime, as class "POSIXlt"
unlist(unclass(now)) # a list shown as a named vector
now$year + 1900 # see ?DateTimeClasses
months(now); weekdays(now) # see ?months

suppose we have a time in seconds since 1960-01-01 00:00:00 GMT
(the origin used by SAS)
z <- 1472562988
ways to convert this
as.POSIXct(z, origin="1960-01-01") # local
as.POSIXct(z, origin="1960-01-01", tz="GMT") # in UTC
as.POSIXct(z, origin=ISOdatetime(1960,1,1,0,0,0)) # local
ISOdatetime(1960,1,1,0,0,0) + z # local

SPSS dates (R-help 2006-02-16)
z <- c(10485849600, 10477641600, 10561104000, 10562745600)
as.Date(as.POSIXct(z, origin="1582-10-14", tz="GMT"))

as.POSIXlt(Sys.time(), "GMT") # the current time in UTC

Not run: ## These may not be correct names on your system
as.POSIXlt(Sys.time(), "America/New_York") # in New York
as.POSIXlt(Sys.time(), "EST5EDT") # alternative.
as.POSIXlt(Sys.time(), "EST") # somewhere in Eastern Canada
as.POSIXlt(Sys.time(), "HST") # in Hawaii
as.POSIXlt(Sys.time(), "Australia/Darwin")

End(Not run)

cols <- c("code", "coordinates", "TZ", "comments")
tmp <- read.delim(file.path(R.home("share"), "zoneinfo", "zone.tab"),

header = FALSE, comment.char="#", col.names = cols)
if(interactive()) View(tmp)

AsIs Inhibit Interpretation/Conversion of Objects

Description

Change the class of an object to indicate that it should be treated ‘as is’.

assign 31

Usage

I(x)

Arguments

x an object

Details

Function I has two main uses.

• In function data.frame. Protecting an object by enclosing it in I() in a call to data.frame
inhibits the conversion of character vectors to factors and the dropping of names, and ensures
that matrices are inserted as single columns. I can also be used to protect objects which are to
be added to a data frame, or converted to a data frame via as.data.frame.
It achieves this by prepending the class "AsIs" to the object’s classes. Class "AsIs" has a few
of its own methods, including for [, as.data.frame, print and format.

• In function formula. There it is used to inhibit the interpretation of operators such as "+",
"-", "*" and "^" as formula operators, so they are used as arithmetical operators. This is
interpreted as a symbol by terms.formula.

Value

A copy of the object with class "AsIs" prepended to the class(es).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, formula

assign Assign a Value to a Name

Description

Assign a value to a name in an environment.

Usage

assign(x, value, pos = -1, envir = as.environment(pos),
inherits = FALSE, immediate = TRUE)

32 assign

Arguments

x a variable name, given as a character string. No coercion is done, and the first
element of a character vector of length greater than one will be used, with a
warning.

value a value to be assigned to x.

pos where to do the assignment. By default, assigns into the current environment.
See ‘Details’ for other possibilities.

envir the environment to use. See ‘Details’.

inherits should the enclosing frames of the environment be inspected?

immediate an ignored compatibility feature.

Details

There are no restrictions on name: it can be a non-syntactic name (see make.names).

The pos argument can specify the environment in which to assign the object in any of several ways:
as an integer (the position in the search list); as the character string name of an element in the search
list; or as an environment (including using sys.frame to access the currently active function calls).
The envir argument is an alternative way to specify an environment, but is primarily there for back
compatibility.

assign does not dispatch assignment methods, so it cannot be used to set elements of vectors,
names, attributes, etc.

Note that assignment to an attached list or data frame changes the attached copy and not the original
object: see attach and with.

Value

This function is invoked for its side effect, which is assigning value to the variable x. If no envir
is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until the
variable x is encountered. The value is then assigned in the environment in which the variable is
encountered (provided that the binding is not locked: see lockBinding: if it is, an error is signaled).
If the symbol is not encountered then assignment takes place in the user’s workspace (the global
environment).

If inherits is FALSE, assignment takes place in the initial frame of envir, unless an existing
binding is locked or there is no existing binding and the environment is locked.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

<-, get, exists, environment.

assignOps 33

Examples

for(i in 1:6) { #-- Create objects ’r.1’, ’r.2’, ... ’r.6’ --
nam <- paste("r",i, sep=".")
assign(nam, 1:i)

}
ls(pattern = "^r..$")

##-- Global assignment within a function:
myf <- function(x) {
innerf <- function(x) assign("Global.res", x^2, envir = .GlobalEnv)
innerf(x+1)

}
myf(3)
Global.res # 16

a <- 1:4
assign("a[1]", 2)
a[1] == 2 #FALSE
get("a[1]") == 2 #TRUE

assignOps Assignment Operators

Description

Assign a value to a name.

Usage

x <- value
x <<- value
value -> x
value ->> x

x = value

Arguments

x a variable name (possibly quoted).

value a value to be assigned to x.

Details

There are three different assignment operators: two of them have leftwards and rightwards forms.

The operators <- and = assign into the environment in which they are evaluated. The operator
<- can be used anywhere, whereas the operator = is only allowed at the top level (e.g., in the
complete expression typed at the command prompt) or as one of the subexpressions in a braced list
of expressions.

The operators <<- and ->> are normally only used in functions, and cause a search to made through
parent environments for an existing definition of the variable being assigned. If such a variable is

34 attach

found (and its binding is not locked) then its value is redefined, otherwise assignment takes place in
the global environment. Note that their semantics differ from that in the S language, but are useful
in conjunction with the scoping rules of R. See ‘The R Language Definition’ manual for further
details and examples.

In all the assignment operator expressions, x can be a name or an expression defining a part of an
object to be replaced (e.g., z[[1]]). A syntactic name does not need to be quoted, though it can be
(preferably by backticks).

The leftwards forms of assignment <- = <<- group right to left, the other from left to right.

Value

value. Thus one can use a <- b <- c <- 6.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chamber, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also

assign, for “subassignment” such as x[i] <- v, [<-; environment.

attach Attach Set of R Objects to Search Path

Description

The database is attached to the R search path. This means that the database is searched by R when
evaluating a variable, so objects in the database can be accessed by simply giving their names.

Usage

attach(what, pos = 2, name = deparse(substitute(what)),
warn.conflicts = TRUE)

Arguments

what ‘database’. This can be a data.frame or a list or a R data file created with
save or NULL or an environment. See also ‘Details’.

pos integer specifying position in search() where to attach.

name name to use for the attached database.

warn.conflicts logical. If TRUE, warnings are printed about conflicts from attaching the
database, unless that database contains an object .conflicts.OK. A conflict
is a function masking a function, or a non-function masking a non-function.

attach 35

Details

When evaluating a variable or function name R searches for that name in the databases listed by
search. The first name of the appropriate type is used.

By attaching a data frame (or list) to the search path it is possible to refer to the variables in the
data frame by their names alone, rather than as components of the data frame (e.g. in the example
below, height rather than women$height).

By default the database is attached in position 2 in the search path, immediately after the user’s
workspace and before all previously attached packages and previously attached databases. This can
be altered to attach later in the search path with the pos option, but you cannot attach at pos = 1.

The database is not actually attached. Rather, a new environment is created on the search path and
the elements of a list (including columns of a data frame) or objects in a save file or an environment
are copied into the new environment. If you use <<- or assign to assign to an attached database,
you only alter the attached copy, not the original object. (Normal assignment will place a modified
version in the user’s workspace: see the examples.) For this reason attach can lead to confusion.

One useful ‘trick’ is to use what = NULL (or equivalently a length-zero list) to create a new envi-
ronment on the search path into which objects can be assigned by assign or load or sys.source.

Names starting "package:" are reserved for library and should not be used by end users. At-
tached files are by default given the name file:what . The name argument given for the attached
environment will be used by search and can be used as the argument to as.environment.

There are hooks to attach user-defined table objects of class "UserDefinedDatabase", supported
by the Omegahat package RObjectTables. See http://www.omegahat.org/RObjectTables/.

Value

The environment is returned invisibly with a "name" attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library, detach, search, objects, environment, with.

Examples

require(utils)

summary(women$height) # refers to variable ’height’ in the data frame
attach(women)
summary(height) # The same variable now available by name
height <- height*2.54 # Don’t do this. It creates a new variable

in the user’s workspace
find("height")
summary(height) # The new variable in the workspace
rm(height)
summary(height) # The original variable.
height <<- height*25.4 # Change the copy in the attached environment
find("height")
summary(height) # The changed copy
detach("women")

http://www.omegahat.org/RObjectTables/

36 attr

summary(women$height) # unchanged

Not run: ## create an environment on the search path and populate it
sys.source("myfuns.R", envir=attach(NULL, name="myfuns"))

End(Not run)

attr Object Attributes

Description

Get or set specific attributes of an object.

Usage

attr(x, which, exact = FALSE)
attr(x, which) <- value

Arguments

x an object whose attributes are to be accessed.

which a non-empty character string specifying which attribute is to be accessed.

exact logical: should which be matched exactly?

value an object, the new value of the attribute, or NULL to remove the attribute.

Details

These functions provide access to a single attribute of an object. The replacement form causes the
named attribute to take the value specified (or create a new attribute with the value given).

The extraction function first looks for an exact match to which amongst the attributes of x, then
(unless exact = TRUE) a unique partial match. (Setting options(warnPartialMatchAttr=TRUE)
causes partial matches to give warnings.)

The replacement function only uses exact matches.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names and tsp)
are treated specially and have restrictions on the values which can be set. (Note that this is not true
of levels which should be set for factors via the levels replacement function.)

The extractor function allows (and does not match) empty and missing values of which: the re-
placement function does not.

Both are primitive functions.

Value

For the extractor, the value of the attribute matched, or NULL if no exact match is found and no or
more than one partial match is found.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

attributes 37

See Also

attributes

Examples

create a 2 by 5 matrix
x <- 1:10
attr(x,"dim") <- c(2, 5)

attributes Object Attribute Lists

Description

These functions access an object’s attributes. The first form below returns the object’s attribute
list. The replacement forms uses the list on the right-hand side of the assignment as the object’s
attributes (if appropriate).

Usage

attributes(obj)
attributes(obj) <- value
mostattributes(obj) <- value

Arguments

obj an object

value an appropriate named list of attributes, or NULL.

Details

Unlike attr it is possible to set attributes on a NULL object: it will first be coerced to an empty list.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names and tsp)
are treated specially and have restrictions on the values which can be set. (Note that this is not true
of levels which should be set for factors via the levels replacement function.)

Attributes are not stored internally as a list and should be thought of as a set and not a vector. They
must have unique names (and NA is taken as "NA", not a missing value).

Assigning attributes first removes all attributes, then sets any dim attribute and then the remaining
attributes in the order given: this ensures that setting a dim attribute always precedes the dimnames
attribute.

The mostattributes assignment takes special care for the dim, names and dimnames attributes,
and assigns them only when known to be valid whereas an attributes assignment would give an
error if any are not. It is principally intended for arrays, and should be used with care on classed
objects. For example, it does not check that row.names are assigned correctly for data frames.

The names of a pairlist are not stored as attributes, but are reported as if they were (and can be set
by the replacement form of attributes).

Both assignment and replacement forms of attributes are primitive functions.

38 autoload

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attr.

Examples

x <- cbind(a=1:3, pi=pi) # simple matrix w/ dimnames
attributes(x)

strip an object’s attributes:
attributes(x) <- NULL
x # now just a vector of length 6

mostattributes(x) <- list(mycomment = "really special", dim = 3:2,
dimnames = list(LETTERS[1:3], letters[1:5]), names = paste(1:6))

x # dim(), but not {dim}names

autoload On-demand Loading of Packages

Description

autoload creates a promise-to-evaluate autoloader and stores it with name name in .AutoloadEnv
environment. When R attempts to evaluate name, autoloader is run, the package is loaded and
name is re-evaluated in the new package’s environment. The result is that R behaves as if file was
loaded but it does not occupy memory.

.Autoloaded contains the names of the packages for which autoloading has been promised.

Usage

autoload(name, package, reset = FALSE, ...)
autoloader(name, package, ...)

.AutoloadEnv

.Autoloaded

Arguments

name string giving the name of an object.

package string giving the name of a package containing the object.

reset logical: for internal use by autoloader.

... other arguments to library.

Value

This function is invoked for its side-effect. It has no return value.

backsolve 39

See Also

delayedAssign, library

Examples

require(stats)
autoload("interpSpline", "splines")
search()
ls("Autoloads")
.Autoloaded

x <- sort(stats::rnorm(12))
y <- x^2
is <- interpSpline(x,y)
search() ## now has splines
detach("package:splines")
search()
is2 <- interpSpline(x,y+x)
search() ## and again
detach("package:splines")

backsolve Solve an Upper or Lower Triangular System

Description

Solves a system of linear equations where the coefficient matrix is upper (or ‘right’, ‘R’) or lower
(‘left’, ‘L’) triangular.

x <- backsolve (R, b) solves Rx = b, and
x <- forwardsolve(L, b) solves Lx = b, respectively.

Usage

backsolve(r, x, k=ncol(r), upper.tri=TRUE, transpose=FALSE)
forwardsolve(l, x, k=ncol(l), upper.tri=FALSE, transpose=FALSE)

Arguments

r,l an upper (or lower) triangular matrix giving the coefficients for the system to be
solved. Values below (above) the diagonal are ignored.

x a matrix whose columns give the right-hand sides for the equations.
k The number of columns of r and rows of x to use.
upper.tri logical; if TRUE (default), the upper triangular part of r is used. Otherwise, the

lower one.
transpose logical; if TRUE, solve r′ ∗ y = x for y, i.e., t(r) %*% y == x.

Value

The solution of the triangular system. The result will be a vector if x is a vector and a matrix if x is
a matrix.

Note that forwardsolve(L, b) is just a wrapper for backsolve(L, b, upper.tri=FALSE).

40 basename

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch,J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: SIAM Publications.

See Also

chol, qr, solve.

Examples

upper triangular matrix ’r’:
r <- rbind(c(1,2,3),

c(0,1,1),
c(0,0,2))

(y <- backsolve(r, x <- c(8,4,2))) # -1 3 1
r %*% y # == x = (8,4,2)
backsolve(r, x, transpose = TRUE) # 8 -12 -5

basename Manipulate File Paths

Description

basename removes all of the path up to and including the last path separator (if any).

dirname returns the part of the path up to but excluding the last path separator, or "." if there is no
path separator.

Usage

basename(path)
dirname(path)

Arguments

path character vector, containing path names.

Details

For dirname tilde expansion of the path is done.

Trailing path separators are removed before dissecting the path, and for dirname any trailing file
separators are removed from the result.

Value

A character vector of the same length as path. A zero-length input will give a zero-length output
with no error.

If an element of path is NA, so is the result.

Bessel 41

Behaviour on Windows

On Windows this will accept either \ or / as the path separator, but dirname will return a path using
/ (except if on a network share, when the leading \\ will be preserved). Expect these only to be
able to handle complete paths, and not for example just a share or a drive.

UTF-8-encoded dirnames not valid in the current locale can be used.

Note

These are not wrappers for the POSIX system functions of the same names: in particular they do
not have the special handling of the path "/" and of returning "." for empty strings in basename.

See Also

file.path, path.expand.

Examples

basename(file.path("","p1","p2","p3", c("file1", "file2")))
dirname(file.path("","p1","p2","p3","filename"))

Bessel Bessel Functions

Description

Bessel Functions of integer and fractional order, of first and second kind, Jν and Yν , and Modified
Bessel functions (of first and third kind), Iν and Kν .

Usage

besselI(x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ(x, nu)
besselY(x, nu)

Arguments

x numeric, ≥ 0.

nu numeric; The order (maybe fractional!) of the corresponding Bessel function.

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid overflow
(Iν) or underflow (Kν), respectively.

Details

If expon.scaled = TRUE, e−xIν(x), or exKν(x) are returned.

For ν < 0, formulae 9.1.2 and 9.6.2 from Abramowitz & Stegun are applied (which is probably
suboptimal), except for besselK which is symmetric in nu.

42 Bessel

Value

Numeric vector of the same length of x with the (scaled, if expon.scaled=TRUE) values of the
corresponding Bessel function.

Author(s)

Original Fortran code: W. J. Cody, Argonne National Laboratory
Translation to C and adaption to R: Martin Maechler <maechler@stat.math.ethz.ch>.

Source

The C code is a translation of Fortran routines from http://www.netlib.org/specfun/ribesl,
‘../rjbesl’, etc.

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. Dover, New York;
Chapter 9: Bessel Functions of Integer Order.

See Also

Other special mathematical functions, such as gamma, Γ(x), and beta, B(x).

Examples

require(graphics)

nus <- c(0:5, 10, 20)

x <- seq(0, 4, length.out = 501)
plot(x, x, ylim = c(0, 6), ylab = "", type = "n",

main = "Bessel Functions I_nu(x)")
for(nu in nus) lines(x, besselI(x, nu=nu), col = nu+2)
legend(0, 6, legend = paste("nu=", nus), col = nus+2, lwd = 1)

x <- seq(0, 40, length.out = 801); yl <- c(-.8, .8)
plot(x, x, ylim = yl, ylab = "", type = "n",

main = "Bessel Functions J_nu(x)")
for(nu in nus) lines(x, besselJ(x, nu=nu), col = nu+2)
legend(32,-.18, legend = paste("nu=", nus), col = nus+2, lwd = 1)

Negative nu’s :
xx <- 2:7
nu <- seq(-10, 9, length.out = 2001)
op <- par(lab = c(16, 5, 7))
matplot(nu, t(outer(xx, nu, besselI)), type = "l", ylim = c(-50, 200),

main = expression(paste("Bessel ", I[nu](x), " for fixed ", x,
", as ", f(nu))),

xlab = expression(nu))
abline(v=0, col = "light gray", lty = 3)
legend(5, 200, legend = paste("x=", xx), col=seq(xx), lty=seq(xx))
par(op)

x0 <- 2^(-20:10)
plot(x0, x0^-8, log="xy", ylab="",type="n",

main = "Bessel Functions J_nu(x) near 0\n log - log scale")

http://www.netlib.org/specfun/ribesl

bindenv 43

for(nu in sort(c(nus, nus+.5)))
lines(x0, besselJ(x0, nu=nu), col = nu+2)

legend(3, 1e50, legend = paste("nu=", paste(nus, nus+.5, sep=",")),
col = nus + 2, lwd = 1)

plot(x0, x0^-8, log="xy", ylab="", type="n",
main = "Bessel Functions K_nu(x) near 0\n log - log scale")

for(nu in sort(c(nus, nus+.5)))
lines(x0, besselK(x0, nu=nu), col = nu+2)

legend(3, 1e50, legend = paste("nu=", paste(nus, nus+.5, sep=",")),
col = nus + 2, lwd = 1)

x <- x[x > 0]
plot(x, x, ylim=c(1e-18, 1e11), log = "y", ylab = "", type = "n",

main = "Bessel Functions K_nu(x)")
for(nu in nus) lines(x, besselK(x, nu=nu), col = nu+2)
legend(0, 1e-5, legend=paste("nu=", nus), col = nus+2, lwd = 1)

yl <- c(-1.6, .6)
plot(x, x, ylim = yl, ylab = "", type = "n",

main = "Bessel Functions Y_nu(x)")
for(nu in nus){

xx <- x[x > .6*nu]
lines(xx, besselY(xx, nu=nu), col = nu+2)

}
legend(25, -.5, legend = paste("nu=", nus), col = nus+2, lwd = 1)

negative nu in bessel_Y -- was bogus for a long time
curve(besselY(x, -0.1), 0, 10, ylim = c(-3,1), ylab = ’’)
for(nu in c(seq(-0.2, -2, by = -0.1)))

curve(besselY(x, nu), add = TRUE)
title(expression(besselY(x, nu) * " " *

{nu == list(-0.1, -0.2, ..., -2)}))

bindenv Binding and Environment Adjustments

Description

These functions represent an experimental interface for adjustments to environments and bindings
within environments. They allow for locking environments as well as individual bindings, and for
linking a variable to a function.

Usage

lockEnvironment(env, bindings = FALSE)
environmentIsLocked(env)
lockBinding(sym, env)
unlockBinding(sym, env)
bindingIsLocked(sym, env)
makeActiveBinding(sym, fun, env)
bindingIsActive(sym, env)

44 bindenv

Arguments

env an environment.

bindings logical specifying whether bindings should be locked.

sym a name object or character string

fun a function taking zero or one arguments

Details

The function lockEnvironment locks its environment argument, which must be a normal environ-
ment (not base). (Locking the base environment and namespace may be supported later.) Locking
the environment prevents adding or removing variable bindings from the environment. Changing
the value of a variable is still possible unless the binding has been locked. The namespace environ-
ments of packages with namespaces are locked when loaded.

lockBinding locks individual bindings in the specified environment. The value of a locked binding
cannot be changed. Locked bindings may be removed from an environment unless the environment
is locked.

makeActiveBinding installs fun so that getting the value of sym calls fun with no arguments, and
assigning to sym calls fun with one argument, the value to be assigned. This allows the implemen-
tation of things like C variables linked to R variables and variables linked to databases. It may also
be useful for making thread-safe versions of some system globals.

Value

The *isLocked functions return a length-one logical vector. The remaining functions return NULL,
invisibly.

Author(s)

Luke Tierney

Examples

locking environments
e <- new.env()
assign("x", 1, envir = e)
get("x", envir = e)
lockEnvironment(e)
get("x", envir = e)
assign("x", 2, envir = e)
try(assign("y", 2, envir = e)) # error

locking bindings
e <- new.env()
assign("x", 1, envir = e)
get("x", envir = e)
lockBinding("x", e)
try(assign("x", 2, envir = e)) # error
unlockBinding("x", e)
assign("x", 2, envir = e)
get("x", envir = e)

active bindings
f <- local({

body 45

x <- 1
function(v) {

if (missing(v))
cat("get\n")

else {
cat("set\n")
x <<- v

}
x

}
})
makeActiveBinding("fred", f, .GlobalEnv)
bindingIsActive("fred", .GlobalEnv)
fred
fred <- 2
fred

body Access to and Manipulation of the Body of a Function

Description

Get or set the body of a function.

Usage

body(fun = sys.function(sys.parent()))
body(fun, envir = environment(fun)) <- value

Arguments

fun a function object, or see ‘Details’.

envir environment in which the function should be defined.

value an object, usually a language object: see section ‘Value’.

Details

For the first form, fun can be a character string naming the function to be manipulated, which is
searched for from the parent frame. If it is not specified, the function calling body is used.

The bodies of all but the simplest are braced expressions, that is calls to {: see the ‘Examples’
section for how to create such a call.

Value

body returns the body of the function specified. This is normally a language object, most often a
call to {, but it can also be an object (e.g. pi) to be the return value of the function.

The replacement form sets the body of a function to the object on the right hand side, and (poten-
tially) resets the environment of the function. If value is of class "expression" the first element
is used as the body: any additional elements are ignored, with a warning.

46 bquote

See Also

alist, args, function.

Examples

body(body)
f <- function(x) x^5
body(f) <- quote(5^x)
or equivalently body(f) <- expression(5^x)
f(3) # = 125
body(f)

creating a multi-expression body
e <- expression(y <- x^2, return(y)) # or a list
body(f) <- as.call(c(as.name("{"), e))
f
f(8)

bquote Partial substitution in expressions

Description

An analogue of the LISP backquote macro. bquote quotes its argument except that terms wrapped
in .() are evaluated in the specified where environment.

Usage

bquote(expr, where = parent.frame())

Arguments

expr A language object.

where An environment.

Value

A language object.

See Also

quote, substitute

Examples

require(graphics)

a <- 2

bquote(a == a)
quote(a == a)

bquote(a == .(a))

browser 47

substitute(a == A, list(A = a))

plot(1:10, a*(1:10), main = bquote(a == .(a)))

to set a function default arg
default <- 1
bquote(function(x, y = .(default)) x+y)

browser Environment Browser

Description

Interrupt the execution of an expression and allow the inspection of the environment where browser
was called from.

Usage

browser(text="", condition=NULL, expr=TRUE, skipCalls=0L)

Arguments

text a text string that can be retrieved once the browser is invoked.

condition a condition that can be retrieved once the browser is invoked.

expr An expression, which if it evaluates to TRUE the debugger will invoked, other-
wise control is returned directly.

skipCalls how many previous calls to skip when reporting the calling context.

Details

A call to browser can be included in the body of a function. When reached, this causes a pause in
the execution of the current expression and allows access to the R interpreter.

The purpose of the text and condition arguments are to allow helper programs (e.g. external
debuggers) to insert specific values here, so that the specific call to browser (perhaps its location in
a source file) can be identified and special processing can be achieved. The values can be retrieved
by calling browserText and browserCondition.

The purpose of the expr argument is to allow for the illusion of conditional debugging. It is an
illusion, because execution is always paused at the call to browser, but control is only passed to the
evaluator described below if expr evaluates to TRUE. In most cases it is going to be more efficient to
use an if statement in the calling program, but in some cases using this argument will be simpler.

The skipCalls argument should be used when the browser() call is nested within another debug-
ging function: it will look further up the call stack to report its location.

At the browser prompt the user can enter commands or R expressions, followed by a newline. The
commands are

c (or just an empty line, by default) exit the browser and continue execution at the next statement.

cont synonym for c.

n enter the step-through debugger if the function is interpreted. This changes the meaning of c: see
the documentation for debug. For byte compiled functions n is equivalent to c.

48 browserText

where print a stack trace of all active function calls.

Q exit the browser and the current evaluation and return to the top-level prompt.

(Leading and trailing whitespace is ignored, except for an empty line).

Anything else entered at the browser prompt is interpreted as an R expression to be evaluated in
the calling environment: in particular typing an object name will cause the object to be printed, and
ls() lists the objects in the calling frame. (If you want to look at an object with a name such as n,
print it explicitly.)

The number of lines printed for the deparsed call can be limited by setting
options(deparse.max.lines).

Setting option "browserNLdisabled" to TRUE disables the use of an empty line as a synonym for
c. If this is done, the user will be re-prompted for input until a valid command or an expression is
entered.

This is a primitive function but does argument matching in the standard way.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

debug, and traceback for the stack on error. browserText for how to retrieve the text and condi-
tion.

browserText Functions to Retrieve Values Supplied by Calls to the Browser

Description

A call to browser can provide context by supplying either a text argument or a condition argument.
These functions can be used to retrieve either of these arguments.

Usage

browserText(n=1)
browserCondition(n=1)
browserSetDebug(n=1)

Arguments

n The number of contexts to skip over, it must be non-negative.

builtins 49

Details

Each call to browser can supply either a text string or a condition. The functions browserText and
browserCondition provide ways to retrieve those values. Since there can be multiple browser con-
texts active at any time we also support retrieving values from the different contexts. The innermost
(most recently initiated) browser context is numbered 1: other contexts are numbered sequentially.

browserSetDebug provides a mechanism for initiating the browser in one of the calling functions.
See sys.frame for a more complete discussion of the calling stack. To use browserSetDebug
you select some calling function, determine how far back it is in the call stack and call
browserSetDebug with n set to that value. Then, by typing c at the browser prompt you will
cause evaluation to continue, and provided there are no intervening calls to browser or other inter-
rupts, control will halt again once evaluation has returned to the closure specified. This is similar to
the up functionality in gdb or the "step out" functionality in other debuggers.

Value

browserText returns the text, while browserCondition returns the condition from the specified
browser context.

browserSetDebug returns NULL, invisibly.

Note

It may be of interest to allow for querying further up the set of browser contexts and this function-
ality may be added at a later date.

Author(s)

R. Gentleman

See Also

browser

builtins Returns the Names of All Built-in Objects

Description

Return the names of all the built-in objects. These are fetched directly from the symbol table of the
R interpreter.

Usage

builtins(internal = FALSE)

Arguments

internal a logical indicating whether only ‘internal’ functions (which can be called via
.Internal) should be returned.

50 by

Details

builtins() returns an unsorted list of the objects in the symbol table, that is all the objects in the
base environment. These are the built-in objects plus any that have been added subsequently when
the base package was loaded. It is less confusing to use ls(baseenv(), all=TRUE).

builtins(TRUE) returns an unsorted list of the names of internal functions, that is those which can
be accessed as .Internal(foo(args ...)) for foo in the list.

Value

A character vector.

by Apply a Function to a Data Frame Split by Factors

Description

Function by is an object-oriented wrapper for tapply applied to data frames.

Usage

by(data, INDICES, FUN, ..., simplify = TRUE)

Arguments

data an R object, normally a data frame, possibly a matrix.

INDICES a factor or a list of factors, each of length nrow(data).

FUN a function to be applied to data frame subsets of data.

... further arguments to FUN.

simplify logical: see tapply.

Details

A data frame is split by row into data frames subsetted by the values of one or more factors, and
function FUN is applied to each subset in turn.

Object data will be coerced to a data frame by the default method, but if this results in a 1-column
data frame, the objects passed to FUN are dropped to a subsets of that column.

Value

An object of class "by", giving the results for each subset. This is always a list if simplify is false,
otherwise a list or array (see tapply).

See Also

tapply, simplify2array. ave also applies a function block-wise.

c 51

Examples

require(stats)
by(warpbreaks[, 1:2], warpbreaks[,"tension"], summary)
by(warpbreaks[, 1], warpbreaks[, -1], summary)
by(warpbreaks, warpbreaks[,"tension"],

function(x) lm(breaks ~ wool, data = x))

now suppose we want to extract the coefficients by group
tmp <- with(warpbreaks,

by(warpbreaks, tension,
function(x) lm(breaks ~ wool, data = x)))

sapply(tmp, coef)

c Combine Values into a Vector or List

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced to a com-
mon type which is the type of the returned value, and all attributes except names are removed.

Usage

c(..., recursive=FALSE)

Arguments

... objects to be concatenated.

recursive logical. If recursive = TRUE, the function recursively descends through lists
(and pairlists) combining all their elements into a vector.

Details

The output type is determined from the highest type of the components in the hierarchy NULL <
raw < logical < integer < real < complex < character < list < expression. Pairlists are treated as lists,
but non-vector components (such names and calls) are treated as one-element lists which cannot be
unlisted even if recursive = TRUE.

c is sometimes used for its side effect of removing attributes except names, for example to turn
an array into a vector. as.vector is a more intuitive way to do this, but also drops names. Note
too that methods other than the default are not required to do this (and they will almost certainly
preserve a class attribute).

This is a primitive function.

Value

NULL or an expression or a vector of an appropriate mode. (With no arguments the value is NULL.)

S4 methods

This function is S4 generic, but with argument list (x, ..., recursive = FALSE).

52 call

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unlist and as.vector to produce attribute-free vectors.

Examples

c(1,7:9)
c(1:5, 10.5, "next")

uses with a single argument to drop attributes
x <- 1:4
names(x) <- letters[1:4]
x
c(x) # has names
as.vector(x) # no names
dim(x) <- c(2,2)
x
c(x)
as.vector(x)

append to a list:
ll <- list(A = 1, c="C")
do *not* use
c(ll, d = 1:3) # which is == c(ll, as.list(c(d=1:3))
but rather
c(ll, d = list(1:3))# c() combining two lists

c(list(A=c(B=1)), recursive=TRUE)

c(options(), recursive=TRUE)
c(list(A=c(B=1,C=2), B=c(E=7)), recursive=TRUE)

call Function Calls

Description

Create or test for objects of mode "call".

Usage

call(name, ...)
is.call(x)
as.call(x)

Arguments

name a non-empty character string naming the function to be called.
... arguments to be part of the call.
x an arbitrary R object.

call 53

Details

call returns an unevaluated function call, that is, an unevaluated expression which consists of the
named function applied to the given arguments (name must be a quoted string which gives the name
of a function to be called). Note that although the call is unevaluated, the arguments ... are
evaluated.

call is a primitive, so the first argument is taken as name and the remaining arguments as arguments
for the constructed call: if the first argument is named the name must partially match name.

is.call is used to determine whether x is a call (i.e., of mode "call").

Objects of mode "list" can be coerced to mode "call". The first element of the list becomes the
function part of the call, so should be a function or the name of one (as a symbol; a quoted string
will not do).

All three are primitive functions. call is ‘special’: it only evaluates its first argument.

Warning

call should not be used to attempt to evade restrictions on the use of .Internal and other non-API
calls.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

do.call for calling a function by name and argument list; Recall for recursive calling of functions;
further is.language, expression, function.

Examples

is.call(call) #-> FALSE: Functions are NOT calls

set up a function call to round with argument 10.5
cl <- call("round", 10.5)
is.call(cl)# TRUE
cl
such a call can also be evaluated.
eval(cl)# [1] 10

A <- 10.5
call("round", A) # round(10.5)
call("round", quote(A)) # round(A)
f <- "round"
call(f, quote(A)) # round(A)
if we want to supply a function we need to use as.call or similar
f <- round
Not run: call(f, quote(A)) # error: first arg must be character
(g <- as.call(list(f, quote(A))))
eval(g)
alternatively but less transparently
g <- list(f, quote(A))
mode(g) <- "call"
g

54 CallExternal

eval(g)
see also the examples in the help for do.call

callCC Call With Current Continuation

Description

A downward-only version of Scheme’s call with current continuation.

Usage

callCC(fun)

Arguments

fun function of one argument, the exit procedure.

Details

callCC provides a non-local exit mechanism that can be useful for early termination of a com-
putation. callCC calls fun with one argument, an exit function. The exit function takes a single
argument, the intended return value. If the body of fun calls the exit function then the call to callCC
immediately returns, with the value supplied to the exit function as the value returned by callCC.

Author(s)

Luke Tierney

Examples

The following all return the value 1
callCC(function(k) 1)
callCC(function(k) k(1))
callCC(function(k) {k(1); 2})
callCC(function(k) repeat k(1))

CallExternal Modern Interfaces to C/C++ code

Description

Functions to pass R objects to compiled C/C++ code that has been loaded into R.

Usage

.Call(.NAME, ..., PACKAGE)
.External(.NAME, ..., PACKAGE)

CallExternal 55

Arguments

.NAME a character string giving the name of a C function, or an object of class
"NativeSymbolInfo", "RegisteredNativeSymbol" or "NativeSymbol" re-
ferring to such a name.

... arguments to be passed to the compiled code. Up to 65 for .Call.

PACKAGE if supplied, confine the search for a character string .NAME to the DLL given by
this argument (plus the conventional extension, ‘.so’, ‘.dll’, . . .).
This argument follows ... and so its name cannot be abbreviated.
This is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols, and also
speeds up the search (see ‘Note’).

Details

The functions are used to call compiled code which makes use of internal R objects, passing the
arguments to the code as a sequence of R objects. They assume C calling conventions, so can
usually also be used of C++ code.

For details about how to write code to use with these functions see the chapter on “System and
foreign language interfaces” in the “Writing R Extensions” manual. They differ in the way the
arguments are passed to the C code: .External allows for a variable number of arguments.

These functions are primitive, and .NAME is always matched to the first argument supplied (which
should not be named and there will be a warning if it is—and an error in future.). For clarity, avoid
using names in the arguments passed to ... that match or partially match .NAME.

Value

An R object constructed in the compiled code.

Header files for external code

Writing code for use with these functions will need to use internal R structures defined in
‘Rinternals.h’ and/or the macros in ‘Rdefines.h’.

Note

If one of these functions is to be used frequently, do specify PACKAGE (to confine the search to a
single DLL) or pass .NAME as one of the native symbol objects. Searching for symbols can take a
long time, especially when many namespaces are loaded.

You may see PACKAGE = "base" for symbols linked into R. Do not use this in your own code: such
symbols are not part of the API and may be changed without warning.

PACKAGE = "" is accepted, but will become an error in R 2.16.0.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (.Call.)

See Also

dyn.load, .C, .Fortran.

The ‘Writing R Extensions’ manual.

56 capabilities

capabilities Report Capabilities of this Build of R

Description

Report on the optional features which have been compiled into this build of R.

Usage

capabilities(what = NULL)

Arguments

what character vector or NULL, specifying required components. NULL implies that all
are required.

Value

A named logical vector. Current components are

jpeg is the jpeg function operational?

png is the png function operational?

tiff is the tiff function operational?

tcltk is the tcltk package operational?

X11 always FALSE on Windows.

aqua FALSE except on Mac OS X.

http/ftp Are url and the internal method for download.file available?

sockets Are make.socket and related functions available?

libxml is there support for integrating libxml with the R event loop?

fifo are FIFO connections supported?

cledit is command-line editing available in the current R session? This is false in non-
interactive sessions.

iconv is internationalization conversion via iconv supported? Always true as from R
2.10.0.

NLS is there Natural Language Support (for message translations)?

profmem is there support for memory profiling? See tracemem.

cairo is there support the svg, cairo_pdf and cairo_ps devices, and for
type = "cairo" in the bmp, jpeg, png, and tiff devices?

See Also

.Platform

cat 57

Examples

capabilities()

if(!capabilities("http/ftp"))
warning("internal download.file() is not available")

See also the examples for ’connections’.

cat Concatenate and Print

Description

Outputs the objects, concatenating the representations. cat performs much less conversion than
print.

Usage

cat(... , file = "", sep = " ", fill = FALSE, labels = NULL,
append = FALSE)

Arguments

... R objects (see ‘Details’ for the types of objects allowed).

file A connection, or a character string naming the file to print to. If "" (the default),
cat prints to the standard output connection, the console unless redirected by
sink.

sep a character vector of strings to append after each element.

fill a logical or (positive) numeric controlling how the output is broken into suc-
cessive lines. If FALSE (default), only newlines created explicitly by ‘"\n"’ are
printed. Otherwise, the output is broken into lines with print width equal to the
option width if fill is TRUE, or the value of fill if this is numeric. Non-
positive fill values are ignored, with a warning.

labels character vector of labels for the lines printed. Ignored if fill is FALSE.

append logical. Only used if the argument file is the name of file (and not a connection
or "|cmd"). If TRUE output will be appended to file; otherwise, it will overwrite
the contents of file.

Details

cat is useful for producing output in user-defined functions. It converts its arguments to character
vectors, concatenates them to a single character vector, appends the given sep= string(s) to each
element and then outputs them.

No linefeeds are output unless explicitly requested by ‘"\n"’ or if generated by filling (if argument
fill is TRUE or numeric.)

If file is a connection and open for writing it is written from its current position. If it is not open,
it is opened for the duration of the call in "wt" mode and then closed again.

Currently only atomic vectors and names are handled, together with NULL and other zero-length
objects (which produce no output). Character strings are output ‘as is’ (unlike print.default

58 cbind

which escapes non-printable characters and backslash — use encodeString if you want to output
encoded strings using cat). Other types of R object should be converted (e.g. by as.character or
format) before being passed to cat.

cat converts numeric/complex elements in the same way as print (and not in the same way as
as.character which is used by the S equivalent), so options "digits" and "scipen" are rele-
vant. However, it uses the minimum field width necessary for each element, rather than the same
field width for all elements.

Value

None (invisible NULL).

Note

If any element of sep contains a newline character, it is treated as a vector of terminators rather than
separators, an element being output after every vector element and a newline after the last. Entries
are recycled as needed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

print, format, and paste which concatenates into a string.

Examples

iter <- stats::rpois(1, lambda=10)
print an informative message
cat("iteration = ", iter <- iter + 1, "\n")

’fill’ and label lines:
cat(paste(letters, 100* 1:26), fill = TRUE,

labels = paste("{",1:10,"}:",sep=""))

cbind Combine R Objects by Rows or Columns

Description

Take a sequence of vector, matrix or data frames arguments and combine by columns or rows,
respectively. These are generic functions with methods for other R classes.

Usage

cbind(..., deparse.level = 1)
rbind(..., deparse.level = 1)

cbind 59

Arguments

... vectors or matrices. These can be given as named arguments. Other R objects
will be coerced as appropriate: see sections ‘Details’ and ‘Value’. (For the
"data.frame" method of cbind these can be further arguments to data.frame
such as stringsAsFactors.)

deparse.level integer controlling the construction of labels in the case of non-matrix-like
arguments (for the default method):
deparse.level = 0 constructs no labels; the default,
deparse.level = 1 or 2 constructs labels from the argument names,
see the ‘Value’ section below.

Details

The functions cbind and rbind are S3 generic, with methods for data frames. The data frame
method will be used if at least one argument is a data frame and the rest are vectors or matrices.
There can be other methods; in particular, there is one for time series objects. See the section on
‘Dispatch’ for how the method to be used is selected.

In the default method, all the vectors/matrices must be atomic (see vector) or lists. Expressions
are not allowed. Language objects (such as formulae and calls) and pairlists will be coerced to lists:
other objects (such as names and external pointers) will be included as elements in a list result.
Any classes the inputs might have are discarded (in particular, factors are replaced by their internal
codes).

If there are several matrix arguments, they must all have the same number of columns (or rows)
and this will be the number of columns (or rows) of the result. If all the arguments are vectors, the
number of columns (rows) in the result is equal to the length of the longest vector. Values in shorter
arguments are recycled to achieve this length (with a warning if they are recycled only fractionally).

When the arguments consist of a mix of matrices and vectors the number of columns (rows) of the
result is determined by the number of columns (rows) of the matrix arguments. Any vectors have
their values recycled or subsetted to achieve this length.

For cbind (rbind), vectors of zero length (including NULL) are ignored unless the result would
have zero rows (columns), for S compatibility. (Zero-extent matrices do not occur in S3 and are not
ignored in R.)

Value

For the default method, a matrix combining the ... arguments column-wise or row-wise. (Excep-
tion: if there are no inputs or all the inputs are NULL, the value is NULL.)

The type of a matrix result determined from the highest type of any of the inputs in the hierarchy
raw < logical < integer < real < complex < character < list .

For cbind (rbind) the column (row) names are taken from the colnames (rownames) of the argu-
ments if these are matrix-like. Otherwise from the names of the arguments or where those are not
supplied and deparse.level > 0, by deparsing the expressions given, for deparse.level = 1
only if that gives a sensible name (a ‘symbol’, see is.symbol).

For cbind row names are taken from the first argument with appropriate names: rownames for a
matrix, or names for a vector of length the number of rows of the result.

For rbind column names are taken from the first argument with appropriate names: colnames for a
matrix, or names for a vector of length the number of columns of the result.

60 cbind

Data frame methods

The cbind data frame method is just a wrapper for data.frame(..., check.names = FALSE).
This means that it will split matrix columns in data frame arguments, and convert character columns
to factors unless stringsAsFactors = FALSE is specified.

The rbind data frame method first drops all zero-column and zero-row arguments. (If that leaves
none, it returns the first argument with columns otherwise a zero-column zero-row data frame.)
It then takes the classes of the columns from the first data frame, and matches columns by name
(rather than by position). Factors have their levels expanded as necessary (in the order of the levels
of the levelsets of the factors encountered) and the result is an ordered factor if and only if all
the components were ordered factors. (The last point differs from S-PLUS.) Old-style categories
(integer vectors with levels) are promoted to factors.

Dispatch

The method dispatching is not done via UseMethod(), but by C-internal dispatching. Therefore
there is no need for, e.g., rbind.default.

The dispatch algorithm is described in the source file (‘.../src/main/bind.c’) as

1. For each argument we get the list of possible class memberships from the class attribute.

2. We inspect each class in turn to see if there is an applicable method.

3. If we find an applicable method we make sure that it is identical to any method determined for
prior arguments. If it is identical, we proceed, otherwise we immediately drop through to the
default code.

If you want to combine other objects with data frames, it may be necessary to coerce them to data
frames first. (Note that this algorithm can result in calling the data frame method if all the arguments
are either data frames or vectors, and this will result in the coercion of character vectors to factors.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

c to combine vectors (and lists) as vectors, data.frame to combine vectors and matrices as a data
frame.

Examples

m <- cbind(1, 1:7) # the ’1’ (= shorter vector) is recycled
m
m <- cbind(m, 8:14)[, c(1, 3, 2)] # insert a column
m
cbind(1:7, diag(3))# vector is subset -> warning

cbind(0, rbind(1, 1:3))
cbind(I=0, X=rbind(a=1, b=1:3)) # use some names
xx <- data.frame(I=rep(0,2))
cbind(xx, X=rbind(a=1, b=1:3)) # named differently

cbind(0, matrix(1, nrow=0, ncol=4))#> Warning (making sense)
dim(cbind(0, matrix(1, nrow=2, ncol=0)))#-> 2 x 1

char.expand 61

deparse.level
dd <- 10
rbind(1:4, c=2, "a++" = 10, dd, deparse.level=0)# middle 2 rownames
rbind(1:4, c=2, "a++" = 10, dd, deparse.level=1)# 3 rownames (default)
rbind(1:4, c=2, "a++" = 10, dd, deparse.level=2)# 4 rownames

char.expand Expand a String with Respect to a Target Table

Description

Seeks a unique match of its first argument among the elements of its second. If successful, it returns
this element; otherwise, it performs an action specified by the third argument.

Usage

char.expand(input, target, nomatch = stop("no match"))

Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch an R expression to be evaluated in case expansion was not possible.

Details

This function is particularly useful when abbreviations are allowed in function arguments, and need
to be uniquely expanded with respect to a target table of possible values.

Value

A length-one character vector, one of the elements of target (unless nomatch is changed to be a
non-error, when it can be a zero-length character string).

See Also

charmatch and pmatch for performing partial string matching.

Examples

locPars <- c("mean", "median", "mode")
char.expand("me", locPars, warning("Could not expand!"))
char.expand("mo", locPars)

62 character

character Character Vectors

Description

Create or test for objects of type "character".

Usage

character(length = 0)
as.character(x, ...)
is.character(x)

Arguments

length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

as.character and is.character are generic: you can write methods to handle specific classes of
objects, see InternalMethods. Further, for as.character the default method calls as.vector, so
dispatch is first on methods for as.character and then for methods for as.vector.

as.character represents real and complex numbers to 15 significant digits (technically the com-
piler’s setting of the ISO C constant DBL_DIG, which will be 15 on machines supporting IEC60559
arithmetic according to the C99 standard). This ensures that all the digits in the result will be reli-
able (and not the result of representation error), but does mean that conversion to character and back
to numeric may change the number. If you want to convert numbers to character with the maximum
possible precision, use format.

Value

character creates a character vector of the specified length. The elements of the vector are all
equal to "".

as.character attempts to coerce its argument to character type; like as.vector it strips attributes
including names. For lists it deparses the elements individually, except that it extracts the first
element of length-one character vectors.

is.character returns TRUE or FALSE depending on whether its argument is of character type or
not.

Note

as.character breaks lines in language objects at 500 characters, and inserts newlines. Prior to
2.15.0 lines were truncated (at about 70 characters before 1.3.1).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

charmatch 63

See Also

paste, substr and strsplit for character concatenation and splitting, chartr for character trans-
lation and casefolding (e.g., upper to lower case) and sub, grep etc for string matching and substi-
tutions. Note that help.search(keyword = "character") gives even more links.

deparse, which is normally preferable to as.character for language objects.

Examples

form <- y ~ a + b + c
as.character(form) ## length 3
deparse(form) ## like the input

a0 <- 11/999 # has a repeating decimal representation
(a1 <- as.character(a0))
format(a0, digits=16) # shows one more digit
a2 <- as.numeric(a1)
a2 - a0 # normally around -1e-17
as.character(a2) # normally different from a1
print(c(a0, a2), digits = 16)

charmatch Partial String Matching

Description

charmatch seeks matches for the elements of its first argument among those of its second.

Usage

charmatch(x, table, nomatch = NA_integer_)

Arguments

x the values to be matched: converted to a character vector by as.character.

table the values to be matched against: converted to a character vector.

nomatch the (integer) value to be returned at non-matching positions.

Details

Exact matches are preferred to partial matches (those where the value to be matched has an exact
match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the index of the
matching value is returned; if multiple exact or multiple partial matches are found then 0 is returned
and if no match is found then nomatch is returned.

NA values are treated as the string constant "NA".

Value

An integer vector of the same length as x, giving the indices of the elements in table which
matched, or nomatch.

64 chartr

Author(s)

This function is based on a C function written by Terry Therneau.

See Also

pmatch, match.

grep or regexpr for more general (regexp) matching of strings.

Examples

charmatch("", "") # returns 1
charmatch("m", c("mean", "median", "mode")) # returns 0
charmatch("med", c("mean", "median", "mode")) # returns 2

chartr Character Translation and Casefolding

Description

Translate characters in character vectors, in particular from upper to lower case or vice versa.

Usage

chartr(old, new, x)
tolower(x)
toupper(x)
casefold(x, upper = FALSE)

Arguments

x a character vector, or an object that can be coerced to character by
as.character.

old a character string specifying the characters to be translated. If a character vector
of length 2 or more is supplied, the first element is used with a warning.

new a character string specifying the translations. If a character vector of length 2 or
more is supplied, the first element is used with a warning.

upper logical: translate to upper or lower case?.

Details

chartr translates each character in x that is specified in old to the corresponding character specified
in new. Ranges are supported in the specifications, but character classes and repeated characters are
not. If old contains more characters than new, an error is signaled; if it contains fewer characters,
the extra characters at the end of new are ignored.

tolower and toupper convert upper-case characters in a character vector to lower-case, or vice
versa. Non-alphabetic characters are left unchanged.

casefold is a wrapper for tolower and toupper provided for compatibility with S-PLUS.

chartr 65

Value

A character vector of the same length and with the same attributes as x (after possible coercion).

Elements of the result will be have the encoding declared as that of the current locale (see Encoding
if the corresponding input had a declared encoding and the current locale is either Latin-1 or UTF-
8. The result will be in the current locale’s encoding unless the corresponding input was in UTF-8,
when it will be in UTF-8 when the system has Unicode wide characters.

See Also

sub and gsub for other substitutions in strings.

Examples

x <- "MiXeD cAsE 123"
chartr("iXs", "why", x)
chartr("a-cX", "D-Fw", x)
tolower(x)
toupper(x)

"Mixed Case" Capitalizing - toupper(every first letter of a word) :

.simpleCap <- function(x) {
s <- strsplit(x, " ")[[1]]
paste(toupper(substring(s, 1,1)), substring(s, 2),

sep="", collapse=" ")
}
.simpleCap("the quick red fox jumps over the lazy brown dog")
-> [1] "The Quick Red Fox Jumps Over The Lazy Brown Dog"

and the better, more sophisticated version:
capwords <- function(s, strict = FALSE) {

cap <- function(s) paste(toupper(substring(s,1,1)),
{s <- substring(s,2); if(strict) tolower(s) else s},

sep = "", collapse = " ")
sapply(strsplit(s, split = " "), cap, USE.NAMES = !is.null(names(s)))

}
capwords(c("using AIC for model selection"))
-> [1] "Using AIC For Model Selection"
capwords(c("using AIC", "for MODEL selection"), strict=TRUE)
-> [1] "Using Aic" "For Model Selection"
^^^ ^^^^^
’bad’ ’good’

-- Very simple insecure crypto --
rot <- function(ch, k = 13) {

p0 <- function(...) paste(c(...), collapse="")
A <- c(letters, LETTERS, " ’")
I <- seq_len(k); chartr(p0(A), p0(c(A[-I], A[I])), ch)

}

pw <- "my secret pass phrase"
(crypw <- rot(pw, 13)) #-> you can send this off

now ‘‘decrypt’’ :
rot(crypw, 54 - 13)# -> the original:
stopifnot(identical(pw, rot(crypw, 54 - 13)))

66 chol

chol The Choleski Decomposition

Description

Compute the Choleski factorization of a real symmetric positive-definite square matrix.

Usage

chol(x, ...)

Default S3 method:
chol(x, pivot = FALSE, LINPACK = pivot, ...)

Arguments

x an object for which a method exists. The default method applies to real sym-
metric, positive-definite matrices.

... arguments to be based to or from methods.

pivot Should pivoting be used?

LINPACK logical. Should LINPACK be used? (For compatibility with R < 1.7.0 in the
non-pivoting case.)

Details

chol is generic: the description here applies to the default method.

Note that only the upper triangular part of x is used, so that R′R = x when x is symmetric.

If pivot = FALSE and x is not non-negative definite an error occurs. If x is positive semi-definite
(i.e., some zero eigenvalues) an error will also occur as a numerical tolerance is used.

If pivot = TRUE, then the Choleski decomposition of a positive semi-definite x can be com-
puted. The rank of x is returned as attr(Q, "rank"), subject to numerical errors. The
pivot is returned as attr(Q, "pivot"). It is no longer the case that t(Q) %*% Q equals
x. However, setting pivot <- attr(Q, "pivot") and oo <- order(pivot), it is true that
t(Q[, oo]) %*% Q[, oo] equals x, or, alternatively, t(Q) %*% Q equals x[pivot, pivot]. See
the examples.

Value

The upper triangular factor of the Choleski decomposition, i.e., the matrix R such that R′R = x
(see example).

If pivoting is used, then two additional attributes "pivot" and "rank" are also returned.

Warning

The code does not check for symmetry.

If pivot = TRUE and x is not non-negative definite then there will be a warning message but a
meaningless result will occur. So only use pivot = TRUE when x is non-negative definite by con-
struction.

chol 67

Note

LINPACK = TRUE, pivot = FALSE (for compatibility with R < 1.7.0) was formally deprecated in
R 2.15.2.

Source

This is an interface to the LAPACK routines DPOTRF and DPSTRF and the LINPACK routines DPOFA
and DCHDC.

LAPACK and LINPACK are from http://www.netlib.org/lapack and http://www.netlib.
org/linpack and their guides are listed in the references.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: SIAM Publications.

See Also

chol2inv for its inverse (without pivoting), backsolve for solving linear systems with upper trian-
gular left sides.

qr, svd for related matrix factorizations.

Examples

(m <- matrix(c(5,1,1,3),2,2))
(cm <- chol(m))
t(cm) %*% cm #-- = ’m’
crossprod(cm) #-- = ’m’

now for something positive semi-definite
x <- matrix(c(1:5, (1:5)^2), 5, 2)
x <- cbind(x, x[, 1] + 3*x[, 2])
colnames(x) <- letters[20:22]
m <- crossprod(x)
qr(m)$rank # is 2, as it should be

chol() may fail, depending on numerical rounding:
chol() unlike qr() does not use a tolerance.
try(chol(m))

(Q <- chol(m, pivot = TRUE)) # NB wrong rank here - see Warning section.
we can use this by
pivot <- attr(Q, "pivot")
crossprod(Q[, order(pivot)]) # recover m

(Q <- chol(m, TRUE, FALSE)) # NB rank is correct
we can use this by
pivot <- attr(Q, "pivot")
crossprod(Q[, order(pivot)]) # recover m

http://www.netlib.org/lapack
http://www.netlib.org/linpack
http://www.netlib.org/linpack
http://www.netlib.org/lapack/lug/lapack_lug.html

68 chol2inv

now for a non-positive-definite matrix
(m <- matrix(c(5,-5,-5,3),2,2))
try(chol(m)) # fails
(Q <- chol(m, pivot = TRUE)) # warning
crossprod(Q) # not equal to m

chol2inv Inverse from Choleski (or QR) Decomposition

Description

Invert a symmetric, positive definite square matrix from its Choleski decomposition. Equivalently,
compute (X ′X)−1 from the (R part) of the QR decomposition of X .

Usage

chol2inv(x, size = NCOL(x), LINPACK = FALSE)

Arguments

x a matrix. The first size columns of the upper triangle contain the Choleski
decomposition of the matrix to be inverted.

size the number of columns of x containing the Choleski decomposition.

LINPACK logical. Should LINPACK be used (for compatibility with R < 1.7.0)?

Value

The inverse of the matrix whose Choleski decomposition was given.

Source

This is an interface to the LAPACK routine DPOTRI and the LINPACK routine DPODI.

LAPACK and LINPACK are from http://www.netlib.org/lapack and http://www.netlib.
org/linpack and their guides are listed in the references.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM. Available on-line
at http://www.netlib.org/lapack/lug/lapack_lug.html.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: SIAM Publications.

See Also

chol, solve.

Examples

cma <- chol(ma <- cbind(1, 1:3, c(1,3,7)))
ma %*% chol2inv(cma)

http://www.netlib.org/lapack
http://www.netlib.org/linpack
http://www.netlib.org/linpack
http://www.netlib.org/lapack/lug/lapack_lug.html

class 69

class Object Classes

Description

R possesses a simple generic function mechanism which can be used for an object-oriented style of
programming. Method dispatch takes place based on the class of the first argument to the generic
function.

Usage

class(x)
class(x) <- value
unclass(x)
inherits(x, what, which = FALSE)

oldClass(x)
oldClass(x) <- value

Arguments

x a R object

what, value a character vector naming classes. value can also be NULL.

which logical affecting return value: see ‘Details’.

Details

Here, we describe the so called “S3” classes (and methods). For “S4” classes (and methods), see
‘Formal classes’ below.

Many R objects have a class attribute, a character vector giving the names of the classes from
which the object inherits. If the object does not have a class attribute, it has an implicit class,
"matrix", "array" or the result of mode(x) (except that integer vectors have implicit class
"integer"). (Functions oldClass and oldClass<- get and set the attribute, which can also be
done directly.)

When a generic function fun is applied to an object with class attribute c("first", "second"),
the system searches for a function called fun.first and, if it finds it, applies it to the object. If no
such function is found, a function called fun.second is tried. If no class name produces a suitable
function, the function fun.default is used (if it exists). If there is no class attribute, the implicit
class is tried, then the default method.

The function class prints the vector of names of classes an object inherits from. Correspondingly,
class<- sets the classes an object inherits from. Assigning NULL removes the class attribute.

unclass returns (a copy of) its argument with its class attribute removed. (It is not allowed for
objects which cannot be copied, namely environments and external pointers.)

inherits indicates whether its first argument inherits from any of the classes specified in the what
argument. If which is TRUE then an integer vector of the same length as what is returned. Each
element indicates the position in the class(x) matched by the element of what; zero indicates no
match. If which is FALSE then TRUE is returned by inherits if any of the names in what match
with any class.

All but inherits are primitive functions.

70 col

Formal classes

An additional mechanism of formal classes, nicknamed “S4”, is available in package methods
which is attached by default. For objects which have a formal class, its name is returned by class
as a character vector of length one and method dispatch can happen on several arguments, instead
of only the first. However, S3 method selection attempts to treat objects from an S4 class as if they
had the appropriate S3 class attribute, as does inherits. Therefore, S3 methods can be defined for
S4 classes. See the ‘Classes’ and ‘Methods’ help pages for details.

The replacement version of the function sets the class to the value provided. For classes that have
a formal definition, directly replacing the class this way is strongly deprecated. The expression
as(object, value) is the way to coerce an object to a particular class.

The analogue of inherits for formal classes is is. The two functions behave consistently with one
exception: S4 classes can have conditional inheritance, with an explicit test. In this case, is will
test the condition, but inherits ignores all conditional superclasses.

Note

Functions oldClass and oldClass<- behave in the same way as functions of those names in S-
PLUS 5/6, but in R UseMethod dispatches on the class as returned by class (with some interpolated
classes: see the link) rather than oldClass. However, group generics dispatch on the oldClass for
efficiency, and internal generics only dispatch on objects for which is.object is true.

In some versions of R, assigning a zero-length vector with class removes the class: in others it is
an error (whereas it works for oldClass. It is clearer to always assign NULL to remove the class.

See Also

UseMethod, NextMethod, ‘group generic’, ‘internal generic’

Examples

x <- 10
class(x) # "numeric"
oldClass(x) # NULL
inherits(x, "a") #FALSE
class(x) <- c("a", "b")
inherits(x,"a") #TRUE
inherits(x, "a", TRUE) # 1
inherits(x, c("a", "b", "c"), TRUE) # 1 2 0

col Column Indexes

Description

Returns a matrix of integers indicating their column number in a matrix-like object, or a factor of
column labels.

Usage

col(x, as.factor = FALSE)

Colon 71

Arguments

x a matrix-like object, that is one with a two-dimensional dim.

as.factor a logical value indicating whether the value should be returned as a factor of
column labels (created if necessary) rather than as numbers.

Value

An integer (or factor) matrix with the same dimensions as x and whose ij-th element is equal to j
(or the j-th column label).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

row to get rows.

Examples

extract an off-diagonal of a matrix
ma <- matrix(1:12, 3, 4)
ma[row(ma) == col(ma) + 1]

create an identity 5-by-5 matrix
x <- matrix(0, nrow = 5, ncol = 5)
x[row(x) == col(x)] <- 1

Colon Colon Operator

Description

Generate regular sequences.

Usage

from:to
a:b

Arguments

from starting value of sequence.

to (maximal) end value of the sequence.

a, b factors of the same length.

72 colSums

Details

The binary operator : has two meanings: for factors a:b is equivalent to interaction(a, b) (but
the levels are ordered and labelled differently).

For other arguments from:to is equivalent to seq(from, to), and generates a sequence from from
to to in steps of 1 or -1. Value to will be included if it differs from from by an integer up to a
numeric fuzz of about 1e-7. Non-numeric arguments are coerced internally (hence without dis-
patching methods) to numeric—complex values will have their imaginary parts discarded with a
warning.

Value

For numeric arguments, a numeric vector. This will be of type integer if from is integer-valued and
the result is representable in the R integer type, otherwise of type "double" (aka mode "numeric").

For factors, an unordered factor with levels labelled as la:lb and ordered lexicographically (that
is, lb varies fastest).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
(for numeric arguments: S does not have : for factors.)

See Also

seq (a generalization of from:to).

As an alternative to using : for factors, interaction.

For : used in the formal representation of an interaction, see formula.

Examples

1:4
pi:6 # real
6:pi # integer

f1 <- gl(2,3); f1
f2 <- gl(3,2); f2
f1:f2 # a factor, the "cross" f1 x f2

colSums Form Row and Column Sums and Means

Description

Form row and column sums and means for numeric arrays.

colSums 73

Usage

colSums (x, na.rm = FALSE, dims = 1)
rowSums (x, na.rm = FALSE, dims = 1)
colMeans(x, na.rm = FALSE, dims = 1)
rowMeans(x, na.rm = FALSE, dims = 1)

.colSums(X, m, n, na.rm = FALSE)

.rowSums(X, m, n, na.rm = FALSE)

.colMeans(X, m, n, na.rm = FALSE)

.rowMeans(X, m, n, na.rm = FALSE)

Arguments

x an array of two or more dimensions, containing numeric, complex, integer or
logical values, or a numeric data frame.

na.rm logical. Should missing values (including NaN) be omitted from the calculations?

dims integer: Which dimensions are regarded as ‘rows’ or ‘columns’ to sum over.
For row*, the sum or mean is over dimensions dims+1, ...; for col* it is over
dimensions 1:dims.

X a numeric matrix.

m, n the dimensions of X.

Details

These functions are equivalent to use of apply with FUN = mean or FUN = sum with appropriate
margins, but are a lot faster. As they are written for speed, they blur over some of the subtleties of
NaN and NA. If na.rm = FALSE and either NaN or NA appears in a sum, the result will be one of
NaN or NA, but which might be platform-dependent.

Notice that omission of missing values is done on a per-column or per-row basis, so column means
may not be over the same set of rows, and vice versa. To use only complete rows or columns, first
select them with na.omit or complete.cases (possibly on the transpose of x).

The versions with an initial dot in the name are ‘bare-bones’ versions for use in programming: they
apply only to numeric matrices and do not name the result.

Value

A numeric or complex array of suitable size, or a vector if the result is one-dimensional. For the
first four functions the dimnames (or names for a vector result) are taken from the original array.

If there are no values in a range to be summed over (after removing missing values with
na.rm = TRUE), that component of the output is set to 0 (*Sums) or NaN (*Means), consistent with
sum and mean.

See Also

apply, rowsum

Examples

Compute row and column sums for a matrix:
x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
rowSums(x); colSums(x)

74 commandArgs

dimnames(x)[[1]] <- letters[1:8]
rowSums(x); colSums(x); rowMeans(x); colMeans(x)
x[] <- as.integer(x)
rowSums(x); colSums(x)
x[] <- x < 3
rowSums(x); colSums(x)
x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
x[3,] <- NA; x[4, 2] <- NA
rowSums(x); colSums(x); rowMeans(x); colMeans(x)
rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

an array
dim(UCBAdmissions)
rowSums(UCBAdmissions); rowSums(UCBAdmissions, dims = 2)
colSums(UCBAdmissions); colSums(UCBAdmissions, dims = 2)

complex case
x <- cbind(x1 = 3 + 2i, x2 = c(4:1, 2:5) - 5i)
x[3,] <- NA; x[4, 2] <- NA
rowSums(x); colSums(x); rowMeans(x); colMeans(x)
rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

commandArgs Extract Command Line Arguments

Description

Provides access to a copy of the command line arguments supplied when this R session was invoked.

Usage

commandArgs(trailingOnly = FALSE)

Arguments

trailingOnly logical. Should only arguments after ‘--args’ be returned?

Details

These arguments are captured before the standard R command line processing takes place. This
means that they are the unmodified values. This is especially useful with the ‘--args’ command-
line flag to R, as all of the command line after that flag is skipped.

Value

A character vector containing the name of the executable and the user-supplied command line argu-
ments. The first element is the name of the executable by which R was invoked. The exact form of
this element is platform dependent: it may be the fully qualified name, or simply the last component
(or basename) of the application, or for an embedded R it can be anything the programmer supplied.

If trailingOnly = TRUE, a character vector of those arguments (if any) supplied after ‘--args’.

comment 75

See Also

Startup

Examples

commandArgs()
Spawn a copy of this application as it was invoked,
subject to shell quoting issues
system(paste(commandArgs(), collapse=" "))

comment Query or Set a "comment" Attribute

Description

These functions set and query a comment attribute for any R objects. This is typically useful for
data.frames or model fits.

Contrary to other attributes, the comment is not printed (by print or print.default).

Assigning NULL or a zero-length character vector removes the comment.

Usage

comment(x)
comment(x) <- value

Arguments

x any R object

value a character vector, or NULL.

See Also

attributes and attr for other attributes.

Examples

x <- matrix(1:12, 3,4)
comment(x) <- c("This is my very important data from experiment #0234",

"Jun 5, 1998")
x
comment(x)

76 Comparison

Comparison Relational Operators

Description

Binary operators which allow the comparison of values in atomic vectors.

Usage

x < y
x > y
x <= y
x >= y
x == y
x != y

Arguments

x, y atomic vectors, symbols, calls, or other objects for which methods have been
written.

Details

The binary comparison operators are generic functions: methods can be written for them individu-
ally or via the Ops) group generic function. (See Ops for how dispatch is computed.)

Comparison of strings in character vectors is lexicographic within the strings using the collating
sequence of the locale in use: see locales. The collating sequence of locales such as ‘en_US’ is
normally different from ‘C’ (which should use ASCII) and can be surprising. Beware of making
any assumptions about the collation order: e.g. in Estonian Z comes between S and T, and collation
is not necessarily character-by-character – in Danish aa sorts as a single letter, after z. In Welsh ng
may or may not be a single sorting unit: if it is it follows g. Some platforms may not respect the
locale and always sort in numerical order of the bytes in an 8-bit locale, or in Unicode point order
for a UTF-8 locale (and may not sort in the same order for the same language in different character
sets). Collation of non-letters (spaces, punctuation signs, hyphens, fractions and so on) is even more
problematic.

Character strings can be compared with different marked encodings (see Encoding): they are trans-
lated to UTF-8 before comparison.

At least one of x and y must be an atomic vector, but if the other is a list R attempts to coerce it to
the type of the atomic vector: this will succeed if the list is made up of elements of length one that
can be coerced to the correct type.

If the two arguments are atomic vectors of different types, one is coerced to the type of the other,
the (decreasing) order of precedence being character, complex, numeric, integer, logical and raw.

Missing values (NA) and NaN values are regarded as non-comparable even to themselves, so compar-
isons involving them will always result in NA. Missing values can also result when character strings
are compared and one is not valid in the current collation locale.

Language objects such as symbols and calls are deparsed to character strings before comparison.

Comparison 77

Value

A logical vector indicating the result of the element by element comparison. The elements of shorter
vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are conformable.

S4 methods

These operators are members of the S4 Compare group generic, and so methods can be written
for them individually as well as for the group generic (or the Ops group generic), with arguments
c(e1, e2).

Note

Do not use == and != for tests, such as in if expressions, where you must get a single TRUE or FALSE.
Unless you are absolutely sure that nothing unusual can happen, you should use the identical
function instead.

For numerical and complex values, remember == and != do not allow for the finite representation
of fractions, nor for rounding error. Using all.equal with identical is almost always preferable.
See the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Collation of character strings is a complex topic. For an introduction see http://en.wikipedia.
org/wiki/Collating_sequence. The Unicode Collation Algorithm (http://unicode.org/
reports/tr10/) is likely to be increasingly influential. Where available R makes use of ICU
(http://site.icu-project.org/ for collation.

See Also

factor for the behaviour with factor arguments.

Syntax for operator precedence.

icuSetCollate to tune the string collation algorithm when ICU is in use.

Examples

x <- stats::rnorm(20)
x < 1
x[x > 0]

x1 <- 0.5 - 0.3
x2 <- 0.3 - 0.1
x1 == x2 # FALSE on most machines
identical(all.equal(x1, x2), TRUE) # TRUE everywhere

range of most 8-bit charsets, as well as of Latin-1 in Unicode
z <- c(32:126, 160:255)
x <- if(l10n_info()$MBCS) {

intToUtf8(z, multiple = TRUE)
} else rawToChar(as.raw(z), multiple= TRUE)
by number

http://en.wikipedia.org/wiki/Collating_sequence
http://en.wikipedia.org/wiki/Collating_sequence
http://unicode.org/reports/tr10/
http://unicode.org/reports/tr10/
http://site.icu-project.org/

78 complex

writeLines(strwrap(paste(x, collapse=" "), width = 60))
by locale collation
writeLines(strwrap(paste(sort(x), collapse=" "), width = 60))

complex Complex Vectors

Description

Basic functions which support complex arithmetic in R.

Usage

complex(length.out = 0, real = numeric(), imaginary = numeric(),
modulus = 1, argument = 0)

as.complex(x, ...)
is.complex(x)

Re(z)
Im(z)
Mod(z)
Arg(z)
Conj(z)

Arguments

length.out numeric. Desired length of the output vector, inputs being recycled as needed.

real numeric vector.

imaginary numeric vector.

modulus numeric vector.

argument numeric vector.

x an object, probably of mode complex.

z an object of mode complex, or one of a class for which a methods has been
defined.

... further arguments passed to or from other methods.

Details

Complex vectors can be created with complex. The vector can be specified either by giving its
length, its real and imaginary parts, or modulus and argument. (Giving just the length generates a
vector of complex zeroes.)

as.complex attempts to coerce its argument to be of complex type: like as.vector it strips at-
tributes including names. All forms of NA and NaN are coerced to a complex NA, for which both the
real and imaginary parts are NA.

Note that is.complex and is.numeric are never both TRUE.

The functions Re, Im, Mod, Arg and Conj have their usual interpretation as returning the real part,
imaginary part, modulus, argument and complex conjugate for complex values. The modulus and
argument are also called the polar coordinates. If z = x+ iy with real x and y, for r = Mod(z) =

conditions 79

√
x2 + y2, and φ = Arg(z), x = r ∗ cos(φ) and y = r ∗ sin(φ). They are all internal generic

primitive functions: methods can be defined for them individually or via the Complex group generic.

In addition, the elementary trigonometric, logarithmic, exponential, square root and hyperbolic
functions are implemented for complex values.

Internally, complex numbers are stored as a pair of double precision numbers, either or both of
which can be NaN or plus or minus infinity.

S4 methods

as.complex is primitive and can have S4 methods set.

Re, Im, Mod, Arg and Conj constitute the S4 group generic Complex and so S4 methods can be set
for them individually or via the group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(graphics)

0i ^ (-3:3)

matrix(1i^ (-6:5), nrow=4) #- all columns are the same
0 ^ 1i # a complex NaN

create a complex normal vector
z <- complex(real = stats::rnorm(100), imaginary = stats::rnorm(100))
or also (less efficiently):
z2 <- 1:2 + 1i*(8:9)

The Arg(.) is an angle:
zz <- (rep(1:4,len=9) + 1i*(9:1))/10
zz.shift <- complex(modulus = Mod(zz), argument= Arg(zz) + pi)
plot(zz, xlim=c(-1,1), ylim=c(-1,1), col="red", asp = 1,

main = expression(paste("Rotation by "," ", pi == 180^o)))
abline(h=0,v=0, col="blue", lty=3)
points(zz.shift, col="orange")

conditions Condition Handling and Recovery

Description

These functions provide a mechanism for handling unusual conditions, including errors and warn-
ings.

80 conditions

Usage

tryCatch(expr, ..., finally)
withCallingHandlers(expr, ...)

signalCondition(cond)

simpleCondition(message, call = NULL)
simpleError (message, call = NULL)
simpleWarning (message, call = NULL)
simpleMessage (message, call = NULL)

S3 method for class ’condition’
as.character(x, ...)
S3 method for class ’error’
as.character(x, ...)
S3 method for class ’condition’
print(x, ...)
S3 method for class ’restart’
print(x, ...)

conditionCall(c)
S3 method for class ’condition’
conditionCall(c)
conditionMessage(c)
S3 method for class ’condition’
conditionMessage(c)

withRestarts(expr, ...)

computeRestarts(cond = NULL)
findRestart(name, cond = NULL)
invokeRestart(r, ...)
invokeRestartInteractively(r)

isRestart(x)
restartDescription(r)
restartFormals(r)

.signalSimpleWarning(msg, call)

.handleSimpleError(h, msg, call)

Arguments

c a condition object.

call call expression.

cond a condition object.

expr expression to be evaluated.

finally expression to be evaluated before returning or exiting.

h function.

message character string.

conditions 81

msg character string.

name character string naming a restart.

r restart object.

x object.

... additional arguments; see details below.

Details

The condition system provides a mechanism for signaling and handling unusual conditions, includ-
ing errors and warnings. Conditions are represented as objects that contain information about the
condition that occurred, such as a message and the call in which the condition occurred. Currently
conditions are S3-style objects, though this may eventually change.

Conditions are objects inheriting from the abstract class condition. Errors and warnings are ob-
jects inheriting from the abstract subclasses error and warning. The class simpleError is the
class used by stop and all internal error signals. Similarly, simpleWarning is used by warning,
and simpleMessage is used by message. The constructors by the same names take a string de-
scribing the condition as argument and an optional call. The functions conditionMessage and
conditionCall are generic functions that return the message and call of a condition.

Conditions are signaled by signalCondition. In addition, the stop and warning functions have
been modified to also accept condition arguments.

The function tryCatch evaluates its expression argument in a context where the handlers provided
in the ... argument are available. The finally expression is then evaluated in the context in which
tryCatch was called; that is, the handlers supplied to the current tryCatch call are not active when
the finally expression is evaluated.

Handlers provided in the ... argument to tryCatch are established for the duration of the evalua-
tion of expr. If no condition is signaled when evaluating expr then tryCatch returns the value of
the expression.

If a condition is signaled while evaluating expr then established handlers are checked, starting
with the most recently established ones, for one matching the class of the condition. When several
handlers are supplied in a single tryCatch then the first one is considered more recent than the
second. If a handler is found then control is transferred to the tryCatch call that established the
handler, the handler found and all more recent handlers are disestablished, the handler is called with
the condition as its argument, and the result returned by the handler is returned as the value of the
tryCatch call.

Calling handlers are established by withCallingHandlers. If a condition is signaled and the ap-
plicable handler is a calling handler, then the handler is called by signalCondition in the context
where the condition was signaled but with the available handlers restricted to those below the han-
dler called in the handler stack. If the handler returns, then the next handler is tried; once the last
handler has been tried, signalCondition returns NULL.

User interrupts signal a condition of class interrupt that inherits directly from class condition
before executing the default interrupt action.

Restarts are used for establishing recovery protocols. They can be established using withRestarts.
One pre-established restart is an abort restart that represents a jump to top level.

findRestart and computeRestarts find the available restarts. findRestart returns the most re-
cently established restart of the specified name. computeRestarts returns a list of all restarts. Both
can be given a condition argument and will then ignore restarts that do not apply to the condition.

invokeRestart transfers control to the point where the specified restart was established and calls
the restart’s handler with the arguments, if any, given as additional arguments to invokeRestart.

82 conditions

The restart argument to invokeRestart can be a character string, in which case findRestart is
used to find the restart.

New restarts for withRestarts can be specified in several ways. The simplest is in name=function
form where the function is the handler to call when the restart is invoked. Another simple variant
is as name=string where the string is stored in the description field of the restart object returned
by findRestart; in this case the handler ignores its arguments and returns NULL. The most flex-
ible form of a restart specification is as a list that can include several fields, including handler,
description, and test. The test field should contain a function of one argument, a condition,
that returns TRUE if the restart applies to the condition and FALSE if it does not; the default function
returns TRUE for all conditions.

One additional field that can be specified for a restart is interactive. This should be a function of
no arguments that returns a list of arguments to pass to the restart handler. The list could be obtained
by interacting with the user if necessary. The function invokeRestartInteractively calls this
function to obtain the arguments to use when invoking the restart. The default interactive method
queries the user for values for the formal arguments of the handler function.

.signalSimpleWarning and .handleSimpleError are used internally and should not be called
directly.

References

The tryCatch mechanism is similar to Java error handling. Calling handlers are based on Common
Lisp and Dylan. Restarts are based on the Common Lisp restart mechanism.

See Also

stop and warning signal conditions, and try is essentially a simplified version of tryCatch.

Examples

tryCatch(1, finally=print("Hello"))
e <- simpleError("test error")
Not run:
stop(e)
tryCatch(stop(e), finally=print("Hello"))
tryCatch(stop("fred"), finally=print("Hello"))

End(Not run)
tryCatch(stop(e), error = function(e) e, finally=print("Hello"))
tryCatch(stop("fred"), error = function(e) e, finally=print("Hello"))
withCallingHandlers({ warning("A"); 1+2 }, warning = function(w) {})
Not run:
{ withRestarts(stop("A"), abort = function() {}); 1 }

End(Not run)
withRestarts(invokeRestart("foo", 1, 2), foo = function(x, y) {x + y})

##--> More examples are part of
##--> demo(error.catching)

conflicts 83

conflicts Search for Masked Objects on the Search Path

Description

conflicts reports on objects that exist with the same name in two or more places on the search
path, usually because an object in the user’s workspace or a package is masking a system object of
the same name. This helps discover unintentional masking.

Usage

conflicts(where = search(), detail = FALSE)

Arguments

where A subset of the search path, by default the whole search path.

detail If TRUE, give the masked or masking functions for all members of the search
path.

Value

If detail=FALSE, a character vector of masked objects. If detail=TRUE, a list of character vectors
giving the masked or masking objects in that member of the search path. Empty vectors are omitted.

Examples

lm <- 1:3
conflicts(, TRUE)
gives something like
$.GlobalEnv
[1] "lm"
#
$package:base
[1] "lm"

Remove things from your "workspace" that mask others:
remove(list = conflicts(detail=TRUE)$.GlobalEnv)

connections Functions to Manipulate Connections

Description

Functions to create, open and close connections.

84 connections

Usage

file(description = "", open = "", blocking = TRUE,
encoding = getOption("encoding"), raw = FALSE)

url(description, open = "", blocking = TRUE,
encoding = getOption("encoding"))

gzfile(description, open = "", encoding = getOption("encoding"),
compression = 6)

bzfile(description, open = "", encoding = getOption("encoding"),
compression = 9)

xzfile(description, open = "", encoding = getOption("encoding"),
compression = 6)

unz(description, filename, open = "",
encoding = getOption("encoding"))

pipe(description, open = "", encoding = getOption("encoding"))

fifo(description, open = "", blocking = FALSE,
encoding = getOption("encoding"))

socketConnection(host = "localhost", port, server = FALSE,
blocking = FALSE, open = "a+",
encoding = getOption("encoding"),
timeout = getOption("timeout"))

open(con, ...)
S3 method for class ’connection’
open(con, open = "r", blocking = TRUE, ...)

close(con, ...)
S3 method for class ’connection’
close(con, type = "rw", ...)

flush(con)

isOpen(con, rw = "")
isIncomplete(con)

Arguments

description character string. A description of the connection: see ‘Details’.

open character. A description of how to open the connection (if it should be opened
initially). See section ‘Modes’ for possible values.

blocking logical. See the ‘Blocking’ section.

encoding The name of the encoding to be used. See the ‘Encoding’ section.

raw logical. If true, a ‘raw’ interface is used which will be more suitable for argu-
ments which are not regular files, e.g. character devices. This suppresses the

connections 85

check for a compressed file when opening for text-mode reading, and asserts
that the ‘file’ may not be seekable.

compression integer in 0–9. The amount of compression to be applied when writing, from
none to maximal available. For xzfile can also be negative: see the ‘Compres-
sion’ section.

timeout numeric: the timeout (in seconds) to be used for this connection. Beware that
some OSes may treat very large values as zero: however the POSIX standard
requires values up to 31 days to be supported.

filename a filename within a zip file.

host character. Host name for port.

port integer. The TCP port number.

server logical. Should the socket be a client or a server?

con a connection.

type character. Currently ignored.

rw character. Empty or "read" or "write", partial matches allowed.

... arguments passed to or from other methods.

Details

The first nine functions create connections. By default the connection is not opened (except for
socketConnection), but may be opened by setting a non-empty value of argument open.

For file the description is a path to the file to be opened or a complete URL (when it is the same
as calling url), or "" (the default) or "clipboard" (see the ‘Clipboard’ section). Use "stdin" to
refer to the C-level ‘standard input’ of the process (which need not be connected to anything in a
console or embedded version of R, and is not in RGui on Windows). See also stdin() for the subtly
different R-level concept of stdin.

For url the description is a complete URL, including scheme (such as ‘http://’, ‘ftp://’ or
‘file://’). Proxies can be specified for HTTP and FTP url connections: see download.file.

For gzfile the description is the path to a file compressed by gzip: it can also open for reading
uncompressed files and (as from R 2.10.0) those compressed by bzip2, xz or lzma.

For bzfile the description is the path to a file compressed by bzip2.

For xzfile the description is the path to a file compressed by xz (http://en.wikipedia.org/
wiki/Xz) or (for reading only) lzma (http://en.wikipedia.org/wiki/LZMA).

unz reads (only) single files within zip files, in binary mode. The description is the full path to the
zip file, with ‘.zip’ extension if required.

For pipe the description is the command line to be piped to or from. This is run in a shell, on
Windows that specified by the COMSPEC environment variable.

For fifo the description is the path of the fifo. (Windows does not have fifos, so attempts to use this
function there are an error. It was possible to use file with fifos prior to R 2.10.0, but raw=TRUE is
now required for reading, and fifo was always the documented interface.)

All platforms support file, pipe, gzfile, bzfile, xzfile, unz and url("file://") connections.
The other connections may be partially implemented or not implemented at all. (They do work on
most Unix platforms, and all but fifo on Windows.)

The intention is that file and gzfile can be used generally for text input (from files and URLs)
and binary input respectively.

open, close and seek are generic functions: the following applies to the methods relevant to con-
nections.

http://en.wikipedia.org/wiki/Xz
http://en.wikipedia.org/wiki/Xz
http://en.wikipedia.org/wiki/LZMA

86 connections

open opens a connection. In general functions using connections will open them if they are not
open, but then close them again, so to leave a connection open call open explicitly.

close closes and destroys a connection. This will happen automatically in due course (with a
warning) if there is no longer an R object referring to the connection.

A maximum of 128 connections can be allocated (not necessarily open) at any one time. Three of
these are pre-allocated (see stdout). The OS will impose limits on the numbers of connections of
various types, but these are usually larger than 125.

flush flushes the output stream of a connection open for write/append (where implemented, cur-
rently for file and clipboard connections, stdout and stderr).

If for a file or fifo connection the description is "", the file/fifo is immediately opened (in "w+"
mode unless open = "w+b" is specified) and unlinked from the file system. This provides a tempo-
rary file/fifo to write to and then read from.

Value

file, pipe, fifo, url, gzfile, bzfile, xzfile, unz and socketConnection return a connection
object which inherits from class "connection" and has a first more specific class.

isOpen returns a logical value, whether the connection is currently open.

isIncomplete returns a logical value, whether the last read attempt was blocked, or for an output
text connection whether there is unflushed output.

URLs

url and file support URL schemes ‘http://’, ‘ftp://’ and ‘file://’.

A note on ‘file://’ URLs. The most general form (from RFC1738) is
‘file://host/path/to/file’, but R only accepts the form with an empty host field refer-
ring to the local machine.

On a Unix-alike, this is then ‘file:///path/to/file’, where ‘path/to/file’ is relative to ‘/’.
So although the third slash is strictly part of the specification not part of the path, this can be
regarded as a way to specify the file ‘/path/to/file’. It is not possible to specify a relative path
using a file URL.

In this form the path is relative to the root of the filesystem, not a Windows concept. The standard
form on Windows is ‘file:///d:/R/repos’: for compatibility with earlier versions of R and Unix
versions, any other form is parsed as R as ‘file://’ plus path_to_file. Also, backslashes are
accepted within the path even though RFC1738 does not allow them.

No attempt is made to decode an encoded URL: call URLdecode if necessary.

Note that ‘https://’ connections are not supported except on Windows. There they are only
supported if ‘--internet2’ or setInternet2(TRUE) was used (to make use of Internet Explorer
internals), and then only if the certificate is considered to be valid. With that option only, the
‘http://user:pass@site’ notation for sites requiring authentication is also accepted.

Contributed package RCurl provides more comprehensive facilities to download from URLs.

Modes

Possible values for the argument open are

"r" or "rt" Open for reading in text mode.

"w" or "wt" Open for writing in text mode.

"a" or "at" Open for appending in text mode.

http://CRAN.R-project.org/package=RCurl

connections 87

"rb" Open for reading in binary mode.

"wb" Open for writing in binary mode.

"ab" Open for appending in binary mode.

"r+", "r+b" Open for reading and writing.

"w+", "w+b" Open for reading and writing, truncating file initially.

"a+", "a+b" Open for reading and appending.

Not all modes are applicable to all connections: for example URLs can only be opened for reading.
Only file and socket connections can be opened for both reading and writing. An unsupported mode
is usually silently substituted.

If a file or fifo is created on a Unix-alike, its permissions will be the maximal allowed by the current
setting of umask (see Sys.umask).

For many connections there is little or no difference between text and binary modes. For file-like
connections on Windows, translation of line endings (between LF and CRLF) is done in text mode
only (but text read operations on connections such as readLines, scan and source work for any
form of line ending). Various R operations are possible in only one of the modes: for example
pushBack is text-oriented and is only allowed on connections open for reading in text mode, and
binary operations such as readBin, load and save operations can only be done on binary-mode
connections.

The mode of a connection is determined when actually opened, which is deferred if open = "" is
given (the default for all but socket connections). An explicit call to open can specify the mode,
but otherwise the mode will be "r". (gzfile, bzfile and xzfile connections are exceptions, as
the compressed file always has to be opened in binary mode and no conversion of line-endings is
done even on Windows, so the default mode is interpreted as "rb".) Most operations that need
write access or text-only or binary-only mode will override the default mode of a non-yet-open
connection.

Append modes need to be considered carefully for compressed-file connections. They do not pro-
duce a single compressed stream on the file, but rather append a new compressed stream to the file.
Readers (including R) may or may not read beyond end of the first stream: currently R does so for
gzfile, bzfile and xzfile connections, but earlier versions did not.

Compression

R has for a long time supported gzip and bzip2 compression, and support for xz compression (and
read-only support for its precursor lzma compression) was added in R 2.10.0.

For reading, the type of compression (if any) can be determined from the first few bytes of the file,
and this is exploited as from R 2.10.0. Thus for file(raw = FALSE) connections, if open is "",
"r" or "rt" the connection can read any of the compressed file types as well as uncompressed files.
(Using "rb" will allow compressed files to be read byte-by-byte.) Similarly, gzfile connections
can read any of the forms of compression and uncompressed files in any read mode.

(The type of compression is determined when the connection is created if open is unspecified and a
file of that name exists. If the intention is to open the connection to write a file with a different form
of compression under that name, specify open = "w" when the connection is created or unlink the
file before creating the connection.)

For write-mode connections, compress specifies how hard the compressor works to minimize the
file size, and higher values need more CPU time and more working memory (up to ca 800Mb
for xzfile(compress = 9)). For xzfile negative values of compress correspond to adding the
xz argument ‘-e’: this takes more time (double?) to compress but may achieve (slightly) better
compression. The default (6) has good compression and modest (100Mb memory usage): but if
you are using xz compression you are probably looking for high compression.

88 connections

Choosing the type of compression involves tradeoffs: gzip, bzip2 and xz are successively less
widely supported, need more resources for both compression and decompression, and achieve more
compression (although individual files may buck the general trend). Typical experience is that
bzip2 compression is 15% better on text files than gzip compression, and xz with maximal com-
pression 30% better. The experience with R save files is similar, but on some large ‘.rda’ files
xz compression is much better than the other two. With current computers decompression times
even with compress = 9 are typically modest and reading compressed files is usually faster than
uncompressed ones because of the reduction in disc activity.

Encoding

The encoding of the input/output stream of a connection can be specified by name in the same way
as it would be given to iconv: see that help page for how to find out what encoding names are
recognized on your platform. Additionally, "" and "native.enc" both mean the ‘native’ encoding,
that is the internal encoding of the current locale and hence no translation is done.

Re-encoding only works for connections in text mode: reading from a connection with re-encoding
specified in binary mode will read the stream of bytes, but mixing text and binary mode reads (e.g.
mixing calls to readLines and readChar) is likely to lead to incorrect results.

The encodings "UCS-2LE" and "UTF-16LE" are treated specially, as they are appropriate values
for Windows ‘Unicode’ text files. If the first two bytes are the Byte Order Mark 0xFFFE then
these are removed as some implementations of iconv do not accept BOMs. Note that whereas most
implementations will handle BOMs using encoding "UCS-2" and choose the appropriate byte order,
some (including earlier versions of glibc) will not. There is a subtle distinction between "UTF-16"
and "UCS-2" (see http://en.wikipedia.org/wiki/UTF-16/UCS-2: the use of surrogate pairs is
very rare so "UCS-2LE" is an appropriate first choice.

Requesting a conversion that is not supported is an error, reported when the connection is opened.
Exactly what happens when the requested translation cannot be done for invalid input is in general
undocumented. On output the result is likely to be that up to the error, with a warning. On input, it
will most likely be all or some of the input up to the error.

It may be possible to deduce the current native encoding from Sys.getlocale("LC_CTYPE"), but
not all OSes record it.

Blocking

Whether or not the connection blocks can be specified for file, url (default yes) fifo and socket
connections (default not).

In blocking mode, functions using the connection do not return to the R evaluator until the
read/write is complete. In non-blocking mode, operations return as soon as possible, so on in-
put they will return with whatever input is available (possibly none) and for output they will return
whether or not the write succeeded.

The function readLines behaves differently in respect of incomplete last lines in the two modes:
see its help page.

Even when a connection is in blocking mode, attempts are made to ensure that it does not block the
event loop and hence the operation of GUI parts of R. These do not always succeed, and the whole
R process will be blocked during a DNS lookup on Unix, for example.

Most blocking operations on HTTP/FTP URLs and on sockets are subject to the timeout set by
options("timeout"). Note that this is a timeout for no response, not for the whole operation. The
timeout is set at the time the connection is opened (more precisely, when the last connection of that
type – ‘http:’, ‘ftp:’ or socket – was opened).

http://en.wikipedia.org/wiki/UTF-16/UCS-2

connections 89

Fifos

Fifos default to non-blocking. That follows S version 4 and is probably most natural, but it does
have some implications. In particular, opening a non-blocking fifo connection for writing (only)
will fail unless some other process is reading on the fifo.

Opening a fifo for both reading and writing (in any mode: one can only append to fifos) connects
both sides of the fifo to the R process, and provides an similar facility to file().

Clipboard

file can be used with description = "clipboard" in modes "r" and "w" only.

When a clipboard is opened for reading, the contents are immediately copied to internal storage in
the connection.

When writing to the clipboard, the output is copied to the clipboard only when the connection is
closed or flushed. There is a 32Kb limit on the text to be written to the clipboard. This can be raised
by using e.g. file("clipboard-128") to give 128Kb.

The clipboard works in Unicode wide characters, so encodings might not work as one might expect.

Note

R’s connections are modelled on those in S version 4 (see Chambers, 1998). However R goes
well beyond the S model, for example in output text connections and URL, compressed and socket
connections.

The default open mode in R is "r" except for socket connections. This differs from S, where it is
the equivalent of "r+", known as "*".

On (rare) platforms where vsnprintf does not return the needed length of output there is a 100,000
byte output limit on the length of line for text output on fifo, gzfile, bzfile and xzfile connec-
tions: longer lines will be truncated with a warning.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

Ripley, B. D. (2001) Connections. R News, 1/1, 16–7. http://www.r-project.org/doc/Rnews/
Rnews_2001-1.pdf

See Also

textConnection, seek, showConnections, pushBack.

Functions making direct use of connections are (text-mode) readLines, writeLines, cat,
sink, scan, parse, read.dcf, dput, dump and (binary-mode) readBin, readChar, writeBin,
writeChar, load and save.

capabilities to see if HTTP/FTP url, fifo and socketConnection are supported by this build
of R.

gzcon to wrap gzip (de)compression around a connection.

memCompress for more ways to (de)compress and references on data compression.

To flush output to the console, see flush.console.

http://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf
http://www.r-project.org/doc/Rnews/Rnews_2001-1.pdf

90 connections

Examples

zz <- file("ex.data", "w") # open an output file connection
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
cat("One more line\n", file = zz)
close(zz)
readLines("ex.data")
unlink("ex.data")

zz <- gzfile("ex.gz", "w") # compressed file
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
readLines(zz <- gzfile("ex.gz"))
close(zz)
unlink("ex.gz")

zz <- bzfile("ex.bz2", "w") # bzip2-ed file
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
print(readLines(zz <- bzfile("ex.bz2")))
close(zz)
unlink("ex.bz2")

An example of a file open for reading and writing
Tfile <- file("test1", "w+")
c(isOpen(Tfile, "r"), isOpen(Tfile, "w")) # both TRUE
cat("abc\ndef\n", file=Tfile)
readLines(Tfile)
seek(Tfile, 0, rw="r") # reset to beginning
readLines(Tfile)
cat("ghi\n", file=Tfile)
readLines(Tfile)
close(Tfile)
unlink("test1")

We can do the same thing with an anonymous file.
Tfile <- file()
cat("abc\ndef\n", file=Tfile)
readLines(Tfile)
close(Tfile)

fifo example -- may fail even with OS support for fifos
if(capabilities("fifo")) {

zz <- fifo("foo-fifo", "w+")
writeLines("abc", zz)
print(readLines(zz))
close(zz)
unlink("foo-fifo")

}

Not run:
Two R processes communicating via non-blocking sockets
R process 1
con1 <- socketConnection(port = 6011, server=TRUE)
writeLines(LETTERS, con1)
close(con1)

Constants 91

R process 2
con2 <- socketConnection(Sys.info()["nodename"], port = 6011)
as non-blocking, may need to loop for input
readLines(con2)
while(isIncomplete(con2)) {

Sys.sleep(1)
z <- readLines(con2)
if(length(z)) print(z)

}
close(con2)

examples of use of encodings
write a file in UTF-8
cat(x, file = (con <- file("foo", "w", encoding="UTF-8"))); close(con)
read a ’Windows Unicode’ file
A <- read.table(con <- file("students", encoding="UCS-2LE")); close(con)

End(Not run)

Constants Built-in Constants

Description

Constants built into R.

Usage

LETTERS
letters
month.abb
month.name
pi

Details

R has a small number of built-in constants.

The following constants are available:

• LETTERS: the 26 upper-case letters of the Roman alphabet;

• letters: the 26 lower-case letters of the Roman alphabet;

• month.abb: the three-letter abbreviations for the English month names;

• month.name: the English names for the months of the year;

• pi: the ratio of the circumference of a circle to its diameter.

These are implemented as variables in the base namespace taking appropriate values.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

92 Control

See Also

data, DateTimeClasses.

Quotes for the parsing of character constants, NumericConstants for numeric constants.

Examples

John Machin (ca 1706) computed pi to over 100 decimal places
using the Taylor series expansion of the second term of
pi - 4*(4*atan(1/5) - atan(1/239))

months in English
month.name
months in your current locale
format(ISOdate(2000, 1:12, 1), "%B")
format(ISOdate(2000, 1:12, 1), "%b")

contributors R Project Contributors

Description

The R Who-is-who, describing who made significant contributions to the development of R.

Usage

contributors()

Control Control Flow

Description

These are the basic control-flow constructs of the R language. They function in much the same way
as control statements in any Algol-like language. They are all reserved words.

Usage

if(cond) expr
if(cond) cons.expr else alt.expr

for(var in seq) expr
while(cond) expr
repeat expr
break
next

Control 93

Arguments

cond A length-one logical vector that is not NA. Conditions of length greater than one
are accepted with a warning, but only the first element is used. Other types are
coerced to logical if possible, ignoring any class.

var A syntactical name for a variable.

seq An expression evaluating to a vector (including a list and an expression) or to a
pairlist or NULL. A factor value will be coerced to a character vector.

expr, cons.expr, alt.expr

An expression in a formal sense. This is either a simple expression or a so called
compound expression, usually of the form { expr1 ; expr2 }.

Details

break breaks out of a for, while or repeat loop; control is transferred to the first statement outside
the inner-most loop. next halts the processing of the current iteration and advances the looping
index. Both break and next apply only to the innermost of nested loops.

Note that it is a common mistake to forget to put braces ({ .. }) around your statements, e.g., after
if(..) or for(....). In particular, you should not have a newline between } and else to avoid
a syntax error in entering a if ... else construct at the keyboard or via source. For that reason,
one (somewhat extreme) attitude of defensive programming is to always use braces, e.g., for if
clauses.

The seq in a for loop is evaluated at the start of the loop; changing it subsequently does not affect
the loop. If seq has length zero the body of the loop is skipped. Otherwise the variable var is
assigned in turn the value of each element of seq. You can assign to var within the body of the
loop, but this will not affect the next iteration. When the loop terminates, var remains as a variable
containing its latest value.

Value

if returns the value of the expression evaluated, or NULL invisibly if none was (which may happen
if there is no else).

for, while and repeat return NULL invisibly. for sets var to the last used element of seq, or to
NULL if it was of length zero.

break and next do not return a value as they transfer control within the loop.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Syntax for the basic R syntax and operators, Paren for parentheses and braces.

ifelse, switch for other ways to control flow.

Examples

for(i in 1:5) print(1:i)
for(n in c(2,5,10,20,50)) {

x <- stats::rnorm(n)
cat(n,":", sum(x^2),"\n")

94 converters

}
f = factor(sample(letters[1:5], 10, replace=TRUE))
for(i in unique(f)) print(i)

converters Management of .C argument conversion list

Description

Warning: these functions are deprecated and will be removed shortly. Use the .Call interface
instead.

These functions provide facilities to manage the extensible list of converters used to translate R
objects to C pointers for use in .C calls. The number and a description of each element in the list
can be retrieved. One can also query and set the activity status of individual elements, temporarily
ignoring them. And one can remove individual elements.

Usage

getNumCConverters()
getCConverterDescriptions()
getCConverterStatus()
setCConverterStatus(id, status)
removeCConverter(id)

Arguments

id either a number or a string identifying the element of interest in the converter list.
A string is matched against the description strings for each element to identify
the element. Integers are specified starting at 1 (rather than 0).

status a logical value specifying whether the element is to be considered active (TRUE)
or not (FALSE).

Details

The internal list of converters is potentially used when converting individual arguments in a .C
call. If an argument has a non-trivial class attribute, we iterate over the list of converters looking
for the first that matches. If we find a matching converter, we have it create the C-level pointer
corresponding to the R object. When the call to the C routine is complete, we use the same converter
for that argument to reverse the conversion and create an R object from the current value in the C
pointer. This is done separately for all the arguments.

The functions documented here provide R user-level capabilities for investigating and managing
the list of converters. There is currently no mechanism for adding an element to the converter list
within the R language. This must be done in C code using the routine R_addToCConverter().

Value

getNumCConverters returns an integer giving the number of elements in the list, both active and
inactive.

getCConverterDescriptions returns a character vector containing the description string of each
element of the converter list.

copyright 95

getCConverterStatus returns a logical vector with a value for each element in the converter list.
Each value indicates whether that converter is active (TRUE) or inactive (FALSE). The names of the
elements are the description strings returned by getCConverterDescriptions.

setCConverterStatus returns the logical value indicating the activity status of the specified ele-
ment before the call to change it took effect. This is TRUE for active and FALSE for inactive.

removeCConverter returns TRUE if an element in the converter list was identified and removed. In
the case that no such element was found, an error occurs.

Author(s)

Duncan Temple Lang

References

http://cm.bell-labs.com/stat/duncan/SCConverters/CObjectConversion.pdf

See Also

.C

Examples

getNumCConverters()
getCConverterDescriptions()
getCConverterStatus()
Not run:
old <- setCConverterStatus(1, FALSE)

setCConverterStatus(1, old)

End(Not run)
Not run:
removeCConverter(1)
removeCConverter(getCConverterDescriptions()[1])

End(Not run)

copyright Copyrights of Files Used to Build R

Description

R is released under the ‘GNU Public License’: see license for details. The license describes
your right to use R. Copyright is concerned with ownership of intellectual rights, and some of the
software used has conditions that the copyright must be explicitly stated: see the ‘Details’ section.
We are grateful to these people and other contributors (see contributors) for the ability to use
their work.

Details

The file ‘R_HOME/COPYRIGHTS’ lists the copyrights in full detail.

http://cm.bell-labs.com/stat/duncan/SCConverters/CObjectConversion.pdf

96 crossprod

crossprod Matrix Crossproduct

Description

Given matrices x and y as arguments, return a matrix cross-product. This is formally equivalent to
(but usually slightly faster than) the call t(x) %*% y (crossprod) or x %*% t(y) (tcrossprod).

Usage

crossprod(x, y = NULL)

tcrossprod(x, y = NULL)

Arguments

x, y numeric or complex matrices: y = NULL is taken to be the same matrix as x.
Vectors are promoted to single-column or single-row matrices, depending on
the context.

Value

A double or complex matrix, with appropriate dimnames taken from x and y.

Note

When x or y are not matrices, they are treated as column or row matrices, but their names are usually
not promoted to dimnames. Hence, currently, the last example has empty dimnames.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

%*% and outer product %o%.

Examples

(z <- crossprod(1:4)) # = sum(1 + 2^2 + 3^2 + 4^2)
drop(z) # scalar
x <- 1:4; names(x) <- letters[1:4]; x
tcrossprod(as.matrix(x)) # is
identical(tcrossprod(as.matrix(x)),

crossprod(t(x)))
tcrossprod(x) # no dimnames

m <- matrix(1:6, 2,3) ; v <- 1:3; v2 <- 2:1
stopifnot(identical(tcrossprod(v, m), v %*% t(m)),

identical(tcrossprod(v, m), crossprod(v, t(m))),
identical(crossprod(m, v2), t(m) %*% v2))

Cstack_info 97

Cstack_info Report Information on C Stack Size and Usage

Description

Report information on the C stack size and usage (if available).

Usage

Cstack_info()

Details

On most platforms, C stack information is recorded when R is initialized and used for stack-
checking. If this information is unavailable, the size will be returned as NA, and stack-checking is
not performed.

The information on the stack base address is thought to be accurate on Windows, Linux and
FreeBSD (including Mac OS X), but a heuristic is used on other platforms. Because this might
be slightly inaccurate, the current usage could be estimated as negative. (The heuristic is not used
on embedded uses of R on platforms where the stack base is not thought to be accurate.)

Value

An integer vector. This has named elements

size The size of the stack (in bytes), or NA if unknown.

current The estimated current usage (in bytes), possibly NA.

direction 1 (stack grows down, the usual case) or -1 (stack grows up).

eval_depth The current evaluation depth (including two calls for the call to Cstack_info).

Examples

Cstack_info()

cumsum Cumulative Sums, Products, and Extremes

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of the
elements of the argument.

Usage

cumsum(x)
cumprod(x)
cummax(x)
cummin(x)

98 cut

Arguments

x a numeric or complex (not cummin or cummax) object, or an object that can be
coerced to one of these.

Details

These are generic functions: methods can be defined for them individually or via the Math group
generic.

Value

A vector of the same length and type as x (after coercion), except that cumprod returns a numeric
vector for integer input (for consistency with *). Names are preserved.

An NA value in x causes the corresponding and following elements of the return value to be NA, as
does integer overflow in cumsum (with a warning).

S4 methods

cumsum and cumprod are S4 generic functions: methods can be defined for them individually or via
the Math group generic. cummax and cummin are individually S4 generic functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (cumsum only.)

Examples

cumsum(1:10)
cumprod(1:10)
cummin(c(3:1, 2:0, 4:2))
cummax(c(3:1, 2:0, 4:2))

cut Convert Numeric to Factor

Description

cut divides the range of x into intervals and codes the values in x according to which interval they
fall. The leftmost interval corresponds to level one, the next leftmost to level two and so on.

Usage

cut(x, ...)

Default S3 method:
cut(x, breaks, labels = NULL,

include.lowest = FALSE, right = TRUE, dig.lab = 3,
ordered_result = FALSE, ...)

cut 99

Arguments

x a numeric vector which is to be converted to a factor by cutting.

breaks either a numeric vector of two or more unique cut points or a single number
(greater than or equal to 2) giving the number of intervals into which x is to be
cut.

labels labels for the levels of the resulting category. By default, labels are constructed
using "(a,b]" interval notation. If labels = FALSE, simple integer codes are
returned instead of a factor.

include.lowest logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for
right = FALSE) ‘breaks’ value should be included.

right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the number of
digits used in formatting the break numbers.

ordered_result logical: should the result be an ordered factor?

... further arguments passed to or from other methods.

Details

When breaks is specified as a single number, the range of the data is divided into breaks pieces
of equal length, and then the outer limits are moved away by 0.1% of the range to ensure that the
extreme values both fall within the break intervals. (If x is a constant vector, equal-length intervals
are created, one of which includes the single value.)

If a labels parameter is specified, its values are used to name the factor levels. If none is specified,
the factor level labels are constructed as "(b1, b2]", "(b2, b3]" etc. for right = TRUE and as
"[b1, b2)", . . . if right = FALSE. In this case, dig.lab indicates the minimum number of digits
should be used in formatting the numbers b1, b2, A larger value (up to 12) will be used if
needed to distinguish between any pair of endpoints: if this fails labels such as "Range3" will be
used.

The default method will sort a numeric vector of breaks, but other methods are not required to and
labels will correspond to the intervals after sorting.

Value

A factor is returned, unless labels = FALSE which results in an integer vector of level codes.

Values which fall outside the range of breaks are coded as NA, as are NaN and NA values.

Note

Instead of table(cut(x, br)), hist(x, br, plot = FALSE) is more efficient and less memory
hungry. Instead of cut(*, labels = FALSE), findInterval() is more efficient.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

100 cut.POSIXt

See Also

split for splitting a variable according to a group factor; factor, tabulate, table,
findInterval.

quantile for ways of choosing breaks of roughly equal content (rather than length).

.bincode for a bare-bones version.

Examples

Z <- stats::rnorm(10000)
table(cut(Z, breaks = -6:6))
sum(table(cut(Z, breaks = -6:6, labels=FALSE)))
sum(graphics::hist(Z, breaks = -6:6, plot=FALSE)$counts)

cut(rep(1,5),4)#-- dummy
tx0 <- c(9, 4, 6, 5, 3, 10, 5, 3, 5)
x <- rep(0:8, tx0)
stopifnot(table(x) == tx0)

table(cut(x, b = 8))
table(cut(x, breaks = 3*(-2:5)))
table(cut(x, breaks = 3*(-2:5), right = FALSE))

##--- some values OUTSIDE the breaks :
table(cx <- cut(x, breaks = 2*(0:4)))
table(cxl <- cut(x, breaks = 2*(0:4), right = FALSE))
which(is.na(cx)); x[is.na(cx)] #-- the first 9 values 0
which(is.na(cxl)); x[is.na(cxl)] #-- the last 5 values 8

Label construction:
y <- stats::rnorm(100)
table(cut(y, breaks = pi/3*(-3:3)))
table(cut(y, breaks = pi/3*(-3:3), dig.lab=4))

table(cut(y, breaks = 1*(-3:3), dig.lab=4))
extra digits don’t "harm" here
table(cut(y, breaks = 1*(-3:3), right = FALSE))
#- the same, since no exact INT!

sometimes the default dig.lab is not enough to be avoid confusion:
aaa <- c(1,2,3,4,5,2,3,4,5,6,7)
cut(aaa, 3)
cut(aaa, 3, dig.lab=4, ordered = TRUE)

one way to extract the breakpoints
labs <- levels(cut(aaa, 3))
cbind(lower = as.numeric(sub("\\((.+),.*", "\\1", labs)),

upper = as.numeric(sub("[^,]*,([^]]*)\\]", "\\1", labs)))

cut.POSIXt Convert a Date or Date-Time Object to a Factor

cut.POSIXt 101

Description

Method for cut applied to date-time objects.

Usage

S3 method for class ’POSIXt’
cut(x, breaks, labels = NULL, start.on.monday = TRUE,

right = FALSE, ...)

S3 method for class ’Date’
cut(x, breaks, labels = NULL, start.on.monday = TRUE,

right = FALSE, ...)

Arguments

x an object inheriting from class "POSIXt" or "Date".

breaks a vector of cut points or number giving the number of intervals which x is to
be cut into or an interval specification, one of "sec", "min", "hour", "day",
"DSTday", "week", "month", "quarter" or "year", optionally preceded by
an integer and a space, or followed by "s". For "Date" objects only "day",
"week", "month", "quarter" and "year" are allowed.

labels labels for the levels of the resulting category. By default, labels are constructed
from the left-hand end of the intervals (which are included for the default value
of right). If labels = FALSE, simple integer codes are returned instead of a
factor.

start.on.monday

logical. If breaks = "weeks", should the week start on Mondays or Sundays?

right, ... arguments to be passed to or from other methods.

Details

Using both right = TRUE and include.lowest = TRUE will include both ends of the range of
dates.

Using breaks = "quarter" will create intervals of 3 calendar months, with the intervals beginning
on January 1, April 1, July 1 or October 1, based upon min(x) as appropriate.

As from R 2.15.2 a vector break will be sorted before use: labels will then correspond to the
sorted vector.

Value

A factor is returned, unless labels = FALSE which returns the integer level codes.

See Also

seq.POSIXt, seq.Date, cut

Examples

random dates in a 10-week period
cut(ISOdate(2001, 1, 1) + 70*86400*stats::runif(100), "weeks")
cut(as.Date("2001/1/1") + 70*stats::runif(100), "weeks")

102 data.class

data.class Object Classes

Description

Determine the class of an arbitrary R object.

Usage

data.class(x)

Arguments

x an R object.

Value

character string giving the class of x.

The class is the (first element) of the class attribute if this is non-NULL, or inferred from the object’s
dim attribute if this is non-NULL, or mode(x).

Simply speaking, data.class(x) returns what is typically useful for method dispatching. (Or,
what the basic creator functions already and maybe eventually all will attach as a class attribute.)

Note

For compatibility reasons, there is one exception to the rule above: When x is integer, the result
of data.class(x) is "numeric" even when x is classed.

See Also

class

Examples

x <- LETTERS
data.class(factor(x)) # has a class attribute
data.class(matrix(x, ncol = 13)) # has a dim attribute
data.class(list(x)) # the same as mode(x)
data.class(x) # the same as mode(x)

stopifnot(data.class(1:2) == "numeric")# compatibility "rule"

data.frame 103

data.frame Data Frames

Description

This function creates data frames, tightly coupled collections of variables which share many of the
properties of matrices and of lists, used as the fundamental data structure by most of R’s modeling
software.

Usage

data.frame(..., row.names = NULL, check.rows = FALSE,
check.names = TRUE,
stringsAsFactors = default.stringsAsFactors())

default.stringsAsFactors()

Arguments

... these arguments are of either the form value or tag = value. Component
names are created based on the tag (if present) or the deparsed argument itself.

row.names NULL or a single integer or character string specifying a column to be used as
row names, or a character or integer vector giving the row names for the data
frame.

check.rows if TRUE then the rows are checked for consistency of length and names.

check.names logical. If TRUE then the names of the variables in the data frame are checked to
ensure that they are syntactically valid variable names and are not duplicated. If
necessary they are adjusted (by make.names) so that they are.

stringsAsFactors

logical: should character vectors be converted to factors? The ‘factory-fresh’
default is TRUE, but this can be changed by setting options(stringsAsFactors
= FALSE).

Details

A data frame is a list of variables of the same number of rows with unique row names, given class
"data.frame". If no variables are included, the row names determine the number of rows.

The column names should be non-empty, and attempts to use empty names will have unsupported
results. Duplicate column names are allowed, but you need to use check.names = FALSE for
data.frame to generate such a data frame. However, not all operations on data frames will preserve
duplicated column names: for example matrix-like subsetting will force column names in the result
to be unique.

data.frame converts each of its arguments to a data frame by calling
as.data.frame(optional=TRUE). As that is a generic function, methods can be written to
change the behaviour of arguments according to their classes: R comes with many such methods.
Character variables passed to data.frame are converted to factor columns unless protected by I or
argument stringsAsFactors is false. If a list or data frame or matrix is passed to data.frame it
is as if each component or column had been passed as a separate argument (except for matrices of
class "model.matrix" and those protected by I).

104 data.frame

Objects passed to data.frame should have the same number of rows, but atomic vectors, factors and
character vectors protected by I will be recycled a whole number of times if necessary (including
as elements of list arguments).

If row names are not supplied in the call to data.frame, the row names are taken from the first
component that has suitable names, for example a named vector or a matrix with rownames or a
data frame. (If that component is subsequently recycled, the names are discarded with a warning.)
If row.names was supplied as NULL or no suitable component was found the row names are the
integer sequence starting at one (and such row names are considered to be ‘automatic’, and not
preserved by as.matrix).

If row names are supplied of length one and the data frame has a single row, the row.names is taken
to specify the row names and not a column (by name or number).

Names are removed from vector inputs not protected by I.

default.stringsAsFactors is a utility that takes getOption("stringsAsFactors") and ensures
the result is TRUE or FALSE (or throws an error if the value is not NULL).

Value

A data frame, a matrix-like structure whose columns may be of differing types (numeric, logical,
factor and character and so on).

How the names of the data frame are created is complex, and the rest of this paragraph is only the
basic story. If the arguments are all named and simple objects (not lists, matrices of data frames)
then the argument names give the column names. For an unnamed simple argument, a deparsed
version of the argument is used as the name (with an enclosing I(...) removed). For a named
matrix/list/data frame argument with more than one named column, the names of the columns
are the name of the argument followed by a dot and the column name inside the argument: if
the argument is unnamed, the argument’s column names are used. For a named or unnamed ma-
trix/list/data frame argument that contains a single column, the column name in the result is the
column name in the argument. Finally, the names are adjusted to be unique and syntactically valid
unless check.names = FALSE.

Note

In versions of R prior to 2.4.0 row.names had to be character: to ensure compatibility with such
versions of R, supply a character vector as the row.names argument.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

I, plot.data.frame, print.data.frame, row.names, names (for the column names),
[.data.frame for subsetting methods, Math.data.frame etc, about Group methods for
data.frames; read.table, make.names.

Examples

L3 <- LETTERS[1:3]
(d <- data.frame(cbind(x=1, y=1:10), fac=sample(L3, 10, replace=TRUE)))

The same with automatic column names:

data.matrix 105

data.frame(cbind(1, 1:10), sample(L3, 10, replace=TRUE))

is.data.frame(d)

do not convert to factor, using I() :
(dd <- cbind(d, char = I(letters[1:10])))
rbind(class=sapply(dd, class), mode=sapply(dd, mode))

stopifnot(1:10 == row.names(d))# {coercion}

(d0 <- d[, FALSE]) # NULL data frame with 10 rows
(d.0 <- d[FALSE,]) # <0 rows> data frame (3 cols)
(d00 <- d0[FALSE,]) # NULL data frame with 0 rows

data.matrix Convert a Data Frame to a Numeric Matrix

Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode and then
binding them together as the columns of a matrix. Factors and ordered factors are replaced by their
internal codes.

Usage

data.matrix(frame, rownames.force = NA)

Arguments

frame a data frame whose components are logical vectors, factors or numeric vectors.

rownames.force logical indicating if the resulting matrix should have character (rather than NULL)
rownames. The default, NA, uses NULL rownames if the data frame has ‘auto-
matic’ row.names or for a zero-row data frame.

Details

Logical and factor columns are converted to integers. Any other column which is not numeric
(according to is.numeric) is converted by as.numeric or, for S4 objects, as(, "numeric"). If all
columns are integer (after conversion) the result is an integer matrix, otherwise a numeric (double)
matrix.

Value

If frame inherits from class "data.frame", an integer or numeric matrix of the same dimensions
as frame, with dimnames taken from the row.names (or NULL, depending on rownames.force) and
names.

Otherwise, the result of as.matrix.

Note

The default behaviour for data frames differs from R < 2.5.0 which always gave the result character
rownames.

106 date

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

as.matrix, data.frame, matrix.

Examples

DF <- data.frame(a=1:3, b=letters[10:12],
c=seq(as.Date("2004-01-01"), by = "week", len = 3),
stringsAsFactors = TRUE)

data.matrix(DF[1:2])
data.matrix(DF)

date System Date and Time

Description

Returns a character string of the current system date and time.

Usage

date()

Value

The string has the form "Fri Aug 20 11:11:00 1999", i.e., length 24, since it relies on POSIX’s
ctime ensuring the above fixed format. Timezone and Daylight Saving Time are taken account of,
but not indicated in the result.

The day and month abbreviations are always in English, irrespective of locale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Sys.Date and Sys.time; Date and DateTimeClasses for objects representing date and time.

Examples

(d <- date())
nchar(d) == 24

something similar in the current locale
format(Sys.time(), "%a %b %d %H:%M:%S %Y")

Dates 107

Dates Date Class

Description

Description of the class "Date" representing calendar dates.

Usage

S3 method for class ’Date’
summary(object, digits = 12, ...)

Arguments

object An object summarized.

digits Number of significant digits for the computations.

... Further arguments to be passed from or to other methods.

Details

Dates are represented as the number of days since 1970-01-01, with negative values for earlier
dates. They are always printed following the rules of the current Gregorian calendar, even though
that calendar was not in use long ago (it was adopted in 1752 in Great Britain and its colonies).

It is intended that the date should be an integer, but this is not enforced in the internal representation.
Fractional days will be ignored when printing. It is possible to produce fractional days via the mean
method or by adding or subtracting (see Ops.Date).

The print methods respect options("max.print").

See Also

Sys.Date for the current date.

Ops.Date for operators on "Date" objects.

format.Date for conversion to and from character strings.

axis.Date and hist.Date for plotting.

weekdays for convenience extraction functions.

seq.Date, cut.Date, round.Date for utility operations.

DateTimeClasses for date-time classes.

Examples

Not run:
(today <- Sys.Date())
format(today, "%d %b %Y") # with month as a word
(tenweeks <- seq(today, length.out=10, by="1 week")) # next ten weeks
weekdays(today)
months(tenweeks)
as.Date(.leap.seconds)

End(Not run)

108 DateTimeClasses

DateTimeClasses Date-Time Classes

Description

Description of the classes "POSIXlt" and "POSIXct" representing calendar dates and times (to the
nearest second).

Usage

S3 method for class ’POSIXct’
print(x, ...)

S3 method for class ’POSIXct’
summary(object, digits = 15, ...)

time + z
z + time
time - z
time1 lop time2

Arguments

x, object An object to be printed or summarized from one of the date-time classes.

digits Number of significant digits for the computations: should be high enough to
represent the least important time unit exactly.

... Further arguments to be passed from or to other methods.

time date-time objects

time1, time2 date-time objects or character vectors. (Character vectors are converted by
as.POSIXct.)

z a numeric vector (in seconds)

lop One of ==, !=, <, <=, > or >=.

Details

There are two basic classes of date/times. Class "POSIXct" represents the (signed) number of
seconds since the beginning of 1970 (in the UTC timezone) as a numeric vector. Class "POSIXlt"
is a named list of vectors representing

sec 0–61: seconds

min 0–59: minutes

hour 0–23: hours

mday 1–31: day of the month

mon 0–11: months after the first of the year.

year years since 1900.

wday 0–6 day of the week, starting on Sunday.

yday 0–365: day of the year.

DateTimeClasses 109

isdst Daylight Savings Time flag. Positive if in force, zero if not, negative if unknown.

Note that the internal list structure is somewhat hidden, as many methods, including print()
or str, apply to the abstract date-time vector, as for "POSIXct". The classes correspond to the
POSIX/C99 constructs of ‘calendar time’ (the time_t data type) and ‘local time’ (or broken-down
time, the struct tm data type), from which they also inherit their names. The components of
"POSIXlt" are integer vectors, except sec.

"POSIXct" is more convenient for including in data frames, and "POSIXlt" is closer to human-
readable forms. A virtual class "POSIXt" exists from which both of the classes inherit: it is used to
allow operations such as subtraction to mix the two classes. Note that length(x) is the length of
the corresponding (abstract) date/time vector, also in the "POSIXlt" case.

Components wday and yday of "POSIXlt" are for information, and are not used in the conversion
to calendar time. However, isdst is needed to distinguish times at the end of DST: typically 1am to
2am occurs twice, first in DST and then in standard time. At all other times isdst can be deduced
from the first six values, but the behaviour if it is set incorrectly is platform-dependent.

Logical comparisons and limited arithmetic are available for both classes. One can add or sub-
tract a number of seconds from a date-time object, but not add two date-time objects. Subtraction
of two date-time objects is equivalent to using difftime. Be aware that "POSIXlt" objects will
be interpreted as being in the current timezone for these operations, unless a timezone has been
specified.

"POSIXlt" objects will often have an attribute "tzone", a character vector of length 3 giving the
timezone name from the TZ environment variable and the names of the base timezone and the
alternate (daylight-saving) timezone. Sometimes this may just be of length one, giving the timezone
name.

"POSIXct" objects may also have an attribute "tzone", a character vector of length one. If set to a
non-empty value, it will determine how the object is converted to class "POSIXlt" and in particular
how it is printed. This is usually desirable, but if you want to specify an object in a particular
timezone but to be printed in the current timezone you may want to remove the "tzone" attribute
(e.g. by c(x)).

Unfortunately, the conversion is complicated by the operation of time zones and leap seconds
(24 days have been 86401 seconds long so far: the times of the extra seconds are in the object
.leap.seconds). The details of this are entrusted to the OS services where possible. This always
covers the period 1970–2037, and on most machines back to 1902 (when time zones were in their
infancy). Outside the platform limits we use our own C code. This uses the offset from GMT in
use either for 1902 (when there was no DST) or that predicted for one of 2030 to 2037 (chosen so
that the likely DST transition days are Sundays), and uses the alternate (daylight-saving) timezone
only if isdst is positive or (if -1) if DST was predicted to be in operation in the 2030s on that day.
(There is no reason to suppose that the DST rules will remain the same in the future, and indeed the
US legislated in 2005 to change its rules as from 2007, with a possible future reversion.)

It seems that some rare systems use leap seconds, but most ignore them (as required by POSIX).
This is detected and corrected for at build time, so all "POSIXct" times used by R do not include
leap seconds. (Conceivably this could be wrong if the system has changed since build time, just
possibly by changing locales or the ‘zoneinfo’ database.)

Using c on "POSIXlt" objects converts them to the current time zone, and on "POSIXct" objects
drops any "tzone" attributes (even if they are all marked with the same time zone).

A few times have specific issues. First, the leap seconds are ignored, and real times such as
"2005-12-31 23:59:60" are (probably) treated as the next second. However, they will never be
generated by R, and are unlikely to arise as input. Second, on some OSes there is a problem in
the POSIX/C99 standard with "1969-12-31 23:59:59 UTC", which is -1 in calendar time and
that value is on those OSes also used as an error code. Thus as.POSIXct("1969-12-31

110 DateTimeClasses

23:59:59", format = "%Y-%m-%d %H:%M:%S", tz = "UTC") may give NA, and hence
as.POSIXct("1969-12-31 23:59:59", tz = "UTC") will give "1969-12-31 23:59:00".
Other OSes (including the code used by R on Windows) report errors separately and so are able to
handle that time as valid.

The print methods respect options("max.print").

Sub-second Accuracy

Classes "POSIXct" and "POSIXlt" are able to express fractions of a second. (Conversion of frac-
tions between the two forms may not be exact, but will have better than microsecond accuracy.)

Fractional seconds are printed only if options("digits.secs") is set: see strftime.

Warning

Some Unix-like systems (especially Linux ones) do not have environment variable TZ set, yet have
internal code that expects it (as does POSIX). We have tried to work around this, but if you get
unexpected results try setting TZ. See Sys.timezone for valid settings.

References

Ripley, B. D. and Hornik, K. (2001) Date-time classes. R News, 1/2, 8–11. http://www.
r-project.org/doc/Rnews/Rnews_2001-2.pdf

See Also

Dates for dates without times.

as.POSIXct and as.POSIXlt for conversion between the classes.

strptime for conversion to and from character representations.

Sys.time for clock time as a "POSIXct" object.

difftime for time intervals.

cut.POSIXt, seq.POSIXt, round.POSIXt and trunc.POSIXt for methods for these classes.

weekdays for convenience extraction functions.

Examples

(z <- Sys.time()) # the current date, as class "POSIXct"

Sys.time() - 3600 # an hour ago

as.POSIXlt(Sys.time(), "GMT") # the current time in GMT
format(.leap.seconds) # all 24 leap seconds in your timezone
print(.leap.seconds, tz="PST8PDT") # and in Seattle’s

look at *internal* representation of "POSIXlt" :
leapS <- as.POSIXlt(.leap.seconds)
names(leapS) ; is.list(leapS)
utils::str(unclass(leapS), vec.len = 7)

http://www.r-project.org/doc/Rnews/Rnews_2001-2.pdf
http://www.r-project.org/doc/Rnews/Rnews_2001-2.pdf

dcf 111

dcf Read and Write Data in DCF Format

Description

Reads or writes an R object from/to a file in Debian Control File format.

Usage

read.dcf(file, fields = NULL, all = FALSE, keep.white = NULL)

write.dcf(x, file = "", append = FALSE,
indent = 0.1 * getOption("width"),
width = 0.9 * getOption("width"),
keep.white = NULL)

Arguments

file either a character string naming a file or a connection. "" indicates output to the
console. For read.dcf this can name a compressed file (see gzfile).

fields Fields to read from the DCF file. Default is to read all fields.

all a logical indicating whether in case of multiple occurrences of a field in a record,
all these should be gathered. If all is false (default), only the last such occur-
rence is used.

keep.white a character string with the names of the fields for which whitespace should be
kept as is, or NULL (default) indicating that there are no such fields. Coerced
to character if possible. For fields where whitespace is not to be kept as is,
read.dcf removes leading and trailing whitespace, and write.dcf folds using
strwrap.

x the object to be written, typically a data frame. If not, it is attempted to coerce x
to a data frame.

append logical. If TRUE, the output is appended to the file. If FALSE, any existing file of
the name is destroyed.

indent a positive integer specifying the indentation for continuation lines in output en-
tries.

width a positive integer giving the target column for wrapping lines in the output.

Details

DCF is a simple format for storing databases in plain text files that can easily be directly read and
written by humans. DCF is used in various places to store R system information, like descriptions
and contents of packages.

The DCF rules as implemented in R are:

1. A database consists of one or more records, each with one or more named fields. Not every
record must contain each field. Fields may appear more than once in a record.

2. Regular lines start with a non-whitespace character.

3. Regular lines are of form tag:value, i.e., have a name tag and a value for the field, separated
by : (only the first : counts). The value can be empty (i.e., whitespace only).

112 dcf

4. Lines starting with whitespace are continuation lines (to the preceding field) if at least one
character in the line is non-whitespace. Continuation lines where the only non-whitespace
character is a ‘.’ are taken as blank lines (allowing for multi-paragraph field values).

5. Records are separated by one or more empty (i.e., whitespace only) lines.

Note that read.dcf(all = FALSE) reads the file byte-by-byte. This allows a ‘DESCRIPTION’ file
to be read and only its ASCII fields used, or its ‘Encoding’ field used to re-encode the remaining
fields.

write.dcf does not write NA fields.

Value

The default read.dcf(all = FALSE) returns a character matrix with one row per record and one
column per field. Leading and trailing whitespace of field values is ignored unless a field is listed
in keep.white. If a tag name is specified in the file, but the corresponding value is empty, then an
empty string is returned. If the tag name of a field is specified in fields but never used in a record,
then the corresponding value is NA. If fields are repeated within a record, the last one encountered
is returned. Malformed lines lead to an error.

For read.dcf(all = TRUE) a data frame is returned, again with one row per record and one col-
umn per field. The columns are lists of character vectors for fields with multiple occurrences, and
character vectors otherwise.

Note that an empty file is a valid DCF file, and read.dcf will return a zero-row matrix or data
frame.

For write.dcf, invisible NULL.

References

http://www.debian.org/doc/debian-policy/ch-controlfields.html. Note that R does not
require encoding in UTF-8, which is a recent Debian requirement.

See Also

write.table.

Examples

Not run:
Create a reduced version of the ’CONTENTS’ file in package ’splines’
x <- read.dcf(file = system.file("CONTENTS", package = "splines"),

fields = c("Entry", "Description"))
write.dcf(x)

End(Not run)

http://www.debian.org/doc/debian-policy/ch-controlfields.html

debug 113

debug Debug a Function

Description

Set, unset or query the debugging flag on a function. The text and condition arguments are the
same as those that can be supplied via a call to browser. They can be retrieved by the user once the
browser has been entered, and provide a mechanism to allow users to identify which breakpoint has
been activated.

Usage

debug(fun, text="", condition=NULL)
debugonce(fun, text="", condition=NULL)
undebug(fun)
isdebugged(fun)

Arguments

fun any interpreted R function.

text a text string that can be retrieved when the browser is entered.

condition a condition that can be retrieved when the browser is entered.

Details

When a function flagged for debugging is entered, normal execution is suspended and the body of
function is executed one statement at a time. A new browser context is initiated for each step (and
the previous one destroyed).

At the debug prompt the user can enter commands or R expressions, followed by a newline. The
commands are

n (or just an empty line, by default). Advance to the next step.

c continue to the end of the current context: e.g. to the end of the loop if within a loop or to the
end of the function.

cont synonym for c.

where print a stack trace of all active function calls.

Q exit the browser and the current evaluation and return to the top-level prompt.

(Leading and trailing whitespace is ignored, except for an empty line).

Anything else entered at the debug prompt is interpreted as an R expression to be evaluated in the
calling environment: in particular typing an object name will cause the object to be printed, and
ls() lists the objects in the calling frame. (If you want to look at an object with a name such as n,
print it explicitly.)

Setting option "browserNLdisabled" to TRUE disables the use of an empty line as a synonym for
n. If this is done, the user will be re-prompted for input until a valid command or an expression is
entered.

To debug a function is defined inside a function, single-step though to the end of its definition, and
then call debug on its name.

114 Defunct

If you want to debug a function not starting at the very beginning, use trace(..., at = *) or
setBreakpoint.

Using debug is persistent, and unless debugging is turned off the debugger will be entered on every
invocation (note that if the function is removed and replaced the debug state is not preserved). Use
debugonce to enter the debugger only the next time the function is invoked.

In order to debug S4 methods (see Methods), you need to use trace, typically calling browser,
e.g., as
trace("plot", browser, exit=browser, signature = c("track", "missing"))

The number of lines printed for the deparsed call when a function is entered for debugging can be
limited by setting options(deparse.max.lines).

When debugging is enabled on a byte compiled function then the interpreted version of the function
will be used until debugging is disabled.

See Also

browser, trace; traceback to see the stack after an Error: ... message; recover for another
debugging approach.

Defunct Marking Objects as Defunct

Description

When a function is removed from R it should be replaced by a function which calls .Defunct.

Usage

.Defunct(new, package = NULL, msg)

Arguments

new character string: A suggestion for a replacement function.

package character string: The package to be used when suggesting where the defunct
function might be listed.

msg character string: A message to be printed, if missing a default message is used.

Details

.Defunct is called from defunct functions. Functions should be listed in help("pkg-defunct")
for an appropriate pkg, including base (with the alias added to the respective Rd file).

See Also

Deprecated.

base-defunct and so on which list the defunct functions in the packages.

delayedAssign 115

delayedAssign Delay Evaluation

Description

delayedAssign creates a promise to evaluate the given expression if its value is requested. This
provides direct access to the lazy evaluation mechanism used by R for the evaluation of (interpreted)
functions.

Usage

delayedAssign(x, value, eval.env = parent.frame(1),
assign.env = parent.frame(1))

Arguments

x a variable name (given as a quoted string in the function call)

value an expression to be assigned to x

eval.env an environment in which to evaluate value

assign.env an environment in which to assign x

Details

Both eval.env and assign.env default to the currently active environment.

The expression assigned to a promise by delayedAssign will not be evaluated until it is eventually
‘forced’. This happens when the variable is first accessed.

When the promise is eventually forced, it is evaluated within the environment specified by eval.env
(whose contents may have changed in the meantime). After that, the value is fixed and the expres-
sion will not be evaluated again.

Value

This function is invoked for its side effect, which is assigning a promise to evaluate value to the
variable x.

See Also

substitute, to see the expression associated with a promise.

Examples

msg <- "old"
delayedAssign("x", msg)
msg <- "new!"
x #- new!
substitute(x) #- x (was ’msg’ ?)

delayedAssign("x", {
for(i in 1:3)

cat("yippee!\n")
10

116 deparse

})

x^2 #- yippee
x^2 #- simple number

e <- (function(x, y = 1, z) environment())(1+2, "y", {cat(" HO! "); pi+2})
(le <- as.list(e)) # evaluates the promises

deparse Expression Deparsing

Description

Turn unevaluated expressions into character strings.

Usage

deparse(expr, width.cutoff = 60L,
backtick = mode(expr) %in%

c("call", "expression", "(", "function"),
control = c("keepInteger", "showAttributes", "keepNA"),
nlines = -1L)

Arguments

expr any R expression.

width.cutoff integer in [20, 500] determining the cutoff (in bytes) at which line-breaking is
tried.

backtick logical indicating whether symbolic names should be enclosed in backticks if
they do not follow the standard syntax.

control character vector of deparsing options. See .deparseOpts.

nlines integer: the maximum number of lines to produce. Negative values indicate no
limit.

Details

This function turns unevaluated expressions (where ‘expression’ is taken in a wider sense than the
strict concept of a vector of mode "expression" used in expression) into character strings (a kind
of inverse to parse).

A typical use of this is to create informative labels for data sets and plots. The example shows a
simple use of this facility. It uses the functions deparse and substitute to create labels for a plot
which are character string versions of the actual arguments to the function myplot.

The default for the backtick option is not to quote single symbols but only composite expressions.
This is a compromise to avoid breaking existing code.

Using control = "all" comes closest to making deparse() an inverse of parse(). However,
not all objects are deparse-able even with this option and a warning will be issued if the function
recognizes that it is being asked to do the impossible.

Numeric and complex vectors are converted using 15 significant digits: see as.character for more
details.

deparseOpts 117

width.cutoff is a lower bound for the line lengths: deparsing a line proceeds until at least
width.cutoff bytes have been output and e.g. arg = value expressions will not be split across
lines.

Note

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be deparsed as an attribute.

Deparsing internal structures may not be accurate: for example the graphics display list recorded by
recordPlot is not intended to be deparsed and .Internal calls will be shown as primitive calls.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

substitute, parse, expression.

Quotes for quoting conventions, including backticks.

Examples

require(stats); require(graphics)

deparse(args(lm))
deparse(args(lm), width = 500)
myplot <-
function(x, y) {

plot(x, y, xlab=deparse(substitute(x)),
ylab=deparse(substitute(y)))

}
e <- quote(‘foo bar‘)
deparse(e)
deparse(e, backtick=TRUE)
e <- quote(‘foo bar‘+1)
deparse(e)
deparse(e, control = "all")

deparseOpts Options for Expression Deparsing

Description

Process the deparsing options for deparse, dput and dump.

Usage

.deparseOpts(control)

Arguments

control character vector of deparsing options.

118 deparseOpts

Details

This is called by deparse, dput and dump to process their control argument.

The control argument is a vector containing zero or more of the following strings. Partial string
matching is used.

keepInteger Either surround integer vectors by as.integer() or use suffix L, so they are not
converted to type double when parsed. This includes making sure that integer NAs are pre-
served (via NA_integer_ if there are no non-NA values in the vector, unless "S_compatible"
is set).

quoteExpressions Surround expressions with quote(), so they are not evaluated when re-parsed.

showAttributes If the object has attributes (other than a source attribute), use structure() to
display them as well as the object value. This is the default for deparse and dput.

useSource If the object has a source attribute, display that instead of deparsing the object. Cur-
rently only applies to function definitions.

warnIncomplete Some exotic objects such as environments, external pointers, etc. can not be
deparsed properly. This option causes a warning to be issued if the deparser recognizes one of
these situations.

Also, the parser in R < 2.7.0 would only accept strings of up to 8192 bytes, and this option
gives a warning for longer strings.

keepNA Integer, real and character NAs are surrounded by coercion where necessary to ensure that
they are parsed to the same type.

all An abbreviated way to specify all of the options listed above. This is the default for dump, and
the options used by edit (which are fixed).

delayPromises Deparse promises in the form <promise: expression> rather than evaluating them.
The value and the environment of the promise will not be shown and the deparsed code cannot
be sourced.

S_compatible Make deparsing as far as possible compatible with S and R < 2.5.0. For compat-
ibility with S, integer values of double vectors are deparsed with a trailing decimal point.
Backticks are not used.

For the most readable (but perhaps incomplete) display, use control = NULL. This displays the
object’s value, but not its attributes. The default in deparse is to display the attributes as well, but
not to use any of the other options to make the result parseable. (dput and dump do use more default
options, and printing of functions without sources uses c("keepInteger", "keepNA").)

Using control = "all" comes closest to making deparse() an inverse of parse(). However,
not all objects are deparse-able even with this option. A warning will be issued if the function
recognizes that it is being asked to do the impossible.

Value

A numerical value corresponding to the options selected.

Deprecated 119

Deprecated Marking Objects as Deprecated

Description

When an object is about to be removed from R it is first deprecated and should include a call to
.Deprecated.

Usage

.Deprecated(new, package=NULL, msg,
old = as.character(sys.call(sys.parent()))[1L])

Arguments

new character string: A suggestion for a replacement function.

package character string: The package to be used when suggesting where the deprecated
function might be listed.

msg character string: A message to be printed, if missing a default message is used.

old character string specifying the function (default) or usage which is being depre-
cated.

Details

.Deprecated("<new name>") is called from deprecated functions. The original help page for these
functions is often available at help("oldName-deprecated") (note the quotes). Functions should
be listed in help("pkg-deprecated") for an appropriate pkg, including base.

See Also

Defunct

base-deprecated and so on which list the deprecated functions in the packages.

det Calculate the Determinant of a Matrix

Description

det calculates the determinant of a matrix. determinant is a generic function that returns sepa-
rately the modulus of the determinant, optionally on the logarithm scale, and the sign of the deter-
minant.

Usage

det(x, ...)
determinant(x, logarithm = TRUE, ...)

120 detach

Arguments

x numeric matrix.

logarithm logical; if TRUE (default) return the logarithm of the modulus of the determinant.

... Optional arguments. At present none are used. Previous versions of det al-
lowed an optional method argument. This argument will be ignored but will not
produce an error.

Details

The determinant function uses an LU decomposition and the det function is simply a wrapper
around a call to determinant.

Often, computing the determinant is not what you should be doing to solve a given problem.

Value

For det, the determinant of x. For determinant, a list with components

modulus a numeric value. The modulus (absolute value) of the determinant if logarithm
is FALSE; otherwise the logarithm of the modulus.

sign integer; either +1 or −1 according to whether the determinant is positive or
negative.

Examples

(x <- matrix(1:4, ncol=2))
unlist(determinant(x))
det(x)

det(print(cbind(1,1:3,c(2,0,1))))

detach Detach Objects from the Search Path

Description

Detach a database, i.e., remove it from the search() path of available R objects. Usually this is
either a data.frame which has been attached or a package which was attached by library.

Usage

detach(name, pos = 2, unload = FALSE, character.only = FALSE,
force = FALSE)

Arguments

name The object to detach. Defaults to search()[pos]. This can be an unquoted
name or a character string but not a character vector. If a number is supplied this
is taken as pos.

pos Index position in search() of the database to detach. When name is a number,
pos = name is used.

detach 121

unload A logical value indicating whether or not to attempt to unload the namespace
when a package is being detached. If the package has a namespace and unload is
TRUE, then detach will attempt to unload the namespace via unloadNamespace:
if the namespace is imported by another namespace or unload is FALSE, no
unloading will occur.

character.only a logical indicating whether name can be assumed to be character strings.

force logical: should a package be detached even though other attached packages de-
pend on it?

Details

This is most commonly used with a single number argument referring to a position on the search
list, and can also be used with a unquoted or quoted name of an item on the search list such as
package:tools.

If a package has a namespace, detaching it does not by default unload the namespace (and may
not even with unload=TRUE), and detaching will not in general unload any dynamically loaded
compiled code (DLLs). Further, registered S3 methods from the namespace will not be removed.
If you use library on a package whose namespace is loaded, it attaches the exports of the already
loaded namespace. So detaching and re-attaching a package may not refresh some or all components
of the package, and is inadvisable.

Value

The return value is invisible. It is NULL when a package is detached, otherwise the environment
which was returned by attach when the object was attached (incorporating any changes since it
was attached).

Note

You cannot detach either the workspace (position 1) nor the base package (the last item in the search
list), and attempting to do so will throw an error.

Unloading some namespaces has undesirable side effects: e.g. unloading grid closes all graphics
devices, and on most systems tcltk cannot be reloaded once it has been unloaded and may crash R
if this is attempted.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attach, library, search, objects, unloadNamespace, library.dynam.unload .

Examples

require(splines) # package
detach(package:splines)
or also
library(splines)
pkg <- "package:splines"

detach(pkg, character.only = TRUE)

122 diag

careful: do not do this unless ’splines’ is not already attached.
library(splines)
detach(2) # ’pos’ used for ’name’

an example of the name argument to attach
and of detaching a database named by a character vector
attach_and_detach <- function(db, pos=2)
{

name <- deparse(substitute(db))
attach(db, pos=pos, name=name)
print(search()[pos])
detach(name, character.only = TRUE)

}
attach_and_detach(women, pos=3)

diag Matrix Diagonals

Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x = 1, nrow, ncol)
diag(x) <- value

Arguments

x a matrix, vector or 1D array, or missing.

nrow, ncol Optional dimensions for the result when x is not a matrix.

value either a single value or a vector of length equal to that of the current diagonal.
Should be of a mode which can be coerced to that of x.

Details

diag has four distinct usages:

1. x is a matrix, when it extracts the diagonal.

2. x is missing and nrow is specified, it returns an identity matrix.

3. x is a scalar (length-one vector) and the only argument, it returns a square identity matrix of
size given by the scalar.

4. x is a numeric vector, either of length at least 2 or there were further arguments. This returns
a matrix with the given diagonal and zero off-diagonal entries.

It is an error to specify nrow or ncol in the first case.

diff 123

Value

If x is a matrix then diag(x) returns the diagonal of x. The resulting vector will have names if the
matrix x has matching column and rownames.

The replacement form sets the diagonal of the matrix x to the given value(s).

In all other cases the value is a diagonal matrix with nrow rows and ncol columns (if ncol is not
given the matrix is square). Here nrow is taken from the argument if specified, otherwise inferred
from x: if that is a vector (or 1D array) of length two or more, then its length is the number of rows,
but if it is of length one and neither nrow nor ncol is specified, nrow = as.integer(x).

When a diagonal matrix is returned, the diagonal elements are one except in the fourth case, when
x gives the diagonal elements: it will be recycled or truncated as needed, but fractional recycling
and truncation will give a warning.

Note

Using diag(x) can have unexpected effects if x is a vector that could be of length one. Use
diag(x, nrow = length(x)) for consistent behaviour.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

upper.tri, lower.tri, matrix.

Examples

require(stats)
dim(diag(3))
diag(10,3,4) # guess what?
all(diag(1:3) == {m <- matrix(0,3,3); diag(m) <- 1:3; m})

diag(var(M <- cbind(X = 1:5, Y = stats::rnorm(5))))
#-> vector with names "X" and "Y"

rownames(M) <- c(colnames(M),rep("",3));
M; diag(M) # named as well

diff Lagged Differences

Description

Returns suitably lagged and iterated differences.

124 diff

Usage

diff(x, ...)

Default S3 method:
diff(x, lag = 1, differences = 1, ...)

S3 method for class ’POSIXt’
diff(x, lag = 1, differences = 1, ...)

S3 method for class ’Date’
diff(x, lag = 1, differences = 1, ...)

Arguments

x a numeric vector or matrix containing the values to be differenced.

lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

... further arguments to be passed to or from methods.

Details

diff is a generic function with a default method and ones for classes "ts", "POSIXt" and "Date".

NA’s propagate.

Value

If x is a vector of length n and differences=1, then the computed result is equal to the successive
differences x[(1+lag):n] - x[1:(n-lag)].

If difference is larger than one this algorithm is applied recursively to x. Note that the returned
value is a vector which is shorter than x.

If x is a matrix then the difference operations are carried out on each column separately.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

diff.ts, diffinv.

Examples

diff(1:10, 2)
diff(1:10, 2, 2)
x <- cumsum(cumsum(1:10))
diff(x, lag = 2)
diff(x, differences = 2)

diff(.leap.seconds)

difftime 125

difftime Time Intervals

Description

Time intervals creation, printing, and some arithmetic.

Usage

time1 - time2

difftime(time1, time2, tz,
units = c("auto", "secs", "mins", "hours",

"days", "weeks"))

as.difftime(tim, format = "%X", units = "auto")

S3 method for class ’difftime’
format(x, ...)
S3 method for class ’difftime’
units(x)
S3 replacement method for class ’difftime’
units(x) <- value
S3 method for class ’difftime’
as.double(x, units = "auto", ...)

Group methods, notably for round(), signif(), floor(),
ceiling(), trunc(), abs(); called directly, *not* as Math():
S3 method for class ’difftime’
Math(x, ...)

Arguments

time1, time2 date-time or date objects.

tz an optional timezone specification to be used for the conversion, mainly for
"POSIXlt" objects.

units character string. Units in which the results are desired. Can be abbreviated.

value character string. Like units, except that abbreviations are not allowed.

tim character string or numeric value specifying a time interval.

format character specifying the format of tim: see strptime. The default is a locale-
specific time format.

x an object inheriting from class "difftime".

... arguments to be passed to or from other methods.

Details

Function difftime calculates a difference of two date/time objects and returns an object of class
"difftime" with an attribute indicating the units. The Math group method provides round, signif,

126 dim

floor, ceiling, trunc, abs, and sign methods for objects of this class, and there are methods for
the group-generic (see Ops) logical and arithmetic operations.

If units = "auto", a suitable set of units is chosen, the largest possible (excluding "weeks") in
which all the absolute differences are greater than one.

Subtraction of date-time objects gives an object of this class, by calling difftime with
units = "auto". Alternatively, as.difftime() works on character-coded or numeric time in-
tervals; in the latter case, units must be specified, and format has no effect.

Limited arithmetic is available on "difftime" objects: they can be added or subtracted, and mul-
tiplied or divided by a numeric vector. In addition, adding or subtracting a numeric vector by a
"difftime" object implicitly converts the numeric vector to a "difftime" object with the same
units as the "difftime" object. There are methods for mean and sum (via the Summary group
generic).

The units of a "difftime" object can be extracted by the units function, which also has a replace-
ment form. If the units are changed, the numerical value is scaled accordingly. As from R 2.15.0
the replacement version keeps attributes such as names and dimensions.

The as.double method returns the numeric value expressed in the specified units. Using
units = "auto" means the units of the object.

The format method simply formats the numeric value and appends the units as a text string.

The default behaviour when time1 or time2 was a "POSIXlt" object changed in R 2.12.0: pre-
viously such objects were regarded as in the timezone given by tz which defaulted to the current
timezone.

See Also

DateTimeClasses.

Examples

(z <- Sys.time() - 3600)
Sys.time() - z # just over 3600 seconds.

time interval between releases of R 1.2.2 and 1.2.3.
ISOdate(2001, 4, 26) - ISOdate(2001, 2, 26)

as.difftime(c("0:3:20", "11:23:15"))
as.difftime(c("3:20", "23:15", "2:"), format= "%H:%M")# 3rd gives NA
(z <- as.difftime(c(0,30,60), units="mins"))
as.numeric(z, units="secs")
as.numeric(z, units="hours")
format(z)

dim Dimensions of an Object

Description

Retrieve or set the dimension of an object.

dimnames 127

Usage

dim(x)
dim(x) <- value

Arguments

x an R object, for example a matrix, array or data frame.

value For the default method, either NULL or a numeric vector, which is coerced to
integer (by truncation).

Details

The functions dim and dim<- are internal generic primitive functions.

dim has a method for data.frames, which returns the lengths of the row.names attribute of x and
of x (as the numbers of rows and columns respectively).

Value

For an array (and hence in particular, for a matrix) dim retrieves the dim attribute of the object. It is
NULL or a vector of mode integer.

The replacement method changes the "dim" attribute (provided the new value is compatible) and
removes any "dimnames" and "names" attributes.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ncol, nrow and dimnames.

Examples

x <- 1:12 ; dim(x) <- c(3,4)
x

simple versions of nrow and ncol could be defined as follows
nrow0 <- function(x) dim(x)[1]
ncol0 <- function(x) dim(x)[2]

dimnames Dimnames of an Object

Description

Retrieve or set the dimnames of an object.

Usage

dimnames(x)
dimnames(x) <- value

128 dimnames

Arguments

x an R object, for example a matrix, array or data frame.

value a possible value for dimnames(x): see the ‘Value’ section.

Details

The functions dimnames and dimnames<- are generic.

For an array (and hence in particular, for a matrix), they retrieve or set the dimnames attribute (see
attributes) of the object. A list value can have names, and these will be used to label the dimensions
of the array where appropriate.

The replacement method for arrays/matrices coerces vector and factor elements of value to charac-
ter, but does not dispatch methods for as.character. It coerces zero-length elements to NULL, and
a zero-length list to NULL. If value is a list shorter than the number of dimensions, it is extended
with NULLs to the needed length.

Both have methods for data frames. The dimnames of a data frame are its row.names and its names.
For the replacement method each component of value will be coerced by as.character.

For a 1D matrix the names are the same thing as the (only) component of the dimnames.

Both are primitive functions.

Value

The dimnames of a matrix or array can be NULL (which is not stored) or a list of the same length
as dim(x). If a list, its components are either NULL or a character vector with positive length of the
appropriate dimension of x. The list can have names. It is possible that all components are NULL:
such dimnames may get converted to NULL.

For the "data.frame" method both dimnames are character vectors, and the rownames must con-
tain no duplicates nor missing values.

Note

Setting components of the dimnames, e.g. dimnames(A)[[1]] <- value is a common paradigm,
but note that it will not work if the value assigned is NULL. Use rownames instead, or (as it does)
manipulate the whole dimnames list.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

rownames, colnames; array, matrix, data.frame.

Examples

simple versions of rownames and colnames
could be defined as follows
rownames0 <- function(x) dimnames(x)[[1]]
colnames0 <- function(x) dimnames(x)[[2]]

do.call 129

do.call Execute a Function Call

Description

do.call constructs and executes a function call from a name or a function and a list of arguments
to be passed to it.

Usage

do.call(what, args, quote = FALSE, envir = parent.frame())

Arguments

what either a function or a non-empty character string naming the function to be
called.

args a list of arguments to the function call. The names attribute of args gives the
argument names.

quote a logical value indicating whether to quote the arguments.

envir an environment within which to evaluate the call. This will be most useful if
what is a character string and the arguments are symbols or quoted expressions.

Details

If quote is FALSE, the default, then the arguments are evaluated (in the calling environment, not in
envir). If quote is TRUE then each argument is quoted (see quote) so that the effect of argument
evaluation is to remove the quotes – leaving the original arguments unevaluated when the call is
constructed.

The behavior of some functions, such as substitute, will not be the same for functions evaluated
using do.call as if they were evaluated from the interpreter. The precise semantics are currently
undefined and subject to change.

Value

The result of the (evaluated) function call.

Warning

This should not be used to attempt to evade restrictions on the use of .Internal and other non-API
calls.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call which creates an unevaluated call.

130 double

Examples

do.call("complex", list(imag = 1:3))

if we already have a list (e.g. a data frame)
we need c() to add further arguments
tmp <- expand.grid(letters[1:2], 1:3, c("+", "-"))
do.call("paste", c(tmp, sep=""))

do.call(paste, list(as.name("A"), as.name("B")), quote=TRUE)

examples of where objects will be found.
A <- 2
f <- function(x) print(x^2)
env <- new.env()
assign("A", 10, envir = env)
assign("f", f, envir = env)
f <- function(x) print(x)
f(A) # 2
do.call("f", list(A)) # 2
do.call("f", list(A), envir=env) # 4
do.call(f, list(A), envir=env) # 2
do.call("f", list(quote(A)), envir=env) # 100
do.call(f, list(quote(A)), envir=env) # 10
do.call("f", list(as.name("A")), envir=env) # 100

eval(call("f", A)) # 2
eval(call("f", quote(A))) # 2
eval(call("f", A), envir=env) # 4
eval(call("f", quote(A)), envir=env) # 100

double Double-Precision Vectors

Description

Create, coerce to or test for a double-precision vector.

Usage

double(length = 0)
as.double(x, ...)
is.double(x)

single(length = 0)
as.single(x, ...)

Arguments

length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.

x object to be coerced or tested.

... further arguments passed to or from other methods.

double 131

Details

double creates a double-precision vector of the specified length. The elements of the vector are all
equal to 0. It is identical to numeric (and real).

as.double is a generic function. It is identical to as.numeric (and as.real). Methods should
return an object of base type "double".

is.double is a test of double type.

R has no single precision data type. All real numbers are stored in double precision format. The
functions as.single and single are identical to as.double and double except they set the at-
tribute Csingle that is used in the .C and .Fortran interface, and they are intended only to be used
in that context.

Value

double creates a double-precision vector of the specified length. The elements of the vector are all
equal to 0.

as.double attempts to coerce its argument to be of double type: like as.vector it strips attributes
including names. (To ensure that an object is of double type without stripping attributes, use
storage.mode.) Character strings containing optional whitespace followed by either a decimal
representation or a hexadecimal representation (starting with 0x or 0X) can be converted, as can
special values such as "NA", "NaN", "Inf" and "infinity", irrespective of case.

as.double for factors yields the codes underlying the factor levels, not the numeric representation
of the labels, see also factor.

is.double returns TRUE or FALSE depending on whether its argument is of double type or not.

Double-precision values

All R platforms are required to work with values conforming to the IEC 60559 (also known as IEEE
754) standard. This basically works with a precision of 53 bits, and represents to that precision a
range of absolute values from about 2× 10−308 to 2× 10308. It also has special values NaN (many
of them), plus and minus infinity and plus and minus zero (although R acts as if these are the same).
There are also denormal(ized) (or subnormal) numbers with absolute values above or below the
range given above but represented to less precision.

See .Machine for precise information on these limits. Note that ultimately how double precision
numbers are handled is down to the CPU/FPU and compiler.

In IEEE 754-2008/IEC60559:2011 this is called ‘binary64’ format.

Note on names

It is a historical anomaly that R has three names for its floating-point vectors, double, numeric and
real.

double is the name of the type. numeric is the name of the mode and also of the implicit class. As
an S4 formal class, use "numeric".

real is deprecated and should not be used in new code.

The potential confusion is that R has used mode "numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thus is.numeric tests the mode, not the class, but as.numeric (which
is identical to as.double) coerces to the class.

132 dput

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

http://en.wikipedia.org/wiki/IEEE_754-1985, http://en.wikipedia.org/wiki/IEEE_
754-2008, http://en.wikipedia.org/wiki/Double_precision, http://en.wikipedia.org/
wiki/Denormal_number.

http://grouper.ieee.org/groups/754/ for links to information on the standards.

See Also

integer, numeric, storage.mode.

Examples

is.double(1)
all(double(3) == 0)

dput Write an Object to a File or Recreate it

Description

Writes an ASCII text representation of an R object to a file or connection, or uses one to recreate
the object.

Usage

dput(x, file = "",
control = c("keepNA", "keepInteger", "showAttributes"))

dget(file)

Arguments

x an object.

file either a character string naming a file or a connection. "" indicates output to the
console.

control character vector indicating deparsing options. See .deparseOpts for their de-
scription.

Details

dput opens file and deparses the object x into that file. The object name is not written (unlike
dump). If x is a function the associated environment is stripped. Hence scoping information can be
lost.

Deparsing an object is difficult, and not always possible. With the default control, dput() attempts
to deparse in a way that is readable, but for more complex or unusual objects (see dump, not likely
to be parsed as identical to the original. Use control = "all" for the most complete deparsing;
use control = NULL for the simplest deparsing, not even including attributes.

http://en.wikipedia.org/wiki/IEEE_754-1985
http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/Double_precision
http://en.wikipedia.org/wiki/Denormal_number
http://en.wikipedia.org/wiki/Denormal_number
http://grouper.ieee.org/groups/754/

drop 133

dput will warn if fewer characters were written to a file than expected, which may indicate a full or
corrupt file system.

To display saved source rather than deparsing the internal representation include "useSource" in
control. R currently saves source only for function definitions.

Value

For dput, the first argument invisibly.

For dget, the object created.

Note

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be written as an attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

deparse, dump, write.

Examples

Write an ASCII version of mean to the file "foo"
dput(mean, "foo")
And read it back into ’bar’
bar <- dget("foo")
unlink("foo")
Create a function with comments
baz <- function(x) {

Subtract from one
1-x

}
and display it
dput(baz)
and now display the saved source
dput(baz, control = "useSource")

drop Drop Redundant Extent Information

Description

Delete the dimensions of an array which have only one level.

Usage

drop(x)

134 droplevels

Arguments

x an array (including a matrix).

Value

If x is an object with a dim attribute (e.g., a matrix or array), then drop returns an object like x,
but with any extents of length one removed. Any accompanying dimnames attribute is adjusted and
returned with x: if the result is a vector the names are taken from the dimnames (if any). If the result
is a length-one vector, the names are taken from the first dimension with a dimname.

Array subsetting ([) performs this reduction unless used with drop = FALSE, but sometimes it is
useful to invoke drop directly.

See Also

drop1 which is used for dropping terms in models.

Examples

dim(drop(array(1:12, dim=c(1,3,1,1,2,1,2))))# = 3 2 2
drop(1:3 %*% 2:4)# scalar product

droplevels droplevels

Description

The function droplevels is used to drop unused levels from a factor or, more commonly, from
factors in a data frame.

Usage

S3 method for class ’factor’
droplevels(x,...)
S3 method for class ’data.frame’
droplevels(x, except, ...)

Arguments

x an object from which to drop unused factor levels.

... further arguments passed to methods

except indices of columns from which not to drop levels

Details

The method for class "factor" is essentially equivalent to factor(x).

The except argument follow the usual indexing rules.

Value

droplevels returns an object of the same class as x

dump 135

Note

This function was introduced in R 2.12.0. It is primarily intended for cases where one or more
factors in a data frame contains only elements from a reduced level set after subsetting. (Notice that
subsetting does not in general drop unused levels). By default, levels are dropped from all factors in
a data frame, but the except argument allows you to specify columns for which this is not wanted.

See Also

subset for subsetting data frames. factor for definition of factors. drop for dropping array di-
mensions. drop1 for dropping terms from a model. [.factor for subsetting of factors.

Examples

aq <- transform(airquality, Month=factor(Month,labels=month.abb[5:9]))
aq <- subset(aq, Month != "Jul")
table(aq$Month)
table(droplevels(aq)$Month)

dump Text Representations of R Objects

Description

This function takes a vector of names of R objects and produces text representations of the objects
on a file or connection. A dump file can usually be sourced into another R (or S) session.

Usage

dump(list, file = "dumpdata.R", append = FALSE,
control = "all", envir = parent.frame(), evaluate = TRUE)

Arguments

list character. The names of one or more R objects to be dumped.

file either a character string naming a file or a connection. "" indicates output to the
console.

append if TRUE and file is a character string, output will be appended to file; other-
wise, it will overwrite the contents of file.

control character vector indicating deparsing options. See .deparseOpts for their de-
scription.

envir the environment to search for objects.

evaluate logical. Should promises be evaluated?

136 dump

Details

If some of the objects named do not exist (in scope), they are omitted, with a warning. If file is a
file and no objects exist then no file is created.

sourceing may not produce an identical copy of dumped objects. A warning is issued if it is likely
that problems will arise, for example when dumping exotic or complex objects (see the Note).

dump will also warn if fewer characters were written to a file than expected, which may indicate a
full or corrupt file system.

A dump file can be sourced into another R (or perhaps S) session, but the function save is designed
to be used for transporting R data, and will work with R objects that dump does not handle.

To produce a more readable representation of an object, use control = NULL. This will skip at-
tributes, and will make other simplifications that make source less likely to produce an identical
copy. See deparse for details.

To deparse the internal representation of a function rather than displaying the saved source, use
control = c("keepInteger", "warnIncomplete", "keepNA"). This will lose all format-
ting and comments, but may be useful in those cases where the saved source is no longer correct.

Promises will normally only be encountered by users as a result of lazy-loading (when the default
evaluate = TRUE is essential) and after the use of delayedAssign, when evaluate = FALSE
might be intended.

Value

An invisible character vector containing the names of the objects which were dumped.

Note

As dump is defined in the base namespace, the base package will be searched before the global envi-
ronment unless dump is called from the top level prompt or the envir argument is given explicitly.

To avoid the risk of a source attribute becoming out of sync with the actual function definition, the
source attribute of a function will never be dumped as an attribute.

Currently environments, external pointers, weak references and objects of type S4 are not deparsed
in a way that can be sourced. In addition, language objects are deparsed in a simple way whatever
the value of control, and this includes not dumping their attributes (which will result in a warning).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

dput, dget, write.
save for a more reliable way to save R objects.

Examples

x <- 1; y <- 1:10
dump(ls(pattern = ’^[xyz]’), "xyz.Rdmped")
print(.Last.value)
unlink("xyz.Rdmped")

duplicated 137

duplicated Determine Duplicate Elements

Description

duplicated() determines which elements of a vector or data frame are duplicates of elements with
smaller subscripts, and returns a logical vector indicating which elements (rows) are duplicates.

anyDuplicated(.) is a “generalized” more efficient shortcut for any(duplicated(.)).

Usage

duplicated(x, incomparables = FALSE, ...)

Default S3 method:
duplicated(x, incomparables = FALSE,

fromLast = FALSE, ...)

S3 method for class ’array’
duplicated(x, incomparables = FALSE, MARGIN = 1,

fromLast = FALSE, ...)

anyDuplicated(x, incomparables = FALSE, ...)
Default S3 method:
anyDuplicated(x, incomparables = FALSE,

fromLast = FALSE, ...)
S3 method for class ’array’
anyDuplicated(x, incomparables = FALSE,

MARGIN = 1, fromLast = FALSE, ...)

Arguments

x a vector or a data frame or an array or NULL.

incomparables a vector of values that cannot be compared. FALSE is a special value, meaning
that all values can be compared, and may be the only value accepted for methods
other than the default. It will be coerced internally to the same type as x.

fromLast logical indicating if duplication should be considered from the reverse
side, i.e., the last (or rightmost) of identical elements would correspond to
duplicated=FALSE.

... arguments for particular methods.

MARGIN the array margin to be held fixed: see apply, and note that MARGIN = 0 maybe
useful.

Details

These are generic functions with methods for vectors (including lists), data frames and arrays (in-
cluding matrices).

For the default methods, and whenever there are equivalent method definitions for
duplicated and anyDuplicated, anyDuplicated(x,...) is a “generalized” shortcut for
any(duplicated(x,...)), in the sense that it returns the index i of the first duplicated entry x[i]

138 duplicated

if there is one, and 0 otherwise. Their behaviours may be different when at least one of duplicated
and anyDuplicated has a relevant method.

duplicated(x, fromLast=TRUE) is equivalent to but faster than rev(duplicated(rev(x))).

The data frame method works by pasting together a character representation of the rows separated
by \r, so may be imperfect if the data frame has characters with embedded carriage returns or
columns which do not reliably map to characters.

The array method calculates for each element of the sub-array specified by MARGIN if the remaining
dimensions are identical to those for an earlier (or later, when fromLast=TRUE) element (in row-
major order). This would most commonly be used to find duplicated rows (the default) or columns
(with MARGIN = 2). Note that MARGIN = 0 returns an array of the same dimensionality attributes
as x.

Missing values are regarded as equal, but NaN is not equal to NA_real_.

Values in incomparables will never be marked as duplicated. This is intended to be used for a
fairly small set of values and will not be efficient for a very large set.

When used on a data frame with more than one column, or an array or matrix when comparing
dimensions of length greater than one, this tests for identity of character representations. This will
catch people who unwisely rely on exact equality of floating-point numbers!

Character strings will be compared as byte sequences if any input is marked as "bytes".

Value

duplicated(): For a vector input, a logical vector of the same length as x. For a data frame,
a logical vector with one element for each row. For a matrix or array, and when MARGIN = 0, a
logical array with the same dimensions and dimnames.

anyDuplicated(): a non-negative integer (of length one).

Warning

Using this for lists is potentially slow, especially if the elements are not atomic vectors (see vector)
or differ only in their attributes. In the worst case it is O(n2).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unique.

Examples

x <- c(9:20, 1:5, 3:7, 0:8)
extract unique elements
(xu <- x[!duplicated(x)])
similar, same elements but different order:
(xu2 <- x[!duplicated(x, fromLast = TRUE)])

xu == unique(x) but unique(x) is more efficient
stopifnot(identical(xu, unique(x)),

identical(xu2, unique(x, fromLast = TRUE)))

dyn.load 139

duplicated(iris)[140:143]

duplicated(iris3, MARGIN = c(1, 3))
anyDuplicated(iris) ## 143

anyDuplicated(x)
anyDuplicated(x, fromLast = TRUE)

dyn.load Foreign Function Interface

Description

Load or unload DLLs (also known as shared objects), and test whether a C function or Fortran
subroutine is available.

Usage

dyn.load(x, local = TRUE, now = TRUE, ...)
dyn.unload(x)

is.loaded(symbol, PACKAGE = "", type = "")

Arguments

x a character string giving the pathname to a DLL, also known as a dynamic shared
object. (See ‘Details’ for what these terms mean.)

local a logical value controlling whether the symbols in the DLL are stored in their
own local table and not shared across DLLs, or added to the global symbol table.
Whether this has any effect is system-dependent. It is ignored on Windows.

now a logical controlling whether all symbols are resolved (and relocated) immedi-
ately the library is loaded or deferred until they are used. This control is useful
for developers testing whether a library is complete and has all the necessary
symbols, and for users to ignore missing symbols. Whether this has any effect
is system-dependent. It is ignored on Windows.

... other arguments for future expansion. See section ‘Windows’ below.

symbol a character string giving a symbol name.

PACKAGE if supplied, confine the search for the name to the DLL given by this argument
(plus the conventional extension, ‘.so’, ‘.sl’, ‘.dll’, . . .). This is intended to
add safety for packages, which can ensure by using this argument that no other
package can override their external symbols. This is used in the same way as in
.C, .Call, .Fortran and .External functions.

type The type of symbol to look for: can be any ("", the default), "Fortran", "Call"
or "External".

140 dyn.load

Details

The objects dyn.load loads are called ‘dynamically loadable libraries’ (abbreviated to ‘DLL’) on
all platforms except Mac OS X, which unfortunately uses the term for a different sort of sobject.
On Unix-alikes they are also called ‘dynamic shared objects’ (‘DSO’), or ‘shared objects’ for short.
(The POSIX standards use ‘executable object file’, but no one else does.)

See ‘See Also’ and the ‘Writing R Extensions’ and ‘R Installation and Administration’ manuals for
how to create and install a suitable DLL.

Unfortunately a very few platforms (e.g. Compaq Tru64) do not handle the PACKAGE argument
correctly, and may incorrectly find symbols linked into R.

The additional arguments to dyn.load mirror the different aspects of the mode argument to the
dlopen() routine on POSIX systems. They are available so that users can exercise greater control
over the loading process for an individual library. In general, the default values are appropriate and
you should override them only if there is good reason and you understand the implications.

External code must not change the floating point control word, but many DLLs do so. Common
changes are to set it to use 53 bit precision instead of R’s default 64 bit precision, or to unmask some
exceptions. dyn.load detects such changes, and restores R’s control word to its default value of
hex 8001F. This may cause the DLL to malfunction; if so, it should be rewritten to save and restore
the control word itself. If warn.FPU is set to TRUE using the options function, a warning will be
printed. (If the warning says that the control word was changed from some other value than 8001F,
please report the circumstances to the Windows maintainers: that probably indicates an internal
bug.)

Value

The function dyn.load is used for its side effect which links the specified DLL to the executing
R image. Calls to .C, .Call, .Fortran and .External can then be used to execute compiled C
functions or Fortran subroutines contained in the library. The return value of dyn.load is an object
of class DLLInfo. See getLoadedDLLs for information about this class.

The function dyn.unload unlinks the DLL. Note that unloading a DLL and then re-loading a DLL
of the same name may or may not work: on Solaris it uses the first version loaded.

is.loaded checks if the symbol name is loaded and hence available for use in .C or .Fortran or
.Call or .External. It will succeed if any one of the four calling functions would succeed in using
the entry point unless type is specified. (See .Fortran for how Fortran symbols are mapped.)

Windows

The ‘standard mechanisms for loading DLLs’ include a search order for where a DLL is found (if
not given as an absolute path, which is preferred), and of where its dependent DLLs will be found.
This search path depends on the version of Windows and its security settings, but for versions since
Windows XP SP1 it is

• The directory from which the application was launched.

• The various system directories, e.g. ‘c:/Windows/system32’, ‘c:/Windows/system’ and
‘c:/Windows’.

• The current directory.

• Along the search path for executables given by the environment variable PATH.

Packages often want to supply dependent DLLs in their ‘libs’ directory, and do this by setting
the PATH variable (library.dynam does that automatically in recent versions of R), but the DLL
search order means that DLLs in the launch directory and in system directories will be preferred.

eapply 141

On Windows XP SP1 and later there is a way to modify the search order. If argument DLLpath
is supplied to dyn.load, the latter makes use of the Windows system call SetDllDirectory to
insert the value of DLLpath in second place, and removes the current directory, for the duration of
that dyn.load call. (Note that only one directory can be inserted in this way.) On Windows 2000,
the second item in the search order is the current directory, and the current directory is changed
temporarily to implement DLLpath.

Warning

Do not use dyn.unload on a DLL loaded by library.dynam: use library.dynam.unload. This
is needed for system housekeeping.

Note

is.loaded requires the name you would give to .C etc and not (as in S) that remapped by the
defunct functions symbol.C or symbol.For.

The creation of DLLs and the runtime linking of them into executing programs is very platform de-
pendent. In recent years there has been some simplification in the process because the C subroutine
call dlopen has become the POSIX standard for doing this. Under Unix-alikes dyn.load uses the
dlopen mechanism and should work on all platforms which support it. On Windows it uses the
standard mechanism (LoadLibrary) for loading DLLs.

The original code for loading DLLs in Unix-alikes was provided by Heiner Schwarte.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library.dynam to be used inside a package’s .onLoad initialization.

SHLIB for how to create suitable DLLs.

.C, .Fortran, .External, .Call.

Examples

is.loaded("hcass2") #-> probably TRUE, as stats is loaded
is.loaded("supsmu") # Fortran entry point in stats
is.loaded("supsmu", "stats", "Fortran")
is.loaded("PDF", type = "External")

eapply Apply a Function Over Values in an Environment

Description

eapply applies FUN to the named values from an environment and returns the results as a list. The
user can request that all named objects are used (normally names that begin with a dot are not). The
output is not sorted and no enclosing environments are searched.

This is a primitive function.

142 eigen

Usage

eapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE)

Arguments

env environment to be used.

FUN the function to be applied, found via match.fun. In the case of functions like +,
%*%, etc., the function name must be backquoted or quoted.

... optional arguments to FUN.

all.names a logical indicating whether to apply the function to all values.

USE.NAMES logical indicating whether the resulting list should have names.

Value

A named (unless USE.NAMES = FALSE) list. Note that the order of the components is arbitrary for
hashed environments.

See Also

environment, lapply.

Examples

require(stats)

env <- new.env(hash = FALSE) # so the order is fixed
env$a <- 1:10
env$beta <- exp(-3:3)
env$logic <- c(TRUE, FALSE, FALSE, TRUE)
what have we there?
utils::ls.str(env)

compute the mean for each list element
eapply(env, mean)

unlist(eapply(env, mean, USE.NAMES = FALSE))

median and quartiles for each element (making use of "..." passing):
eapply(env, quantile, probs = 1:3/4)
eapply(env, quantile)

eigen Spectral Decomposition of a Matrix

Description

Computes eigenvalues and eigenvectors of real (double, integer, logical) or complex matrices.

Usage

eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE)

eigen 143

Arguments

x a matrix whose spectral decomposition is to be computed.

symmetric if TRUE, the matrix is assumed to be symmetric (or Hermitian if complex) and
only its lower triangle (diagonal included) is used. If symmetric is not specified,
the matrix is inspected for symmetry.

only.values if TRUE, only the eigenvalues are computed and returned, otherwise both eigen-
values and eigenvectors are returned.

EISPACK logical. Should EISPACK be used (for compatibility with R < 1.7.0)?

Details

If symmetric is unspecified, the code attempts to determine if the matrix is symmetric up to plausi-
ble numerical inaccuracies. It is faster and surer to set the value yourself.

eigen is preferred to eigen(EISPACK = TRUE) for new projects, but its eigenvectors may differ in
sign and (in the asymmetric case) in normalization. (They may also differ between methods and
between platforms.)

Computing the eigenvectors is the slow part for large matrices.

Computing the eigendecomposition of a matrix is subject to errors on a real-world computer: the
definitive analysis is Wilkinson (1965). All you can hope for is a solution to a problem suitably
close to x. So even though a real asymmetric x may have an algebraic solution with repeated real
eigenvalues, the computed solution may be of a similar matrix with complex conjugate pairs of
eigenvalues.

Value

The spectral decomposition of x is returned as components of a list with components

values a vector containing the p eigenvalues of x, sorted in decreasing order, according
to Mod(values) in the asymmetric case when they might be complex (even for
real matrices). For real asymmetric matrices the vector will be complex only if
complex conjugate pairs of eigenvalues are detected.

vectors either a p × p matrix whose columns contain the eigenvectors of x, or NULL if
only.values is TRUE.
For eigen(, symmetric = FALSE, EISPACK =TRUE) the choice of length of
the eigenvectors is not defined by EISPACK. In all other cases the vectors are
normalized to unit length.
Recall that the eigenvectors are only defined up to a constant: even when the
length is specified they are still only defined up to a scalar of modulus one (the
sign for real matrices).

If r <- eigen(A), and V <- r$vectors; lam <- r$values, then

A = V ΛV −1

(up to numerical fuzz), where Λ =diag(lam).

Note

EISPACK = TRUE (for compatibility with R < 1.7.0) was formally deprecated in R 2.15.2.

144 encodeString

Source

By default eigen uses the LAPACK routines DSYEVR, DGEEV, ZHEEV and ZGEEV whereas
eigen(EISPACK = TRUE) provides an interface to the EISPACK routines RS, RG, CH and CG.

LAPACK and EISPACK are from http://www.netlib.org/lapack and http://www.netlib.
org/eispack and their guides are listed in the references.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Smith, B. T, Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe,Y., Klema, V., and Moler, C.
B. (1976). Matrix Eigensystems Routines – EISPACK Guide. Springer-Verlag Lecture Notes in
Computer Science 6.

Wilkinson, J. H. (1965) The Algebraic Eigenvalue Problem. Clarendon Press, Oxford.

Wilkinson, J. H. and Reinsch, C. (1971) Linear Algebra. Volume II of Handbook for Automatic
Computation, Springer-Verlag.
[Original source for EISPACK, in ALGOL.]

See Also

svd, a generalization of eigen; qr, and chol for related decompositions.

To compute the determinant of a matrix, the qr decomposition is much more efficient: det.

Examples

eigen(cbind(c(1,-1),c(-1,1)))
eigen(cbind(c(1,-1),c(-1,1)), symmetric = FALSE)
same (different algorithm).

eigen(cbind(1,c(1,-1)), only.values = TRUE)
eigen(cbind(-1,2:1)) # complex values
eigen(print(cbind(c(0,1i), c(-1i,0))))# Hermite ==> real Eigen values
3 x 3:
eigen(cbind(1,3:1,1:3))
eigen(cbind(-1,c(1:2,0),0:2)) # complex values

encodeString Encode Character Vector as for Printing

Description

encodeString escapes the strings in a character vector in the same way print.default does, and
optionally fits the encoded strings within a field width.

Usage

encodeString(x, width = 0, quote = "", na.encode = TRUE,
justify = c("left", "right", "centre", "none"))

http://www.netlib.org/lapack
http://www.netlib.org/eispack
http://www.netlib.org/eispack
http://www.netlib.org/lapack/lug/lapack_lug.html

encodeString 145

Arguments

x A character vector, or an object that can be coerced to one by as.character.

width integer: the minimum field width. If NULL or NA, this is taken to be the largest
field width needed for any element of x.

quote character: quoting character, if any.

na.encode logical: should NA strings be encoded?

justify character: partial matches are allowed. If padding to the minimum field width
is needed, how should spaces be inserted? justify == "none" is equivalent to
width = 0, for consistency with format.default.

Details

This escapes backslash and the control characters ‘\a’ (bell), ‘\b’ (backspace), ‘\f’ (formfeed),
‘\n’ (line feed), ‘\r’ (carriage return), ‘\t’ (tab) and ‘\v’ (vertical tab) as well as any non-printable
characters in a single-byte locale, which are printed in octal notation (‘\xyz’ with leading zeroes).

Which characters are non-printable depends on the current locale. Windows’ reporting of printable
characters is unreliable, so there all other control characters are regarded as non-printable, and all
characters with codes 32–255 as printable in a single-byte locale. See print.default for how
non-printable characters are handled in multi-byte locales.

If quote is a single or double quote any embedded quote of the same type is escaped. Note that
justification is of the quoted string, hence spaces are added outside the quotes.

Value

A character vector of the same length as x, with the same attributes (including names and dimen-
sions) but with no class set.

Note

The default for width is different from format.default, which does similar things for character
vectors but without encoding using escapes.

See Also

print.default

Examples

x <- "ab\bc\ndef"
print(x)
cat(x) # interprets escapes
cat(encodeString(x), "\n", sep="") # similar to print()

factor(x) # makes use of this to print the levels

x <- c("a", "ab", "abcde")
encodeString(x, width = NA) # left justification
encodeString(x, width = NA, justify = "c")
encodeString(x, width = NA, justify = "r")
encodeString(x, width = NA, quote = "’", justify = "r")

146 Encoding

Encoding Read or Set the Declared Encodings for a Character Vector

Description

Read or set the declared encodings for a character vector.

Usage

Encoding(x)

Encoding(x) <- value

enc2native(x)
enc2utf8(x)

Arguments

x A character vector.

value A character vector of positive length.

Details

Character strings in R can be declared to be in "latin1" or "UTF-8" or "bytes". These declara-
tions can be read by Encoding, which will return a character vector of values "latin1", "UTF-8"
"bytes" or "unknown", or set, when value is recycled as needed and other values are silently
treated as "unknown". ASCII strings will never be marked with a declared encoding, since their
representation is the same in all supported encodings. Strings marked as "bytes" are intended to
be non-ASCII strings which should be manipulated as bytes, and never converted to a character
encoding.

enc2native and enc2utf8 convert elements of character vectors to the native encoding or UTF-8
respectively, taking any marked encoding into account. They are primitive functions, designed to
do minimal copying.

There are other ways for character strings to acquire a declared encoding apart from explicitly
setting it (and these have changed as R has evolved). Functions scan, read.table, readLines,
and parse have an encoding argument that is used to declare encodings, iconv declares encodings
from its from argument, and console input in suitable locales is also declared. intToUtf8 declares
its output as "UTF-8", and output text connections (see textConnection) are marked if running
in a suitable locale. Under some circumstances (see its help page) source(encoding=) will mark
encodings of character strings it outputs.

Most character manipulation functions will set the encoding on output strings if it was declared
on the corresponding input. These include chartr, strsplit(useBytes = FALSE), tolower and
toupper as well as sub(useBytes = FALSE) and gsub(useBytes = FALSE). Note that such
functions do not preserve the encoding, but if they know the input encoding and that the string has
been successfully re-encoded (to the current encoding or UTF-8), they mark the output.

substr does preserve the encoding, and chartr, tolower and toupper preserve UTF-8 encoding
on systems with Unicode wide characters. With their fixed and perl options, strsplit, sub and
gsub will give a marked UTF-8 result if any of the inputs are UTF-8.

paste and sprintf return elements marked as bytes if any of the corresponding inputs is marked
as bytes, and otherwise marked as UTF-8 of any of the inputs is marked as UTF-8.

environment 147

match, pmatch, charmatch, duplicated and unique all match in UTF-8 if any of the elements are
marked as UTF-8.

Value

A character vector.

Examples

x is intended to be in latin1
x <- "fa\xE7ile"
Encoding(x)
Encoding(x) <- "latin1"
x
xx <- iconv(x, "latin1", "UTF-8")
Encoding(c(x, xx))
c(x, xx)
Encoding(xx) <- "bytes"
xx # will be encoded in hex
cat("xx = ", xx, "\n", sep = "")

environment Environment Access

Description

Get, set, test for and create environments.

Usage

environment(fun = NULL)
environment(fun) <- value

is.environment(x)

.GlobalEnv
globalenv()
.BaseNamespaceEnv

emptyenv()
baseenv()

new.env(hash = TRUE, parent = parent.frame(), size = 29L)

parent.env(env)
parent.env(env) <- value

environmentName(env)

env.profile(env)

148 environment

Arguments

fun a function, a formula, or NULL, which is the default.

value an environment to associate with the function

x an arbitrary R object.

hash a logical, if TRUE the environment will use a hash table.

parent an environment to be used as the enclosure of the environment created.

env an environment

size an integer specifying the initial size for a hashed environment. An internal de-
fault value will be used if size is NA or zero. This argument is ignored if hash
is FALSE.

Details

Environments consist of a frame, or collection of named objects, and a pointer to an enclosing envi-
ronment. The most common example is the frame of variables local to a function call; its enclosure
is the environment where the function was defined (unless changed subsequently). The enclosing
environment is distinguished from the parent frame: the latter (returned by parent.frame) refers
to the environment of the caller of a function. Since confusion is so easy, it is best never to use
‘parent’ in connection with an environment (despite the presence of the function parent.env).

When get or exists search an environment with the default inherits = TRUE, they look for the
variable in the frame, then in the enclosing frame, and so on.

The global environment .GlobalEnv, more often known as the user’s workspace, is the first item on
the search path. It can also be accessed by globalenv(). On the search path, each item’s enclosure
is the next item.

The object .BaseNamespaceEnv is the namespace environment for the base package. The environ-
ment of the base package itself is available as baseenv().

If one follows the chain of enclosures found by repeatedly calling parent.env from any envi-
ronment, eventually one reaches the empty environment emptyenv(), into which nothing may be
assigned.

The replacement function parent.env<- is extremely dangerous as it can be used to destructively
change environments in ways that violate assumptions made by the internal C code. It may be
removed in the near future.

The replacement form of environment, is.environment, baseenv, emptyenv and globalenv are
primitive functions.

System environments, such as the base, global and empty environments, have names as do the
package and namespace environments and those generated by attach(). Other environments can
be named by giving a "name" attribute, but this needs to be done with care as environments have
unusual copying semantics.

Value

If fun is a function or a formula then environment(fun) returns the environment associated with
that function or formula. If fun is NULL then the current evaluation environment is returned.

The replacement form sets the environment of the function or formula fun to the value given.

is.environment(obj) returns TRUE if and only if obj is an environment.

new.env returns a new (empty) environment with (by default) enclosure the parent frame.

parent.env returns the enclosing environment of its argument.

EnvVar 149

parent.env<- sets the enclosing environment of its first argument.

environmentName returns a character string, that given when the environment is printed or "" if it
is not a named environment.

env.profile returns a list with the following components: size the number of chains that can
be stored in the hash table, nchains the number of non-empty chains in the table (as reported by
HASHPRI), and counts an integer vector giving the length of each chain (zero for empty chains).
This function is intended to assess the performance of hashed environments. When env is a non-
hashed environment, NULL is returned.

See Also

For the performance implications of hashing or not, see http://en.wikipedia.org/wiki/Hash_
table.

The envir argument of eval, get, and exists.

ls may be used to view the objects in an environment, and hence ls.str may be useful for an
overview.

sys.source can be used to populate an environment.

Examples

f <- function() "top level function"

##-- all three give the same:
environment()
environment(f)
.GlobalEnv

ls(envir=environment(stats::approxfun(1:2,1:2, method="const")))

is.environment(.GlobalEnv) # TRUE

e1 <- new.env(parent = baseenv()) # this one has enclosure package:base.
e2 <- new.env(parent = e1)
assign("a", 3, envir=e1)
ls(e1)
ls(e2)
exists("a", envir=e2) # this succeeds by inheritance
exists("a", envir=e2, inherits = FALSE)
exists("+", envir=e2) # this succeeds by inheritance

eh <- new.env(hash = TRUE, size = NA)
with(env.profile(eh), stopifnot(size == length(counts)))

EnvVar Environment Variables

Description

Details of some of the environment variables which affect an R session.

http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Hash_table

150 EnvVar

Details

It is impossible to list all the environment variables which can affect an R session: some affect
the OS system functions which R uses, and others will affect add-on packages. But here are notes
on some of the more important ones. Those that set the defaults for options are consulted only at
startup (as are some of the others).

HOME: The user’s ‘home’ directory.

LANGUAGE: Optional. The language(s) to be used for message translations. This is consulted when
needed.

LC_ALL: (etc) Optional. Use to set various aspects of the locale – see Sys.getlocale. Consulted
at startup.

MAKEINDEX: The path to makeindex. If unset to a value determined when R was built. Used by the
emulation mode of texi2dvi and texi2pdf.

R_BATCH: Optional – set in a batch session, that is one started by R CMD BATCH. Most often set to
"", so test by something like !is.na(Sys.getenv("R_BATCH", NA)).

R_BROWSER: The path to the default browser. Used to set the default value of options("browser").

R_COMPLETION: Optional. If set to FALSE, command-line completion is not used. (Not used by
Mac OS GUI.)

R_DEFAULT_PACKAGES: A comma-separated list of packages which are to be attached in every ses-
sion. See options.

R_DOC_DIR: The location of the R ‘doc’ directory. Set by R.

R_ENVIRON: Optional. The path to the site environment file: see Startup. Consulted at startup.

R_GSCMD: Optional. The path to Ghostscript, used by dev2bitmap, bitmap and embedFonts. Con-
sulted when those functions are invoked. Since it will be treated as if passed to system, spaces
and shell metacharacters should be escaped.

R_HISTFILE: Optional. The path of the history file: see Startup. Consulted at startup and when the
history is saved.

R_HISTSIZE: Optional. The maximum size of the history file, in lines. Exactly how this is used
depends on the interface. For Rgui it controls the number of lines saved to the history file:
the size of the history used in the session is controlled by the console customization: see
Rconsole.

R_HOME: The top-level directory of the R installation: see R.home. Set by R.

R_INCLUDE_DIR: The location of the R ‘include’ directory. Set by R.

R_LIBS: Optional. Used for initial setting of .libPaths.

R_LIBS_SITE: Optional. Used for initial setting of .libPaths.

R_LIBS_USER: Optional. Used for initial setting of .libPaths.

R_PAPERSIZE: Optional. Used to set the default for options("papersize"), e.g. used by pdf and
postscript.

R_PDFVIEWER: The path to the default PDF viewer. Used by R CMD Rd2pdf.

R_PLATFORM: The platform – a string of the form cpu-vendor-os , see R.Version.

R_PROFILE: Optional. The path to the site profile file: see Startup. Consulted at startup.

R_RD4PDF: Options for pdflatex processing of Rd files. Used by R CMD Rd2pdf.

R_SHARE_DIR: The location of the R ‘share’ directory. Set by R.

R_TEXI2DVICMD: The path to texi2dvi. Defaults to the value of TEXI2DVI, and if that is unset to
a value determined when R was built.

eval 151

R_UNZIPCMD: The path to unzip. Sets the initial value for options("unzip") on a Unix-alike
when namespace utils is loaded.

R_ZIPCMD: The path to zip. Used by zip and by R CMD INSTALL --build on Windows.

TMPDIR, TMP, TEMP: Consulted (in that order) when setting the temporary directory for the session:
see tempdir. TMPDIR is also used by some of the utilities see the help for build.

TZ: Optional. The current timezone. See Sys.timezone for the system-specific formats. Consulted
as needed.

no_proxy, http_proxy, ftp_proxy: (and more). Optional. Settings for download.file: see its
help for further details.

Windows-specific

Some Windows-specific variables are

GSC: Optional: the path to Ghostscript, used if R_GSCMD is not set.

R_USER: The user’s ‘home’ directory. Set by R. (HOME will be set to the same value if not already
set.)

TZDIR: Optional. The top-level directory of the timezone database. See Sys.timezone.

See Also

Sys.getenv and Sys.setenv to read and set environmental variables in an R session.

eval Evaluate an (Unevaluated) Expression

Description

Evaluate an R expression in a specified environment.

Usage

eval(expr, envir = parent.frame(),
enclos = if(is.list(envir) || is.pairlist(envir))

parent.frame() else baseenv())
evalq(expr, envir, enclos)
eval.parent(expr, n = 1)
local(expr, envir = new.env())

Arguments

expr an object to be evaluated. See ‘Details’.

envir the environment in which expr is to be evaluated. May also be NULL, a list, a
data frame, a pairlist or an integer as specified to sys.call.

enclos Relevant when envir is a (pair)list or a data frame. Specifies the enclosure, i.e.,
where R looks for objects not found in envir. This can be NULL (interpreted as
the base package environment, baseenv()) or an environment.

n number of parent generations to go back

152 eval

Details

eval evaluates the expr argument in the environment specified by envir and returns the computed
value. If envir is not specified, then the default is parent.frame() (the environment where the
call to eval was made).

Objects to be evaluated can be of types call or expression or name (when the name is looked
up in the current scope and its binding is evaluated), a promise or any of the basic types such as
vectors, functions and environments (which are returned unchanged).

The evalq form is equivalent to eval(quote(expr), ...). eval evaluates its first argument in
the current scope before passing it to the evaluator: evalq avoids this.

eval.parent(expr, n) is a shorthand for eval(expr, parent.frame(n)).

If envir is a list (such as a data frame) or pairlist, it is copied into a temporary environment (with
enclosure enclos), and the temporary environment is used for evaluation. So if expr changes any
of the components named in the (pair)list, the changes are lost.

If envir is NULL it is interpreted as an empty list so no values could be found in envir and look-up
goes directly to enclos.

local evaluates an expression in a local environment. It is equivalent to evalq except that its
default argument creates a new, empty environment. This is useful to create anonymous recursive
functions and as a kind of limited namespace feature since variables defined in the environment are
not visible from the outside.

Value

The result of evaluating the object: for an expression vector this is the result of evaluating the last
element.

Note

Due to the difference in scoping rules, there are some differences between R and S in this area. In
particular, the default enclosure in S is the global environment.

When evaluating expressions in a data frame that has been passed as an argument
to a function, the relevant enclosure is often the caller’s environment, i.e., one needs
eval(x, data, parent.frame()).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (eval only.)

See Also

expression, quote, sys.frame, parent.frame, environment.

Further, force to force evaluation, typically of function arguments.

Examples

eval(2 ^ 2 ^ 3)
mEx <- expression(2^2^3); mEx; 1 + eval(mEx)
eval({ xx <- pi; xx^2}) ; xx

a <- 3 ; aa <- 4 ; evalq(evalq(a+b+aa, list(a=1)), list(b=5)) # == 10
a <- 3 ; aa <- 4 ; evalq(evalq(a+b+aa, -1), list(b=5)) # == 12

eval 153

ev <- function() {
e1 <- parent.frame()
Evaluate a in e1
aa <- eval(expression(a),e1)
evaluate the expression bound to a in e1
a <- expression(x+y)
list(aa = aa, eval = eval(a, e1))

}
tst.ev <- function(a = 7) { x <- pi; y <- 1; ev() }
tst.ev()#-> aa : 7, eval : 4.14

a <- list(a=3, b=4)
with(a, a <- 5) # alters the copy of a from the list, discarded.

##
Example of evalq()
##

N <- 3
env <- new.env()
assign("N", 27, envir=env)
this version changes the visible copy of N only, since the argument
passed to eval is ’4’.
eval(N <- 4, env)
N
get("N", envir=env)
this version does the assignment in env, and changes N only there.
evalq(N <- 5, env)
N
get("N", envir=env)

##
Uses of local()
##

Mutually recursive.
gg gets value of last assignment, an anonymous version of f.

gg <- local({
k <- function(y)f(y)
f <- function(x) if(x) x*k(x-1) else 1

})
gg(10)
sapply(1:5, gg)

Nesting locals: a is private storage accessible to k
gg <- local({

k <- local({
a <- 1
function(y){print(a <<- a+1);f(y)}

})
f <- function(x) if(x) x*k(x-1) else 1

})
sapply(1:5, gg)

154 exists

ls(envir=environment(gg))
ls(envir=environment(get("k", envir=environment(gg))))

exists Is an Object Defined?

Description

Look for an R object of the given name.

Usage

exists(x, where = -1, envir = , frame, mode = "any",
inherits = TRUE)

Arguments

x a variable name (given as a character string).

where where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.

envir an alternative way to specify an environment to look in, but it is usually simpler
to just use the where argument.

frame a frame in the calling list. Equivalent to giving where as sys.frame(frame).

mode the mode or type of object sought: see the ‘Details’ section.

inherits should the enclosing frames of the environment be searched?

Details

The where argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys.frame to access the currently active
function calls). The envir argument is an alternative way to specify an environment, but is primarily
there for back compatibility.

This function looks to see if the name x has a value bound to it in the specified environment. If
inherits is TRUE and a value is not found for x in the specified environment, the enclosing frames
of the environment are searched until the name x is encountered. See environment and the ‘R
Language Definition’ manual for details about the structure of environments and their enclosures.

Warning: inherits = TRUE is the default behaviour for R but not for S.

If mode is specified then only objects of that type are sought. The mode may specify one of the
collections "numeric" and "function" (see mode): any member of the collection will suffice.
(This is true even if a member of a collection is specified, so for example mode="special" will
seek any type of function.)

Value

Logical, true if and only if an object of the correct name and mode is found.

expand.grid 155

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

get. For quite a different kind of “existence” checking, namely if function arguments were speci-
fied, missing; and for yet a different kind, namely if a file exists, file.exists.

Examples

Define a substitute function if necessary:
if(!exists("some.fun", mode="function"))

some.fun <- function(x) { cat("some.fun(x)\n"); x }
search()
exists("ls", 2) # true even though ls is in pos=3
exists("ls", 2, inherits = FALSE) # false

expand.grid Create a Data Frame from All Combinations of Factors

Description

Create a data frame from all combinations of the supplied vectors or factors. See the description of
the return value for precise details of the way this is done.

Usage

expand.grid(..., KEEP.OUT.ATTRS = TRUE, stringsAsFactors = TRUE)

Arguments

... vectors, factors or a list containing these.

KEEP.OUT.ATTRS a logical indicating the "out.attrs" attribute (see below) should be computed
and returned.

stringsAsFactors

logical specifying if character vectors are converted to factors.

Value

A data frame containing one row for each combination of the supplied factors. The first factors vary
fastest. The columns are labelled by the factors if these are supplied as named arguments or named
components of a list. The row names are ‘automatic’.

Attribute "out.attrs" is a list which gives the dimension and dimnames for use by predict meth-
ods.

Note

Conversion to a factor is done with levels in the order they occur in the character vectors (and not
alphabetically, as is most common when converting to factors).

156 expression

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

combn (package utils) for the generation of all combinations of n elements, taken m at a time.

Examples

require(utils)

expand.grid(height = seq(60, 80, 5), weight = seq(100, 300, 50),
sex = c("Male","Female"))

x <- seq(0,10, length.out=100)
y <- seq(-1,1, length.out=20)
d1 <- expand.grid(x=x, y=y)
d2 <- expand.grid(x=x, y=y, KEEP.OUT.ATTRS = FALSE)
object.size(d1) - object.size(d2)
##-> 5992 or 8832 (on 32- / 64-bit platform)

expression Unevaluated Expressions

Description

Creates or tests for objects of mode "expression".

Usage

expression(...)

is.expression(x)
as.expression(x, ...)

Arguments

... expression: R objects, typically calls, symbols or constants.
as.expression: arguments to be passed to methods.

x an arbitrary R object.

Details

‘Expression’ here is not being used in its colloquial sense, that of mathematical expressions. Those
are calls (see call) in R, and an R expression vector is a list of calls, symbols etc, for example as
returned by parse.

As an object of mode "expression" is a list, it can be subsetted by [, [[or $, the latter two
extracting individual calls etc. The replacement forms of these operators can be used to replace or
delete elements.

expression and is.expression are primitive functions. expression is ‘special’: it does not
evaluate its arguments.

Extract 157

Value

expression returns a vector of type "expression" containing its arguments (unevaluated).

is.expression returns TRUE if expr is an expression object and FALSE otherwise.

as.expression attempts to coerce its argument into an expression object. It is generic, and only the
default method is described here. (The default method calls as.vector(type="expression") and
so may dispatch methods for as.vector.) NULL, calls, symbols (see as.symbol) and pairlists are
returned as the element of a length-one expression vector. Atomic vectors are placed element-by-
element into an expression vector (without using any names): lists are changed type to an expression
vector (keeping all attributes). Other types are not currently supported.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call, eval, function. Further, text and legend for plotting mathematical expressions.

Examples

length(ex1 <- expression(1+ 0:9))# 1
ex1
eval(ex1)# 1:10

length(ex3 <- expression(u,v, 1+ 0:9))# 3
mode(ex3 [3]) # expression
mode(ex3[[3]])# call
rm(ex3)

Extract Extract or Replace Parts of an Object

Description

Operators acting on vectors, matrices, arrays and lists to extract or replace parts.

Usage

x[i]
x[i, j, ... , drop = TRUE]
x[[i, exact = TRUE]]
x[[i, j, ..., exact = TRUE]]
x$name
getElement(object, name)

x[i] <- value
x[i, j, ...] <- value
x[[i]] <- value
x$i <- value

158 Extract

Arguments

x, object object from which to extract element(s) or in which to replace element(s).

i, j, ... indices specifying elements to extract or replace. Indices are numeric or
character vectors or empty (missing) or NULL. Numeric values are coerced
to integer as by as.integer (and hence truncated towards zero). Character
vectors will be matched to the names of the object (or for matrices/arrays, the
dimnames): see ‘Character indices’ below for further details.
For [-indexing only: i, j, ... can be logical vectors, indicating elements/slices
to select. Such vectors are recycled if necessary to match the corresponding
extent. i, j, ... can also be negative integers, indicating elements/slices to
leave out of the selection.
When indexing arrays by [a single argument i can be a matrix with as many
columns as there are dimensions of x; the result is then a vector with elements
corresponding to the sets of indices in each row of i.
An index value of NULL is treated as if it were integer(0).

name A literal character string or a name (possibly backtick quoted). For extraction,
this is normally (see under ‘Environments’) partially matched to the names of
the object.

drop For matrices and arrays. If TRUE the result is coerced to the lowest possible
dimension (see the examples). This only works for extracting elements, not for
the replacement. See drop for further details.

exact Controls possible partial matching of [[when extracting by a character vec-
tor (for most objects, but see under ‘Environments’). The default is no partial
matching. Value NA allows partial matching but issues a warning when it occurs.
Value FALSE allows partial matching without any warning.

value typically an array-like R object of a similar class as x.

Details

These operators are generic. You can write methods to handle indexing of specific classes of objects,
see InternalMethods as well as [.data.frame and [.factor. The descriptions here apply only to
the default methods. Note that separate methods are required for the replacement functions [<-,
[[<- and $<- for use when indexing occurs on the assignment side of an expression.

The most important distinction between [, [[and $ is that the [can select more than one element
whereas the other two select a single element.

The default methods work somewhat differently for atomic vectors, matrices/arrays and for recur-
sive (list-like, see is.recursive) objects. $ is only valid for recursive objects, and is only discussed
in the section below on recursive objects.

Subsetting (except by an empty index) will drop all attributes except names, dim and dimnames.

Indexing can occur on the right-hand-side of an expression for extraction, or on the left-hand-side
for replacement. When an index expression appears on the left side of an assignment (known as
subassignment) then that part of x is set to the value of the right hand side of the assignment. In this
case no partial matching of character indices is done, and the left-hand-side is coerced as needed
to accept the values. Attributes are preserved (although names, dim and dimnames will be adjusted
suitably). Subassignment is done sequentially, so if an index is specified more than once the latest
assigned value for an index will result.

It is an error to apply any of these operators to an object which is not subsettable (e.g. a function).

Extract 159

Atomic vectors

The usual form of indexing is "[". "[[" can be used to select a single element dropping names,
whereas "[" keeps them, e.g., in c(abc = 123)[1].

The index object i can be numeric, logical, character or empty. Indexing by factors is allowed and
is equivalent to indexing by the numeric codes (see factor) and not by the character values which
are printed (for which use [as.character(i)]).

An empty index selects all values: this is most often used to replace all the entries but keep the
attributes.

Matrices and arrays

Matrices and arrays are vectors with a dimension attribute and so all the vector forms of indexing
can be used with a single index. The result will be an unnamed vector unless x is one-dimensional
when it will be a one-dimensional array.

The most common form of indexing a k-dimensional array is to specify k indices to [. As for vector
indexing, the indices can be numeric, logical, character, empty or even factor. An empty index (a
comma separated blank) indicates that all entries in that dimension are selected. The argument drop
applies to this form of indexing.

A third form of indexing is via a numeric matrix with the one column for each dimension: each row
of the index matrix then selects a single element of the array, and the result is a vector. Negative
indices are not allowed in the index matrix. NA and zero values are allowed: rows of an index matrix
containing a zero are ignored, whereas rows containing an NA produce an NA in the result.

Indexing via a character matrix with one column per dimensions is also supported if the array has
dimension names. As with numeric matrix indexing, each row of the index matrix selects a single
element of the array. Indices are matched against the appropriate dimension names. NA is allowed
and will produce an NA in the result. Unmatched indices as well as the empty string ("") are not
allowed and will result in an error.

A vector obtained by matrix indexing will be unnamed unless x is one-dimensional when the row
names (if any) will be indexed to provide names for the result.

Recursive (list-like) objects

Indexing by [is similar to atomic vectors and selects a list of the specified element(s).

Both [[and $ select a single element of the list. The main difference is that $ does not allow
computed indices, whereas [[does. x$name is equivalent to x[["name", exact = FALSE]]. Also,
the partial matching behavior of [[can be controlled using the exact argument.

getElement(x, name) is a version of x[[name, exact = TRUE]] which for formally classed (S4)
objects returns slot(x, name), hence providing access to even more general list-like objects.

[and [[are sometimes applied to other recursive objects such as calls and expressions. Pairlists
are coerced to lists for extraction by [, but all three operators can be used for replacement.

[[can be applied recursively to lists, so that if the single index i is a vector of length p, alist[[i]]
is equivalent to alist[[i1]]...[[ip]] providing all but the final indexing results in a list.

Note that in all three kinds of replacement, a value of NULL deletes the corresponding item of the
list. To set entries to NULL, you need x[i] <- list(NULL).

When $<- is applied to a NULL x, it first coerces x to list(). This is what also happens with [[<-
if the replacement value value is of length greater than one: if value has length 1 or 0, x is first
coerced to a zero-length vector of the type of value.

160 Extract

Environments

Both $ and [[can be applied to environments. Only character indices are allowed
and no partial matching is done. The semantics of these operations are those of
get(i, env=x, inherits=FALSE). If no match is found then NULL is returned. The replace-
ment versions, $<- and [[<-, can also be used. Again, only character arguments are allowed. The
semantics in this case are those of assign(i, value, env=x, inherits=FALSE). Such an
assignment will either create a new binding or change the existing binding in x.

NAs in indexing

When extracting, a numerical, logical or character NA index picks an unknown element and so
returns NA in the corresponding element of a logical, integer, numeric, complex or character result,
and NULL for a list. (It returns 00 for a raw result.]

When replacing (that is using indexing on the lhs of an assignment) NA does not select any element
to be replaced. As there is ambiguity as to whether an element of the rhs should be used or not,
this is only allowed if the rhs value is of length one (so the two interpretations would have the same
outcome).

Argument matching

Note that these operations do not match their index arguments in the standard way: argument names
are ignored and positional matching only is used. So m[j=2,i=1] is equivalent to m[2,1] and not
to m[1,2].

This may not be true for methods defined for them; for example it is not true for the data.frame
methods described in [.data.frame which warn if i or j is named and have undocumented be-
haviour in that case.

To avoid confusion, do not name index arguments (but drop and exact must be named).

S4 methods

These operators are also implicit S4 generics, but as primitives, S4 methods will be dispatched only
on S4 objects x.

The implicit generics for the $ and $<- operators do not have name in their signature because the
grammar only allows symbols or string constants for the name argument.

Character indices

Character indices can in some circumstances be partially matched (see pmatch) to the names or
dimnames of the object being subsetted (but never for subassignment). Unlike S (Becker et al p.
358)), R has never used partial matching when extracting by [, and as from R 2.7.0 partial matching
is not by default used by [[(see argument exact).

Thus the default behaviour is to use partial matching only when extracting from recursive
objects (except environments) by $. Even in that case, warnings can be switched on by
options(warnPartialMatchAttr = TRUE).

Neither empty ("") nor NA indices match any names, not even empty nor missing names. If any
object has no names or appropriate dimnames, they are taken as all "" and so match nothing.

Note

The documented behaviour of S is that an NA replacement index ‘goes nowhere’ but uses up an
element of value (Becker et al p. 359). However, that has not been true of other implementations.

Extract 161

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

names for details of matching to names, and pmatch for partial matching.

list, array, matrix.

[.data.frame and [.factor for the behaviour when applied to data.frame and factors.

Syntax for operator precedence, and the R Language reference manual about indexing details.

NULL for details of indexing null objects.

Examples

x <- 1:12
m <- matrix(1:6, nrow = 2, dimnames = list(c("a", "b"), LETTERS[1:3]))
li <- list(pi = pi, e = exp(1))
x[10] # the tenth element of x
x <- x[-1] # delete the 1st element of x
m[1,] # the first row of matrix m
m[1, , drop = FALSE] # is a 1-row matrix
m[,c(TRUE,FALSE,TRUE)]# logical indexing
m[cbind(c(1,2,1),3:1)]# matrix numeric index
ci <- cbind(c("a", "b", "a"), c("A", "C", "B"))
m[ci] # matrix character index
m <- m[,-1] # delete the first column of m
li[[1]] # the first element of list li
y <- list(1, 2, a = 4, 5)
y[c(3, 4)] # a list containing elements 3 and 4 of y
y$a # the element of y named a

non-integer indices are truncated:
(i <- 3.999999999) # "4" is printed
(1:5)[i] # 3

named atomic vectors, compare "[" and "[[" :
nx <- c(Abc = 123, pi = pi)
nx[1] ; nx["pi"] # keeps names, whereas "[[" does not:
nx[[1]] ; nx[["pi"]]

recursive indexing into lists
z <- list(a = list(b = 9, c = ’hello’), d = 1:5)
unlist(z)
z[[c(1, 2)]]
z[[c(1, 2, 1)]] # both "hello"
z[[c("a", "b")]] <- "new"
unlist(z)

check $ and [[for environments
e1 <- new.env()
e1$a <- 10
e1[["a"]]
e1[["b"]] <- 20
e1$b
ls(e1)

162 Extract.data.frame

Extract.data.frame Extract or Replace Parts of a Data Frame

Description

Extract or replace subsets of data frames.

Usage

S3 method for class ’data.frame’
x[i, j, drop =]
S3 replacement method for class ’data.frame’
x[i, j] <- value
S3 method for class ’data.frame’
x[[..., exact = TRUE]]
S3 replacement method for class ’data.frame’
x[[i, j]] <- value
S3 replacement method for class ’data.frame’
x$name <- value

Arguments

x data frame.

i, j, ... elements to extract or replace. For [and [[, these are numeric or character or,
for [only, empty. Numeric values are coerced to integer as if by as.integer.
For replacement by [, a logical matrix is allowed.

name A literal character string or a name (possibly backtick quoted).

drop logical. If TRUE the result is coerced to the lowest possible dimension. The
default is to drop if only one column is left, but not to drop if only one row is
left.

value A suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion section. If NULL, deletes the
column if a single column is selected.

exact logical: see [, and applies to column names.

Details

Data frames can be indexed in several modes. When [and [[are used with a single index (x[i]
or x[[i]]), they index the data frame as if it were a list. In this usage a drop argument is ignored,
with a warning.

Note that there is no data.frame method for $, so x$name uses the default method which treats x
as a list. There is a replacement method which checks value for the correct number of rows, and
replicates it if necessary.

When [and [[are used with two indices (x[i, j] and x[[i, j]]) they act like indexing a matrix:
[[can only be used to select one element. Note that for each selected column, xj say, typically
(if it is not matrix-like), the resulting column will be xj[i], and hence rely on the corresponding [
method, see the examples section.

If [returns a data frame it will have unique (and non-missing) row names, if necessary transform-
ing the row names using make.unique. Similarly, if columns are selected column names will be

Extract.data.frame 163

transformed to be unique if necessary (e.g. if columns are selected more than once, or if more than
one column of a given name is selected if the data frame has duplicate column names).

When drop = TRUE, this is applied to the subsetting of any matrices contained in the data frame as
well as to the data frame itself.

The replacement methods can be used to add whole column(s) by specifying non-existent col-
umn(s), in which case the column(s) are added at the right-hand edge of the data frame and numer-
ical indices must be contiguous to existing indices. On the other hand, rows can be added at any
row after the current last row, and the columns will be in-filled with missing values. Missing values
in the indices are not allowed for replacement.

For [the replacement value can be a list: each element of the list is used to replace (part of) one
column, recycling the list as necessary. If columns specified by number are created, the names (if
any) of the corresponding list elements are used to name the columns. If the replacement is not
selecting rows, list values can contain NULL elements which will cause the corresponding columns
to be deleted. (See the Examples.)

Matrix indexing (x[i] with a logical or a 2-column integer matrix i) using [is not recommended,
and barely supported. For extraction, x is first coerced to a matrix. For replacement, a logical matrix
(only) can be used to select the elements to be replaced in the same way as for a matrix.

Both [and [[extraction methods partially match row names. By default neither partially match
column names, but [[will unless exact=TRUE. If you want to do exact matching on row names use
match as in the examples.

Value

For [a data frame, list or a single column (the latter two only when dimensions have been dropped).
If matrix indexing is used for extraction a matrix results. If the result would be a data frame an error
results if undefined columns are selected (as there is no general concept of a ’missing’ column in a
data frame). Otherwise if a single column is selected and this is undefined the result is NULL.

For [[a column of the data frame or NULL (extraction with one index) or a length-one vector
(extraction with two indices).

For $, a column of the data frame (or NULL).

For [<-, [[<- and $<-, a data frame.

Coercion

The story over when replacement values are coerced is a complicated one, and one that has changed
during R’s development. This section is a guide only.

When [and [[are used to add or replace a whole column, no coercion takes place but value will
be replicated (by calling the generic function rep) to the right length if an exact number of repeats
can be used.

When [is used with a logical matrix, each value is coerced to the type of the column into which it
is to be placed.

When [and [[are used with two indices, the column will be coerced as necessary to accommodate
the value.

Note that when the replacement value is an array (including a matrix) it is not treated as a series of
columns (as data.frame and as.data.frame do) but inserted as a single column.

164 Extract.data.frame

Warning

The default behaviour when only one row is left is equivalent to specifying drop = FALSE. To drop
from a data frame to a list, drop = TRUE has to be specified explicitly.

Arguments other than drop and exact should not be named: there is a warning if they are and the
behaviour differs from the description here.

See Also

subset which is often easier for extraction, data.frame, Extract.

Examples

sw <- swiss[1:5, 1:4] # select a manageable subset

sw[1:3] # select columns
sw[, 1:3] # same
sw[4:5, 1:3] # select rows and columns
sw[1] # a one-column data frame
sw[, 1, drop = FALSE] # the same
sw[, 1] # a (unnamed) vector
sw[[1]] # the same

sw[1,] # a one-row data frame
sw[1,, drop=TRUE] # a list

sw["C",] # partially matches
sw[match("C", row.names(sw)),] # no exact match
try(sw[, "Ferti"]) # column names must match exactly

swiss[c(1, 1:2),] # duplicate row, unique row names are created

sw[sw <= 6] <- 6 # logical matrix indexing
sw

adding a column
sw["new1"] <- LETTERS[1:5] # adds a character column
sw[["new2"]] <- letters[1:5] # ditto
sw[, "new3"] <- LETTERS[1:5] # ditto
sw$new4 <- 1:5
sapply(sw, class)
sw$new4 <- NULL # delete the column
sw
sw[6:8] <- list(letters[10:14], NULL, aa=1:5)
update col. 6, delete 7, append
sw

matrices in a data frame
A <- data.frame(x=1:3, y=I(matrix(4:6)), z=I(matrix(letters[1:9],3,3)))
A[1:3, "y"] # a matrix
A[1:3, "z"] # a matrix
A[, "y"] # a matrix

keeping special attributes: use a class with a
"as.data.frame" and "[" method:

Extract.factor 165

as.data.frame.avector <- as.data.frame.vector

‘[.avector‘ <- function(x,i,...) {
r <- NextMethod("[")
mostattributes(r) <- attributes(x)
r

}

d <- data.frame(i= 0:7, f= gl(2,4),
u= structure(11:18, unit = "kg", class="avector"))

str(d[2:4, -1]) # ’u’ keeps its "unit"

Extract.factor Extract or Replace Parts of a Factor

Description

Extract or replace subsets of factors.

Usage

S3 method for class ’factor’
x[..., drop = FALSE]
S3 method for class ’factor’
x[[...]]
S3 replacement method for class ’factor’
x[...] <- value
S3 replacement method for class ’factor’
x[[...]] <- value

Arguments

x a factor

... a specification of indices – see Extract.

drop logical. If true, unused levels are dropped.

value character: a set of levels. Factor values are coerced to character.

Details

When unused levels are dropped the ordering of the remaining levels is preserved.

If value is not in levels(x), a missing value is assigned with a warning.

Any contrasts assigned to the factor are preserved unless drop=TRUE.

The [[method supports argument exact.

Value

A factor with the same set of levels as x unless drop=TRUE.

166 Extremes

See Also

factor, Extract.

Examples

following example(factor)
(ff <- factor(substring("statistics", 1:10, 1:10), levels=letters))
ff[, drop=TRUE]
factor(letters[7:10])[2:3, drop = TRUE]

Extremes Maxima and Minima

Description

Returns the (parallel) maxima and minima of the input values.

Usage

max(..., na.rm = FALSE)
min(..., na.rm = FALSE)

pmax(..., na.rm = FALSE)
pmin(..., na.rm = FALSE)

pmax.int(..., na.rm = FALSE)
pmin.int(..., na.rm = FALSE)

Arguments

... numeric or character arguments (see Note).

na.rm a logical indicating whether missing values should be removed.

Details

max and min return the maximum or minimum of all the values present in their arguments, as
integer if all are logical or integer, as double if all are numeric, and character otherwise.

If na.rm is FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

The minimum and maximum of a numeric empty set are +Inf and -Inf (in this order!) which
ensures transitivity, e.g., min(x1, min(x2)) == min(x1, x2). For numeric x max(x) == -Inf
and min(x) == +Inf whenever length(x) == 0 (after removing missing values if requested).
However, pmax and pmin return NA if all the parallel elements are NA even for na.rm = TRUE.

pmax and pmin take one or more vectors (or matrices) as arguments and return a single vector
giving the ‘parallel’ maxima (or minima) of the vectors. The first element of the result is the
maximum (minimum) of the first elements of all the arguments, the second element of the result is
the maximum (minimum) of the second elements of all the arguments and so on. Shorter inputs (of
non-zero length) are recycled if necessary. Attributes (see attributes: such as names or dim) are
copied from the first argument (if applicable).

Extremes 167

pmax.int and pmin.int are faster internal versions only used when all arguments are atomic vec-
tors and there are no classes: they drop all attributes. (Note that all versions fail for raw and complex
vectors since these have no ordering.)

max and min are generic functions: methods can be defined for them individually or via the Summary
group generic. For this to work properly, the arguments ... should be unnamed, and dispatch is on
the first argument.

By definition the min/max of a numeric vector containing an NaN is NaN, except that the min/max of
any vector containing an NA is NA even if it also contains an NaN. Note that max(NA, Inf) == NA
even though the maximum would be Inf whatever the missing value actually is.

Character versions are sorted lexicographically, and this depends on the collating sequence of the
locale in use: the help for ‘Comparison’ gives details. The max/min of an empty character vector
is defined to be character NA. (One could argue that as "" is the smallest character element, the
maximum should be "", but there is no obvious candidate for the minimum.)

Value

For min or max, a length-one vector. For pmin or pmax, a vector of length the longest of the input
vectors, or length zero if one of the inputs had zero length.

The type of the result will be that of the highest of the inputs in the hierarchy integer < real <
character.

For min and max if there are only numeric inputs and all are empty (after possible removal of NAs),
the result is double (Inf or -Inf).

S4 methods

max and min are part of the S4 Summary group generic. Methods for them must use the signature
x, ..., na.rm.

Note

‘Numeric’ arguments are vectors of type integer and numeric, and logical (coerced to integer). For
historical reasons, NULL is accepted as equivalent to integer(0).

pmax and pmin will also work on classed objects with appropriate methods for comparison, is.na
and rep (if recycling of arguments is needed).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

range (both min and max) and which.min (which.max) for the arg min, i.e., the location where an
extreme value occurs.

‘plotmath’ for the use of min in plot annotation.

Examples

require(stats); require(graphics)
min(5:1, pi) #-> one number
pmin(5:1, pi) #-> 5 numbers

168 factor

x <- sort(rnorm(100)); cH <- 1.35
pmin(cH, quantile(x)) # no names
pmin(quantile(x), cH) # has names
plot(x, pmin(cH, pmax(-cH, x)), type=’b’, main= "Huber’s function")

cut01 <- function(x) pmax(pmin(x, 1), 0)
curve(x^2 - 1/4, -1.4, 1.5, col=2)
curve(cut01(x^2 - 1/4), col="blue", add=TRUE, n=500)
pmax(), pmin() preserve attributes of *first* argument
D <- diag(x=(3:1)/4) ; n0 <- numeric()
stopifnot(identical(D, cut01(D)),

identical(n0, cut01(n0)),
identical(n0, cut01(NULL)),
identical(n0, pmax(3:1, n0, 2)),
identical(n0, pmax(n0, 4)))

factor Factors

Description

The function factor is used to encode a vector as a factor (the terms ‘category’ and ‘enumerated
type’ are also used for factors). If argument ordered is TRUE, the factor levels are assumed to be
ordered. For compatibility with S there is also a function ordered.

is.factor, is.ordered, as.factor and as.ordered are the membership and coercion functions
for these classes.

Usage

factor(x = character(), levels, labels = levels,
exclude = NA, ordered = is.ordered(x))

ordered(x, ...)

is.factor(x)
is.ordered(x)

as.factor(x)
as.ordered(x)

addNA(x, ifany = FALSE)

Arguments

x a vector of data, usually taking a small number of distinct values.

levels an optional vector of the values that x might have taken. The default is the
unique set of values taken by as.character(x), sorted into increasing order of
x. Note that this set can be smaller than sort(unique(x)).

labels either an optional vector of labels for the levels (in the same order as levels
after removing those in exclude), or a character string of length 1.

exclude a vector of values to be excluded when forming the set of levels. This should be
of the same type as x, and will be coerced if necessary.

factor 169

ordered logical flag to determine if the levels should be regarded as ordered (in the order
given).

... (in ordered(.)): any of the above, apart from ordered itself.

ifany (only add an NA level if it is used, i.e. if any(is.na(x)).

Details

The type of the vector x is not restricted; it only must have an as.character method and be sortable
(by sort.list).

Ordered factors differ from factors only in their class, but methods and the model-fitting functions
treat the two classes quite differently.

The encoding of the vector happens as follows. First all the values in exclude are removed from
levels. If x[i] equals levels[j], then the i-th element of the result is j. If no match is found for
x[i] in levels (which will happen for excluded values) then the i-th element of the result is set to
NA.

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after removing
those in exclude, but this can be altered by supplying labels. This should either be a set of new
labels for the levels, or a character string, in which case the levels are that character string with a
sequence number appended.

factor(x, exclude=NULL) applied to a factor is a no-operation unless there are unused levels: in
that case, a factor with the reduced level set is returned. If exclude is used it should also be a factor
with the same level set as x or a set of codes for the levels to be excluded.

The codes of a factor may contain NA. For a numeric x, set exclude=NULL to make NA an extra level
(prints as <NA>); by default, this is the last level.

If NA is a level, the way to set a code to be missing (as opposed to the code of the missing level) is
to use is.na on the left-hand-side of an assignment (as in is.na(f)[i] <- TRUE; indexing inside
is.na does not work). Under those circumstances missing values are currently printed as <NA>, i.e.,
identical to entries of level NA.

is.factor is generic: you can write methods to handle specific classes of objects, see Internal-
Methods.

Value

factor returns an object of class "factor" which has a set of integer codes the length of x with
a "levels" attribute of mode character and unique (!anyDuplicated(.)) entries. If argument
ordered is true (or ordered() is used) the result has class c("ordered", "factor").

Applying factor to an ordered or unordered factor returns a factor (of the same type) with just the
levels which occur: see also [.factor for a more transparent way to achieve this.

is.factor returns TRUE or FALSE depending on whether its argument is of type factor or not. Corre-
spondingly, is.ordered returns TRUE when its argument is an ordered factor and FALSE otherwise.

as.factor coerces its argument to a factor. It is an abbreviated form of factor.

as.ordered(x) returns x if this is ordered, and ordered(x) otherwise.

addNA modifies a factor by turning NA into an extra level (so that NA values are counted in tables, for
instance).

170 factor

Warning

The interpretation of a factor depends on both the codes and the "levels" attribute. Be careful
only to compare factors with the same set of levels (in the same order). In particular, as.numeric
applied to a factor is meaningless, and may happen by implicit coercion. To transform a factor f
to approximately its original numeric values, as.numeric(levels(f))[f] is recommended and
slightly more efficient than as.numeric(as.character(f)).

The levels of a factor are by default sorted, but the sort order may well depend on the locale at the
time of creation, and should not be assumed to be ASCII.

There are some anomalies associated with factors that have NA as a level. It is suggested to use them
sparingly, e.g., only for tabulation purposes.

Comparison operators and group generic methods

There are "factor" and "ordered" methods for the group generic Ops which provide methods for
the Comparison operators, and for the min,max, and range generics in Summary of "ordered". (The
rest of the groups and the Math group generate an error as they are not meaningful for factors.)

Only == and != can be used for factors: a factor can only be compared to another factor with an
identical set of levels (not necessarily in the same ordering) or to a character vector. Ordered factors
are compared in the same way, but the general dispatch mechanism precludes comparing ordered
and unordered factors.

All the comparison operators are available for ordered factors. Collation is done by the levels of the
operands: if both operands are ordered factors they must have the same level set.

Note

In earlier versions of R, storing character data as a factor was more space efficient if there is even a
small proportion of repeats. However, identical character strings share storage, so the difference is
now small in most cases. (Integer values are stored in 4 bytes whereas each reference to a character
string needs a pointer of 4 or 8 bytes.)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

[.factor for subsetting of factors.

gl for construction of balanced factors and C for factors with specified contrasts. levels and
nlevels for accessing the levels, and unclass to get integer codes.

Examples

(ff <- factor(substring("statistics", 1:10, 1:10), levels=letters))
as.integer(ff) # the internal codes
(f. <- factor(ff))# drops the levels that do not occur
ff[, drop=TRUE] # the same, more transparently

factor(letters[1:20], labels="letter")

class(ordered(4:1)) # "ordered", inheriting from "factor"
z <- factor(LETTERS[3:1], ordered = TRUE)
and "relational" methods work:

file.access 171

stopifnot(sort(z)[c(1,3)] == range(z), min(z) < max(z))

suppose you want "NA" as a level, and to allow missing values.
(x <- factor(c(1, 2, NA), exclude = NULL))
is.na(x)[2] <- TRUE
x # [1] 1 <NA> <NA>
is.na(x)
[1] FALSE TRUE FALSE

Using addNA()
Month <- airquality$Month
table(addNA(Month))
table(addNA(Month, ifany=TRUE))

file.access Ascertain File Accessibility

Description

Utility function to access information about files on the user’s file systems.

Usage

file.access(names, mode = 0)

Arguments

names character vector containing file names. Tilde-expansion will be done: see
path.expand.

mode integer specifying access mode required: see ‘Details’.

Details

The mode value can be the exclusive or of the following values

0 test for existence.

1 test for execute permission.

2 test for write permission.

4 test for read permission.

This function does uses the C function _access in ‘msvcrt.dll’, but was written using Win32 API
functions.

Windows does not have the concept of an ‘executable file’, so this function regards directories and
files with extension ‘.exe’, ‘.bat’, ‘.cmd’ and ‘.com’ as executable. (system and Sys.which make
the same assumption.)

UTF-8-encoded file names not valid in the current locale can be used.

Please note that it is not a good idea to use this function to test before trying to open a file. On a
multi-tasking system, it is possible that the accessibility of a file will change between the time you
call file.access() and the time you try to open the file. It is better to wrap file open attempts in
try.

172 file.choose

Value

An integer vector with values 0 for success and -1 for failure.

Note

This is intended as a replacement for the S-PLUS function access, a wrapper for the C function
of the same name, which explains the return value encoding. Note that the return value is false for
success.

See Also

file.info for more details on permissions, Sys.chmod to change permissions, and try for a ‘test
it and see’ approach.

file_test for shell-style file tests.

Examples

fa <- file.access(dir("."))
table(fa) # count successes & failures
d <- dir(file.path(R.home(), "bin"))
df <- dir(file.path(R.home(), "bin"), full.names = TRUE)
d[file.access(df, 0) == 0] # all exist
d[file.access(df, 1) == 0] # some are executable, some are not
d[file.access(df, 4) == 0] # hopefully all are readable
d[file.access(df, 2) == 0] # they may or may not be writable

file.choose Choose a File Interactively

Description

Choose a file interactively.

Usage

file.choose(new = FALSE)

Arguments

new Logical: choose the style of dialog box presented to the user: at present only
new = FALSE is used.

Value

A character vector of length one giving the file path. This will be a marked UTF-8 string, as a
Unicode file selection dialog box is used.

See Also

list.files for non-interactive selection. choose.files for selecting multiple files interactively.

file.info 173

file.info Extract File Information

Description

Utility function to extract information about files on the user’s file systems.

Usage

file.info(...)

Arguments

... character vectors containing file paths. Tilde-expansion is done: see
path.expand.

Details

What constitutes a ‘file’ is OS-dependent but includes directories. (However, directory names
must not include a trailing backslash or slash on Windows.) See also the section in the help for
file.exists on case-insensitive file systems.

The file ‘mode’ follows POSIX conventions, giving three octal digits summarizing the permissions
for the file owner, the owner’s group and for anyone respectively. Each digit is the logical or of read
(4), write (2) and execute/search (1) permissions.

File modes are probably only useful on NTFS file systems, and it seems all three digits refer to the
file’s owner. The execute/search bits are set for directories, and for files based on their extensions
(e.g., ‘.exe’, ‘.com’, ‘.cmd’ and ‘.bat’ files). file.access will give a more reliable view of
read/write access availability to the R process.

UTF-8-encoded file names not valid in the current locale can be used.

Junction points and symbolic links are followed, so information is given about the file/directory to
which the link points rather than about the link.

Value

A data frame with row names the file names and columns

size double: File size in bytes.

isdir logical: Is the file a directory?

mode integer of class "octmode". The file permissions, printed in octal, for example
644.

mtime, ctime, atime

integer of class "POSIXct": file modification, ‘last status change’ and last access
times.

exe character: what sort of executable is this? Possible values are "no", "msdos",
"win16", "win32", "win64" and "unknown". Note that a file (e.g. a script file)
can be executable according to the mode bits but not executable in this sense.

174 file.path

Entries for non-existent or non-readable files will be NA.

What is meant by the three file times depends on the OS and file system. On Windows native file
systems ctime is the file creation time (something which is not recorded on most Unix-alike file
systems). What is meant by ‘file access’ and hence the ‘last access time’ is system-dependent.

The times are reported to an accuracy of seconds, and perhaps more on some systems. However,
many file systems only record times in seconds, and some (e.g. modification time on FAT systems)
are recorded in increments of 2 or more seconds.

See Also

Sys.readlink to find out about symbolic links, files, file.access, list.files, and
DateTimeClasses for the date formats.

Sys.chmod to change permissions.

Examples

ncol(finf <- file.info(dir()))# at least six
Not run: finf # the whole list
Those that are more than 100 days old :
finf[difftime(Sys.time(), finf[,"mtime"], units="days") > 100 , 1:4]

file.info("no-such-file-exists")

file.path Construct Path to File

Description

Construct the path to a file from components in a platform-independent way.

Usage

file.path(..., fsep = .Platform$file.sep)

Arguments

... character vectors.

fsep the path separator to use.

Details

The implementation is designed to be fast (faster than paste) as this function is used extensively in
R itself.

It can also be used for environment paths such as PATH and R_LIBS with
fsep = .Platform$path.sep.

Value

A character vector of the arguments concatenated term-by-term and separated by fsep if all argu-
ments have positive length; otherwise, an empty character vector (unlike paste).

file.show 175

Note

The components are separated by / (not \) on Windows.

file.show Display One or More Files

Description

Display one or more files.

Usage

file.show(..., header = rep("", nfiles),
title = "R Information",
delete.file = FALSE, pager = getOption("pager"),
encoding = "")

Arguments

... one or more character vectors containing the names of the files to be displayed.
Paths with have tilde expansion.

header character vector (of the same length as the number of files specified in ...)
giving a header for each file being displayed. Defaults to empty strings.

title an overall title for the display. If a single separate window is used for the display,
title will be used as the window title. If multiple windows are used, their titles
should combine the title and the file-specific header.

delete.file should the files be deleted after display? Used for temporary files.
pager the pager to be used: not used on all platforms
encoding character string giving the encoding to be assumed for the file(s).

Details

This function provides the core of the R help system, but it can be used for other purposes as well,
such as page.

How the pager is implemented is highly system-dependent.

The basic Unix version concatenates the files (using the headers) to a temporary file, and displays
it in the pager selected by the pager argument, which is a character vector specifying a system
command to run on the set of files. The ‘factory-fresh’ default is to use ‘R_HOME/bin/pager’,
which is a shell script running the command specified by the environment variable PAGER whose
default is set at configuration, usually to less. On a Unix-alike more is used if pager is empty.

Most GUI systems will use a separate pager window for each file, and let the user leave
it up while R continues running. The selection of such pagers could either be done us-
ing special pager names being intercepted by lower-level code (such as "internal" and
"console" on Windows), or by letting pager be an R function which will be called with argu-
ments (files, header, title, delete.file) corresponding to the first four arguments of
file.show and take care of interfacing to the GUI.

The R.app Mac OS X GUI uses its internal pager irrespective of the setting of pager.

Not all implementations will honour delete.file. In particular, using an external pager on Win-
dows does not, as there is no way to know when the external application has finished with the
file.

176 files

Author(s)

Ross Ihaka, Brian Ripley.

See Also

files, list.files, help.

file.edit.

Examples

file.show(file.path(R.home("doc"), "COPYRIGHTS"))

files File Manipulation

Description

These functions provide a low-level interface to the computer’s file system.

Usage

file.create(..., showWarnings = TRUE)
file.exists(...)
file.remove(...)
file.rename(from, to)
file.append(file1, file2)
file.copy(from, to, overwrite = recursive, recursive = FALSE,

copy.mode = TRUE)
file.symlink(from, to)
file.link(from, to)
Sys.junction(from, to)

Arguments

..., file1, file2

character vectors, containing file names or paths.

from, to character vectors, containing file names or paths. For file.copy and
file.symlink and Sys.junction to can alternatively be the path to a single
existing directory.

overwrite logical; should existing destination files be overwritten?

showWarnings logical; should the warnings on failure be shown?

recursive logical. If to is a directory, should directories in from be copied (and their
contents)?

copy.mode logical: should file permission bits be copied where possible? This applies to
both files and directories.

files 177

Details

The ... arguments are concatenated to form one character string: you can specify the files sepa-
rately or as one vector. All of these functions expand path names: see path.expand.

file.create creates files with the given names if they do not already exist and truncates them if
they do. They are created with the maximal read/write permissions allowed by the ‘umask’ setting
(where relevant). By default a warning is given (with the reason) if the operation fails.

file.exists returns a logical vector indicating whether the files named by its argument exist.
(Here ‘exists’ is in the sense of the system’s stat call: a file will be reported as existing only if you
have the permissions needed by stat. Existence can also be checked by file.access, which might
use different permissions and so obtain a different result. Note that the existence of a file does not
imply that it is readable: for that use file.access.) What constitutes a ‘file’ is system-dependent,
but should include directories. (However, directory names must not include a trailing backslash or
slash on Windows.) Note that if the file is a symbolic link on a Unix-alike, the result indicates if
the link points to an actual file, not just if the link exists. Lastly, note the different function exists
which checks for existence of R objects.

file.remove attempts to remove the files named in its argument. On most Unix platforms ‘file’
includes empty directories, symbolic links, fifos and sockets. On Windows, ‘file’ means a regular
file and not, say, an empty directory.

file.rename attempts to rename files (and from and to must be of the same length). Where file
permissions allow this will overwrite an existing element of to. This is subject to the limitations
of the OS’s corresponding system call (see something like man 2 rename on a Unix-alike): in
particular in the interpretation of ‘file’: most platforms will not rename files across file systems.
(On Windows, file.rename can move files but not directories between volumes.) On platforms
which allow directories to be renamed, typically neither or both of from and to must a directory,
and if to exists it must be an empty directory.

file.append attempts to append the files named by its second argument to those named by its first.
The R subscript recycling rule is used to align names given in vectors of different lengths.

file.copy works in a similar way to file.append but with the arguments in the natural order
for copying. Copying to existing destination files is skipped unless overwrite = TRUE. The to
argument can specify a single existing directory. If copy.mode = TRUE (added in R 2.13.0) file
read/write/execute permissions are copied where possible, restricted by ‘umask’. Other security
attributes such as ACLs are not copied. On a POSIX filesystem the targets of symbolic links will
be copied rather than the links themselves.

file.symlink and file.link make symbolic and hard links on those file systems which support
them. For file.symlink the to argument can specify a single existing directory. (Unix and Mac
OS X native filesystems support both. Windows has hard links to files on NTFS file systems and
concepts related to symbolic links on recent versions: see the section below on the Windows version
of this help page. What happens on a FAT or SMB-mounted file system is OS-specific.)

Value

These functions return a logical vector indicating which operation succeeded for each of the files
attempted. Using a missing value for a file or path name will always be regarded as a failure.

If showWarnings = TRUE, file.create will give a warning for an unexpected failure.

Case-insensitive file systems

Case-insensitive file systems are the norm on Windows and Mac OS X, but can be found on all
OSes (for example a FAT-formatted USB drive is probably case-insensitive).

178 files

These functions will most likely match existing files regardless of case on such file systems: how-
ever this is an OS function and it is possible that file names might be mapped to upper or lower
case.

Symbolic links on Windows

Symbolic links in the sense of POSIX file systems do not exist on Windows: however, NTFS file
systems support two similar concepts.

Windows 2000 and later have ‘junctions’ (or ‘junction points’), unfortunately without a pub-
lic API. They are a Windows version of the Unix concept of mounting one directory on
another. One way to create, list and delete junctions is via ‘junction.exe’ from http:
//download.sysinternals.com/Files/Junction.zip (see http://technet.microsoft.com/
en-us/sysinternals/bb896768). On recent enough versions of Windows mklink /J can also be
used. Function Sys.junction (added in R 2.15.0) creates one or more junctions: to should either
specify a single existing directory or a set of non-existent file paths of the same length as from.

A version of symbolic linking to files/directories was implemented starting with Vista, and
file.symlink makes use of that interface since R 2.15.0. However, it has restrictions (apart from
the OS version restriction) which are crippling. First, the user needs permission to make symbolic
links, and that permission is not normally granted except to Administrator accounts (note: not users
with Administrator rights): further many users report that whereas the Policy Editor appears to be
able to grant such rights, the API still reports insufficient permissions. Second, the interface needs
to know if from is a file or a directory (and it need not yet exist): we have implemented this to allow
linking from a directory only if it currently exists.

Care is needed with removing a junction (and most likely also a symbolic link): many tools will
remove the target and its contents (including Windows Explorer in XP, and unlink in R prior to
2.15.0).

Note

There is no guarantee that these functions will handle Windows relative paths of the form ‘d:path’:
try ‘d:./path’ instead. In particular, ‘d:’ is not recognized as a directory. Nor are ‘\\?\’ prefixes
(and similar) supported.

Most of these functions accept UTF-8 filepaths not valid in the current locale.

User error in supplying invalid file names (and note that ‘foo/’ and ‘foo\’ are invalid on Windows)
has undefined consequences.

Author(s)

Ross Ihaka, Brian Ripley

See Also

file.info, file.access, file.path, file.show, list.files, unlink, basename,
path.expand.

dir.create.

Sys.glob to expand wildcards in file specifications.

file_test, Sys.readlink.

http://en.wikipedia.org/wiki/Hard_link and http://en.wikipedia.org/wiki/
Symbolic_link for the concepts of links and their limitations.

http://download.sysinternals.com/Files/Junction.zip
http://download.sysinternals.com/Files/Junction.zip
http://technet.microsoft.com/en-us/sysinternals/bb896768
http://technet.microsoft.com/en-us/sysinternals/bb896768
http://en.wikipedia.org/wiki/Hard_link
http://en.wikipedia.org/wiki/Symbolic_link
http://en.wikipedia.org/wiki/Symbolic_link

files2 179

Examples

cat("file A\n", file="A")
cat("file B\n", file="B")
file.append("A", "B")
file.create("A")
file.append("A", rep("B", 10))
if(interactive()) file.show("A")
file.copy("A", "C")
dir.create("tmp")
file.copy(c("A", "B"), "tmp")
list.files("tmp")
unlink("tmp", recursive=TRUE)
file.remove("A", "B", "C")

files2 Manipulaton of Directories and File Permissions

Description

These functions provide a low-level interface to the computer’s file system.

Usage

dir.create(path, showWarnings = TRUE, recursive = FALSE, mode = "0777")
Sys.chmod(paths, mode = "0777", use_umask=TRUE)
Sys.umask(mode = NA)

Arguments

path a character vector containing a single path name. Tilde expansion (see
path.expand) is done.

paths character vectors containing file or directory paths. Tilde expansion (see
path.expand) is done.

showWarnings logical; should the warnings on failure be shown?

recursive logical. Should elements of the path other than the last be created? If true, like
the Unix command mkdir -p.

mode the mode to be used on Unix-alikes: it will be coerced by as.octmode. For
Sys.chmod it is recycled along paths.

use_umask logical: should the mode be restricted by the umask setting?

Details

dir.create creates the last element of the path, unless recursive = TRUE. Trailing path separa-
tors are discarded. On Windows drives are allowed in the path specification and unless the path
is rooted, it will be interpreted relative to the current directory on that drive. mode is ignored on
Windows.

One of the idiosyncrasies of Windows is that directory creation may report success but create a
directory with a different name, for example dir.create("G.S.") creates ‘"G.S"’. This is undoc-
umented, and what are the precise circumstances is unknown (and might depend on the version of
Windows). Also avoid directory names with a trailing space.

180 files2

Sys.chmod sets the file permissions of one or more files. The interpretation of mode in the Windows
system functions is non-POSIX and only supports setting the read-only attribute of the file. So R
interprets mode to mean set read-only if and only if (mode & 0200) == 0 (interpreted in octal).
Windows has a much more extensive system of file permissions on some file systems (e.g. versions
of NTFS) which are unrelated to this system call.

Sys.umask sets the umask and returns the previous value: as a special case mode = NA just returns
the current value. All files on Windows are regarded as readable, and files being executable is not a
Windows concept. So umask only controls whether a file is writable: a setting of "200" makes files
(but not directories) created subsequently read-only.

How modes are handled depends on the file system, even on Unix-alikes (although their documen-
tation is often written assuming a POSIX file system). So treat documentation cautiously if you are
using, say, a FAT/FAT32 or network-mounted file system.

Value

dir.create and Sys.chmod return invisibly a logical vector indicating if the operation succeeded
for each of the files attempted. Using a missing value for a path name will always be regarded as
a failure. dir.create indicates failure if the directory already exists. If showWarnings = TRUE,
dir.create will give a warning for an unexpected failure (e.g. not for a missing value nor for an
already existing component for recursive = TRUE).

Sys.umask returns the previous value of the umask, as a length-one object of class "octmode": the
visibility flag is off unless mode is NA.

See also the section in the help for file.exists on case-insensitive file systems for the interpreta-
tion of path and paths.

Note

There is no guarantee that these functions will handle Windows relative paths of the form ‘d:path’:
try ‘d:./path’ instead. In particular, ‘d:’ is not recognized as a directory. Nor are ‘\\?\’ prefixes
(and similar) supported.

UTF-8-encoded dirnames not valid in the current locale can be used.

Author(s)

Ross Ihaka, Brian Ripley

See Also

file.info, file.exists, file.path, list.files, unlink, basename, path.expand.

Examples

Not run:
Fix up maximal allowed permissions in a file tree
Sys.chmod(list.dirs("."), "777")
f <- list.files(".", all.files = TRUE, full.names = TRUE, recursive = TRUE)
Sys.chmod(f, (file.info(f)$mode | "664"))

End(Not run)

find.package 181

find.package Find Packages

Description

Find the paths to one or more packages.

Usage

find.package(package, lib.loc = NULL, quiet = FALSE,
verbose = getOption("verbose"))

path.package(package, quiet = FALSE)

Arguments

package character vector: the names of packages.

lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to checking the attached packages,
then all libraries currently known in .libPaths().

quiet logical. Should this not give warnings or an error if the package is not found?

verbose a logical. If TRUE, additional diagnostics are printed.

Details

find.package returns path to the locations where the given packages are found. If lib.loc is NULL,
then attached packages are searched before the libraries. If a package is found more than once, the
first match is used. Unless quiet = TRUE a warning will be given about the named packages
which are not found, and an error if none are. If verbose is true, warnings about packages found
more than once are given. For a package to be returned it must contain a either a ‘Meta’ subdirectory
or a ‘DESCRIPTION’ file containing a valid version field, but it need not be installed (it could be a
source package if lib.loc was set suitably).

find.package is not usually the right tool to find out if a package is available for use: the only
way to do that is to use require to try to load it. It need not be installed for the correct platform, it
might have a version requirement not met by the running version of R, there might be dependencies
which are not available,

path.package returns the paths from which the named packages were loaded, or if none were
named, for all currently attached packages. Unless quiet = TRUE it will warn if some of the
packages named are not attached, and given an error if none are.

Value

A character vector of paths of package directories.

Note

.find.package and .path.package were internal-only versions prior to R 2.13.0, and are now
wrappers for these public versions.

182 findInterval

findInterval Find Interval Numbers or Indices

Description

Given a vector of non-decreasing breakpoints in vec, find the interval containing each element of
x; i.e., if i <- findInterval(x,v), for each index j in x vij ≤ xj < vij+1 where v0 := −∞,
vN+1 := +∞, and N <- length(v). At the two boundaries, the returned index may differ by 1,
depending on the optional arguments rightmost.closed and all.inside.

Usage

findInterval(x, vec, rightmost.closed = FALSE, all.inside = FALSE)

Arguments

x numeric.
vec numeric, sorted (weakly) increasingly, of length N, say.
rightmost.closed

logical; if true, the rightmost interval, vec[N-1] .. vec[N] is treated as closed,
see below.

all.inside logical; if true, the returned indices are coerced into 1,...,N-1, i.e., 0 is mapped
to 1 and N to N-1.

Details

The function findInterval finds the index of one vector x in another, vec, where the latter must be
non-decreasing. Where this is trivial, equivalent to apply(outer(x, vec, ">="), 1, sum), as
a matter of fact, the internal algorithm uses interval search ensuring O(n logN) complexity where
n <- length(x) (and N <- length(vec)). For (almost) sorted x, it will be even faster, basically
O(n).

This is the same computation as for the empirical distribution function, and indeed,
findInterval(t, sort(X)) is identical to nFn(t;X1, . . . , Xn) where Fn is the empirical dis-
tribution function of X1, . . . , Xn.

When rightmost.closed = TRUE, the result for x[j] = vec[N] (= max vec), is N - 1 as for all
other values in the last interval.

Value

vector of length length(x) with values in 0:N (and NA) where N <- length(vec), or values co-
erced to 1:(N-1) if and only if all.inside = TRUE (equivalently coercing all x values inside the
intervals). Note that NAs are propagated from x, and Inf values are allowed in both x and vec.

Author(s)

Martin Maechler

See Also

approx(*, method = "constant") which is a generalization of findInterval(), ecdf for com-
puting the empirical distribution function which is (up to a factor of n) also basically the same as
findInterval(.).

force 183

Examples

x <- 2:18
v <- c(5, 10, 15) # create two bins [5,10) and [10,15)
cbind(x, findInterval(x, v))

N <- 100
X <- sort(round(stats::rt(N, df=2), 2))
tt <- c(-100, seq(-2,2, len=201), +100)
it <- findInterval(tt, X)
tt[it < 1 | it >= N] # only first and last are outside range(X)

force Force Evaluation of an Argument

Description

Forces the evaluation of a function argument.

Usage

force(x)

Arguments

x a formal argument of the enclosing function.

Details

force forces the evaluation of a formal argument. This can be useful if the argument will be
captured in a closure by the lexical scoping rules and will later be altered by an explicit assignment
or an implicit assignment in a loop or an apply function.

Note

This is semantic sugar: just evaluating the symbol will do the same thing (see the examples).

force does not force the evaluation of other promises. (It works by forcing the promise that is
created when the actual arguments of a call are matched to the formal arguments of a closure, the
mechanism which implements lazy evaluation.)

Examples

f <- function(y) function() y
lf <- vector("list", 5)
for (i in seq_along(lf)) lf[[i]] <- f(i)
lf[[1]]() # returns 5

g <- function(y) { force(y); function() y }
lg <- vector("list", 5)
for (i in seq_along(lg)) lg[[i]] <- g(i)
lg[[1]]() # returns 1

This is identical to
g <- function(y) { y; function() y }

184 Foreign

Foreign Foreign Function Interface

Description

Functions to make calls to compiled code that has been loaded into R.

Usage

.C(.NAME, ..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)
.Fortran(.NAME, ..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)

Arguments

.NAME a character string giving the name of a C function or Fortran subroutine,
or an object of class "NativeSymbolInfo", "RegisteredNativeSymbol" or
"NativeSymbol" referring to such a name.

... arguments to be passed to the foreign function. Up to 65.

NAOK if TRUE then any NA or NaN or Inf values in the arguments are passed on to the
foreign function. If FALSE, the presence of NA or NaN or Inf values is regarded
as an error.

DUP if TRUE then arguments are duplicated before their address is passed to C or
Fortran.

PACKAGE if supplied, confine the search for a character string .NAME to the DLL given by
this argument (plus the conventional extension, ‘.so’, ‘.dll’, . . .).
This is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols, and also
speeds up the search (see ‘Note’).

ENCODING optional name for an encoding to be assumed for character vectors. Allowed but
ignored for .Fortran, deprecated for .C. See ‘Details’.

Details

These functions can be used to make calls to compiled C and Fortran 77 code. Later interfaces are
.Call and .External which are more flexible and have better performance.

Character strings will be translated from the value of ENCODING or any declared encoding (see
Encoding) to the current locale before being passed to the compiled C code. They will be returned
encoded in the current locale unless ENCODING was specified, when the output strings are translated
to the specified encoding. This is deprecated: convert code to use iconv.

These functions are primitive, and .NAME is always matched to the first argument supplied (which
should not be named and there will be a warning if it is—and an error in future.). The other named
arguments follow ... and so cannot be abbreviated. For clarity, should avoid using names in the
arguments passed to ... that match or partially match .NAME.

Value

A list similar to the ... list of arguments passed in (including any names given to the arguments),
but reflecting any changes made by the C or Fortran code.

Foreign 185

Argument types

The mapping of the types of R arguments to C or Fortran arguments is

R C Fortran
integer int * integer
numeric double * double precision
– or – float * real
complex Rcomplex * double complex
logical int * integer
character char ** [see below]
raw unsigned char * not allowed
list SEXP * not allowed
other SEXP not allowed

Numeric vectors in R will be passed as type double * to C (and as double precision to Fortran)
unless (i) DUP is true and (ii) the argument has attribute Csingle set to TRUE (use as.single or
single). This mechanism is only intended to be used to facilitate the interfacing of existing C and
Fortran code.

The C type Rcomplex is defined in ‘Complex.h’ as a typedef struct {double r; double i;}.
It may or may not be equivalent to the C99 double complex type, depending on the compiler used.

Logical values are sent as 0 (FALSE), 1 (TRUE) or INT_MIN = -2147483648 (NA, but only if
NAOK = TRUE), and the compiled code should return one of these three values: however non-zero
values other than INT_MIN are mapped to TRUE.

Note: The C types corresponding to integer and logical are int, not long as in S. This differ-
ence matters on most 64-bit platforms, where int is 32-bit and long is 64-bit (but not on 64-bit
Windows).

Note: The Fortran type corresponding to logical is integer, not logical: the difference matters
on some Fortran compilers.

Missing (NA) string values are passed to .C as the string "NA". As the C char type can represent all
possible bit patterns there appears to be no way to distinguish missing strings from the string "NA".
If this distinction is important use .Call.

.Fortran passes the first (only)character string of a character vector is passed as a C character
array to Fortran: that may be usable as character*255 if its true length is passed separately. Only
up to 255 characters of the string are passed back. (How well this works, and even if it works at all,
depends on the C and Fortran compilers and the platform.)

Lists, functions are other R objects can (for historical reasons) be passed to .C, but the .Call
interface is much preferred. All inputs apart from atomic vectors should be regarded as read-only,
and all apart from vectors (including lists), functions and environments are now deprecated.

Warning

DUP = FALSE is dangerous.

People concerned about memory usage are strongly recommended to use the .Call interface instead
of these interfaces.

If you pass a local variable to .C/.Fortran with DUP = FALSE, your compiled code can alter the
local variable and not just the copy in the return list. Worse, if you pass a local variable that is a
formal parameter of the calling function, you may be able to change not only the local variable but
the variable one level up. This will be very hard to trace.

186 Foreign

Character vectors cannot be used with DUP = FALSE.

It is safe and useful to set DUP = FALSE if you do not change any of the variables that might be
affected, e.g.,

.C("Cfunction", input = x, output = numeric(10)).

In this case the output variable did not exist before the call so it cannot cause trouble (but as from
R 2.15.1 it is not copied even with DUP = TRUE). If the input variable is not changed in the C code
of Cfunction you are safe.

Note that if DUP = TRUE there are up to two copies involved. Prior to R 2.15.1 this was always the
case for vectors (one before calling the compiled code and one to collect the results), and this is still
the case for character vectors. For other atomic vectors, the argument is not copied before calling
the compiled code if it is not otherwise used in the calling code (such as output in the example
above). Non-atomic-vector objects are read-only to the C code and are never copied.

Fortran symbol names

All Fortran compilers known to be usable to compile R map symbol names to lower case, and so
does .Fortran.

Symbol names containing underscores are not valid Fortran 77 (although they are valid in Fortran
9x). Many Fortran 77 compilers will allow them but may translate them in a different way to
names not containing underscores. Such names will often work with .Fortran (since how they are
translated is detected when R is built and the information used by .Fortran), but portable code
should not use Fortran names containing underscores.

Use .Fortran with care for compiled Fortran 9x code: it may not work if the Fortran 9x compiler
used differs from the Fortran 77 compiler used when configuring R, especially if the subroutine
name is not lower-case or includes an underscore. It is also possible to use .C and do any necessary
symbol-name translation yourself.

Note

If one of these functions is to be used frequently, do specify PACKAGE (to confine the search to a
single DLL) or pass .NAME as one of the native symbol objects. Searching for symbols can take a
long time, especially when many namespaces are loaded.

You may see PACKAGE = "base" for symbols linked into R. Do not use this in your own code: such
symbols are not part of the API and may be changed without warning.

PACKAGE = "" is accepted, but will become an error in R 2.16.0.

The way pairlists were passed by .C prior to R 2.15.0 was not as documented. This has been
corrected, but the .Call and .External interfaces are much preferred for passing anything other
than atomic vectors.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

dyn.load, .Call.

The ‘Writing R Extensions’ manual.

formals 187

formals Access to and Manipulation of the Formal Arguments

Description

Get or set the formal arguments of a function.

Usage

formals(fun = sys.function(sys.parent()))
formals(fun, envir = environment(fun)) <- value

Arguments

fun a function object, or see ‘Details’.

envir environment in which the function should be defined.

value a list (or pairlist) of R expressions.

Details

For the first form, fun can also be a character string naming the function to be manipulated, which
is searched for from the parent frame. If it is not specified, the function calling formals is used.

Only closures have formals, not primitive functions.

Value

formals returns the formal argument list of the function specified, as a pairlist, or NULL for a
non-function or primitive.

The replacement form sets the formals of a function to the list/pairlist on the right hand side, and
(potentially) resets the environment of the function.

See Also

args for a human-readable version, alist, body, function.

Examples

require(stats); require(graphics)
length(formals(lm)) # the number of formal arguments
names(formals(boxplot)) # formal arguments names

f <- function(x) a+b
formals(f) <- alist(a=,b=3) # function(a,b=3)a+b
f(2) # result = 5

188 format

format Encode in a Common Format

Description

Format an R object for pretty printing.

Usage

format(x, ...)

Default S3 method:
format(x, trim = FALSE, digits = NULL, nsmall = 0L,

justify = c("left", "right", "centre", "none"),
width = NULL, na.encode = TRUE, scientific = NA,
big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = ".", zero.print = NULL,
drop0trailing = FALSE, ...)

S3 method for class ’data.frame’
format(x, ..., justify = "none")

S3 method for class ’factor’
format(x, ...)

S3 method for class ’AsIs’
format(x, width = 12, ...)

Arguments

x any R object (conceptually); typically numeric.

trim logical; if FALSE, logical, numeric and complex values are right-justified to a
common width: if TRUE the leading blanks for justification are suppressed.

digits how many significant digits are to be used for numeric and complex x. The
default, NULL, uses getOption(digits). This is a suggestion: enough decimal
places will be used so that the smallest (in magnitude) number has this many
significant digits, and also to satisfy nsmall. (For the interpretation for complex
numbers see signif.)

nsmall the minimum number of digits to the right of the decimal point in format-
ting real/complex numbers in non-scientific formats. Allowed values are
0 <= nsmall <= 20.

justify should a character vector be left-justified (the default), right-justified, centred
or left alone.

width default method: the minimum field width or NULL or 0 for no restriction.
AsIs method: the maximum field width for non-character objects. NULL corre-
sponds to the default 12.

na.encode logical: should NA strings be encoded? Note this only applies to elements of
character vectors, not to numerical or logical NAs, which are always encoded as
"NA".

format 189

scientific Either a logical specifying whether elements of a real or complex vector should
be encoded in scientific format, or an integer penalty (see options("scipen")).
Missing values correspond to the current default penalty.

... further arguments passed to or from other methods.
big.mark, big.interval, small.mark, small.interval, decimal.mark, zero.print, drop0trailing

used for prettying (longish) decimal sequences, passed to prettyNum: that help
page explains the details.

Details

format is a generic function. Apart from the methods described here there are methods
for dates (see format.Date), date-times (see format.POSIXct)) and for other classes such as
format.octmode and format.dist.

format.data.frame formats the data frame column by column, applying the appropriate method
of format for each column. Methods for columns are often similar to as.character but offer
more control. Matrix and data-frame columns will be converted to separate columns in the result,
and character columns (normally all) will be given class "AsIs".

format.factor converts the factor to a character vector and then calls the default method (and so
justify applies).

format.AsIs deals with columns of complicated objects that have been extracted from a data frame.
Character objects are passed to the default method (and so width does not apply). Otherwise it calls
toString to convert the object to character (if a vector or list, element by element) and then right-
justifies the result.

Justification for character vectors (and objects converted to character vectors by their methods)
is done on display width (see nchar), taking double-width characters and the rendering of spe-
cial characters (as escape sequences, including escaping backslash but not double quote: see
print.default) into account. Thus the width is as displayed by print(quote = FALSE) and
not as displayed by cat. Character strings are padded with blanks to the display width of the widest.
(If na.encode = FALSE missing character strings are not included in the width computations and
are not encoded.)

Numeric vectors are encoded with the minimum number of decimal places needed to display all the
elements to at least the digits significant digits. However, if all the elements then have trailing ze-
roes, the number of decimal places is reduced until at least one element has a non-zero final digit; see
also the argument documentation for big.*, small.* etc, above. See the note in print.default
about digits >= 16.

Raw vectors are converted to their 2-digit hexadecimal representation by as.character.

Value

An object of similar structure to x containing character representations of the elements of the first
argument x in a common format, and in the current locale’s encoding.

For character, numeric, complex or factor x, dims and dimnames are preserved on matrices/arrays
and names on vectors: no other attributes are copied.

If x is a list, the result is a character vector obtained by applying format.default(x, ...) to
each element of the list (after unlisting elements which are themselves lists), and then collaps-
ing the result for each element with paste(collapse = ", "). The defaults in this case are
trim = TRUE, justify = "none" since one does not usually want alignment in the collapsed
strings.

190 format.info

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

format.info indicates how an atomic vector would be formatted.

formatC, paste, as.character, sprintf, print, prettyNum, toString, encodeString.

Examples

format(1:10)
format(1:10, trim = TRUE)

zz <- data.frame("(row names)"= c("aaaaa", "b"), check.names=FALSE)
format(zz)
format(zz, justify = "left")

use of nsmall
format(13.7)
format(13.7, nsmall = 3)
format(c(6.0, 13.1), digits = 2)
format(c(6.0, 13.1), digits = 2, nsmall = 1)

use of scientific
format(2^31-1)
format(2^31-1, scientific = TRUE)

a list
z <- list(a=letters[1:3], b=(-pi+0i)^((-2:2)/2), c=c(1,10,100,1000),

d=c("a", "longer", "character", "string"))
format(z, digits = 2)
format(z, digits = 2, justify = "left", trim = FALSE)

format.info format(.) Information

Description

Information is returned on how format(x, digits, nsmall) would be formatted.

Usage

format.info(x, digits = NULL, nsmall = 0)

Arguments

x an atomic vector; a potential argument of format(x, ...).

digits how many significant digits are to be used for numeric and complex x. The
default, NULL, uses getOption(digits).

nsmall (see format(..., nsmall)).

format.pval 191

Value

An integer vector of length 1, 3 or 6, say r.

For logical, integer and character vectors a single element, the width which would be used by
format if width = NULL.

For numeric vectors:

r[1] width (in characters) used by format(x)

r[2] number of digits after decimal point.

r[3] in 0:2; if ≥1, exponential representation would be used, with exponent length
of r[3]+1.

For a complex vector the first three elements refer to the real parts, and there are three further
elements corresponding to the imaginary parts.

See Also

format (notably about digits >= 16), formatC.

Examples

dd <- options("digits") ; options(digits = 7) #-- for the following
format.info(123) # 3 0 0
format.info(pi) # 8 6 0
format.info(1e8) # 5 0 1 - exponential "1e+08"
format.info(1e222) # 6 0 2 - exponential "1e+222"

x <- pi*10^c(-10,-2,0:2,8,20)
names(x) <- formatC(x, width=1, digits=3, format="g")
cbind(sapply(x,format))
t(sapply(x, format.info))

using at least 8 digits right of "."
t(sapply(x, format.info, nsmall = 8))

Reset old options:
options(dd)

format.pval Format P Values

Description

format.pval is intended for formatting p-values.

Usage

format.pval(pv, digits = max(1, getOption("digits") - 2),
eps = .Machine$double.eps, na.form = "NA", ...)

192 formatC

Arguments

pv a numeric vector.

digits how many significant digits are to be used.

eps a numerical tolerance: see ‘Details’.

na.form character representation of NAs.

... further arguments to be passed to format such as nsmall.

Details

format.pval is mainly an auxiliary function for print.summary.lm etc., and does separate format-
ting for fixed, floating point and very small values; those less than eps are formatted as "< [eps]"
(where ‘[eps]’ stands for format(eps, digits)).

Value

A character vector.

Examples

format.pval(c(stats::runif(5), pi^-100, NA))
format.pval(c(0.1, 0.0001, 1e-27))

formatC Formatting Using C-style Formats

Description

Formatting numbers individually and flexibly, using C style format specifications.

Usage

formatC(x, digits = NULL, width = NULL,
format = NULL, flag = "", mode = NULL,
big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = ".", preserve.width = "individual",
zero.print = NULL, drop0trailing = FALSE)

prettyNum(x, big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = ".",
preserve.width = c("common", "individual", "none"),
zero.print = NULL, drop0trailing = FALSE, is.cmplx = NA,
...)

formatC 193

Arguments

x an atomic numerical or character object, possibly complex only for
prettyNum(), typically a vector of real numbers.

digits the desired number of digits after the decimal point (format = "f") or signifi-
cant digits (format = "g", = "e" or = "fg").
Default: 2 for integer, 4 for real numbers. If less than 0, the C default of 6 digits
is used. If specified as more than 50, 50 will be used with a warning unless
format = "f" where it is limited to typically 324. (Not more than 15–21 digits
need be accurate, depending on the OS and compiler used. This limit is just a
precaution against segfaults in the underlying C runtime.)

width the total field width; if both digits and width are unspecified, width defaults to
1, otherwise to digits + 1. width = 0 will use width = digits, width < 0
means left justify the number in this field (equivalent to flag ="-"). If neces-
sary, the result will have more characters than width. For character data this is
interpreted in characters (not bytes nor display width).

format equal to "d" (for integers), "f", "e", "E", "g", "G", "fg" (for reals), or "s" (for
strings). Default is "d" for integers, "g" for reals.
"f" gives numbers in the usual xxx.xxx format; "e" and "E" give n.ddde+nn
or n.dddE+nn (scientific format); "g" and "G" put x[i] into scientific format
only if it saves space to do so.
"fg" uses fixed format as "f", but digits as the minimum number of significant
digits. This can lead to quite long result strings, see examples below. Note
that unlike signif this prints large numbers with more significant digits than
digits. Trailing zeros are dropped in this format, unless flag contains "#".

flag For formatC, a character string giving a format modifier as in Kernighan and
Ritchie (1988, page 243). "0" pads leading zeros; "-" does left adjustment,
others are "+", " ", and "#". There can be more than one of these, in any order.

mode "double" (or "real"), "integer" or "character". Default: Determined from
the storage mode of x.

big.mark character; if not empty used as mark between every big.interval decimals
before (hence big) the decimal point.

big.interval see big.mark above; defaults to 3.

small.mark character; if not empty used as mark between every small.interval decimals
after (hence small) the decimal point.

small.interval see small.mark above; defaults to 5.

decimal.mark the character to be used to indicate the numeric decimal point.

preserve.width string specifying if the string widths should be preserved where possible in those
cases where marks (big.mark or small.mark) are added. "common", the de-
fault, corresponds to format-like behavior whereas "individual" is the default
in formatC().

zero.print logical, character string or NULL specifying if and how zeros should be formatted
specially. Useful for pretty printing ‘sparse’ objects.

drop0trailing logical, indicating if trailing zeros, i.e., "0" after the decimal mark, should be
removed; also drops "e+00" in exponential formats.

is.cmplx optional logical, to be used when x is "character" to indicate if it stems from
complex vector or not. By default (NA), x is checked to ‘look like’ complex.

... arguments passed to format.

194 formatC

Details

If you set format it overrides the setting of mode, so
formatC(123.45, mode="double", format="d") gives 123.

The rendering of scientific format is platform-dependent: some systems use n.ddde+nnn or
n.dddenn rather than n.ddde+nn.

formatC does not necessarily align the numbers on the decimal point, so
formatC(c(6.11, 13.1), digits=2, format="fg") gives c("6.1", " 13"). If you want
common formatting for several numbers, use format.

prettyNum is the utility function for prettifying x. x can be complex (or format(<complex>), here.
If x is not a character, format(x[i], ...) is applied to each element, and then it is left unchanged
if all the other arguments are at their defaults. Note that prettyNum(x) may behave unexpectedly
if x is a character vector not resulting from something like format(<number>): in particular it
assumes that a period is a decimal mark.

Because gsub is used to insert the big.mark and small.mark, special characters need escaping. In
particular, to insert a single backslash, use "\\\\".

In versions of R before 2.13.0, the big.mark would be reversed on insertion if it contained more
than one character.

Value

A character object of same size and attributes as x, in the current locale’s encoding. Unlike
format, each number is formatted individually. Looping over each element of x, the C function
sprintf(...) is called for numeric inputs (inside the C function str_signif).

formatC: for character x, do simple (left or right) padding with white space.

Author(s)

formatC was originally written by Bill Dunlap for S-PLUS, later much improved by Martin Maech-
ler.

It was first adapted for R by Friedrich Leisch and since much improved by the R Core team.

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition. Pren-
tice Hall.

See Also

format.

sprintf for more general C like formatting.

Examples

xx <- pi * 10^(-5:4)
cbind(format(xx, digits=4), formatC(xx))
cbind(formatC(xx, width = 9, flag = "-"))
cbind(formatC(xx, digits = 5, width = 8, format = "f", flag = "0"))
cbind(format(xx, digits=4), formatC(xx, digits = 4, format = "fg"))

formatC(c("a", "Abc", "no way"), width = -7) # <=> flag = "-"
formatC(c((-1:1)/0,c(1,100)*pi), width=8, digits=1)

formatDL 195

note that some of the results here depend on the implementation
of long-double arithmetic, which is platform-specific.
xx <- c(1e-12,-3.98765e-10,1.45645e-69,1e-70,pi*1e37,3.44e4)
1 2 3 4 5 6
formatC(xx)
formatC(xx, format="fg") # special "fixed" format.
formatC(xx[1:4], format="f", digits=75) #>> even longer strings

formatC(c(3.24, 2.3e-6), format="f", digits=11, drop0trailing=TRUE)

r <- c("76491283764.97430", "29.12345678901", "-7.1234", "-100.1","1123")
American:
prettyNum(r, big.mark = ",")
Some Europeans:
prettyNum(r, big.mark = "’", decimal.mark = ",")

(dd <- sapply(1:10, function(i)paste((9:0)[1:i],collapse="")))
prettyNum(dd, big.mark="’")

examples of ’small.mark’
pN <- stats::pnorm(1:7, lower.tail = FALSE)
cbind(format (pN, small.mark = " ", digits = 15))
cbind(formatC(pN, small.mark = " ", digits = 17, format = "f"))

cbind(ff <- format(1.2345 + 10^(0:5), width = 11, big.mark = "’"))
all with same width (one more than the specified minimum)

individual formatting to common width:
fc <- formatC(1.234 + 10^(0:8), format="fg", width=11, big.mark = "’")
cbind(fc)

complex numbers:
r <- 10.0000001; rv <- (r/10)^(1:10)
(zv <- (rv + 1i*rv))
op <- options(digits=7) ## (system default)
(pnv <- prettyNum(zv))
stopifnot(pnv == "1+1i", pnv == format(zv),

pnv == prettyNum(zv, drop0trailing=TRUE))
more digits change the picture:
options(digits=8)
head(fv <- format(zv), 3)
prettyNum(fv)
prettyNum(fv, drop0trailing=TRUE) # a bit nicer
options(op)

formatDL Format Description Lists

Description

Format vectors of items and their descriptions as 2-column tables or LaTeX-style description lists.

196 formatDL

Usage

formatDL(x, y, style = c("table", "list"),
width = 0.9 * getOption("width"), indent = NULL)

Arguments

x a vector giving the items to be described, or a list of length 2 or a matrix with 2
columns giving both items and descriptions.

y a vector of the same length as x with the corresponding descriptions. Only used
if x does not already give the descriptions.

style a character string specifying the rendering style of the description informa-
tion. If "table", a two-column table with items and descriptions as columns
is produced (similar to Texinfo’s @table environment. If "list", a LaTeX-style
tagged description list is obtained.

width a positive integer giving the target column for wrapping lines in the output.

indent a positive integer specifying the indentation of the second column in table style,
and the indentation of continuation lines in list style. Must not be greater than
width/2, and defaults to width/3 for table style and width/9 for list style.

Details

After extracting the vectors of items and corresponding descriptions from the arguments, both are
coerced to character vectors.

In table style, items with more than indent - 3 characters are displayed on a line of their own.

Value

a character vector with the formatted entries.

Examples

Not run:

Use R to create the ’INDEX’ for package ’splines’ from its ’CONTENTS’
x <- read.dcf(file = system.file("CONTENTS", package = "splines"),

fields = c("Entry", "Description"))
x <- as.data.frame(x)
writeLines(formatDL(x$Entry, x$Description))
or equivalently: writeLines(formatDL(x))
Same information in tagged description list style:
writeLines(formatDL(x$Entry, x$Description, style = "list"))
or equivalently: writeLines(formatDL(x, style = "list"))

End(Not run)

function 197

function Function Definition

Description

These functions provide the base mechanisms for defining new functions in the R language.

Usage

function(arglist) expr
return(value)

Arguments

arglist Empty or one or more name or name=expression terms.

expr An expression.

value An expression.

Details

The names in an argument list can be back-quoted non-standard names (see ‘backquote’).

If value is missing, NULL is returned. If it is a single expression, the value of the evaluated expres-
sion is returned. (The expression is evaluated as soon as return is called, in the evaluation frame
of the function and before any on.exit expression is evaluated.)

If the end of a function is reached without calling return, the value of the last evaluated expression
is returned.

Technical details

This type of function is not the only type in R: they are called closures (a name with origins in
LISP) to distinguish them from primitive functions.

A closure has three components, its formals (its argument list), its body (expr in the ‘Usage’
section) and its environment which provides the enclosure of the evaluation frame when the closure
is used.

There is an optional further component if the closure has been byte-compiled. This is not normally
user-visible, but it indicated when functions are printed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

args.

formals, body and environment for accessing the component parts of a function.

debug for debugging; using invisible inside return(.) for returning invisibly.

198 funprog

Examples

norm <- function(x) sqrt(x%*%x)
norm(1:4)

An anonymous function:
(function(x,y){ z <- x^2 + y^2; x+y+z })(0:7, 1)

funprog Common Higher-Order Functions in Functional Programming Lan-
guages

Description

Reduce uses a binary function to successively combine the elements of a given vector and a possibly
given initial value. Filter extracts the elements of a vector for which a predicate (logical) function
gives true. Find and Position give the first or last such element and its position in the vector,
respectively. Map applies a function to the corresponding elements of given vectors. Negate creates
the negation of a given function.

Usage

Reduce(f, x, init, right = FALSE, accumulate = FALSE)
Filter(f, x)
Find(f, x, right = FALSE, nomatch = NULL)
Map(f, ...)
Negate(f)
Position(f, x, right = FALSE, nomatch = NA_integer_)

Arguments

f a function of the appropriate arity (binary for Reduce, unary for Filter, Find
and Position, k-ary for Map if this is called with k arguments). An arbitrary
predicate function for Negate.

x a vector.

init an R object of the same kind as the elements of x.

right a logical indicating whether to proceed from left to right (default) or from right
to left.

accumulate a logical indicating whether the successive reduce combinations should be ac-
cumulated. By default, only the final combination is used.

nomatch the value to be returned in the case when “no match” (no element satisfying the
predicate) is found.

... vectors.

Details

If init is given, Reduce logically adds it to the start (when proceeding left to right) or the end
of x, respectively. If this possibly augmented vector v has n > 1 elements, Reduce successively
applies f to the elements of v from left to right or right to left, respectively. I.e., a left reduce
computes l1 = f(v1, v2), l2 = f(l1, v3), etc., and returns ln−1 = f(ln−2, vn), and a right reduce

funprog 199

does rn−1 = f(vn−1, vn), rn−2 = f(vn−2, rn−1) and returns r1 = f(v1, r2). (E.g., if v is the
sequence (2, 3, 4) and f is division, left and right reduce give (2/3)/4 = 1/6 and 2/(3/4) = 8/3,
respectively.) If v has only a single element, this is returned; if there are no elements, NULL is
returned. Thus, it is ensured that f is always called with 2 arguments.

The current implementation is non-recursive to ensure stability and scalability.

Reduce is patterned after Common Lisp’s reduce. A reduce is also known as a fold (e.g., in Haskell)
or an accumulate (e.g., in the C++ Standard Template Library). The accumulative version corre-
sponds to Haskell’s scan functions.

Filter applies the unary predicate function f to each element of x, coercing to logical if necessary,
and returns the subset of x for which this gives true. Note that possible NA values are currently
always taken as false; control over NA handling may be added in the future. Filter corresponds to
filter in Haskell or remove-if-not in Common Lisp.

Find and Position are patterned after Common Lisp’s find-if and position-if, respectively. If
there is an element for which the predicate function gives true, then the first or last such element or
its position is returned depending on whether right is false (default) or true, respectively. If there
is no such element, the value specified by nomatch is returned. The current implementation is not
optimized for performance.

Map is a simple wrapper to mapply which does not attempt to simplify the result, similar to Common
Lisp’s mapcar (with arguments being recycled, however). Future versions may allow some control
of the result type.

Negate corresponds to Common Lisp’s complement. Given a (predicate) function f, it creates a
function which returns the logical negation of what f returns.

See Also

Function clusterMap and mcmapply (not Windows) in package parallel provide parallel versions
of Map.

Examples

A general-purpose adder:
add <- function(x) Reduce("+", x)
add(list(1, 2, 3))
Like sum(), but can also used for adding matrices etc., as it will
use the appropriate ’+’ method in each reduction step.
More generally, many generics meant to work on arbitrarily many
arguments can be defined via reduction:
FOO <- function(...) Reduce(FOO2, list(...))
FOO2 <- function(x, y) UseMethod("FOO2")
FOO() methods can then be provided via FOO2() methods.

A general-purpose cumulative adder:
cadd <- function(x) Reduce("+", x, accumulate = TRUE)
cadd(seq_len(7))

A simple function to compute continued fractions:
cfrac <- function(x) Reduce(function(u, v) u + 1 / v, x, right = TRUE)
Continued fraction approximation for pi:
cfrac(c(3, 7, 15, 1, 292))
Continued fraction approximation for Euler’s number (e):
cfrac(c(2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8))

Iterative function application:

200 gc

Funcall <- function(f, ...) f(...)
Compute log(exp(acos(cos(0))
Reduce(Funcall, list(log, exp, acos, cos), 0, right = TRUE)
n-fold iterate of a function, functional style:
Iterate <- function(f, n = 1)

function(x) Reduce(Funcall, rep.int(list(f), n), x, right = TRUE)
Continued fraction approximation to the golden ratio:
Iterate(function(x) 1 + 1 / x, 30)(1)
which is the same as
cfrac(rep.int(1, 31))
Computing square root approximations for x as fixed points of the
function t |-> (t + x / t) / 2, as a function of the initial value:
asqrt <- function(x, n) Iterate(function(t) (t + x / t) / 2, n)
asqrt(2, 30)(10) # Starting from a positive value => +sqrt(2)
asqrt(2, 30)(-1) # Starting from a negative value => -sqrt(2)

A list of all functions in the base environment:
funs <- Filter(is.function, sapply(ls(baseenv()), get, baseenv()))
Functions in base with more than 10 arguments:
names(Filter(function(f) length(formals(args(f))) > 10, funs))
Number of functions in base with a ’...’ argument:
length(Filter(function(f)

any(names(formals(args(f))) %in% "..."),
funs))

Find all objects in the base environment which are *not* functions:
Filter(Negate(is.function), sapply(ls(baseenv()), get, baseenv()))

gc Garbage Collection

Description

A call of gc causes a garbage collection to take place. gcinfo sets a flag so that automatic collection
is either silent (verbose=FALSE) or prints memory usage statistics (verbose=TRUE).

Usage

gc(verbose = getOption("verbose"), reset=FALSE)
gcinfo(verbose)

Arguments

verbose logical; if TRUE, the garbage collection prints statistics about cons cells and the
space allocated for vectors.

reset logical; if TRUE the values for maximum space used are reset to the current
values.

Details

A call of gc causes a garbage collection to take place. This will also take place automatically
without user intervention, and the primary purpose of calling gc is for the report on memory usage.

gc 201

However, it can be useful to call gc after a large object has been removed, as this may prompt R to
return memory to the operating system.

R allocates space for vectors in multiples of 8 bytes: hence the report of "Vcells", a relict of an
earlier allocator (that used a vector heap).

When gcinfo(TRUE) is in force, messages are sent to the message connection at each garbage
collection of the form

Garbage collection 12 = 10+0+2 (level 0) ...
6.4 Mbytes of cons cells used (58%)
2.0 Mbytes of vectors used (32%)

Here the last two lines give the current memory usage rounded up to the next 0.1Mb and as a
percentage of the current trigger value. The first line gives a breakdown of the number of garbage
collections at various levels (for an explanation see the ‘R Internals’ manual).

Value

gc returns a matrix with rows "Ncells" (cons cells), usually 28 bytes each on 32-bit systems and
56 bytes on 64-bit systems, and "Vcells" (vector cells, 8 bytes each), and columns "used" and
"gc trigger", each also interpreted in megabytes (rounded up to the next 0.1Mb).

If maxima have been set for either "Ncells" or "Vcells", a fifth column is printed giving the
current limits in Mb (with NA denoting no limit).

The final two columns show the maximum space used since the last call to gc(reset=TRUE) (or
since R started).

gcinfo returns the previous value of the flag.

See Also

The ‘R Internals’ manual.

Memory on R’s memory management, and gctorture if you are an R developer.

reg.finalizer for actions to happen at garbage collection.

Examples

gc() #- do it now
gcinfo(TRUE) #-- in the future, show when R does it
x <- integer(100000); for(i in 1:18) x <- c(x,i)
gcinfo(verbose = FALSE)#-- don’t show it anymore

gc(TRUE)

gc(reset=TRUE)

202 gctorture

gc.time Report Time Spent in Garbage Collection

Description

This function reports the time spent in garbage collection so far in the R session while GC timing
was enabled.

Usage

gc.time(on = TRUE)

Arguments

on logical; if TRUE, GC timing is enabled.

Details

The timings are rounded up by the sampling interval for timing processes, and so are likely to be
over-estimates.

It is a primitive.

Value

A numerical vector of length 5 giving the user CPU time, the system CPU time, the elapsed time and
children’s user and system CPU times (normally both zero), of time spent doing garbage collection
whilst GC timing was enabled.

Times of child processes are not available on Windows and will always be given as NA.

See Also

gc, proc.time for the timings for the session.

Examples

gc.time()

gctorture Torture Garbage Collector

Description

Provokes garbage collection on (nearly) every memory allocation. Intended to ferret out memory
protection bugs. Also makes R run very slowly, unfortunately.

Usage

gctorture(on = TRUE)
gctorture2(step, wait = step, inhibit_release = FALSE)

get 203

Arguments

on logical; turning it on/off.

step integer; run GC every step allocations; step = 0 turns the GC torture
off.

wait integer; number of allocations to wait before starting GC torture.

inhibit_release

logical; do not release free objects for re-use: use with caution.

Details

Calling gctorture(TRUE) instructs the memory manager to force a full GC on every allocation.
gctorture2 provides a more refined interface that allows the start of the GC torture to be deferred
and also gives the option of running a GC only every step allocations.

The third argument to gctorture2 is only used if R has been configured with a strict write barrier
enabled. When this is the case all garbage collections are full collections, and the memory manager
marks free nodes and enables checks in many situations that signal an error when a free node is
used. This can greatly help in isolating unprotected values in C code. It does not detect the case
where a node becomes free and is reallocated. The inhibit_release argument can be used to
prevent such reallocation. This will cause memory to grow and should be used with caution and in
conjunction with operating system facilities to monitor and limit process memory use.

Value

Previous value of first argument.

Author(s)

Peter Dalgaard and Luke Tierney

get Return the Value of a Named Object

Description

Search for an R object with a given name and return it.

Usage

get(x, pos = -1, envir = as.environment(pos), mode = "any",
inherits = TRUE)

mget(x, envir, mode = "any",
ifnotfound = list(function(x)

stop(paste0("value for ’", x, "’ not found"),
call. = FALSE)),

inherits = FALSE)

204 get

Arguments

x a variable name (given as a character string).

pos where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.

envir an alternative way to specify an environment to look in; see the ‘Details’ section.

mode the mode or type of object sought: see the ‘Details’ section.

inherits should the enclosing frames of the environment be searched?

ifnotfound A list of values to be used if the item is not found: it will be coerced to list if
necessary.

Details

The pos argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys.frame to access the currently active
function calls). The envir argument is an alternative way to specify an environment, but is primarily
there for back compatibility.

This function looks to see if the name x has a value bound to it in the specified environment. If
inherits is TRUE and a value is not found for x in the specified environment, the enclosing frames
of the environment are searched until the name x is encountered. See environment and the ‘R
Language Definition’ manual for details about the structure of environments and their enclosures.

Warning: inherits = TRUE is the default behaviour for R but not for S.

If mode is specified then only objects of that type are sought. The mode may specify one of the
collections "numeric" and "function" (see mode): any member of the collection will suffice.

Using a NULL environment is equivalent to using the current environment.

For mget multiple values are returned in a named list. This is true even if only one value is
requested. The value in mode and ifnotfound can be either the same length as the number of
requested items or of length 1. The argument ifnotfound must be a list containing either the value
to use if the requested item is not found or a function of one argument which will be called if
the item is not found, with argument the name of the item being requested. The default value for
inherits is FALSE, in contrast to the default behavior for get.

mode here is a mixture of the meanings of typeof and mode: "function" covers primitive func-
tions and operators, "numeric", "integer", "real" and "double" all refer to any numeric type,
"symbol" and "name" are equivalent but "language" must be used.

Value

The object found. (If no object is found an error results.)

Note

The reverse of a <- get(nam) is assign(nam, a).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

getDLLRegisteredRoutines 205

See Also

exists, assign.

Examples

get("%o%")

##test mget
e1 <- new.env()
mget(letters, e1, ifnotfound = as.list(LETTERS))

getDLLRegisteredRoutines

Reflectance Information for C/Fortran routines in a DLL

Description

This function allows us to query the set of routines in a DLL that are registered with R to enhance
dynamic lookup, error handling when calling native routines, and potentially security in the future.
This function provides a description of each of the registered routines in the DLL for the different
interfaces, i.e. .C, .Call, .Fortran and .External.

Usage

getDLLRegisteredRoutines(dll, addNames = TRUE)

Arguments

dll a character string or DLLInfo object. The character string specifies the file
name of the DLL of interest, and is given without the file name extension
(e.g., the ‘.dll’ or ‘.so’) and with no directory/path information. So a file
‘MyPackage/libs/MyPackage.so’ would be specified as ‘MyPackage’.
The DLLInfo objects can be obtained directly in calls to dyn.load and
library.dynam, or can be found after the DLL has been loaded using
getLoadedDLLs, which returns a list of DLLInfo objects (index-able by DLL
file name).
The DLLInfo approach avoids any ambiguities related to two DLLs having the
same name but corresponding to files in different directories.

addNames a logical value. If this is TRUE, the elements of the returned lists are named
using the names of the routines (as seen by R via registration or raw name).
If FALSE, these names are not computed and assigned to the lists. As a re-
sult, the call should be quicker. The name information is also available in the
NativeSymbolInfo objects in the lists.

Details

This takes the registration information after it has been registered and processed by the R internals.
In other words, it uses the extended information.

There is print methods for the class, which prints only the types which have registered routines.

206 getLoadedDLLs

Value

A list of class "DLLRegisteredRoutines" with four elements corresponding to the routines regis-
tered for the .C, .Call, .Fortran and .External interfaces. Each is a list with as many elements
as there were routines registered for that interface.

Each element identifies a routine and is an object of class "NativeSymbolInfo". An object of this
class has the following fields:

name the registered name of the routine (not necessarily the name in the C code).

address the memory address of the routine as resolved in the loaded DLL. This may be
NULL if the symbol has not yet been resolved.

dll an object of class DLLInfo describing the DLL. This is same for all elements
returned.

numParameters the number of arguments the native routine is to be called with. In the future,
we will provide information about the types of the parameters also.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

‘Writing R Extensions Manual’ for symbol registration.

R News, Volume 1/3, September 2001. "In search of C/C++ & Fortran Symbols"

See Also

getLoadedDLLs, getNativeSymbolInfo for information on the entry points listed.

Examples

dlls <- getLoadedDLLs()
getDLLRegisteredRoutines(dlls[["base"]])

getDLLRegisteredRoutines("stats")

getLoadedDLLs Get DLLs Loaded in Current Session

Description

This function provides a way to get a list of all the DLLs (see dyn.load) that are currently loaded
in the R session.

Usage

getLoadedDLLs()

Details

This queries the internal table that manages the DLLs.

getNativeSymbolInfo 207

Value

An object of class "DLLInfoList" which is a list with an element corresponding to each DLL that
is currently loaded in the session. Each element is an object of class "DLLInfo" which has the
following entries.

name the abbreviated name.

path the fully qualified name of the loaded DLL.

dynamicLookup a logical value indicating whether R uses only the registration information to
resolve symbols or whether it searches the entire symbol table of the DLL.

handle a reference to the C-level data structure that provides access to the contents of
the DLL. This is an object of class "DLLHandle".

Note that the class DLLInfo has an overloaded method for $ which can be used to resolve native
symbols within that DLL. Therefore, one must access the R-level elements described above using
[[, e.g. x[["name"]] or x[["handle"]].

Note

We are starting to use the handle elements in the DLL object to resolve symbols more directly in
R.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>.

See Also

getDLLRegisteredRoutines, getNativeSymbolInfo

Examples

getLoadedDLLs()

getNativeSymbolInfo Obtain a Description of one or more Native (C/Fortran) Symbols

Description

This finds and returns a description of one or more dynamically loaded or ‘exported’ built-in native
symbols. For each name, it returns information about the name of the symbol, the library in which
it is located and, if available, the number of arguments it expects and by which interface it should
be called (i.e .Call, .C, .Fortran, or .External). Additionally, it returns the address of the
symbol and this can be passed to other C routines. Specifically, this provides a way to explicitly
share symbols between different dynamically loaded package libraries. Also, it provides a way to
query where symbols were resolved, and aids diagnosing strange behavior associated with dynamic
resolution.

Usage

getNativeSymbolInfo(name, PACKAGE, unlist = TRUE,
withRegistrationInfo = FALSE)

208 getNativeSymbolInfo

Arguments

name the name(s) of the native symbol(s).

PACKAGE an optional argument that specifies to which DLL to restrict the search for this
symbol. If this is "base", we search in the R executable itself.

unlist a logical value which controls how the result is returned if the function is called
with the name of a single symbol. If unlist is TRUE and the number of symbol
names in name is one, then the NativeSymbolInfo object is returned. If it is
FALSE, then a list of NativeSymbolInfo objects is returned. This is ignored if
the number of symbols passed in name is more than one. To be compatible with
earlier versions of this function, this defaults to TRUE.

withRegistrationInfo

a logical value indicating whether, if TRUE, to return information that was reg-
istered with R about the symbol and its parameter types if such information is
available, or if FALSE to return just the address of the symbol.

Details

This uses the same mechanism for resolving symbols as is used in all the native interfaces (.Call,
etc.). If the symbol has been explicitly registered by the DLL in which it is contained, information
about the number of arguments and the interface by which it should be called will be returned.
Otherwise, a generic native symbol object is returned.

Value

Generally, a list of NativeSymbolInfo elements whose elements can be indexed by the elements
of name in the call. Each NativeSymbolInfo object is a list containing the following elements:

name the name of the symbol, as given by the name argument.

address if withRegistrationInfo is FALSE, this is the native memory address of the
symbol which can be used to invoke the routine, and also to compare with other
symbol addresses. This is an external pointer object and of class NativeSymbol.
If withRegistrationInfo is TRUE and registration information is available for
the symbol, then this is an object of class RegisteredNativeSymbol and is
a reference to an internal data type that has access to the routine pointer and
registration information. This too can be used in calls to .Call, .C, .Fortran
and .External.

package a list containing 3 elements:

name the short form of the library name which can be used as the value of the
PACKAGE argument in the different native interface functions.

path the fully qualified name of the DLL.
dynamicLookup a logical value indicating whether dynamic resolution is used

when looking for symbols in this library, or only registered routines can be
located.

If the routine was explicitly registered by the dynamically loaded library, the list contains a fourth
field

numParameters the number of arguments that should be passed in a call to this routine.

Additionally, the list will have an additional class, being CRoutine, CallRoutine,
FortranRoutine or ExternalRoutine corresponding to the R interface by which it should be
invoked.

gettext 209

If any of the symbols is not found, an error is raised.

If name contains only one symbol name and unlist is TRUE, then the single NativeSymbolInfo is
returned rather than the list containing that one element.

Note

One motivation for accessing this reflectance information is to be able to pass native routines to
C routines as function pointers in C. This allows us to treat native routines and R functions in a
similar manner, such as when passing an R function to C code that makes callbacks to that function
at different points in its computation (e.g., nls). Additionally, we can resolve the symbol just once
and avoid resolving it repeatedly or using the internal cache.

Author(s)

Duncan Temple Lang

References

For information about registering native routines, see “In Search of C/C++ & FORTRAN Routines”,
R-News, volume 1, number 3, 2001, p20–23 (http://cran.r-project.org/doc/Rnews/Rnews_
2001-3.pdf).

See Also

getDLLRegisteredRoutines, is.loaded, .C, .Fortran, .External, .Call, dyn.load.

Examples

library(stats) # normally loaded
getNativeSymbolInfo("dansari")

getNativeSymbolInfo("hcass2") # a Fortran symbol

gettext Translate Text Messages

Description

If Native Language Support was enabled in this build of R, attempt to translate character vectors or
set where the translations are to be found.

Usage

gettext(..., domain = NULL)

ngettext(n, msg1, msg2, domain = NULL)

bindtextdomain(domain, dirname = NULL)

http://cran.r-project.org/doc/Rnews/Rnews_2001-3.pdf
http://cran.r-project.org/doc/Rnews/Rnews_2001-3.pdf

210 gettext

Arguments

... One or more character vectors.

domain The ‘domain’ for the translation.

n a non-negative integer.

msg1 the message to be used in English for n = 1.

msg2 the message to be used in English for n = 0, 2, 3,....

dirname The directory in which to find translated message catalogs for the domain.

Details

If domain is NULL or "", a domain is searched for based on the namespace which contains the
function calling gettext or ngettext. If a suitable domain can be found, each character string is
offered for translation, and replaced by its translation into the current language if one is found.

Conventionally the domain for R warning/error messages in package pkg is "R-pkg", and that for
C-level messages is "pkg".

For gettext, leading and trailing whitespace is ignored when looking for the translation.

ngettext is used where the message needs to vary by a single integer. Translating such messages
is subject to very specific rules for different languages: see the GNU Gettext Manual. The string
will often contain a single instance of %d to be used in sprintf. If English is used, msg1 is returned
if n == 1 and msg2 in all other cases.

Value

For gettext, a character vector, one element per string in If translation is not enabled or no
domain is found or no translation is found in that domain, the original strings are returned.

For ngettext, a character string.

For bindtextdomain, a character string giving the current base directory, or NULL if setting it failed.

See Also

stop and warning make use of gettext to translate messages.

xgettext for extracting translatable strings from R source files.

Examples

bindtextdomain("R") # non-null if and only if NLS is enabled

for(n in 0:3)
print(sprintf(ngettext(n, "%d variable has missing values",

"%d variables have missing values"),
n))

Not run:
for translation, those strings should appear in R-pkg.pot as
msgid "%d variable has missing values"
msgid_plural "%d variables have missing values"
msgstr[0] ""
msgstr[1] ""

End(Not run)

getwd 211

miss <- c("one", "or", "another")
cat(ngettext(length(miss), "variable", "variables"),

paste(sQuote(miss), collapse=", "),
ngettext(length(miss), "contains", "contain"), "missing values\n")

better for translators would be to use
cat(sprintf(ngettext(length(miss),

"variable %s contains missing values\n",
"variables %s contain missing values\n"),

paste(sQuote(miss), collapse=", ")))

getwd Get or Set Working Directory

Description

getwd returns an absolute filepath representing the current working directory of the R process;
setwd(dir) is used to set the working directory to dir.

Usage

getwd()
setwd(dir)

Arguments

dir A character string: tilde expansion will be done.

Value

getwd returns a character string or NULL if the working directory is not available. On Windows the
path returned will use / as the path separator and be encoded in UTF-8. The path will not have a
trailing / unless it is the root directory (of a drive or share on Windows).

setwd returns the current directory before the change, invisibly and with the same conventions as
getwd. It will give an error if it does not succeed (including if it is not implemented).

Note

Note that the return value is said to be an absolute filepath: there can be more than one repre-
sentation of the path to a directory and on some OSes the value returned can differ after changing
directories and changing back to the same directory (for example if symbolic links have been tra-
versed).

See Also

list.files for the contents of a directory.

normalizePath for a ‘canonical’ path name.

Examples

(WD <- getwd())
if (!is.null(WD)) setwd(WD)

212 grep

gl Generate Factor Levels

Description

Generate factors by specifying the pattern of their levels.

Usage

gl(n, k, length = n*k, labels = 1:n, ordered = FALSE)

Arguments

n an integer giving the number of levels.

k an integer giving the number of replications.

length an integer giving the length of the result.

labels an optional vector of labels for the resulting factor levels.

ordered a logical indicating whether the result should be ordered or not.

Value

The result has levels from 1 to n with each value replicated in groups of length k out to a total length
of length.

gl is modelled on the GLIM function of the same name.

See Also

The underlying factor().

Examples

First control, then treatment:
gl(2, 8, labels = c("Control", "Treat"))
20 alternating 1s and 2s
gl(2, 1, 20)
alternating pairs of 1s and 2s
gl(2, 2, 20)

grep Pattern Matching and Replacement

Description

grep, grepl, regexpr and gregexpr search for matches to argument pattern within each element
of a character vector: they differ in the format of and amount of detail in the results.

sub and gsub perform replacement of the first and all matches respectively.

grep 213

Usage

grep(pattern, x, ignore.case = FALSE, perl = FALSE, value = FALSE,
fixed = FALSE, useBytes = FALSE, invert = FALSE)

grepl(pattern, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

sub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gsub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

regexpr(pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gregexpr(pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

regexec(pattern, text, ignore.case = FALSE,
fixed = FALSE, useBytes = FALSE)

Arguments

pattern character string containing a regular expression (or character string for
fixed = TRUE) to be matched in the given character vector. Coerced by
as.character to a character string if possible. If a character vector of length 2
or more is supplied, the first element is used with a warning. Missing values are
allowed except for regexpr and gregexpr.

x, text a character vector where matches are sought, or an object which can be coerced
by as.character to a character vector.

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

perl logical. Should perl-compatible regexps be used?

value if FALSE, a vector containing the (integer) indices of the matches determined
by grep is returned, and if TRUE, a vector containing the matching elements
themselves is returned.

fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all conflicting
arguments.

useBytes logical. If TRUE the matching is done byte-by-byte rather than character-by-
character. See ‘Details’.

invert logical. If TRUE return indices or values for elements that do not match.

replacement a replacement for matched pattern in sub and gsub. Coerced to character if
possible. For fixed = FALSE this can include backreferences "\1" to
"\9" to parenthesized subexpressions of pattern. For perl = TRUE only, it
can also contain "\U" or "\L" to convert the rest of the replacement to upper or
lower case and "\E" to end case conversion. If a character vector of length 2 or
more is supplied, the first element is used with a warning. If NA, all elements in
the result corresponding to matches will be set to NA.

214 grep

Details

Arguments which should be character strings or character vectors are coerced to character if possi-
ble.

Each of these functions (apart from regexec, which currently does not support Perl-style regular
expressions) operates in one of three modes:

1. fixed = TRUE: use exact matching.

2. perl = TRUE: use Perl-style regular expressions.

3. fixed = FALSE, perl = FALSE: use POSIX 1003.2 extended regular expressions.

See the help pages on regular expression for details of the different types of regular expressions.

The two *sub functions differ only in that sub replaces only the first occurrence of a pattern
whereas gsub replaces all occurrences. If replacement contains backreferences which are not
defined in pattern the result is undefined (but most often the backreference is taken to be "").

For regexpr, gregexpr and regexec it is an error for pattern to be NA, otherwise NA is permitted
and gives an NA match.

The main effect of useBytes is to avoid errors/warnings about invalid inputs and spurious matches
in multibyte locales, but for regexpr it changes the interpretation of the output. It inhibits the
conversion of inputs with marked encodings, and is forced if any input is found which is marked as
"bytes".

Caseless matching does not make much sense for bytes in a multibyte locale, and you should expect
it only to work for ASCII characters if useBytes = TRUE.

As from R 2.14.0, regexpr and gregexpr with perl = TRUE allow Python-style named cap-
tures.

Value

grep(value = FALSE) returns an integer vector of the indices of the elements of x that yielded a
match (or not, for invert = TRUE.

grep(value = TRUE) returns a character vector containing the selected elements of x (after coer-
cion, preserving names but no other attributes).

grepl returns a logical vector (match or not for each element of x).

For sub and gsub return a character vector of the same length and with the same attributes as x
(after possible coercion to character). Elements of character vectors x which are not substituted
will be returned unchanged (including any declared encoding). If useBytes = FALSE a non-ASCII
substituted result will often be in UTF-8 with a marked encoding (e.g. if there is a UTF-8 input,
and in a multibyte locale unless fixed = TRUE). Such strings can be re-encoded by enc2native.

regexpr returns an integer vector of the same length as text giving the starting position of the
first match or −1 if there is none, with attribute "match.length", an integer vector giving the
length of the matched text (or −1 for no match). The match positions and lengths are in characters
unless useBytes = TRUE is used, when they are in bytes. If named capture is used there are further
attributes "capture.start", "capture.length" and "capture.names".

gregexpr returns a list of the same length as text each element of which is of the same form as the
return value for regexpr, except that the starting positions of every (disjoint) match are given.

regexec returns a list of the same length as text each element of which is either −1 if there is no
match, or a sequence of integers with the starting positions of the match and all substrings corre-
sponding to parenthesized subexpressions of pattern, with attribute "match.length" an integer
vector giving the lengths of the matches (or −1 for no match).

grep 215

Warning

POSIX 1003.2 mode of gsub and gregexpr does not work correctly with repeated word-boundaries
(e.g. pattern = "\b"). Use perl = TRUE for such matches (but that may not work as expected
with non-ASCII inputs, as the meaning of ‘word’ is system-dependent).

Performance considerations

If you are doing a lot of regular expression matching, including on very long strings, you will want
to consider the options used. Generally PCRE will be faster than the default regular expression
engine, and fixed = TRUE faster still (especially when each pattern is matched only a few times).

If you are working in a single-byte locale and have marked UTF-8 strings that are representable
in that locale, convert them first as just one UTF-8 string will force all the matching to be done in
Unicode, which attracts a penalty of around 3× for the default POSIX 1003.2 mode.

If you can make use of useBytes = TRUE, the strings will not be checked before matching, and
the actual matching will be faster. Often byte-based matching suffices in a UTF-8 locale since byte
patterns of one character never match part of another.

Note

Prior to R 2.11.0 there was an argument extended which could be used to select ‘basic’ regular
expressions: this was often used when fixed = TRUE would be preferable. In the actual implemen-
tation (as distinct from the POSIX standard) the only difference was that ‘?’, ‘+’, ‘{’, ‘|’, ‘(’, and
‘)’ were not interpreted as metacharacters.

Source

The C code for POSIX-style regular expression matching has changed over the years. As from R
2.10.0 the TRE library of Ville Laurikari (http://laurikari.net/tre/) is used. From 2005 to R
2.9.2, code based on glibc was used (and before that, code from GNU grep). The POSIX standard
does give some room for interpretation, especially in the handling of invalid regular expressions and
the collation of character ranges, so the results will have changed slightly.

For Perl-style matching PCRE (http://www.pcre.org) is used.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (grep)

See Also

regular expression (aka regexp) for the details of the pattern specification.

regmatches for extracting matched substrings based on the results of regexpr, gregexpr and
regexec.

glob2rx to turn wildcard matches into regular expressions.

agrep for approximate matching.

charmatch, pmatch for partial matching, match for matching to whole strings.

tolower, toupper and chartr for character translations.

apropos uses regexps and has more examples.

grepRaw for matching raw vectors.

http://laurikari.net/tre/
http://www.pcre.org

216 grep

Examples

grep("[a-z]", letters)

txt <- c("arm","foot","lefroo", "bafoobar")
if(length(i <- grep("foo",txt)))

cat("’foo’ appears at least once in\n\t",txt,"\n")
i # 2 and 4
txt[i]

Double all ’a’ or ’b’s; "\" must be escaped, i.e., ’doubled’
gsub("([ab])", "\\1_\\1_", "abc and ABC")

txt <- c("The", "licenses", "for", "most", "software", "are",
"designed", "to", "take", "away", "your", "freedom",
"to", "share", "and", "change", "it.",
"", "By", "contrast,", "the", "GNU", "General", "Public", "License",
"is", "intended", "to", "guarantee", "your", "freedom", "to",
"share", "and", "change", "free", "software", "--",
"to", "make", "sure", "the", "software", "is",
"free", "for", "all", "its", "users")

(i <- grep("[gu]", txt)) # indices
stopifnot(txt[i] == grep("[gu]", txt, value = TRUE))

Note that in locales such as en_US this includes B as the
collation order is aAbBcCdEe ...
(ot <- sub("[b-e]",".", txt))
txt[ot != gsub("[b-e]",".", txt)]#- gsub does "global" substitution

txt[gsub("g","#", txt) !=
gsub("g","#", txt, ignore.case = TRUE)] # the "G" words

regexpr("en", txt)

gregexpr("e", txt)

Using grepl() for filtering
Find functions with argument names matching "warn":
findArgs <- function(env, pattern) {

nms <- ls(envir = as.environment(env))
nms <- nms[is.na(match(nms, c("F","T")))] # <-- work around "checking hack"
aa <- sapply(nms, function(.) { o <- get(.)

if(is.function(o)) names(formals(o)) })
iw <- sapply(aa, function(a) any(grepl(pattern, a, ignore.case=TRUE)))
aa[iw]

}
findArgs("package:base", "warn")

trim trailing white space
str <- ’Now is the time ’
sub(’ +$’, ’’, str) ## spaces only
sub(’[[:space:]]+$’, ’’, str) ## white space, POSIX-style
sub(’\\s+$’, ’’, str, perl = TRUE) ## Perl-style white space

capitalizing
txt <- "a test of capitalizing"
gsub("(\\w)(\\w*)", "\\U\\1\\L\\2", txt, perl=TRUE)

grepRaw 217

gsub("\\b(\\w)", "\\U\\1", txt, perl=TRUE)

txt2 <- "useRs may fly into JFK or laGuardia"
gsub("(\\w)(\\w*)(\\w)", "\\U\\1\\E\\2\\U\\3", txt2, perl=TRUE)
sub("(\\w)(\\w*)(\\w)", "\\U\\1\\E\\2\\U\\3", txt2, perl=TRUE)

named capture
notables <- c(" Ben Franklin and Jefferson Davis",

"\tMillard Fillmore")
name groups ’first’ and ’last’
name.rex <- "(?<first>[[:upper:]][[:lower:]]+) (?<last>[[:upper:]][[:lower:]]+)"
(parsed <- regexpr(name.rex, notables, perl = TRUE))
gregexpr(name.rex, notables, perl = TRUE)[[2]]
parse.one <- function(res, result) {

m <- do.call(rbind, lapply(seq_along(res), function(i) {
if(result[i] == -1) return("")
st <- attr(result, "capture.start")[i,]
substring(res[i], st, st + attr(result, "capture.length")[i,] - 1)

}))
colnames(m) <- attr(result, "capture.names")
m

}
parse.one(notables, parsed)

Decompose a URL into its components.
Example by LT (http://www.cs.uiowa.edu/~luke/R/regexp.html).
x <- "http://stat.umn.edu:80/xyz"
m <- regexec("^(([^:]+)://)?([^:/]+)(:([0-9]+))?(/.*)", x)
m
regmatches(x, m)
Element 3 is the protocol, 4 is the host, 6 is the port, and 7
is the path. We can use this to make a function for extracting the
parts of a URL:
URL_parts <- function(x) {

m <- regexec("^(([^:]+)://)?([^:/]+)(:([0-9]+))?(/.*)", x)
parts <- do.call(rbind,

lapply(regmatches(x, m), ‘[‘, c(3L, 4L, 6L, 7L)))
colnames(parts) <- c("protocol","host","port","path")
parts

}
URL_parts(x)

grepRaw Pattern Matching for Raw Vectors

Description

grepRaw searches for substring pattern matches within a raw vector x.

Usage

grepRaw(pattern, x, offset = 1L, ignore.case = FALSE,
value = FALSE, fixed = FALSE, all = FALSE, invert = FALSE)

218 grepRaw

Arguments

pattern raw vector containing a regular expression (or fixed pattern for fixed = TRUE)
to be matched in the given raw vector. Coerced by charToRaw to a character
string if possible.

x a raw vector where matches are sought, or an object which can be coerced by
charToRaw to a raw vector.

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

offset An integer specifying the offset from which the search should start. Must be
positive. The beginning of line is defined to be at that offset so "^" will match
there.

value logical. Determines the return value: see ‘Value’.

fixed logical. If TRUE, pattern is a pattern to be matched as is.

all logical. If TRUE all matches are returned, otherwise just the first one.

invert logical. If TRUE return indices or values for elements that do not match. Ignored
(with a warning) unless value = TRUE.

Details

Unlike grep, seeks matching patterns within the raw vector x . This has implications especially in
the all = TRUE case, e.g., patterns matching empty strings are inherently infinite and thus may
lead to unexpected results.

The argument invert is interpreted as asking to return the complement of the match, which is only
meaningful for value = TRUE. Argument offset determines the start of the search, not of the
complement. Note that invert = TRUE with all = TRUE will split x into pieces delimited by
the pattern including leading and trailing empty strings (consequently the use of regular expressions
with "^" or "$" in that case may lead to less intuitive results).

Some combinations of arguments such as fixed = TRUE with value = TRUE are supported but are
less meaningful.

Value

grepRaw(value = FALSE) returns an integer vector of the offsets at which matches have occurred.
If all = FALSE then it will be either of length zero (no match) or length one (first matching posi-
tion).

grepRaw(value = TRUE, all = FALSE) returns a raw vector which is either empty (no match) or
the matched part of x.

grepRaw(value = TRUE, all = TRUE) returns a (potentially empty) list of raw vectors corre-
sponding to the matched parts.

Source

The TRE library of Ville Laurikari (http://laurikari.net/tre/) is used except for
fixed = TRUE.

See Also

regular expression (aka regexp) for the details of the pattern specification.

grep for matching character vectors.

http://laurikari.net/tre/

groupGeneric 219

groupGeneric S3 Group Generic Functions

Description

Group generic methods can be defined for four pre-specified groups of functions, Math, Ops,
Summary and Complex. (There are no objects of these names in base R, but there are in the methods
package.)

A method defined for an individual member of the group takes precedence over a method defined
for the group as a whole.

Usage

S3 methods for group generics have prototypes:
Math(x, ...)
Ops(e1, e2)
Complex(z)
Summary(..., na.rm = FALSE)

Arguments

x, z, e1, e2 objects.

... further arguments passed to methods.

na.rm logical: should missing values be removed?

Details

There are four groups for which S3 methods can be written, namely the "Math", "Ops", "Summary"
and "Complex" groups. These are not R objects in base R, but methods can be supplied for them
and base R contains factor, data.frame and difftime methods for the first three groups. (There
is also a ordered method for Ops, POSIXt and Date methods for Math and Ops, package_version
methods for Ops and Summary, as well as a ts method for Ops in package stats.)

1. Group "Math":

• abs, sign, sqrt,
floor, ceiling, trunc,
round, signif

• exp, log, expm1, log1p,
cos, sin, tan,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

• lgamma, gamma, digamma, trigamma
• cumsum, cumprod, cummax, cummin

Members of this group dispatch on x. Most members accept only one argument, but members
log, round and signif accept one or two arguments, and trunc accepts one or more.

2. Group "Ops":

• "+", "-", "*", "/", "^", "%%", "%/%"

220 groupGeneric

• "&", "|", "!"
• "==", "!=", "<", "<=", ">=", ">"

This group contains both binary and unary operators (+, - and !): when a unary operator is
encountered the Ops method is called with one argument and e2 is missing.
The classes of both arguments are considered in dispatching any member of this group. For
each argument its vector of classes is examined to see if there is a matching specific (preferred)
or Ops method. If a method is found for just one argument or the same method is found
for both, it is used. If different methods are found, there is a warning about ‘incompatible
methods’: in that case or if no method is found for either argument the internal method is
used.
If the members of this group are called as functions, any argument names are removed to
ensure that positional matching is always used.

3. Group "Summary":

• all, any
• sum, prod
• min, max
• range

Members of this group dispatch on the first argument supplied.

4. Group "Complex":

• Arg, Conj, Im, Mod, Re

Members of this group dispatch on z.

Note that a method will be used for one of these groups or one of its members only if it corresponds
to a "class" attribute, as the internal code dispatches on oldClass and not on class. This is for
efficiency: having to dispatch on, say, Ops.integer would be too slow.

The number of arguments supplied for primitive members of the "Math" group generic methods is
not checked prior to dispatch.

There is no lazy evaluation of arguments for group-generic functions.

Technical Details

These functions are all primitive and internal generic.

The details of method dispatch and variables such as .Generic are discussed in the help for
UseMethod. There are a few small differences:

• For the operators of group Ops, the object .Method is a length-two character vector with
elements the methods selected for the left and right arguments respectively. (If no method was
selected, the corresponding element is "".)

• Object .Group records the group used for dispatch (if a specific method is used this is "").

Note

Package methods does contain objects with these names, which it has re-used in confusing similar
(but different) ways. See the help for that package.

References

Appendix A, Classes and Methods of
Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

gzcon 221

See Also

methods for methods of non-internal generic functions.

S4groupGeneric for group generics for S4 methods.

Examples

require(utils)

d.fr <- data.frame(x=1:9, y=stats::rnorm(9))
class(1 + d.fr) == "data.frame" ##-- add to d.f. ...

methods("Math")
methods("Ops")
methods("Summary")
methods("Complex") # none in base R

gzcon (De)compress I/O Through Connections

Description

gzcon provides a modified connection that wraps an existing connection, and decompresses reads
or compresses writes through that connection. Standard gzip headers are assumed.

Usage

gzcon(con, level = 6, allowNonCompressed = TRUE)

Arguments

con a connection.

level integer between 0 and 9, the compression level when writing.
allowNonCompressed

logical. When reading, should non-compressed input be allowed?

Details

If con is open then the modified connection is opened. Closing the wrapper connection will also
close the underlying connection.

Reading from a connection which does not supply a gzip magic header is equivalent to reading
from the original connection if allowNonCompressed is true, otherwise an error.

Compressed output will contain embedded NUL bytes, and so con is not permitted to be a
textConnection opened with open="w". Use a writable rawConnection to compress data into
a variable.

The original connection becomes unusable: any object pointing to it will now refer to the modified
connection. For this reason, the new connection needs to be closed explicitly.

Value

An object inheriting from class "connection". This is the same connection number as supplied,
but with a modified internal structure. It has binary mode.

222 hexmode

See Also

gzfile

Examples

Uncompress a data file from a URL
z <- gzcon(url("http://www.stats.ox.ac.uk/pub/datasets/csb/ch12.dat.gz"))
read.table can only read from a text-mode connection.
raw <- textConnection(readLines(z))
close(z)
dat <- read.table(raw)
close(raw)
dat[1:4,]

gzfile and gzcon can inter-work.
Of course here one would use gzfile, but file() can be replaced by
any other connection generator.
zz <- gzfile("ex.gz", "w")
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
readLines(zz <- gzcon(file("ex.gz", "rb")))
close(zz)
unlink("ex.gz")

zz <- gzcon(file("ex2.gz", "wb"))
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
readLines(zz <- gzfile("ex2.gz"))
close(zz)
unlink("ex2.gz")

hexmode Display Numbers in Hexadecimal

Description

Convert or print integers in hexadecimal format, with as many digits as are needed to display the
largest, using leading zeroes as necessary.

Usage

as.hexmode(x)

S3 method for class ’hexmode’
as.character(x, ...)

S3 method for class ’hexmode’
format(x, width = NULL, upper.case = FALSE, ...)

S3 method for class ’hexmode’
print(x, ...)

Hyperbolic 223

Arguments

x An object, for the methods inheriting from class "hexmode".

width NULL or a positive integer specifying the minimum field width to be used, with
padding by leading zeroes.

upper.case a logical indicating whether to use upper-case letters or lower-case letters (de-
fault).

... further arguments passed to or from other methods.

Details

Class "hexmode" consists of integer vectors with that class attribute, used merely to ensure that they
are printed in hex.

If width = NULL (the default), the output is padded with leading zeroes to the smallest width needed
for all the non-missing elements.

as.hexmode can convert integers (of type "integer" or "double") and character vectors whose
elements contain only 0-9, a-f, A-F (or are NA) to class "hexmode".

There is a ! method and |, & and xor methods: these recycle their arguments to the length of the
longer and then apply the operators bitwise to each element.

See Also

octmode, sprintf for other options in converting integers to hex, strtoi to convert hex strings to
integers.

Hyperbolic Hyperbolic Functions

Description

These functions give the obvious hyperbolic functions. They respectively compute the hyperbolic
cosine, sine, tangent, and their inverses, arc-cosine, arc-sine, arc-tangent (or ‘area cosine’, etc).

Usage

cosh(x)
sinh(x)
tanh(x)
acosh(x)
asinh(x)
atanh(x)

Arguments

x a numeric or complex vector

224 iconv

Details

These are internal generic primitive functions: methods can be defined for them individually or via
the Math group generic.

Branch cuts are consistent with the inverse trigonometric functions asin et seq, and agree with those
defined in Abramowitz and Stegun, figure 4.7, page 86. The behaviour actually on the cuts follows
the C99 standard which requires continuity coming round the endpoint in a counter-clockwise di-
rection.

S4 methods

All are S4 generic functions: methods can be defined for them individually or via the Math group
generic.

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyper-
bolic Functions

See Also

The trigonometric functions, cos, sin, tan, and their inverses acos, asin, atan.

The logistic distribution function plogis is a shifted version of tanh() for numeric x.

iconv Convert Character Vector between Encodings

Description

This uses system facilities to convert a character vector between encodings: the ‘i’ stands for ‘in-
ternationalization’.

Usage

iconv(x, from = "", to = "", sub = NA, mark = TRUE, toRaw = FALSE)

iconvlist()

Arguments

x A character vector, or an object to be converted to a character vector
by as.character, or a list with NULL and raw elements as returned by
iconv(toRaw = TRUE).

from A character string describing the current encoding.

to A character string describing the target encoding.

sub character string. If not NA it is used to replace any non-convertible bytes in the
input. (This would normally be a single character, but can be more.) If "byte",
the indication is "<xx>" with the hex code of the byte.

mark logical, for expert use. Should encodings be marked?

toRaw logical. Should a list of raw vectors be returned rather than a character vector?

iconv 225

Details

The names of encodings and which ones are available are platform-dependent. All R platforms
support "" (for the encoding of the current locale), "latin1" and "UTF-8". Generally case is
ignored when specifying an encoding.

On many platforms, including Windows, iconvlist provides an alphabetical list of the supported
encodings. On others, the information is on the man page for iconv(5) or elsewhere in the man
pages (but beware that the system command iconv may not support the same set of encodings as
the C functions R calls). Unfortunately, the names are rarely valid across all platforms.

Elements of x which cannot be converted (perhaps because they are invalid or because they cannot
be represented in the target encoding) will be returned as NA unless sub is specified.

Most versions of iconv will allow transliteration by appending ‘//TRANSLIT’ to the to encoding:
see the examples.

Encoding "ASCII" is also accepted, and on most systems "C" and "POSIX" are synonyms for ASCII.

Any encoding bits (see Encoding) on elements of x are ignored: they will always be translated as
if from from even if declared otherwise.

Value

If toRaw = FALSE (the default), the value is a character vector of the same length and the same
attributes as x (after conversion to a character vector).

If mark = TRUE (the default) the elements of the result have a declared encoding if from is
"latin1" or "UTF-8", or if from = "" and the current locale’s encoding is detected as Latin-1
or UTF-8.

If toRaw = TRUE, the value is a vector of the same length and the same attributes as x whose
elements are either NULL (if conversion fails) or a raw vector.

For iconvlist(), a character vector (typically of a few hundred elements).

Implementation Details

There are three main implementations of iconv in use. ‘glibc’ (as used on Linux) contains one.
Several platforms supply GNU ‘libiconv’, including Mac OS X, FreeBSD and Cygwin. On
Windows we use a version of Yukihiro Nakadaira’s ‘win_iconv’, which is based on Windows’
codepages. All three have iconvlist, ignore case in encoding names and support ‘//TRANSLIT’
(but with different results, and for ‘win_iconv’ currently a ‘best fit’ strategy is used except for
to = "ASCII").

Most commercial Unixes contain an implemetation of iconv but none we have encountered have
supported the encoding names we need: the “R Installation and Administration Manual” recom-
mends installing GNU ‘libiconv’ on Solaris and AIX, for example.

There are other implementations, e.g. NetBSD uses one from the Citrus project (which does not
support ‘//TRANSLIT’) and there is an older FreeBSD port (‘libiconv’ is usually used there): it
has not been reported whether or not these work with R.

Note that you cannot rely on invalid inputs being detected, especially for to = "ASCII" where some
implementations allow 8-bit characters and pass them through unchanged or with transliteration.

See Also

localeToCharset, file.

226 icuSetCollate

Examples

In principle, not all systems have iconvlist
try(utils::head(iconvlist(), n = 50))

Not run:
convert from Latin-2 to UTF-8: two of the glibc iconv variants.
iconv(x, "ISO_8859-2", "UTF-8")
iconv(x, "LATIN2", "UTF-8")

End(Not run)

Both x below are in latin1 and will only display correctly in a
locale that can represent and display latin1.
x <- "fa\xE7ile"
Encoding(x) <- "latin1"
x
charToRaw(xx <- iconv(x, "latin1", "UTF-8"))
xx

iconv(x, "latin1", "ASCII") # NA
iconv(x, "latin1", "ASCII", "?") # "fa?ile"
iconv(x, "latin1", "ASCII", "") # "faile"
iconv(x, "latin1", "ASCII", "byte") # "fa<e7>ile"

Extracts from old R help files (they are nowadays in UTF-8)
x <- c("Ekstr\xf8m", "J\xf6reskog", "bi\xdfchen Z\xfcrcher")
Encoding(x) <- "latin1"
x
try(iconv(x, "latin1", "ASCII//TRANSLIT")) # platform-dependent
iconv(x, "latin1", "ASCII", sub="byte")
and for Windows’ ’Unicode’
str(xx <- iconv(x, "latin1", "UTF-16LE", toRaw = TRUE))
iconv(xx, "UTF-16LE", "UTF-8")

icuSetCollate Setup Collation by ICU

Description

Controls the way collation is done by ICU (an optional part of the R build).

Usage

icuSetCollate(...)

Arguments

... Named arguments, see ‘Details’.

icuSetCollate 227

Details

Optionally, R can be built to collate character strings by ICU (http://site.icu-project.org).
For such systems, icuSetCollate can be used to tune the way collation is done. On other builds
calling this function does nothing, with a warning.

Possible arguments are

locale: A character string such as "da_DK" giving the country whose collation rules are to be
used. If present, this should be the first argument.

case_first: "upper", "lower" or "default", asking for upper- or lower-case characters to be
sorted first. The default is usually lower-case first, but not in all languages (see the Danish
example).

alternate_handling: Controls the handling of ‘variable’ characters (mainly punctuation and
symbols). Possible values are "non_ignorable" (primary strength) and "shifted" (qua-
ternary strength).

strength: Which components should be used? Possible values "primary", "secondary",
"tertiary" (default), "quaternary" and "identical".

french_collation: In a French locale the way accents affect collation is from right to left,
whereas in most other locales it is from left to right. Possible values "on", "off" and
"default".

normalization: Should strings be normalized? Possible values are "on" and "off" (default).
This affects the collation of composite characters.

case_level: An additional level between secondary and tertiary, used to distinguish large and
small Japanese Kana characters. Possible values "on" and "off" (default).

hiragana_quaternary: Possible values "on" (sort Hiragana first at quaternary level) and "off".

Only the first three are likely to be of interest except to those with a detailed understanding of
collation and specialized requirements.

Some examples are case_level="on", strength="primary" to ignore accent differences and
alternate_handling="shifted" to ignore space and punctuation characters.

Note that these settings have no effect if collation is set to the C locale, unless locale is specified.

Note

As from R 2.9.0, ICU is used by default wherever it is available: this include Mac OS >= 10.4 and
many Linux installations.

See Also

Comparison, sort

The ICU user guide chapter on collation (http://userguide.icu-project.org/collation).

Examples

these examples depend on having ICU available, and on the locale
x <- c("Aarhus", "aarhus", "safe", "test", "Zoo")
sort(x)
icuSetCollate(case_first="upper"); sort(x)
icuSetCollate(case_first="lower"); sort(x)

icuSetCollate(locale="da_DK", case_first="default"); sort(x)
icuSetCollate(locale="et_EE"); sort(x)

http://site.icu-project.org
http://userguide.icu-project.org/collation

228 identical

identical Test Objects for Exact Equality

Description

The safe and reliable way to test two objects for being exactly equal. It returns TRUE in this case,
FALSE in every other case.

Usage

identical(x, y, num.eq = TRUE, single.NA = TRUE, attrib.as.set = TRUE,
ignore.bytecode = TRUE)

Arguments

x, y any R objects.

num.eq logical indicating if (double and complex non-NA) numbers should be compared
using == (‘equal’), or by bitwise comparison. The latter (non-default) differen-
tiates between -0 and +0.

single.NA logical indicating if there is conceptually just one numeric NA and one NaN;
single.NA = FALSE differentiates bit patterns.

attrib.as.set logical indicating if attributes of x and y should be treated as unordered
tagged pairlists (“sets”); this currently also applies to slots of S4 objects. It
may well be too strict to set attrib.as.set = FALSE.

ignore.bytecode

logical indicating if byte code should be ignored when comparing closures.

Details

A call to identical is the way to test exact equality in if and while statements, as well as in
logical expressions that use && or ||. In all these applications you need to be assured of getting a
single logical value.

Users often use the comparison operators, such as == or !=, in these situations. It looks natural,
but it is not what these operators are designed to do in R. They return an object like the arguments.
If you expected x and y to be of length 1, but it happened that one of them wasn’t, you will not
get a single FALSE. Similarly, if one of the arguments is NA, the result is also NA. In either case, the
expression if(x == y).... won’t work as expected.

The function all.equal is also sometimes used to test equality this way, but was intended for
something different: it allows for small differences in numeric results.

The computations in identical are also reliable and usually fast. There should never be an error.
The only known way to kill identical is by having an invalid pointer at the C level, generating a
memory fault. It will usually find inequality quickly. Checking equality for two large, complicated
objects can take longer if the objects are identical or nearly so, but represent completely independent
copies. For most applications, however, the computational cost should be negligible.

If single.NA is true, as by default, identical sees NaN as different from NA_real_, but all NaNs
are equal (and all NA of the same type are equal).

Character strings are regarded as identical if they are in different marked encodings but would agree
when translated to UTF-8.

identical 229

If attrib.as.set is true, as by default, comparison of attributes view them as a set (and not a
vector, so order is not tested).

If ignore.bytecode is true (the default), the compiled bytecode of a function (see cmpfun) will
be ignored in the comparison. If it is false, functions will compare equal only if they are copies of
the same compiled object (or both are uncompiled). To check whether two different compiles are
equal, you should compare the results of disassemble().

Note that identical(x,y,FALSE,FALSE,FALSE,FALSE) pickily tests for very exact equality.

Value

A single logical value, TRUE or FALSE, never NA and never anything other than a single value.

Author(s)

John Chambers and R Core

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

all.equal for descriptions of how two objects differ; Comparison for operators that generate ele-
mentwise comparisons. isTRUE is a simple wrapper based on identical.

Examples

identical(1, NULL) ## FALSE -- don’t try this with ==
identical(1, 1.) ## TRUE in R (both are stored as doubles)
identical(1, as.integer(1)) ## FALSE, stored as different types

x <- 1.0; y <- 0.99999999999
how to test for object equality allowing for numeric fuzz :
(E <- all.equal(x,y))
isTRUE(E) # which is simply defined to just use
identical(TRUE, E)
If all.equal thinks the objects are different, it returns a
character string, and the above expression evaluates to FALSE

even for unusual R objects :
identical(.GlobalEnv, environment())

------- Pickyness Flags : -----------------------------

the infamous example:
identical(0., -0.) # TRUE, i.e. not differentiated
identical(0., -0., num.eq = FALSE)
similar:
identical(NaN, -NaN) # TRUE
identical(NaN, -NaN, single.NA=FALSE) # differ on bit-level
for functions:
f <- function(x) x
f
g <- compiler::cmpfun(f)
g

230 ifelse

identical(f, g)
identical(f, g, ignore.bytecode=FALSE)

identity Identity Function

Description

A trivial identity function returning its argument.

Usage

identity(x)

Arguments

x an R object.

ifelse Conditional Element Selection

Description

ifelse returns a value with the same shape as test which is filled with elements selected from
either yes or no depending on whether the element of test is TRUE or FALSE.

Usage

ifelse(test, yes, no)

Arguments

test an object which can be coerced to logical mode.

yes return values for true elements of test.

no return values for false elements of test.

Details

If yes or no are too short, their elements are recycled. yes will be evaluated if and only if any
element of test is true, and analogously for no.

Missing values in test give missing values in the result.

Value

A vector of the same length and attributes (including dimensions and "class") as test and data
values from the values of yes or no. The mode of the answer will be coerced from logical to
accommodate first any values taken from yes and then any values taken from no.

integer 231

Warning

The mode of the result may depend on the value of test (see the examples), and the class attribute
(see oldClass) of the result is taken from test and may be inappropriate for the values selected
from yes and no.

Sometimes it is better to use a construction such as (tmp <- yes; tmp[!test] <- no[!test]; tmp),
possibly extended to handle missing values in test.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

if.

Examples

x <- c(6:-4)
sqrt(x) #- gives warning
sqrt(ifelse(x >= 0, x, NA)) # no warning

Note: the following also gives the warning !
ifelse(x >= 0, sqrt(x), NA)

example of different return modes:
yes <- 1:3
no <- pi^(0:3)
typeof(ifelse(NA, yes, no)) # logical
typeof(ifelse(TRUE, yes, no)) # integer
typeof(ifelse(FALSE, yes, no)) # double

integer Integer Vectors

Description

Creates or tests for objects of type "integer".

Usage

integer(length = 0)
as.integer(x, ...)
is.integer(x)

Arguments

length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.

x object to be coerced or tested.

... further arguments passed to or from other methods.

232 integer

Details

Integer vectors exist so that data can be passed to C or Fortran code which expects them, and so that
(small) integer data can be represented exactly and compactly.

Note that current implementations of R use 32-bit integers for integer vectors, so the range of
representable integers is restricted to about ±2 × 109: doubles can hold much larger integers
exactly.

Value

integer creates a integer vector of the specified length. Each element of the vector is equal to 0.

as.integer attempts to coerce its argument to be of integer type. The answer will be NA unless
the coercion succeeds. Real values larger in modulus than the largest integer are coerced to NA
(unlike S which gives the most extreme integer of the same sign). Non-integral numeric values
are truncated towards zero (i.e., as.integer(x) equals trunc(x) there), and imaginary parts of
complex numbers are discarded (with a warning). Character strings containing optional whitespace
followed by either a decimal representation or a hexadecimal representation (starting with 0x or 0X)
can be converted, as well as any allowed by the platform for real numbers. Like as.vector it strips
attributes including names. (To ensure that an object x is of integer type without stripping attributes,
use storage.mode(x) <- "integer".)

is.integer returns TRUE or FALSE depending on whether its argument is of integer type or not,
unless it is a factor when it returns FALSE.

Note

is.integer(x) does not test if x contains integer numbers! For that, use round, as in the function
is.wholenumber(x) in the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

numeric, storage.mode.

round (and ceiling and floor on that help page) to convert to integral values.

Examples

as.integer() truncates:
x <- pi * c(-1:1,10)
as.integer(x)

is.integer(1) # is FALSE !

is.wholenumber <-
function(x, tol = .Machine$double.eps^0.5) abs(x - round(x)) < tol

is.wholenumber(1) # is TRUE
(x <- seq(1,5, by=0.5))
is.wholenumber(x) #--> TRUE FALSE TRUE ...

interaction 233

interaction Compute Factor Interactions

Description

interaction computes a factor which represents the interaction of the given factors. The result of
interaction is always unordered.

Usage

interaction(..., drop = FALSE, sep = ".", lex.order = FALSE)

Arguments

... the factors for which interaction is to be computed, or a single list giving those
factors.

drop if drop is TRUE, unused factor levels are dropped from the result. The default is
to retain all factor levels.

sep string to construct the new level labels by joining the constituent ones.

lex.order logical indicating if the order of factor concatenation should be lexically or-
dered.

Value

A factor which represents the interaction of the given factors. The levels are labelled as the levels
of the individual factors joined by sep which is . by default.

By default, when lex.order = FALSE, the levels are ordered so the level of the first factor varies
fastest, then the second and so on. This is the reverse of lexicographic ordering (which you can get
by lex.order = TRUE), and differs from :. (It is done this way for compatibility with S.)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

factor; : where f:g is similar to interaction(f, g, sep=":") when f and g are factors.

Examples

a <- gl(2, 4, 8)
b <- gl(2, 2, 8, labels = c("ctrl", "treat"))
s <- gl(2, 1, 8, labels = c("M", "F"))
interaction(a, b)
interaction(a, b, s, sep = ":")
stopifnot(identical(a:s,

interaction(a, s, sep = ":", lex.order = TRUE)),
identical(a:s:b,

interaction(a, s, b, sep = ":", lex.order = TRUE)))

234 interactive

interactive Is R Running Interactively?

Description

Return TRUE when R is being used interactively and FALSE otherwise.

Usage

interactive()

Details

An interactive R session is one in which it is assumed that there is a human operator to interact
with, so for example R can prompt for corrections to incorrect input or ask what to do next or if it
is OK to move to the next plot.

GUI consoles will arrange to start R in an interactive session. When R is run in a terminal (via
Rterm.exe on Windows), it assumes that it is interactive if ‘stdin’ is connected to a (pseudo-
)terminal and not if ‘stdin’ is redirected to a file or pipe. Command-line options ‘--interactive’
(Unix) and ‘--ess’ (Windows, Rterm.exe) override the default assumption.

Embedded uses of R can set a session to be interactive or not.

Internally, whether a session is interactive determines

• how some errors are handled and reported, e.g. see stop and options("showWarnCalls").

• whether one of ‘--save’, ‘--no-save’ or ‘--vanilla’ is required, and if R ever asks whether
to save the workspace.

• the choice of default graphics device launched when needed and by dev.new: see
options("device")

• whether graphics devices ever ask for confirmation of a new page.

In addition, R’s own R code makes use of interactive(): for example help, debugger and
install.packages do.

Note

This is a primitive function.

See Also

source, .First

Examples

.First <- function() if(interactive()) x11()

Internal 235

Internal Call an Internal Function

Description

.Internal performs a call to an internal code which is built in to the R interpreter.

Only true R wizards should even consider using this function, and only R developers can add to the
list of internal functions.

Usage

.Internal(call)

Arguments

call a call expression

See Also

.Primitive, .External (the nearest equivalent available to users).

InternalMethods Internal Generic Functions

Description

Many R-internal functions are generic and allow methods to be written for.

Details

The following primitive and internal functions are generic, i.e., you can write methods for them:

[, [[, $, [<-, [[<-, $<-,

length, length<-, dimnames, dimnames<-, dim, dim<-, names, names<-, levels<-,

c, unlist, cbind, rbind,

as.character, as.complex, as.double, as.integer, as.logical, as.raw, as.vector,
is.array, is.matrix, is.na, is.nan, is.numeric, rep, seq.int (which dispatches methods
for "seq") and xtfrm

In addition, is.name is a synonym for is.symbol and dispatches methods for the latter.

Note that all of the group generic functions are also internal/primitive and allow methods to be
written for them.

.S3PrimitiveGenerics is a character vector listing the primitives which are internal generic and
not group generic. Currently as.vector, cbind, rbind and unlist are the internal non-primitive
functions which are internally generic.

For efficiency, internal dispatch only occurs on objects, that is those for which is.object returns
true.

See Also

methods for the methods which are available.

236 is.finite

invisible Change the Print Mode to Invisible

Description

Return a (temporarily) invisible copy of an object.

Usage

invisible(x)

Arguments

x an arbitrary R object.

Details

This function can be useful when it is desired to have functions return values which can be assigned,
but which do not print when they are not assigned.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

withVisible, return, function.

Examples

These functions both return their argument
f1 <- function(x) x
f2 <- function(x) invisible(x)
f1(1)# prints
f2(1)# does not

is.finite Finite, Infinite and NaN Numbers

Description

is.finite and is.infinite return a vector of the same length as x, indicating which elements are
finite (not infinite and not missing) or infinite.

Inf and -Inf are positive and negative infinity whereas NaN means ‘Not a Number’. (These apply to
numeric values and real and imaginary parts of complex values but not to values of integer vectors.)
Inf and NaN are reserved words in the R language.

is.finite 237

Usage

is.finite(x)
is.infinite(x)
Inf
NaN
is.nan(x)

Arguments

x R object to be tested: the default methods handle atomic vectors.

Details

is.finite returns a vector of the same length as x the jth element of which is TRUE if x[j] is finite
(i.e., it is not one of the values NA, NaN, Inf or -Inf) and FALSE otherwise. Complex numbers are
finite if both the real and imaginary parts are.

is.infinite returns a vector of the same length as x the jth element of which is TRUE if x[j]
is infinite (i.e., equal to one of Inf or -Inf) and FALSE otherwise. This will be false unless x is
numeric or complex. Complex numbers are infinite if either the real or the imaginary part is.

is.nan tests if a numeric value is NaN. Do not test equality to NaN, or even use identical, since
systems typically have many different NaN values. One of these is used for the numeric missing
value NA, and is.nan is false for that value. A complex number is regarded as NaN if either the real
or imaginary part is NaN but not NA. All elements of logical, integer and raw vectors are considered
not to be NaN.

All three functions accept NULL as input and return a length zero result. The default methods accept
character and raw vectors, and return FALSE for all entries. Prior to R version 2.14.0 they accepted
all input, returning FALSE for most non-numeric values; cases which are not atomic vectors are now
signalled as errors.

All three functions are generic: you can write methods to handle specific classes of objects, see
InternalMethods.

Value

A logical vector of the same length as x: dim, dimnames and names attributes are preserved.

Note

In R, basically all mathematical functions (including basic Arithmetic), are supposed to work
properly with +/- Inf and NaN as input or output.

The basic rule should be that calls and relations with Infs really are statements with a proper
mathematical limit.

Computations involving NaN will return NaN or perhaps NA: which of those two is not guaranteed
and may depend on the R platform (since compilers may re-order computations).

References

The IEC 60559 standard, also known as the ANSI/IEEE 754 Floating-Point Standard.

http://en.wikipedia.org/wiki/NaN.

D. Goldberg (1991) What Every Computer Scientist Should Know about Floating-Point Arithmetic
ACM Computing Surveys, 23(1).

http://en.wikipedia.org/wiki/NaN

238 is.function

Postscript version available at http://www.validlab.com/goldberg/paper.ps Extended PDF
version at http://www.validlab.com/goldberg/paper.pdf

The C99 function isfinite is used for is.finite if available.

See Also

NA, ‘Not Available’ which is not a number as well, however usually used for missing values and
applies to many modes, not just numeric and complex.

Arithmetic, double.

Examples

pi / 0 ## = Inf a non-zero number divided by zero creates infinity
0 / 0 ## = NaN

1/0 + 1/0 # Inf
1/0 - 1/0 # NaN

stopifnot(
1/0 == Inf,
1/Inf == 0

)
sin(Inf)
cos(Inf)
tan(Inf)

is.function Is an Object of Type (Primitive) Function?

Description

Checks whether its argument is a (primitive) function.

Usage

is.function(x)
is.primitive(x)

Arguments

x an R object.

Details

is.primitive(x) tests if x is a primitive function (either a "builtin" or "special" as described
for typeof)? It is a primitive function.

Value

TRUE if x is a (primitive) function, and FALSE otherwise.

http://www.validlab.com/goldberg/paper.ps
http://www.validlab.com/goldberg/paper.pdf

is.language 239

Examples

is.function(1) # FALSE
is.function(is.primitive) # TRUE: it is a function, but ..
is.primitive(is.primitive) # FALSE:it’s not a primitive one, whereas
is.primitive(is.function) # TRUE: that one *is*

is.language Is an Object a Language Object?

Description

is.language returns TRUE if x is a variable name, a call, or an expression.

Usage

is.language(x)

Arguments

x object to be tested.

Note

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

ll <- list(a = expression(x^2 - 2*x + 1), b = as.name("Jim"),
c = as.expression(exp(1)), d = call("sin", pi))

sapply(ll, typeof)
sapply(ll, mode)
stopifnot(sapply(ll, is.language))

is.object Is an Object ‘internally classed’?

Description

A function rather for internal use. It returns TRUE if the object x has the R internal OBJECT bit set,
and FALSE otherwise. The OBJECT bit is set when a "class" attribute is added and removed when
that attribute is removed, so this is a very efficient way to check if an object has a class attribute.
(S4 objects always should.)

Usage

is.object(x)

240 is.R

Arguments

x object to be tested.

Note

This is a primitive function.

See Also

class, and methods.

isS4.

Examples

is.object(1) # FALSE
is.object(as.factor(1:3)) # TRUE

is.R Are we using R, rather than S?

Description

Test if running under R.

Usage

is.R()

Details

The function has been written such as to correctly run in all versions of R, S and S-PLUS. In order
for code to be runnable in both R and S dialects previous to S-PLUS 8.0, your code must either
define is.R or use it as

if (exists("is.R") && is.function(is.R) && is.R()) {
R-specific code
} else {
S-version of code
}

Value

is.R returns TRUE if we are using R and FALSE otherwise.

See Also

R.version, system.

Examples

x <- stats::runif(20); small <- x < 0.4
In the early years of R, ’which()’ only existed in R:
if(is.R()) which(small) else seq(along=small)[small]

is.recursive 241

is.recursive Is an Object Atomic or Recursive?

Description

is.atomic returns TRUE if x is an atomic vector (or NULL) and FALSE otherwise.

is.recursive returns TRUE if x has a recursive (list-like) structure and FALSE otherwise.

Usage

is.atomic(x)
is.recursive(x)

Arguments

x object to be tested.

Details

is.atomic is true for the atomic vector types ("logical", "integer", "numeric", "complex",
"character" and "raw") and NULL.

Most types of objects are regarded as recursive, except for atomic vector types, NULL and symbols
(as given by as.name).

These are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

is.list, is.language, etc, and the demo("is.things").

Examples

require(stats)

is.a.r <- function(x) c(is.atomic(x), is.recursive(x))

is.a.r(c(a=1,b=3)) # TRUE FALSE
is.a.r(list()) # FALSE TRUE - a list is a list
is.a.r(list(2)) # FALSE TRUE
is.a.r(lm) # FALSE TRUE
is.a.r(y ~ x) # FALSE TRUE
is.a.r(expression(x+1)) # FALSE TRUE (nowadays)

242 is.unsorted

is.single Is an Object of Single Precision Type?

Description

is.single reports an error. There are no single precision values in R.

Usage

is.single(x)

Arguments

x object to be tested.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

is.unsorted Test if an Object is Not Sorted

Description

Test if an object is not sorted, without the cost of sorting it.

Usage

is.unsorted(x, na.rm = FALSE, strictly = FALSE)

Arguments

x an R object with a class or a numeric, complex, character or logical vector.
na.rm logical. Should missing values be removed before checking?
strictly logical indicating if the check should be for strictly increasing values.

Value

A length-one logical value. All objects of length 0 or 1 are sorted: the result will be NA for objects
of length 2 or more except for atomic vectors and objects with a class (where the >= or > method is
used to compare x[i] with x[i-1] for i in 2:length(x)).

Note

This function is designed for objects with one-dimensional indices, as described above. Dataframes,
matrices and other arrays may give surprising results.

See Also

sort, order.

ISOdatetime 243

ISOdatetime Date-time Conversion Functions from Numeric Representations

Description

Convenience wrappers to create date-times from numeric representations.

Usage

ISOdatetime(year, month, day, hour, min, sec, tz = "")
ISOdate(year, month, day, hour = 12, min = 0, sec = 0, tz = "GMT")

Arguments

year, month, day

numerical values to specify a day.

hour, min, sec numerical values for a time within a day. Fractional seconds are allowed.

tz A timezone specification to be used for the conversion. "" is the current time
zone and "GMT" is UTC.

Details

ISOdatetime and ISOdate are convenience wrappers for strptime that differ only in their defaults
and that ISOdate sets UTC as the timezone. For dates without times it would normally be better to
use the "Date" class.

The main arguments will be recycled using the usual recycling rules.

Value

An object of class "POSIXct".

See Also

DateTimeClasses for details of the date-time classes; strptime for conversions from character
strings.

isS4 Test for an S4 object

Description

Tests whether the object is an instance of an S4 class.

Usage

isS4(object)

asS4(object, flag = TRUE, complete = TRUE)
asS3(object, flag = TRUE, complete = TRUE)

244 isSymmetric

Arguments

object Any R object.

flag Optional, logical: indicate direction of conversion.

complete Optional, logical: whether conversion to S3 is completed. Not usually needed,
but see the details section.

Details

Note that isS4 does not rely on the methods package, so in particular it can be used to detect the
need to require that package.

asS3 uses the value of complete to control whether an attempt is made to transform object into a
valid object of the implied S3 class. If complete is TRUE, then an object from an S4 class extending
an S3 class will be transformed into an S3 object with the corresponding S3 class (see S3Part).
This includes classes extending the pseudo-classes array and matrix: such objects will have their
class attribute set to NULL.

Value

isS4 always returns TRUE or FALSE according to whether the internal flag marking an S4 object has
been turned on for this object.

asS4 and asS3 will turn this flag on or off, and asS3 will set the class from the objects .S3Class
slot if one exists. Note that asS3 will not turn the object into an S3 object unless there is a valid
conversion; that is, an object of type other than "S4" for which the S4 object is an extension, unless
argument complete is FALSE.

See Also

is.object for a more general test; Methods for general information on S4.

Examples

isS4(pi) # FALSE
isS4(getClass("MethodDefinition")) # TRUE

isSymmetric Test if a Matrix or other Object is Symmetric

Description

Generic function to test if object is symmetric or not. Currently only a matrix method is imple-
mented.

Usage

isSymmetric(object, ...)
S3 method for class ’matrix’
isSymmetric(object, tol = 100 * .Machine$double.eps, ...)

jitter 245

Arguments

object any R object; a matrix for the matrix method.

tol numeric scalar >= 0. Smaller differences are not considered, see
all.equal.numeric.

... further arguments passed to methods; the matrix method passes these to
all.equal.

Details

The matrix method is used inside eigen by default to test symmetry of matrices up to rounding
error, using all.equal. It might not be appropriate in all situations.

Note that a matrix is only symmetric if its rownames and colnames are identical.

Value

logical indicating if object is symmetric or not.

See Also

eigen which calls isSymmetric when its symmetric argument is missing.

Examples

isSymmetric(D3 <- diag(3)) # -> TRUE

D3[2,1] <- 1e-100
D3
isSymmetric(D3) # TRUE
isSymmetric(D3, tol = 0) # FALSE for zero-tolerance

jitter ‘Jitter’ (Add Noise) to Numbers

Description

Add a small amount of noise to a numeric vector.

Usage

jitter(x, factor=1, amount = NULL)

Arguments

x numeric vector to which jitter should be added.

factor numeric

amount numeric; if positive, used as amount (see below), otherwise, if = 0 the default is
factor * z/50.
Default (NULL): factor * d/5 where d is about the smallest difference between
x values.

246 kappa

Details

The result, say r, is r <- x + runif(n, -a, a) where n <- length(x) and a is the amount
argument (if specified).

Let z <- max(x) - min(x) (assuming the usual case). The amount a to be added is either provided
as positive argument amount or otherwise computed from z, as follows:

If amount == 0, we set a <- factor * z/50 (same as S).

If amount is NULL (default), we set a <- factor * d/5 where d is the smallest difference between
adjacent unique (apart from fuzz) x values.

Value

jitter(x,...) returns a numeric of the same length as x, but with an amount of noise added in
order to break ties.

Author(s)

Werner Stahel and Martin Maechler, ETH Zurich

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P.A. (1983) Graphical Methods for Data
Analysis. Wadsworth; figures 2.8, 4.22, 5.4.

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

rug which you may want to combine with jitter.

Examples

round(jitter(c(rep(1,3), rep(1.2, 4), rep(3,3))), 3)
These two ’fail’ with S-plus 3.x:
jitter(rep(0, 7))
jitter(rep(10000,5))

kappa Compute or Estimate the Condition Number of a Matrix

Description

The condition number of a regular (square) matrix is the product of the norm of the matrix and the
norm of its inverse (or pseudo-inverse), and hence depends on the kind of matrix-norm.

kappa() computes by default (an estimate of) the 2-norm condition number of a matrix or of the R
matrix of a QR decomposition, perhaps of a linear fit. The 2-norm condition number can be shown
to be the ratio of the largest to the smallest non-zero singular value of the matrix.

rcond() computes an approximation of the reciprocal condition number, see the details.

kappa 247

Usage

kappa(z, ...)
Default S3 method:
kappa(z, exact = FALSE,

norm = NULL, method = c("qr", "direct"), ...)
S3 method for class ’lm’
kappa(z, ...)
S3 method for class ’qr’
kappa(z, ...)

.kappa_tri(z, exact = FALSE, LINPACK = TRUE, norm=NULL, ...)

rcond(x, norm = c("O","I","1"), triangular = FALSE, ...)

Arguments

z,x A matrix or a the result of qr or a fit from a class inheriting from "lm".

exact logical. Should the result be exact?

norm character string, specifying the matrix norm with respect to which the condition
number is to be computed, see also norm. For rcond, the default is "O", meaning
the One- or 1-norm. The (currently only) other possible value is "I" for the
infinity norm.

method character string, specifying the method to be used; "qr" is default for back-
compatibility, mainly.

triangular logical. If true, the matrix used is just the lower triangular part of z.

LINPACK logical. If true and z is not complex, the Linpack routine dtrco() is called;
otherwise the relevant Lapack routine is.

... further arguments passed to or from other methods; for kappa.*(), notably
LINPACK when norm is not "2".

Details

For kappa(), if exact = FALSE (the default) the 2-norm condition number is estimated by a cheap
approximation. However, the exact calculation (via svd) is also likely to be quick enough.

Note that the 1- and Inf-norm condition numbers are much faster to calculate, and rcond() com-
putes these reciprocal condition numbers, also for complex matrices, using standard Lapack rou-
tines.

kappa and rcond are different interfaces to partly identical functionality.

.kappa_tri is an internal function called by kappa.qr and kappa.default.

Value

The condition number, kappa, or an approximation if exact = FALSE.

Author(s)

The design was inspired by (but differs considerably from) the S function of the same name de-
scribed in Chambers (1992).

248 kronecker

Source

The LAPACK routines DTRCON and ZTRCON and the LINPACK routine DTRCO.

LAPACK and LINPACK are from http://www.netlib.org/lapack and http://www.netlib.
org/linpack and their guides are listed in the references.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: SIAM Publications.

See Also

norm; svd for the singular value decomposition and qr for the QR one.

Examples

kappa(x1 <- cbind(1,1:10))# 15.71
kappa(x1, exact = TRUE) # 13.68
kappa(x2 <- cbind(x1,2:11))# high! [x2 is singular!]

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
sv9 <- svd(h9 <- hilbert(9))$ d
kappa(h9)# pretty high!
kappa(h9, exact = TRUE) == max(sv9) / min(sv9)
kappa(h9, exact = TRUE) / kappa(h9) # .677 (i.e., rel.error = 32%)

kronecker Kronecker Products on Arrays

Description

Computes the generalised kronecker product of two arrays, X and Y.

Usage

kronecker(X, Y, FUN = "*", make.dimnames = FALSE, ...)
X %x% Y

Arguments

X A vector or array.

Y A vector or array.

FUN a function; it may be a quoted string.

make.dimnames Provide dimnames that are the product of the dimnames of X and Y.

... optional arguments to be passed to FUN.

http://www.netlib.org/lapack
http://www.netlib.org/linpack
http://www.netlib.org/linpack
http://www.netlib.org/lapack/lug/lapack_lug.html

l10n_info 249

Details

If X and Y do not have the same number of dimensions, the smaller array is padded with dimensions
of size one. The returned array comprises submatrices constructed by taking X one term at a time
and expanding that term as FUN(x, Y, ...).

%x% is an alias for kronecker (where FUN is hardwired to "*").

Value

An array A with dimensions dim(X) * dim(Y).

Author(s)

Jonathan Rougier

References

Shayle R. Searle (1982) Matrix Algebra Useful for Statistics. John Wiley and Sons.

See Also

outer, on which kronecker is built and %*% for usual matrix multiplication.

Examples

simple scalar multiplication
(M <- matrix(1:6, ncol=2))
kronecker(4, M)
Block diagonal matrix:
kronecker(diag(1, 3), M)

ask for dimnames

fred <- matrix(1:12, 3, 4, dimnames=list(LETTERS[1:3], LETTERS[4:7]))
bill <- c("happy" = 100, "sad" = 1000)
kronecker(fred, bill, make.dimnames = TRUE)

bill <- outer(bill, c("cat"=3, "dog"=4))
kronecker(fred, bill, make.dimnames = TRUE)

l10n_info Localization Information

Description

Report on localization information.

Usage

l10n_info()

250 labels

Details

Common codepages are 1252 (Western European), 1250 (Central European), 1251 (Cyrillic), 1253
(Greek), 1254 (Turkish), 1255 (Hebrew), 1256 (Arabic), 1257 (Baltic), 1258 (Vietnamese), 874
(Thai), 932 (Japanese), 936 (Simplified Chinese), 949 (Korean) and 950 (Traditional Chinese). R
does not allow the C locale, and uses 1252 as the default codepage.

Value

A list with three logical components:

MBCS If a multi-byte character set in use?

UTF-8 Is this a UTF-8 locale?

Latin-1 Is this a Latin-1 locale?

codepage integer: the Windows codepage corresponding to the locale R is using (and not
necessarily that Windows is using).

See Also

Sys.getlocale, localeconv

Examples

l10n_info()

labels Find Labels from Object

Description

Find a suitable set of labels from an object for use in printing or plotting, for example. A generic
function.

Usage

labels(object, ...)

Arguments

object Any R object: the function is generic.

... further arguments passed to or from other methods.

Value

A character vector or list of such vectors. For a vector the results is the names or seq_along(x)
and for a data frame or array it is the dimnames (with NULL expanded to seq_len(d[i]).

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

lapply 251

lapply Apply a Function over a List or Vector

Description

lapply returns a list of the same length as X, each element of which is the result of applying FUN to
the corresponding element of X.

sapply is a user-friendly version and wrapper of lapply by default returning a vector,
matrix or, if simplify="array", an array if appropriate, by applying simplify2array().
sapply(x, f, simplify=FALSE, USE.NAMES=FALSE) is the same as lapply(x,f).

vapply is similar to sapply, but has a pre-specified type of return value, so it can be safer (and
sometimes faster) to use.

replicate is a wrapper for the common use of sapply for repeated evaluation of an expression
(which will usually involve random number generation).

simplify2array() is the utility called from sapply() when simplify is not false and is similarly
called from mapply().

Usage

lapply(X, FUN, ...)

sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)

vapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)

replicate(n, expr, simplify = "array")

simplify2array(x, higher=TRUE)

Arguments

X a vector (atomic or list) or an expression object. Other objects (including
classed objects) will be coerced by base::as.list.

FUN the function to be applied to each element of X: see ‘Details’. In the case of
functions like +, %*%, the function name must be backquoted or quoted.

... optional arguments to FUN.

simplify logical or character string; should the result be simplified to a vector, matrix
or higher dimensional array if possible? For sapply it must be named and
not abbreviated. The default value, TRUE, returns a vector or matrix if appro-
priate, whereas if simplify = "array" the result may be an array of “rank”
(=length(dim(.))) one higher than the result of FUN(X[[i]]).

USE.NAMES logical; if TRUE and if X is character, use X as names for the result unless it had
names already. Since this argument follows ... its name cannot be abbreviated.

FUN.VALUE a (generalized) vector; a template for the return value from FUN. See ‘Details’.

n integer: the number of replications.

expr the expression (language object, usually a call) to evaluate repeatedly.

x a list, typically returned from lapply().

252 lapply

higher logical; if true, simplify2array() will produce a (“higher rank”) array
when appropriate, whereas higher = FALSE would return a matrix (or vec-
tor) only. These two cases correspond to sapply(*, simplify = "array")
or simplify = TRUE, respectively.

Details

FUN is found by a call to match.fun and typically is specified as a function or a symbol (e.g. a back-
quoted name) or a character string specifying a function to be searched for from the environment of
the call to lapply.

Function FUN must be able to accept as input any of the elements of X. If the latter is an atomic
vector, FUN will always be passed a length-one vector of the same type as X.

Arguments in ... cannot have the same name as any of the other arguments, and care may be
needed to avoid partial matching to FUN. In general-purpose code it is good practice to name the
first two arguments X and FUN if ... is passed through: this both avoids partial matching to FUN and
ensures that a sensible error message is given if arguments named X or FUN are passed through

Simplification in sapply is only attempted if X has length greater than zero and if the return values
from all elements of X are all of the same (positive) length. If the common length is one the result
is a vector, and if greater than one is a matrix with a column corresponding to each element of X.

Simplification is always done in vapply. This function checks that all values of FUN are compatible
with the FUN.VALUE, in that they must have the same length and type. (Types may be promoted to a
higher type within the ordering logical < integer < real < complex, but not demoted.)

Users of S4 classes should pass a list to lapply and vapply: the internal coercion is done by the
as.list in the base namespace and not one defined by a user (e.g. by setting S4 methods on the
base function).

lapply and vapply are primitive functions.

Value

For lapply, sapply(simplify = FALSE) and replicate(simplify = FALSE), a list.

For sapply(simplify = TRUE) and replicate(simplify = TRUE): if X has length zero or
n = 0, an empty list. Otherwise an atomic vector or matrix or list of the same length as X (of length
n for replicate). If simplification occurs, the output type is determined from the highest type of
the return values in the hierarchy NULL < raw < logical < integer < real < complex < character <
list < expression, after coercion of pairlists to lists.

vapply returns a vector or array of type matching the FUN.VALUE. If length(FUN.VALUE) == 1 a
vector of the same length as X is returned, otherwise an array. If FUN.VALUE is not an array, the
result is a matrix with length(FUN.VALUE) rows and length(X) columns, otherwise an array a
with dim(a) == c(dim(FUN.VALUE), length(X)).

The (Dim)names of the array value are taken from the FUN.VALUE if it is named, otherwise from the
result of the first function call. Column names of the matrix or more generally the names of the last
dimension of the array value or names of the vector value are set from X as in sapply.

Note

sapply(*, simplify = FALSE, USE.NAMES = FALSE) is equivalent to lapply(*).

For historical reasons, the calls created by lapply are unevaluated, and code has been writ-
ten (e.g. bquote) that relies on this. This means that the recorded call is always of the form
FUN(X[[0L]], ...), with 0L replaced by the current integer index. This is not normally a prob-
lem, but it can be if FUN uses sys.call or match.call or if it is a primitive function that makes use

Last.value 253

of the call. This means that it is often safer to call primitive functions with a wrapper, so that e.g.
lapply(ll, function(x) is.numeric(x)) is required in R 2.7.1 to ensure that method dispatch
for is.numeric occurs correctly.

If expr is a function call, be aware of assumptions about where it is evaluated, and in particular
what ... might refer to. You can pass additional named arguments to a function call as additional
named arguments to replicate: see ‘Examples’.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

apply, tapply, mapply for applying a function to multiple arguments, and rapply for a recursive
version of lapply(), eapply for applying a function to each entry in an environment.

Examples

require(stats); require(graphics)

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
compute the list mean for each list element
lapply(x,mean)
median and quartiles for each list element
lapply(x, quantile, probs = 1:3/4)
sapply(x, quantile)
i39 <- sapply(3:9, seq) # list of vectors
sapply(i39, fivenum)
vapply(i39, fivenum,

c(Min. = 0, "1st Qu." = 0, Median = 0, "3rd Qu." = 0, Max. = 0))

sapply(*, "array") -- artificial example
(v <- structure(10*(5:8), names=LETTERS[1:4]))
f2 <- function(x,y) outer(rep(x, length.out=3), y)
(a2 <- sapply(v, f2, y = 2*(1:5), simplify="array"))
a.2 <- vapply(v, f2, outer(1:3, 1:5), y = 2*(1:5))
stopifnot(dim(a2) == c(3,5,4), all.equal(a2, a.2),

identical(dimnames(a2), list(NULL,NULL,LETTERS[1:4])))

hist(replicate(100, mean(rexp(10))))

use of replicate() with parameters:
foo <- function(x=1, y=2) c(x,y)
does not work: bar <- function(n, ...) replicate(n, foo(...))
bar <- function(n, x) replicate(n, foo(x=x))
bar(5, x=3)

Last.value Value of Last Evaluated Expression

254 length

Description

The value of the internal evaluation of a top-level R expression is always assigned to .Last.value
(in package:base) before further processing (e.g., printing).

Usage

.Last.value

Details

The value of a top-level assignment is put in .Last.value, unlike S.

Do not assign to .Last.value in the workspace, because this will always mask the object of the
same name in package:base.

See Also

eval

Examples

These will not work correctly from example(),
but they will in make check or if pasted in,
as example() does not run them at the top level
gamma(1:15) # think of some intensive calculation...
fac14 <- .Last.value # keep them

library("splines") # returns invisibly
.Last.value # shows what library(.) above returned

length Length of an Object

Description

Get or set the length of vectors (including lists) and factors, and of any other R object for which a
method has been defined.

Usage

length(x)
length(x) <- value

Arguments

x an R object. For replacement, a vector or factor.

value an integer: double values will be coerced to integer.

length 255

Details

Both functions are generic: you can write methods to handle specific classes of objects, see Inter-
nalMethods. length<- has a "factor" method.

The replacement form can be used to reset the length of a vector. If a vector is shortened, extra
values are discarded and when a vector is lengthened, it is padded out to its new length with NAs
(nul for raw vectors).

Both are primitive functions.

Value

The default method currently returns an integer of length 1. Since this will change in the future
and may differ for other methods, programmers should not rely on it.

For vectors (including lists) and factors the length is the number of elements. For an environment
it is the number of objects in the environment, and NULL has length 0. For expressions and pairlists
(including language objects and dotlists) it is the length of the pairlist chain. All other objects
(including functions) have length one: note that for functions this differs from S.

The replacement form removes all the attributes of x except its names, which are adjusted (and if
necessary extended by "").

Warning

Package authors have written methods that return a result of length other than one (Formula) and
that return a vector of type double (Matrix), even with non-integer values (earlier versions of sets).
As from R 2.15.2, where a single double value is returned that can be represented as an integer it is
returned as a length-one integer vector.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

nchar for counting the number of characters in character vectors.

Examples

length(diag(4))# = 16 (4 x 4)
length(options())# 12 or more
length(y ~ x1 + x2 + x3)# 3
length(expression(x, {y <- x^2; y+2}, x^y)) # 3

from example(warpbreaks)
require(stats)

fm1 <- lm(breaks ~ wool * tension, data = warpbreaks)
length(fm1$call) # 3, lm() and two arguments.
length(formula(fm1)) # 3, ~ lhs rhs

256 levels

levels Levels Attributes

Description

levels provides access to the levels attribute of a variable. The first form returns the value of the
levels of its argument and the second sets the attribute.

Usage

levels(x)
levels(x) <- value

Arguments

x an object, for example a factor.

value A valid value for levels(x). For the default method, NULL or a character vector.
For the factor method, a vector of character strings with length at least the
number of levels of x, or a named list specifying how to rename the levels.

Details

Both the extractor and replacement forms are generic and new methods can be written for them.
The most important method for the replacement function is that for factors.

For the factor replacement method, a NA in value causes that level to be removed from the levels
and the elements formerly with that level to be replaced by NA.

Note that for a factor, replacing the levels via levels(x) <- value is not the same as (and is
preferred to) attr(x, "levels") <- value.

The replacement function is primitive.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

nlevels, relevel, reorder.

Examples

assign individual levels
x <- gl(2, 4, 8)
levels(x)[1] <- "low"
levels(x)[2] <- "high"
x

or as a group
y <- gl(2, 4, 8)
levels(y) <- c("low", "high")
y

libPaths 257

combine some levels
z <- gl(3, 2, 12)
levels(z) <- c("A", "B", "A")
z

same, using a named list
z <- gl(3, 2, 12)
levels(z) <- list(A=c(1,3), B=2)
z

we can add levels this way:
f <- factor(c("a","b"))
levels(f) <- c("c", "a", "b")
f

f <- factor(c("a","b"))
levels(f) <- list(C="C", A="a", B="b")
f

libPaths Search Paths for Packages

Description

.libPaths gets/sets the library trees within which packages are looked for.

Usage

.libPaths(new)

.Library

.Library.site

Arguments

new a character vector with the locations of R library trees. Tilde expansion
(path.expand) is done, and if any element contains one of *?[, globbing is
done where supported by the platform: see Sys.glob.

Details

.Library is a character string giving the location of the default library, the ‘library’ subdirectory
of R_HOME.

.Library.site is a (possibly empty) character vector giving the locations of the site libraries, by
default the ‘site-library’ subdirectory of R_HOME (which may not exist).

.libPaths is used for getting or setting the library trees that R knows about (and hence uses when
looking for packages). If called with argument new, the library search path is set to the existing
directories in unique(c(new, .Library.site, .Library)) and this is returned. If given no ar-
gument, a character vector with the currently active library trees is returned.

The library search path is initialized at startup from the environment variable R_LIBS (which should
be a semicolon-separated list of directories at which R library trees are rooted) followed by those
in environment variable R_LIBS_USER. Only directories which exist at the time will be included.

258 library

By default R_LIBS is unset, and R_LIBS_USER is set to subdirectory ‘R/win-library/x.y’ of the
home directory, for R x.y.z .

.Library.site can be set via the environment variable R_LIBS_SITE (as a non-empty semicolon-
separated list of library trees).

Both R_LIBS_USER and R_LIBS_SITE feature possible expansion of specifiers for R version specific
information as part of the startup process. The possible conversion specifiers all start with a ‘%’
and are followed by a single letter (use ‘%%’ to obtain ‘%’), with currently available conversion
specifications as follows:

‘%V’ R version number including the patchlevel (e.g., ‘2.5.0’).

‘%v’ R version number excluding the patchlevel (e.g., ‘2.5’).

‘%p’ the platform for which R was built, the value of R.version$platform.

‘%o’ the underlying operating system, the value of R.version$os.

‘%a’ the architecture (CPU) R was built on/for, the value of R.version$arch.

(See version for details on R version information.)

Function .libPaths always uses the values of .Library and .Library.site in the base names-
pace. .Library.site can be set by the site in ‘Rprofile.site’, which should be followed by a
call to .libPaths(.libPaths()) to make use of the updated value.

For consistency, the paths are always normalized by normalizePath(winslash="/").

Value

A character vector of file paths.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library

Examples

.libPaths() # all library trees R knows about

library Loading and Listing of Packages

Description

library and require load add-on packages.

library 259

Usage

library(package, help, pos = 2, lib.loc = NULL,
character.only = FALSE, logical.return = FALSE,
warn.conflicts = TRUE, quietly = FALSE,
keep.source = getOption("keep.source.pkgs"),
verbose = getOption("verbose"))

require(package, lib.loc = NULL, quietly = FALSE,
warn.conflicts = TRUE,
keep.source = getOption("keep.source.pkgs"),
character.only = FALSE)

Arguments

package, help the name of a package, given as a name or literal character string, or a character
string, depending on whether character.only is FALSE (default) or TRUE).

pos the position on the search list at which to attach the loaded package. Can also
be the name of a position on the current search list as given by search().

lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to all libraries currently known to
.libPaths(). Non-existent library trees are silently ignored.

character.only a logical indicating whether package or help can be assumed to be character
strings.

logical.return logical. If it is TRUE, FALSE or TRUE is returned to indicate success.

warn.conflicts logical. If TRUE, warnings are printed about conflicts from attaching the new
package. A conflict is a function masking a function, or a non-function masking
a non-function.

keep.source logical. Now ignored. This argument does not apply to packages using lazy-
loading: whether they have kept source is determined when they are installed.

verbose a logical. If TRUE, additional diagnostics are printed.

quietly a logical. If TRUE, no message confirming package loading is printed, and most
often, no errors/warnings are printed if package loading fails.

Details

library(package) and require(package) both load the package with name package. require
is designed for use inside other functions; it returns FALSE and gives a warning (rather than an error
as library() does by default) if the package does not exist. Both functions check and update the
list of currently loaded packages and do not reload a package which is already loaded. (Furthermore,
if the package has a namespace and a name space of that name is already loaded, they work from
the existing namespace rather than reloading from the file system. If you want to reload such a
package, call detach(unload = TRUE) or unloadNamespace first.)

To suppress messages during the loading of packages use suppressPackageStartupMessages:
this will suppress all messages from R itself but not necessarily all those from package authors.

If library is called with no package or help argument, it lists all available packages in the li-
braries specified by lib.loc, and returns the corresponding information in an object of class
"libraryIQR". The structure of this class may change in future versions. In earlier versions of
R, only the names of all available packages were returned; use .packages(all = TRUE) for
obtaining these. Note that installed.packages() returns even more information.

260 library

library(help = somename) computes basic information about the package somename, and re-
turns this in an object of class "packageInfo". The structure of this class may change in future
versions. When used with the default value (NULL) for lib.loc, the attached packages are searched
before the libraries.

In versions of R prior to 2.14.0, a .First.lib function would be called when a package without
a namespace was attached. As of 2.14.0, all functions have namespaces; see .onLoad for current
behaviour, and ‘Writing R Extensions’ for a description of the older mechanism.

Value

Normally library returns (invisibly) the list of attached packages, but TRUE or FALSE if
logical.return is TRUE. When called as library() it returns an object of class "libraryIQR",
and for library(help=), one of class "packageInfo".

require returns (invisibly) a logical indicating whether the required package is available.

Licenses

Some packages have restrictive licenses, and there is a mechanism to allow users to be aware of
such licenses. If getOption("checkPackageLicense") == TRUE, then at first use of a package
with a not-known-to-be-FOSS (see below) license the user is asked to view and accept the license:
a list of accepted licenses is stored in file ‘~/.R/licensed’. In a non-interactive session it is an
error to use such a package whose license has not already been accepted.

Free or Open Source Software (FOSS, e.g., http://en.wikipedia.org/wiki/FOSS) packages
are determined by the same filters used by available.packages but applied to just the current
package, not its dependencies.

There can also be a site-wide file ‘R_HOME/etc/licensed.site’ of packages (one per line).

Formal methods

library takes some further actions when package methods is attached (as it is by default). Pack-
ages may define formal generic functions as well as re-defining functions in other packages (notably
base) to be generic, and this information is cached whenever such a package is loaded after meth-
ods and re-defined functions (implicit generics) are excluded from the list of conflicts. The caching
and check for conflicts require looking for a pattern of objects; the search may be avoided by defin-
ing an object .noGenerics (with any value) in the package. Naturally, if the package does have any
such methods, this will prevent them from being used.

Note

library and require can only load an installed package, and this is detected by having a
‘DESCRIPTION’ file containing a ‘Built:’ field.

Under Unix-alikes, the code checks that the package was installed under a similar operating sys-
tem as given by R.version$platform (the canonical name of the platform under which R was
compiled), provided it contains compiled code. Packages which do not contain compiled code
can be shared between Unix-alikes, but not to other OSes because of potential problems with
line endings and OS-specific help files. If sub-architectures are used, the OS similarity is not
checked since the OS used to build may differ (e.g. i386-pc-linux-gnu code can be built on
an x86_64-unknown-linux-gnu OS).

The package name given to library and require must match the name given in the package’s
‘DESCRIPTION’ file exactly, even on case-insensitive file systems such as are common on MS Win-
dows and Mac OS X.

http://en.wikipedia.org/wiki/FOSS

library.dynam 261

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

.libPaths, .packages.

attach, detach, search, objects, autoload, library.dynam, data, install.packages and
installed.packages; INSTALL, REMOVE.

The initial set of packages attached is set by options(defaultPackages=): see also Startup.

Examples

library() # list all available packages
library(lib.loc = .Library) # list all packages in the default library
library(help = splines) # documentation on package ’splines’
library(splines) # load package ’splines’
require(splines) # the same
search() # "splines", too
detach("package:splines")

if the package name is in a character vector, use
pkg <- "splines"
library(pkg, character.only = TRUE)
detach(pos = match(paste("package", pkg, sep=":"), search()))

require(pkg, character.only = TRUE)
detach(pos = match(paste("package", pkg, sep=":"), search()))

require(nonexistent) # FALSE
Not run:
if you want to mask as little as possible, use
library(mypkg, pos = "package:base")

End(Not run)

library.dynam Loading DLLs from Packages

Description

Load the specified file of compiled code if it has not been loaded already, or unloads it.

Usage

library.dynam(chname, package, lib.loc,
verbose = getOption("verbose"),
file.ext = .Platform$dynlib.ext, ...)

library.dynam.unload(chname, libpath,
verbose = getOption("verbose"),
file.ext = .Platform$dynlib.ext)

262 library.dynam

.dynLibs(new)

Arguments

chname a character string naming a DLL (also known as a dynamic shared object or
library) to load.

package a character vector with the name of package.

lib.loc a character vector describing the location of R library trees to search through.

libpath the path to the loaded package whose DLL is to be unloaded.

verbose a logical value indicating whether an announcement is printed on the console
before loading the DLL. The default value is taken from the verbose entry in the
system options.

file.ext the extension (including ‘.’ if used) to append to the file name to specify the
library to be loaded. This defaults to the appropriate value for the operating
system.

... additional arguments needed by some libraries that are passed to the call to
dyn.load to control how the library and its dependencies are loaded.

new a list of "DLLInfo" objects corresponding to the DLLs loaded by packages. Can
be missing.

Details

See dyn.load for what sort of objects these functions handle.

library.dynam is designed to be used inside a package rather than at the command line, and should
really only be used inside .onLoad. The system-specific extension for DLLs (e.g., ‘.so’ or ‘.sl’
on Unix-alike systems, ‘.dll’ on Windows) should not be added.

If ... does not include a named argument DLLpath, dyn.load is called with DLLpath set to the
package’s ‘libs’ directory. See the “Windows” section of the help on dyn.load for how to control
where dependent DLLs are found.

library.dynam.unload is designed for use in .onUnload: it unloads the DLL and updates the
value of .dynLibs()

.dynLibs is used for getting (with no argument) or setting the DLLs which are currently loaded by
packages (using library.dynam).

lib.loc should contain absolute paths: versions of R prior to 2.12.0 may get confused by relative
paths.

Value

If chname is not specified, library.dynam returns an object of class "DLLInfoList" corresponding
to the DLLs loaded by packages.

If chname is specified, an object of class "DLLInfo" that identifies the DLL and which can be used
in future calls is returned invisibly. Note that the class "DLLInfo" has a method for $ which can be
used to resolve native symbols within that DLL.

library.dynam.unload invisibly returns an object of class "DLLInfo" identifying the DLL suc-
cessfully unloaded.

.dynLibs returns an object of class "DLLInfoList" corresponding corresponding to its current
value.

license 263

Warning

Do not use dyn.unload on a DLL loaded by library.dynam: use library.dynam.unload to
ensure that .dynLibs gets updated. Otherwise a subsequent call to library.dynam will be told the
object is already loaded.

Note that whether or not it is possible to unload a DLL and then reload a revised version of the same
file is OS-dependent: see the ‘Value’ section of the help for dyn.unload.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

getLoadedDLLs for information on "DLLInfo" and "DLLInfoList" objects.

.onLoad, library, dyn.load, .packages, .libPaths

SHLIB for how to create suitable DLLs.

Examples

Which DLLs were dynamically loaded by packages?
library.dynam()

license The R License Terms

Description

The license terms under which R is distributed.

Usage

license()
licence()

Details

R is distributed under the terms of the GNU GENERAL PUBLIC LICENSE, either Version 2, June
1991 or Version 3, June 2007. A copy of the version 2 license is in file ‘R_HOME/COPYING’
and can be viewed by RShowDoc("COPYING"). Version 3 of the license can be displayed by
RShowDoc("GPL-3").

A small number of files (some of the API header files) are distributed under the LESSER
GNU GENERAL PUBLIC LICENSE, version 2.1 or later. A copy of this license is in file
‘$R_SHARE_DIR/licenses/LGPL-2.1’ and can be viewed by RShowDoc("LGPL-2.1"). Version
3 of the license can be displayed by RShowDoc("LGPL-3").

264 list

list Lists – Generic and Dotted Pairs

Description

Functions to construct, coerce and check for both kinds of R lists.

Usage

list(...)
pairlist(...)

as.list(x, ...)
S3 method for class ’environment’
as.list(x, all.names = FALSE, ...)
as.pairlist(x)

is.list(x)
is.pairlist(x)

alist(...)

Arguments

... objects, possibly named.

x object to be coerced or tested.

all.names a logical indicating whether to copy all values or (default) only those whose
names do not begin with a dot.

Details

Almost all lists in R internally are Generic Vectors, whereas traditional dotted pair lists (as in LISP)
remain available but rarely seen by users (except as formals of functions).

The arguments to list or pairlist are of the form value or tag = value. The functions return
a list or dotted pair list composed of its arguments with each value either tagged or untagged,
depending on how the argument was specified.

alist handles its arguments as if they described function arguments. So the values are not evalu-
ated, and tagged arguments with no value are allowed whereas list simply ignores them. alist is
most often used in conjunction with formals.

as.list attempts to coerce its argument to a list. For functions, this returns the concatenation of
the list of formal arguments and the function body. For expressions, the list of constituent elements
is returned. as.list is generic, and as the default method calls as.vector(mode="list") for
a non-list, methods for as.vector may be invoked. as.list turns a factor into a list of one-
element factors. Attributes may be dropped unless the argument already is a list or expression.
(This is inconsistent with functions such as as.character which always drop attributes, and is for
efficiency since lists can be expensive to copy.)

is.list returns TRUE if and only if its argument is a list or a pairlist of length > 0.
is.pairlist returns TRUE if and only if the argument is a pairlist or NULL (see below).

list 265

The "environment" method for as.list copies the name-value pairs (for names not beginning
with a dot) from an environment to a named list. The user can request that all named objects are
copied. The list is in no particular order (the order depends on the order of creation of objects
and whether the environment is hashed). No enclosing environments are searched. (Objects copied
are duplicated so this can be an expensive operation.) Note that there is an inverse operation, the
as.environment() method for list objects.

An empty pairlist, pairlist() is the same as NULL. This is different from list().

as.pairlist is implemented as as.vector(x, "pairlist"), and hence will dispatch methods
for the generic function as.vector. Lists are copied element-by-element into a pairlist and the
names of the list used as tags for the pairlist: the return value for other types of argument is undoc-
umented.

list, is.list and is.pairlist are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

vector("list", length) for creation of a list with empty components; c, for concatenation;
formals. unlist is an approximate inverse to as.list().

‘plotmath’ for the use of list in plot annotation.

Examples

require(graphics)

create a plotting structure
pts <- list(x=cars[,1], y=cars[,2])
plot(pts)

is.pairlist(.Options) # a user-level pairlist

"pre-allocate" an empty list of length 5
vector("list", 5)

Argument lists
f <- function() x
Note the specification of a "..." argument:
formals(f) <- al <- alist(x=, y=2+3, ...=)
f
al

environment->list coercion

e1 <- new.env()
e1$a <- 10
e1$b <- 20
as.list(e1)

266 list.files

list.files List the Files in a Directory/Folder

Description

These functions produce a character vector of the names of files or directories in the named direc-
tory.

Usage

list.files(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE)

dir(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE)

list.dirs(path = ".", full.names = TRUE, recursive = TRUE)

Arguments

path a character vector of full path names; the default corresponds to the working
directory, getwd(). Tilde expansion (see path.expand) is performed. Missing
values will be ignored.

pattern an optional regular expression. Only file names which match the regular expres-
sion will be returned.

all.files a logical value. If FALSE, only the names of visible files are returned. If TRUE,
all file names will be returned.

full.names a logical value. If TRUE, the directory path is prepended to the file names to give
a relative file path. If FALSE, the file names (rather than paths) are returned.

recursive logical. Should the listing recurse into directories?

ignore.case logical. Should pattern-matching be case-insensitive?

include.dirs logical. Should subdirectory names be included in recursive listings? (There
always are in non-recursive ones).

Value

A character vector containing the names of the files in the specified directories, or "" if there were
no files. If a path does not exist or is not a directory or is unreadable it is skipped, with a warning.

The files are sorted in alphabetical order, on the full path if full.names = TRUE.

list.dirs implicitly has all.files = TRUE, and if recursive = TRUE, the answer includes
path itself (provided it is a readable directory).

Note

File naming conventions are platform dependent. The pattern matching works with the case of file
names as returned by the OS.

path must specify paths which can be represented in the current codepage.

list2env 267

Author(s)

Ross Ihaka, Brian Ripley

See Also

file.info, file.access and files for many more file handling functions and file.choose and
choose.files for interactive selection.

glob2rx to convert wildcards (as used by system file commands and shells) to regular expressions.

Sys.glob for wildcard expansion on file paths.

Examples

list.files(R.home())
Only files starting with a-l or r
Note that a-l is locale-dependent, but using case-insensitive
matching makes it unambiguous in English locales
dir("../..", pattern = "^[a-lr]", full.names=TRUE, ignore.case = TRUE)

list.dirs(R.home("doc"))

list2env From A List, Build or Add To an Environment

Description

From a named list x, create an environment containing all list components as objects, or “multi-
assign” from x into a pre-existing environment.

Usage

list2env(x, envir = NULL, parent = parent.frame(),
hash = (length(x) > 100), size = max(29L, length(x)))

Arguments

x a list, where names(x) must not contain empty ("") elements.

envir an environment or NULL.

parent (for the case envir = NULL): a parent frame aka enclosing environment, see
new.env.

hash (for the case envir = NULL): logical indicating if the created environment
should use hashing, see new.env.

size (in the case envir = NULL, hash = TRUE): hash size, see new.env.

Details

This will be very slow for large inputs unless hashing is used on the environment.

Environments must have uniquely named entries, but named lists need not: where the list has du-
plicate names it is the last element with the name that is used. Empty names throw an error.

268 load

Value

An environment, either newly created (as by new.env) if the envir argument was NULL, otherwise
the updated environment envir. Since environments are never duplicated, the argument envir is
also changed.

Author(s)

Martin Maechler

See Also

environment, new.env, as.environment; further, assign.

The (semantical) “inverse”: as.list.environment.

Examples

L <- list(a=1, b=2:4, p = pi, ff = gl(3,4,labels=LETTERS[1:3]))
e <- list2env(L)
ls(e)
stopifnot(ls(e) == sort(names(L)),

identical(Lb, eb)) # "$" working for environments as for lists

consistency, when we do the inverse:
ll <- as.list(e) # -> dispatching to the as.list.environment() method
rbind(names(L), names(ll)) # not in the same order, typically,

but the same content:
stopifnot(identical(L [sort.list(names(L))],

ll[sort.list(names(ll))]))

now add to e -- can be seen as a fast "multi-assign":
list2env(list(abc = LETTERS, note = "just an example",

df = data.frame(x=rnorm(20), y = rbinom(20,1, pr=0.2))),
envir = e)

utils::ls.str(e)

load Reload Saved Datasets

Description

Reload datasets written with the function save.

Usage

load(file, envir = parent.frame())

Arguments

file a (readable binary-mode) connection or a character string giving the name of the
file to load (when tilde expansion is done).

envir the environment where the data should be loaded.

load 269

Details

load can load R objects saved in the current or any earlier format. It can read a compressed file
(see save) directly from a file or from a suitable connection (including a call to url).

A not-open connection will be opened in mode "rb" and closed after use. Any connection other
than a gzfile or gzcon connection will be wrapped in gzcon to allow compressed saves to be
handled: note that this leaves the connection in an altered state (in particular, binary-only), and that
it needs to be closed explicitly (it will not be garbage-collected).

Only R objects saved in the current format (used since R 1.4.0) can be read from a connection. If
no input is available on a connection a warning will be given, but any input not in the current format
will result in a error.

Loading from an earlier version will give a warning about the ‘magic number’: magic numbers
1971:1977 are from R < 0.99.0, and RD[ABX]1 from R 0.99.0 to R 1.3.1. These are all obsolete,
and you are strongly recommended to re-save such files in a current format.

Value

A character vector of the names of objects created, invisibly.

Warning

Saved R objects are binary files, even those saved with ascii = TRUE, so ensure that they are
transferred without conversion of end of line markers. load tries to detect such a conversion and
gives an informative error message.

Note

file can be a UTF-8-encoded filepath that cannot be translated to the current locale.

See Also

save, download.file.

For other interfaces to the underlying serialization format, see unserialize and readRDS.

Examples

save all data
xx <- pi # to ensure there is some data
save(list = ls(all=TRUE), file= "all.RData")
rm(xx)

restore the saved values to the current environment
local({

load("all.RData")
ls()

})
restore the saved values to the user’s workspace
load("all.RData", .GlobalEnv)

unlink("all.RData")

Not run:
con <- url("http://some.where.net/R/data/example.rda")
print the value to see what objects were created.

270 locales

print(load(con))
close(con) # url() always opens the connection

End(Not run)

locales Query or Set Aspects of the Locale

Description

Get details of or set aspects of the locale for the R process.

Usage

Sys.getlocale(category = "LC_ALL")
Sys.setlocale(category = "LC_ALL", locale = "")

Arguments

category character string. The following categories should always be supported:
"LC_ALL", "LC_COLLATE", "LC_CTYPE", "LC_MONETARY", "LC_NUMERIC" and
"LC_TIME". Some systems (not Windows) will also support "LC_MESSAGES",
"LC_PAPER" and "LC_MEASUREMENT".

locale character string. A valid locale name on the system in use. Normally "" (the
default) will pick up the default locale for the system.

Details

The locale describes aspects of the internationalization of a program. Initially most aspects of the
locale of R are set to "C" (which is the default for the C language and reflects North-American
usage). R sets "LC_CTYPE" and "LC_COLLATE", which allow the use of a different character set and
alphabetic comparisons in that character set (including the use of sort), "LC_MONETARY" (for use
by Sys.localeconv) and "LC_TIME" may affect the behaviour of as.POSIXlt and strptime and
functions which use them (but not date).

The first seven categories described here are those specified by POSIX. "LC_MESSAGES" will be "C"
on systems that do not support message translation, and is not supported on Windows. Trying to
use an unsupported category is an error for Sys.setlocale.

Note that setting category "LC_ALL" sets only "LC_COLLATE", "LC_CTYPE", "LC_MONETARY" and
"LC_TIME".

Attempts to set an invalid locale are ignored. There may or may not be a warning, depending on the
OS.

Attempts to change the character set (by Sys.setlocale("LC_TYPE",), if that implies a different
character set) during a session may not work and are likely to lead to some confusion.

Note that the \link{LANGUAGE} environment variable has precedence over code"LC_MESSAGES"
in selecting the language of message translation on most R platforms.

locales 271

Value

A character string of length one describing the locale in use (after setting for Sys.setlocale), or
an empty character string if the current locale settings are invalid or NULL if locale information is
unavailable.

For category = "LC_ALL" the details of the string are system-specific: it might be a single locale
name or a set of locale names separated by "/" (Solaris, Mac OS X) or ";" (Windows, Linux). For
portability, it is best to query categories individually: it is not necessarily the case that the result of
foo <- Sys.getlocale() can be used in Sys.setlocale("LC_ALL", locale = foo).

Warning

Setting "LC_NUMERIC" may cause R to function anomalously, so gives a warning. Input conversions
in R itself are unaffected, but the reading and writing of ASCII save files will be, as may packages.

Setting it temporarily on a Unix-alike to produce graphical or text output may work well enough,
but options(OutDec) is often preferable.

Almost all the output routines used by R itself under Windows ignore the setting of "LC_NUMERIC"
since they make use of the Trio library which is not internationalized.

Note

Changing the values of locale categories whilst R is running ought to be noticed by the OS services,
and usually is but exceptions have been seen (usually in collation services).

See Also

strptime for uses of category = "LC_TIME". Sys.localeconv for details of numerical and mon-
etary representations.

l10n_info gives some summary facts about the locale and its encoding.

The ‘R Installation and Administration’ manual for background on locales and how to find out
locale names on your system.

Examples

Sys.getlocale()
Sys.getlocale("LC_TIME")
Not run:
Sys.setlocale("LC_TIME", "de") # Solaris: details are OS-dependent
Sys.setlocale("LC_TIME", "de_DE.utf8") # Modern Linux etc.
Sys.setlocale("LC_TIME", "de_DE.UTF-8") # ditto
Sys.setlocale("LC_TIME", "de_DE") # Mac OS X, in UTF-8
Sys.setlocale("LC_TIME", "German") # Windows

End(Not run)
Sys.getlocale("LC_PAPER") # may or may not be set

Sys.setlocale("LC_COLLATE", "C") # turn off locale-specific sorting,
usually

272 log

log Logarithms and Exponentials

Description

log computes logarithms, by default natural logarithms, log10 computes common (i.e., base 10)
logarithms, and log2 computes binary (i.e., base 2) logarithms. The general form log(x, base)
computes logarithms with base base.

log1p(x) computes log(1 + x) accurately also for |x| � 1 (and less accurately when x ≈ −1).

exp computes the exponential function.

expm1(x) computes exp(x)− 1 accurately also for |x| � 1.

Usage

log(x, base = exp(1))
logb(x, base = exp(1))
log10(x)
log2(x)

log1p(x)

exp(x)
expm1(x)

Arguments

x a numeric or complex vector.

base a positive or complex number: the base with respect to which logarithms are
computed. Defaults to e=exp(1).

Details

All except logb are generic functions: methods can be defined for them individually or via the Math
group generic.

log10 and log2 are only convenience wrappers, but logs to bases 10 and 2 (whether computed via
log or the wrappers) will be computed more efficiently and accurately where supported by the OS.
Methods can be set for them individually (and otherwise methods for log will be used).

logb is a wrapper for log for compatibility with S. If (S3 or S4) methods are set for log they will
be dispatched. Do not set S4 methods on logb itself.

All except log are primitive functions.

Value

A vector of the same length as x containing the transformed values. log(0) gives -Inf, and log(x)
for negative values of x is NaN. exp(-Inf) is 0.

For complex inputs to the log functions, the value is a complex number with imaginary part in the
range [−π, π]: which end of the range is used might be platform-specific.

Logic 273

S4 methods

exp, expm1, log, log10, log2 and log1p are S4 generic and are members of the Math group generic.

Note that this means that the S4 generic for log has a signature with only one argument, x, but that
base can be passed to methods (but will not be used for method selection). On the other hand, if
you only set a method for the Math group generic then base argument of log will be ignored for
your class.

Source

log1p and expm1 may be taken from the operating system, but if not available there are based on
the Fortran subroutine dlnrel by W. Fullerton of Los Alamos Scientific Laboratory (see http://
www.netlib.org/slatec/fnlib/dlnrel.f and (for small x) a single Newton step for the solution
of log1p(y) = x respectively.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (for log, log10 and exp.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (for logb.)

See Also

Trig, sqrt, Arithmetic.

Examples

log(exp(3))
log10(1e7)# = 7

x <- 10^-(1+2*1:9)
cbind(x, log(1+x), log1p(x), exp(x)-1, expm1(x))

Logic Logical Operators

Description

These operators act on logical and number-like vectors.

Usage

! x
x & y
x && y
x | y
x || y
xor(x, y)

isTRUE(x)

http://www.netlib.org/slatec/fnlib/dlnrel.f
http://www.netlib.org/slatec/fnlib/dlnrel.f

274 Logic

Arguments

x, y logical or ‘number-like’ vectors (i.e., of type double (class numeric), integer,
complex or raw), or objects for which methods have been written.

Details

! indicates logical negation (NOT).

& and && indicate logical AND and | and || indicate logical OR. The shorter form performs ele-
mentwise comparisons in much the same way as arithmetic operators. The longer form evaluates
left to right examining only the first element of each vector. Evaluation proceeds only until the
result is determined. The longer form is appropriate for programming control-flow and typically
preferred in if clauses.

xor indicates elementwise exclusive OR.

isTRUE(x) is an abbreviation of identical(TRUE, x), and so is true if and only if x is a length-one
logical vector whose only element is TRUE and which has no attributes (not even names).

Numeric and complex vectors will be coerced to logical values, with zero being false and all non-
zero values being true. Raw vectors are handled without any coercion for !, &, | and xor, with these
operators being applied bitwise (so ! is the 1s-complement).

The operators !, & and | are generic functions: methods can be written for them individually or via
the Ops (or S4 Logic, see below) group generic function. (See Ops for how dispatch is computed.)

NA is a valid logical object. Where a component of x or y is NA, the result will be NA if the outcome
is ambiguous. In other words NA & TRUE evaluates to NA, but NA & FALSE evaluates to FALSE. See
the examples below.

See Syntax for the precedence of these operators: unlike many other languages (including S) the
AND and OR operators do not have the same precedence (the AND operators are higher than the
OR operators).

Value

For !, a logical or raw vector of the same length as x: names, dims and dimnames are copied from
x.

For |, & and xor a logical or raw vector. The elements of shorter vectors are recycled as necessary
(with a warning when they are recycled only fractionally). The rules for determining the attributes
of the result are rather complicated. Most attributes are taken from the longer argument, the first
if they are of the same length. Names will be copied from the first if it is the same length as the
answer, otherwise from the second if that is. For time series, these operations are allowed only if
the series are compatible, when the class and tsp attribute of whichever is a time series (the same,
if both are) are used. For arrays (and an array result) the dimensions and dimnames are taken from
first argument if it is an array, otherwise the second.

For ||, && and isTRUE, a length-one logical vector.

S4 methods

!, & and | are S4 generics, the latter two part of the Logic group generic (and hence methods need
argument names e1, e2).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

logical 275

See Also

TRUE or logical.

any and all for OR and AND on many scalar arguments.

Syntax for operator precedence.

Examples

y <- 1 + (x <- stats::rpois(50, lambda=1.5) / 4 - 1)
x[(x > 0) & (x < 1)] # all x values between 0 and 1
if (any(x == 0) || any(y == 0)) "zero encountered"

construct truth tables :

x <- c(NA, FALSE, TRUE)
names(x) <- as.character(x)
outer(x, x, "&")## AND table
outer(x, x, "|")## OR table

logical Logical Vectors

Description

Create or test for objects of type "logical", and the basic logical constants.

Usage

TRUE
FALSE
T; F

logical(length = 0)
as.logical(x, ...)
is.logical(x)

Arguments

length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

TRUE and FALSE are reserved words denoting logical constants in the R language, whereas T and F
are global variables whose initial values set to these. All four are logical(1) vectors.

Logical vectors are coerced to integer vectors in contexts where a numerical value is required, with
TRUE being mapped to 1L, FALSE to 0L and NA to NA_integer_.

276 lower.tri

Value

logical creates a logical vector of the specified length. Each element of the vector is equal to
FALSE.

as.logical attempts to coerce its argument to be of logical type. For factors,
this uses the levels (labels). Like as.vector it strips attributes including
names. Character strings c("T", "TRUE", "True", "true") are regarded as true,
c("F", "FALSE", "False", "false") as false, and all others as NA.

is.logical returns TRUE or FALSE depending on whether its argument is of logical type or not.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

NA, the other logical constant.

lower.tri Lower and Upper Triangular Part of a Matrix

Description

Returns a matrix of logicals the same size of a given matrix with entries TRUE in the lower or upper
triangle.

Usage

lower.tri(x, diag = FALSE)
upper.tri(x, diag = FALSE)

Arguments

x a matrix.

diag logical. Should the diagonal be included?

See Also

diag, matrix.

Examples

(m2 <- matrix(1:20, 4, 5))
lower.tri(m2)
m2[lower.tri(m2)] <- NA
m2

ls 277

ls List Objects

Description

ls and objects return a vector of character strings giving the names of the objects in the specified
environment. When invoked with no argument at the top level prompt, ls shows what data sets
and functions a user has defined. When invoked with no argument inside a function, ls returns the
names of the functions local variables. This is useful in conjunction with browser.

Usage

ls(name, pos = -1, envir = as.environment(pos),
all.names = FALSE, pattern)

objects(name, pos= -1, envir = as.environment(pos),
all.names = FALSE, pattern)

Arguments

name which environment to use in listing the available objects. Defaults to the current
environment. Although called name for back compatibility, in fact this argument
can specify the environment in any form; see the details section.

pos an alternative argument to name for specifying the environment as a position in
the search list. Mostly there for back compatibility.

envir an alternative argument to name for specifying the environment. Mostly there
for back compatibility.

all.names a logical value. If TRUE, all object names are returned. If FALSE, names which
begin with a ‘.’ are omitted.

pattern an optional regular expression. Only names matching pattern are returned.
glob2rx can be used to convert wildcard patterns to regular expressions.

Details

The name argument can specify the environment from which object names are taken in one of several
forms: as an integer (the position in the search list); as the character string name of an element in
the search list; or as an explicit environment (including using sys.frame to access the currently
active function calls). By default, the environment of the call to ls or objects is used. The pos
and envir arguments are an alternative way to specify an environment, but are primarily there for
back compatibility.

Note that the order of the resulting strings is locale dependent, see Sys.getlocale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

278 make.names

See Also

glob2rx for converting wildcard patterns to regular expressions.

ls.str for a long listing based on str. apropos (or find) for finding objects in the whole search
path; grep for more details on ‘regular expressions’; class, methods, etc., for object-oriented
programming.

Examples

.Ob <- 1
ls(pattern = "O")
ls(pattern= "O", all.names = TRUE) # also shows ".[foo]"

shows an empty list because inside myfunc no variables are defined
myfunc <- function() {ls()}
myfunc()

define a local variable inside myfunc
myfunc <- function() {y <- 1; ls()}
myfunc() # shows "y"

make.names Make Syntactically Valid Names

Description

Make syntactically valid names out of character vectors.

Usage

make.names(names, unique = FALSE, allow_ = TRUE)

Arguments

names character vector to be coerced to syntactically valid names. This is coerced to
character if necessary.

unique logical; if TRUE, the resulting elements are unique. This may be desired for, e.g.,
column names.

allow_ logical. For compatibility with R prior to 1.9.0.

Details

A syntactically valid name consists of letters, numbers and the dot or underline characters and starts
with a letter or the dot not followed by a number. Names such as ".2way" are not valid, and neither
are the reserved words.

The definition of a letter depends on the current locale, but only ASCII digits are considered to be
digits.

The character "X" is prepended if necessary. All invalid characters are translated to ".". A miss-
ing value is translated to "NA". Names which match R keywords have a dot appended to them.
Duplicated values are altered by make.unique.

make.unique 279

Value

A character vector of same length as names with each changed to a syntactically valid name, in the
current locale’s encoding.

Warning

Some OSes, notably FreeBSD, report extremely incorrect information about which characters are
alphabetic in some locales (typically, all multi-byte locales including UTF-8 locales). However, R
provides substitutes on Windows, OS X and AIX.

Note

Prior to R version 1.9.0, underscores were not valid in variable names, and code that relies on them
being converted to dots will no longer work. Use allow_ = FALSE for back-compatibility.

allow_ = FALSE is also useful when creating names for export to applications which do not allow
underline in names (for example, S-PLUS and some DBMSs).

See Also

make.unique, names, character, data.frame.

Examples

make.names(c("a and b", "a-and-b"), unique=TRUE)
"a.and.b" "a.and.b.1"
make.names(c("a and b", "a_and_b"), unique=TRUE)
"a.and.b" "a_and_b"
make.names(c("a and b", "a_and_b"), unique=TRUE, allow_=FALSE)
"a.and.b" "a.and.b.1"

state.name[make.names(state.name) != state.name] # those 10 with a space

make.unique Make Character Strings Unique

Description

Makes the elements of a character vector unique by appending sequence numbers to duplicates.

Usage

make.unique(names, sep = ".")

Arguments

names a character vector

sep a character string used to separate a duplicate name from its sequence number.

280 mapply

Details

The algorithm used by make.unique has the property that
make.unique(c(A, B)) == make.unique(c(make.unique(A), B)).

In other words, you can append one string at a time to a vector, making it unique each time, and get
the same result as applying make.unique to all of the strings at once.

If character vector A is already unique, then make.unique(c(A, B)) preserves A.

Value

A character vector of same length as names with duplicates changed, in the current locale’s encod-
ing.

Author(s)

Thomas P. Minka

See Also

make.names

Examples

make.unique(c("a", "a", "a"))
make.unique(c(make.unique(c("a", "a")), "a"))

make.unique(c("a", "a", "a.2", "a"))
make.unique(c(make.unique(c("a", "a")), "a.2", "a"))

rbind(data.frame(x=1), data.frame(x=2), data.frame(x=3))
rbind(rbind(data.frame(x=1), data.frame(x=2)), data.frame(x=3))

mapply Apply a Function to Multiple List or Vector Arguments

Description

mapply is a multivariate version of sapply. mapply applies FUN to the first elements of each
. . . argument, the second elements, the third elements, and so on. Arguments are recycled if neces-
sary.

Usage

mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE,
USE.NAMES = TRUE)

margin.table 281

Arguments

FUN function to apply, found via match.fun.

... arguments to vectorize over (vectors or lists of strictly positive length, or all of
zero length).

MoreArgs a list of other arguments to FUN.

SIMPLIFY logical or character string; attempt to reduce the result to a vector, matrix or
higher dimensional array; see the simplify argument of sapply.

USE.NAMES logical; use names if the first . . . argument has names, or if it is a character vector,
use that character vector as the names.

Details

mapply calls FUN for the values of ... (re-cycled to the length of the longest, unless any have length
zero), followed by the arguments given in MoreArgs. The arguments in the call will be named if
... or MoreArgs are named.

Value

A list, or for SIMPLIFY = TRUE, a vector, array or list.

See Also

sapply, after which mapply() is modelled.

outer, which applies a vectorized function to all combinations of two arguments.

Examples

mapply(rep, 1:4, 4:1)

mapply(rep, times = 1:4, x = 4:1)

mapply(rep, times = 1:4, MoreArgs = list(x = 42))

mapply(function(x,y) seq_len(x) + y,
c(a = 1, b = 2, c = 3), # names from first
c(A = 10, B = 0, C = -10))

word <- function(C,k) paste(rep.int(C,k), collapse = ’’)
utils::str(mapply(word, LETTERS[1:6], 6:1, SIMPLIFY = FALSE))

margin.table Compute table margin

Description

For a contingency table in array form, compute the sum of table entries for a given index.

Usage

margin.table(x, margin=NULL)

282 mat.or.vec

Arguments

x an array

margin index number (1 for rows, etc.)

Details

This is really just apply(x, margin, sum) packaged up for newbies, except that if margin has
length zero you get sum(x).

Value

The relevant marginal table. The class of x is copied to the output table, except in the summation
case.

Author(s)

Peter Dalgaard

See Also

prop.table and addmargins.

Examples

m <- matrix(1:4,2)
margin.table(m,1)
margin.table(m,2)

mat.or.vec Create a Matrix or a Vector

Description

mat.or.vec creates an nr by nc zero matrix if nc is greater than 1, and a zero vector of length nr
if nc equals 1.

Usage

mat.or.vec(nr, nc)

Arguments

nr, nc numbers of rows and columns.

Examples

mat.or.vec(3, 1)
mat.or.vec(3, 2)

match 283

match Value Matching

Description

match returns a vector of the positions of (first) matches of its first argument in its second.

%in% is a more intuitive interface as a binary operator, which returns a logical vector indicating if
there is a match or not for its left operand.

Usage

match(x, table, nomatch = NA_integer_, incomparables = NULL)

x %in% table

Arguments

x vector or NULL: the values to be matched.
table vector or NULL: the values to be matched against.
nomatch the value to be returned in the case when no match is found. Note that it is

coerced to integer.
incomparables a vector of values that cannot be matched. Any value in x matching a value

in this vector is assigned the nomatch value. For historical reasons, FALSE is
equivalent to NULL.

Details

%in% is currently defined as
"%in%" <- function(x, table) match(x, table, nomatch = 0) > 0

Factors, raw vectors and lists are converted to character vectors, and then x and table are coerced
to a common type (the later of the two types in R’s ordering, logical < integer < numeric < complex
< character) before matching. If incomparables has positive length it is coerced to the common
type.

Matching for lists is potentially very slow and best avoided except in simple cases.

Exactly what matches what is to some extent a matter of definition. For all types, NA matches NA
and no other value. For real and complex values, NaN values are regarded as matching any other
NaN value, but not matching NA.

That %in% never returns NA makes it particularly useful in if conditions.

Character strings will be compared as byte sequences if any input is marked as "bytes".

Value

A vector of the same length as x.

match: An integer vector giving the position in table of the first match if there is a match, otherwise
nomatch.

If x[i] is found to equal table[j] then the value returned in the i-th position of the return value
is j, for the smallest possible j. If no match is found, the value is nomatch.

%in%: A logical vector, indicating if a match was located for each element of x: thus the values are
TRUE or FALSE and never NA.

284 match.arg

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

pmatch and charmatch for (partial) string matching, match.arg, etc for function argument match-
ing. findInterval similarly returns a vector of positions, but finds numbers within intervals, rather
than exact matches.

is.element for an S-compatible equivalent of %in%.

Examples

The intersection of two sets can be defined via match():
Simple version:
intersect <- function(x, y) y[match(x, y, nomatch = 0)]
intersect # the R function in base, slightly more careful
intersect(1:10, 7:20)

1:10 %in% c(1,3,5,9)
sstr <- c("c","ab","B","bba","c",NA,"@","bla","a","Ba","%")
sstr[sstr %in% c(letters, LETTERS)]

"%w/o%" <- function(x, y) x[!x %in% y] #-- x without y
(1:10) %w/o% c(3,7,12)

match.arg Argument Verification Using Partial Matching

Description

match.arg matches arg against a table of candidate values as specified by choices, where NULL
means to take the first one.

Usage

match.arg(arg, choices, several.ok = FALSE)

Arguments

arg a character vector (of length one unless several.ok is TRUE) or NULL.

choices a character vector of candidate values

several.ok logical specifying if arg should be allowed to have more than one element.

Details

In the one-argument form match.arg(arg), the choices are obtained from a default setting for
the formal argument arg of the function from which match.arg was called. (Since default argu-
ment matching will set arg to choices, this is allowed as an exception to the ‘length one unless
several.ok is TRUE’ rule, and returns the first element.)

Matching is done using pmatch, so arg may be abbreviated.

match.call 285

Value

The unabbreviated version of the exact or unique partial match if there is one; otherwise, an error
is signalled if several.ok is false, as per default. When several.ok is true and more than one
element of arg has a match, all unabbreviated versions of matches are returned.

See Also

pmatch, match.fun, match.call.

Examples

require(stats)
Extends the example for ’switch’
center <- function(x, type = c("mean", "median", "trimmed")) {

type <- match.arg(type)
switch(type,

mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))

}
x <- rcauchy(10)
center(x, "t") # Works
center(x, "med") # Works
try(center(x, "m")) # Error
stopifnot(identical(center(x), center(x, "mean")),

identical(center(x, NULL), center(x, "mean")))

Allowing more than one match:
match.arg(c("gauss", "rect", "ep"),

c("gaussian", "epanechnikov", "rectangular", "triangular"),
several.ok = TRUE)

match.call Argument Matching

Description

match.call returns a call in which all of the specified arguments are specified by their full names.

Usage

match.call(definition = NULL, call = sys.call(sys.parent()),
expand.dots = TRUE)

Arguments

definition a function, by default the function from which match.call is called. See details.

call an unevaluated call to the function specified by definition, as generated by
call.

expand.dots logical. Should arguments matching ... in the call be included or left as a ...
argument?

286 match.fun

Details

‘function’ on this help page means an interpreted function (also known as a ‘closure’): match.call
does not support primitive functions (where argument matching is normally positional).

match.call is most commonly used in two circumstances:

• To record the call for later re-use: for example most model-fitting functions record the call as
element call of the list they return. Here the default expand.dots = TRUE is appropriate.

• To pass most of the call to another function, often model.frame. Here the common idiom is
that expand.dots = FALSE is used, and the ... element of the matched call is removed. An
alternative is to explicitly select the arguments to be passed on, as is done in lm.

Calling match.call outside a function without specifying definition is an error.

Value

An object of class call.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

sys.call() is similar, but does not expand the argument names; call, pmatch, match.arg,
match.fun.

Examples

match.call(get, call("get", "abc", i = FALSE, p = 3))
-> get(x = "abc", pos = 3, inherits = FALSE)
fun <- function(x, lower = 0, upper = 1) {

structure((x - lower) / (upper - lower), CALL = match.call())
}
fun(4 * atan(1), u = pi)

match.fun Extract a Function Specified by Name

Description

When called inside functions that take a function as argument, extract the desired function object
while avoiding undesired matching to objects of other types.

Usage

match.fun(FUN, descend = TRUE)

Arguments

FUN item to match as function: a function, symbol or character string. See ‘Details’.

descend logical; control whether to search past non-function objects.

match.fun 287

Details

match.fun is not intended to be used at the top level since it will perform matching in the parent of
the caller.

If FUN is a function, it is returned. If it is a symbol (for example, enclosed in backquotes) or a
character vector of length one, it will be looked up using get in the environment of the parent of the
caller. If it is of any other mode, it is attempted first to get the argument to the caller as a symbol
(using substitute twice), and if that fails, an error is declared.

If descend = TRUE, match.fun will look past non-function objects with the given name; otherwise
if FUN points to a non-function object then an error is generated.

This is used in base functions such as apply, lapply, outer, and sweep.

Value

A function matching FUN or an error is generated.

Bugs

The descend argument is a bit of misnomer and probably not actually needed by anything. It may
go away in the future.

It is impossible to fully foolproof this. If one attaches a list or data frame containing a length-one
character vector with the same name as a function, it may be used (although namespaces will help).

Author(s)

Peter Dalgaard and Robert Gentleman, based on an earlier version by Jonathan Rougier.

See Also

match.arg, get

Examples

Same as get("*"):
match.fun("*")
Overwrite outer with a vector
outer <- 1:5
Not run:
match.fun(outer, descend = FALSE) #-> Error: not a function

End(Not run)
match.fun(outer) # finds it anyway
is.function(match.fun("outer")) # as well

288 MathFun

MathFun Miscellaneous Mathematical Functions

Description

These functions compute miscellaneous mathematical functions. The naming follows the standard
for computer languages such as C or Fortran.

Usage

abs(x)
sqrt(x)

Arguments

x a numeric or complex vector or array.

Details

These are internal generic primitive functions: methods can be defined for them individually or via
the Math group generic. For complex arguments (and the default method), z, abs(z) == Mod(z)
and sqrt(z) == z^0.5.

abs(x) returns an integer vector when x is integer or logical.

S4 methods

Both are S4 generic and members of the Math group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Arithmetic for simple, log for logarithmic, sin for trigonometric, and Special for special math-
ematical functions.

‘plotmath’ for the use of sqrt in plot annotation.

Examples

require(stats) # for spline
require(graphics)
xx <- -9:9
plot(xx, sqrt(abs(xx)), col = "red")
lines(spline(xx, sqrt(abs(xx)), n=101), col = "pink")

matmult 289

matmult Matrix Multiplication

Description

Multiplies two matrices, if they are conformable. If one argument is a vector, it will be promoted to
either a row or column matrix to make the two arguments conformable. If both are vectors it will
return the inner product (as a matrix).

Usage

x %*% y

Arguments

x, y numeric or complex matrices or vectors.

Details

When a vector is promoted to a matrix, its names are not promoted to row or column names, unlike
as.matrix.

This operator is S4 generic but not S3 generic. S4 methods need to be written for a function of two
arguments named x and y.

Value

A double or complex matrix product. Use drop to remove dimensions which have only one level.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

matrix, Arithmetic, diag.

Examples

x <- 1:4
(z <- x %*% x) # scalar ("inner") product (1 x 1 matrix)
drop(z) # as scalar

y <- diag(x)
z <- matrix(1:12, ncol = 3, nrow = 4)
y %*% z
y %*% x
x %*% z

290 matrix

matrix Matrices

Description

matrix creates a matrix from the given set of values.

as.matrix attempts to turn its argument into a matrix.

is.matrix tests if its argument is a (strict) matrix.

Usage

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,
dimnames = NULL)

as.matrix(x, ...)
S3 method for class ’data.frame’
as.matrix(x, rownames.force = NA, ...)

is.matrix(x)

Arguments

data an optional data vector (including a list or expression vector). Non-atomic
classed R objects are coerced by as.vector and all attributes discarded.

nrow the desired number of rows.

ncol the desired number of columns.

byrow logical. If FALSE (the default) the matrix is filled by columns, otherwise the
matrix is filled by rows.

dimnames A dimnames attribute for the matrix: NULL or a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.

x an R object.

... additional arguments to be passed to or from methods.

rownames.force logical indicating if the resulting matrix should have character (rather than NULL)
rownames. The default, NA, uses NULL rownames if the data frame has ‘auto-
matic’ row.names or for a zero-row data frame.

Details

If one of nrow or ncol is not given, an attempt is made to infer it from the length of data and the
other parameter. If neither is given, a one-column matrix is returned.

If there are too few elements in data to fill the matrix, then the elements in data are recycled. If
data has length zero, NA of an appropriate type is used for atomic vectors (0 for raw vectors) and
NULL for lists.

is.matrix returns TRUE if x is a vector and has a "dim" attribute of length 2) and FALSE otherwise.
Note that a data.frame is not a matrix by this test. The function is generic: you can write methods
to handle specific classes of objects, see InternalMethods.

maxCol 291

as.matrix is a generic function. The method for data frames will return a character matrix if
there is any non-(numeric/logical/complex) column, applying format to non-character columns.
Otherwise, the usual coercion hierarchy (logical < integer < double < complex) will be used, e.g.,
all-logical data frames will be coerced to a logical matrix, mixed logical-integer will give a integer
matrix, etc.

The default method for as.matrix calls as.vector(x), and hence e.g. coerces factors to character
vectors.

When coercing a vector, it produces a one-column matrix, and promotes the names (if any) of the
vector to the rownames of the matrix.

is.matrix is a primitive function.

Note

If you just want to convert a vector to a matrix, something like

dim(x) <- c(nx, ny)
dimnames(x) <- list(row_names, col_names)

will avoid duplicating x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

data.matrix, which attempts to convert to a numeric matrix.

A matrix is the special case of a two-dimensional array.

Examples

is.matrix(as.matrix(1:10))
!is.matrix(warpbreaks)# data.frame, NOT matrix!
warpbreaks[1:10,]
as.matrix(warpbreaks[1:10,]) #using as.matrix.data.frame(.) method

Example of setting row and column names
mdat <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol=3, byrow=TRUE,

dimnames = list(c("row1", "row2"),
c("C.1", "C.2", "C.3")))

mdat

maxCol Find Maximum Position in Matrix

Description

Find the maximum position for each row of a matrix, breaking ties at random.

292 maxCol

Usage

max.col(m, ties.method=c("random", "first", "last"))

Arguments

m numerical matrix

ties.method a character string specifying how ties are handled, "random" by default; can be
abbreviated; see ‘Details’.

Details

When ties.method = "random", as per default, ties are broken at random. In this case, the de-
termination of a tie assumes that the entries are probabilities: there is a relative tolerance of 10−5,
relative to the largest (in magnitude, omitting infinity) entry in the row.

If ties.method = "first", max.col returns the column number of the first of several maxima in
every row, the same as unname(apply(m, 1, which.max)).
Correspondingly, ties.method = "last" returns the last of possibly several indices.

Value

index of a maximal value for each row, an integer vector of length nrow(m).

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer
(4th ed).

See Also

which.max for vectors.

Examples

table(mc <- max.col(swiss))# mostly "1" and "5", 5 x "2" and once "4"
swiss[unique(print(mr <- max.col(t(swiss)))) ,] # 3 33 45 45 33 6

set.seed(1)# reproducible example:
(mm <- rbind(x = round(2*stats::runif(12)),

y = round(5*stats::runif(12)),
z = round(8*stats::runif(12))))

Not run:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

x 1 1 1 2 0 2 2 1 1 0 0 0
y 3 2 4 2 4 5 2 4 5 1 3 1
z 2 3 0 3 7 3 4 5 4 1 7 5

End(Not run)
column indices of all row maxima :
utils::str(lapply(1:3, function(i) which(mm[i,] == max(mm[i,]))))
max.col(mm) ; max.col(mm) # "random"
max.col(mm, "first")# -> 4 6 5
max.col(mm, "last") # -> 7 9 11

mean 293

mean Arithmetic Mean

Description

Generic function for the (trimmed) arithmetic mean.

Usage

mean(x, ...)

Default S3 method:
mean(x, trim = 0, na.rm = FALSE, ...)

Arguments

x An R object. Currently there are methods for numeric/logical vectors and date,
date-time and time interval objects, and for data frames all of whose columns
have a method. Complex vectors are allowed for trim = 0, only.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before
the mean is computed. Values of trim outside that range are taken as the nearest
endpoint.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

... further arguments passed to or from other methods.

Value

If trim is zero (the default), the arithmetic mean of the values in x is computed, as a numeric or
complex vector of length one. If x is not logical (coerced to numeric), numeric (including integer)
or complex, NA_real_ is returned, with a warning.

If trim is non-zero, a symmetrically trimmed mean is computed with a fraction of trim observa-
tions deleted from each end before the mean is computed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

weighted.mean, mean.POSIXct, colMeans for row and column means.

Examples

x <- c(0:10, 50)
xm <- mean(x)
c(xm, mean(x, trim = 0.10))

294 memCompress

memCompress In-memory Compression and Decompression

Description

In-memory compression or decompression for raw vectors.

Usage

memCompress(from, type = c("gzip", "bzip2", "xz", "none"))

memDecompress(from,
type = c("unknown", "gzip", "bzip2", "xz", "none"),
asChar = FALSE)

Arguments

from A raw vector. For memCompress a character vector will be converted to a raw
vector with character strings separated by "\n".

type character string, the type of compression. May be abbreviated to a single letter,
defaults to the first of the alternatives.

asChar logical: should the result be converted to a character string?

Details

type = "none" passes the input through unchanged, but may be useful if type is a variable.

type = "unknown" attempts to detect the type of compression applied (if any): this will always
succeed for bzip2 compression, and will succeed for other forms if there is a suitable header. It
will auto-detect the ‘magic’ header ("\x1f\x8b") added to files by the gzip program (and to files
written by gzfile), but memCompress does not add such a header.

bzip2 compression always adds a header ("BZh").

Compressing with type = "xz" is equivalent to compressing a file with xz -9e (including adding
the ‘magic’ header): decompression should cope with the contents of any file compressed with xz
version 4.999 and some versions of lzma. There are other versions, in particular ‘raw’ streams, that
are not currently handled.

All the types of compression can expand the input: for "gzip" and "bzip" the maximum expansion
is known and so memCompress can always allocate sufficient space. For "xz" it is possible (but
extremely unlikely) that compression will fail if the output would have been too large.

Value

A raw vector or a character string (if asChar = TRUE).

See Also

connections.

http://en.wikipedia.org/wiki/Data_compression for background on data compression,
http://zlib.net/, http://en.wikipedia.org/wiki/Gzip, http://www.bzip.org/, http://
en.wikipedia.org/wiki/Bzip2, http://tukaani.org/xz/ and http://en.wikipedia.org/
wiki/Xz for references about the particular schemes used.

http://en.wikipedia.org/wiki/Data_compression
http://zlib.net/
http://en.wikipedia.org/wiki/Gzip
http://www.bzip.org/
http://en.wikipedia.org/wiki/Bzip2
http://en.wikipedia.org/wiki/Bzip2
http://tukaani.org/xz/
http://en.wikipedia.org/wiki/Xz
http://en.wikipedia.org/wiki/Xz

Memory 295

Examples

txt <- readLines(file.path(R.home("doc"), "COPYING"))
sum(nchar(txt))
txt.gz <- memCompress(txt, "g")
length(txt.gz)
txt2 <- strsplit(memDecompress(txt.gz, "g", asChar = TRUE), "\n")[[1]]
stopifnot(identical(txt, txt2))
txt.bz2 <- memCompress(txt, "b")
length(txt.bz2)
can auto-detect bzip2:
txt3 <- strsplit(memDecompress(txt.bz2, asChar = TRUE), "\n")[[1]]
stopifnot(identical(txt, txt3))

xz compression is only worthwhile for large objects
txt.xz <- memCompress(txt, "x")
length(txt.xz)
txt3 <- strsplit(memDecompress(txt.xz, asChar = TRUE), "\n")[[1]]
stopifnot(identical(txt, txt3))

Memory Memory Available for Data Storage

Description

How R manages its workspace.

Details

R has a variable-sized workspace. Prior to R 2.15.0 there were (rarely-used) command-line options
to control its size, but it is now sized automatically.

On Windows the ‘--max-mem-size’ option (or environment variable R_MAX_MEM_SIZE) sets the
maximum memory allocation: it has a minimum allowed value of 32M. This is intended to catch
attempts to allocate excessive amounts of memory which may cause other processes to run out of
resources. See also memory.limit.

R maintains separate areas for fixed and variable sized objects. The first of these is allocated as an
array of cons cells (Lisp programmers will know what they are, others may think of them as the
building blocks of the language itself, parse trees, etc.), and the second are thrown on a heap of
‘Vcells’ of 8 bytes each. Each cons cell occupies 28 bytes on a 32-bit build of R, (usually) 56 bytes
on a 64-bit build.

The default values are (currently) an initial setting of 350k cons cells, 6Mb of vector heap: note that
the areas are not actually allocated initially: rather these values are the sizes for triggering garbage
collection. Thereafter R will grow or shrink the areas depending on usage, never decreasing below
the initial values.

You can find out the current memory consumption (the heap and cons cells used as numbers and
megabytes) by typing gc() at the R prompt. Note that following gcinfo(TRUE), automatic garbage
collection always prints memory use statistics.

The command-line option ‘--max-ppsize’ controls the maximum size of the pointer protection
stack. This defaults to 50000, but can be increased to allow deep recursion or large and complicated
calculations to be done. Note that parts of the garbage collection process goes through the full
reserved pointer protection stack and hence becomes slower when the size is increased. Currently
the maximum value accepted is 500000.

296 Memory-limits

See Also

An Introduction to R for more command-line options.

Memory-limits for the design limitations.

gc for information on the garbage collector and total memory usage, object.size(a) for the (ap-
proximate) size of R object a. memory.profile for profiling the usage of cons cells.

memory.size to monitor total memory usage, memory.limit for the current limit.

Memory-limits Memory Limits in R

Description

R holds objects it is using in virtual memory. This help file documents the current design limitations
on large objects: these differ between 32-bit and 64-bit builds of R.

Details

Currently R runs on 32- and 64-bit operating systems, and most 64-bit OSes (including Linux,
Solaris, Windows and Mac OS X) can run either 32- or 64-bit builds of R. The memory limits
depends mainly on the build, but for a 32-bit build of R on Windows they also depend on the
underlying OS version.

R holds all objects in memory, and there are limits based on the amount of memory that can be used
by all objects:

• There may be limits on the size of the heap and the number of cons cells allowed – see Memory
– but these are usually not imposed.

• There is a limit on the (user) address space of a single process such as the R executable. This
is system-specific, and can depend on the executable.

• The environment may impose limitations on the resources available to a single process: Win-
dows’ versions of R do so directly.

Error messages beginning cannot allocate vector of size indicate a failure to obtain mem-
ory, either because the size exceeded the address-space limit for a process or, more likely, because
the system was unable to provide the memory. Note that on a 32-bit build there may well be enough
free memory available, but not a large enough contiguous block of address space into which to map
it.

There are also limits on individual objects. On all builds of R, the maximum length (number of
elements) of a vector is 231 − 1 ≈ 2 109, as lengths are stored as signed integers. In addition, the
storage space cannot exceed the address limit, and if you try to exceed that limit, the error message
begins cannot allocate vector of length. The number of bytes in a character string is limited
to 231 − 1 ≈ 2 109.

Unix

The address-space limit is system-specific: 32-bit OSes imposes a limit of no more than 4Gb: it is
often 3Gb. Running 32-bit executables on a 64-bit OS will have similar limits: 64-bit executables
will have an essentially infinite system-specific limit (e.g. 128Tb for Linux on x86_64 cpus).

See the OS/shell’s help on commands such as limit or ulimit for how to impose limitations on
the resources available to a single process. For example a bash user could use

memory.profile 297

ulimit -t 600 -v 4000000

whereas a csh user might use

limit cputime 10m
limit vmemoryuse 4096m

to limit a process to 10 minutes of CPU time and (around) 4Gb of virtual memory. (There are other
options to set the RAM in use, but they are not generally honoured.)

Windows

The address-space limit is 2Gb under 32-bit Windows unless the OS’s default has been
changed to allow more (up to 3Gb). See http://www.microsoft.com/whdc/system/platform/
server/PAE/PAEmem.mspx and http://msdn.microsoft.com/en-us/library/bb613473(VS.
85).aspx. Under most 64-bit versions of Windows the limit for a 32-bit build of R is 4Gb: for
the oldest ones it is 2Gb. The limit for a 64-bit build of R (imposed by the OS) is 8Tb.

It is not normally possible to allocate as much as 2Gb to a single vector in a 32-bit build of R even
on 64-bit Windows because of preallocations by Windows in the middle of the address space.

Under Windows, R imposes limits on the total memory allocation available to a single session as
the OS provides no way to do so: see memory.size and memory.limit.

See Also

object.size(a) for the (approximate) size of R object a.

memory.profile Profile the Usage of Cons Cells

Description

Lists the usage of the cons cells by SEXPREC type.

Usage

memory.profile()

Details

The current types and their uses are listed in the include file ‘Rinternals.h’.

Value

A vector of counts, named by the types. See typeof for an explanation of types.

See Also

gc for the overall usage of cons cells. Rprofmem and tracemem allow memory profiling of specific
code or objects, but need to be enabled at compile time.

Examples

memory.profile()

http://www.microsoft.com/whdc/system/platform/server/PAE/PAEmem.mspx
http://www.microsoft.com/whdc/system/platform/server/PAE/PAEmem.mspx
http://msdn.microsoft.com/en-us/library/bb613473(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb613473(VS.85).aspx

298 merge

merge Merge Two Data Frames

Description

Merge two data frames by common columns or row names, or do other versions of database join
operations.

Usage

merge(x, y, ...)

Default S3 method:
merge(x, y, ...)

S3 method for class ’data.frame’
merge(x, y, by = intersect(names(x), names(y)),

by.x = by, by.y = by, all = FALSE, all.x = all, all.y = all,
sort = TRUE, suffixes = c(".x",".y"),
incomparables = NULL, ...)

Arguments

x, y data frames, or objects to be coerced to one.

by, by.x, by.y specifications of the columns used for merging. See ‘Details’.

all logical; all = L is shorthand for all.x = L and all.y = L, where L is either
TRUE or FALSE.

all.x logical; if TRUE, then extra rows will be added to the output, one for each row in
x that has no matching row in y. These rows will have NAs in those columns that
are usually filled with values from y. The default is FALSE, so that only rows
with data from both x and y are included in the output.

all.y logical; analogous to all.x.

sort logical. Should the result be sorted on the by columns?

suffixes a character vector of length 2 specifying the suffixes to be used for making
unique the names of columns in the result which not used for merging (appearing
in by etc).

incomparables values which cannot be matched. See match.

... arguments to be passed to or from methods.

Details

merge is a generic function whose principal method is for data frames: the default method coerces
its arguments to data frames and calls the "data.frame" method.

By default the data frames are merged on the columns with names they both have, but separate
specifications of the columns can be given by by.x and by.y. The rows in the two data frames that
match on the specified columns are extracted, and joined together. If there is more than one match,
all possible matches contribute one row each. For the precise meaning of ‘match’, see match.

merge 299

Columns to merge on can be specified by name, number or by a logical vector: the name
"row.names" or the number 0 specifies the row names. If specified by name it must correspond
uniquely to a named column in the input.

If by or both by.x and by.y are of length 0 (a length zero vector or NULL), the result, r, is the
Cartesian product of x and y, i.e., dim(r) = c(nrow(x)*nrow(y), ncol(x) + ncol(y)).

If all.x is true, all the non matching cases of x are appended to the result as well, with NA filled in
the corresponding columns of y; analogously for all.y.

If the columns in the data frames not used in merging have any common names, these have
suffixes (".x" and ".y" by default) appended to try to make the names of the result unique.
If this is not possible, an error is thrown.

The complexity of the algorithm used is proportional to the length of the answer.

In SQL database terminology, the default value of all = FALSE gives a natural join, a special case
of an inner join. Specifying all.x = TRUE gives a left (outer) join, all.y = TRUE a right (outer)
join, and both (all = TRUE a (full) outer join. DBMSes do not match NULL records, equivalent to
incomparables = NA in R.

Value

A data frame. The rows are by default lexicographically sorted on the common columns, but for
sort = FALSE are in an unspecified order. The columns are the common columns followed by the
remaining columns in x and then those in y. If the matching involved row names, an extra character
column called Row.names is added at the left, and in all cases the result has ‘automatic’ row names.

Note

This is intended to work with data frames with vector-like columns: some aspects work with data
frames containing matrices, but not all.

See Also

data.frame, by, cbind.

dendrogram for a class which has a merge method.

Examples

use character columns of names to get sensible sort order
authors <- data.frame(

surname = I(c("Tukey", "Venables", "Tierney", "Ripley", "McNeil")),
nationality = c("US", "Australia", "US", "UK", "Australia"),
deceased = c("yes", rep("no", 4)))

books <- data.frame(
name = I(c("Tukey", "Venables", "Tierney",

"Ripley", "Ripley", "McNeil", "R Core")),
title = c("Exploratory Data Analysis",

"Modern Applied Statistics ...",
"LISP-STAT",
"Spatial Statistics", "Stochastic Simulation",
"Interactive Data Analysis",
"An Introduction to R"),

other.author = c(NA, "Ripley", NA, NA, NA, NA,
"Venables & Smith"))

(m1 <- merge(authors, books, by.x = "surname", by.y = "name"))

300 message

(m2 <- merge(books, authors, by.x = "name", by.y = "surname"))
stopifnot(as.character(m1[,1]) == as.character(m2[,1]),

all.equal(m1[, -1], m2[, -1][names(m1)[-1]]),
dim(merge(m1, m2, by = integer(0))) == c(36, 10))

"R core" is missing from authors and appears only here :
merge(authors, books, by.x = "surname", by.y = "name", all = TRUE)

example of using ’incomparables’
x <- data.frame(k1=c(NA,NA,3,4,5), k2=c(1,NA,NA,4,5), data=1:5)
y <- data.frame(k1=c(NA,2,NA,4,5), k2=c(NA,NA,3,4,5), data=1:5)
merge(x, y, by=c("k1","k2")) # NA’s match
merge(x, y, by=c("k1","k2"), incomparables=NA)
merge(x, y, by="k1") # NA’s match, so 6 rows
merge(x, y, by="k2", incomparables=NA) # 2 rows

message Diagnostic Messages

Description

Generate a diagnostic message from its arguments.

Usage

message(..., domain = NULL, appendLF = TRUE)
suppressMessages(expr)

packageStartupMessage(..., domain = NULL, appendLF = TRUE)
suppressPackageStartupMessages(expr)

.makeMessage(..., domain = NULL, appendLF = FALSE)

Arguments

... zero or more objects which can be coerced to character (and which are pasted
together with no separator) or (for message only) a single condition object.

domain see gettext. If NA, messages will not be translated.

appendLF logical: should messages given as a character string have a newline appended?

expr expression to evaluate.

Details

message is used for generating ‘simple’ diagnostic messages which are neither warnings nor errors,
but nevertheless represented as conditions. Unlike warnings and errors, a final newline is regarded
as part of the message, and is optional. The default handler sends the message to the stderr()
connection.

If a condition object is supplied to message it should be the only argument, and further arguments
will be ignored, with a warning.

While the message is being processed, a muffleMessage restart is available.

missing 301

suppressMessages evaluates its expression in a context that ignores all ‘simple’ diagnostic mes-
sages.

packageStartupMessage is a variant whose messages can be suppressed separately by
suppressPackageStartupMessages. (They are still messages, so can be suppressed by
suppressMessages.)

.makeMessage is a utility used by message, warning and stop to generate a text message from the

... arguments by possible translation (see gettext) and concatenation (with no separator).

See Also

warning and stop for generating warnings and errors; conditions for condition handling and
recovery.

gettext for the mechanisms for the automated translation of text.

Examples

message("ABC", "DEF")
suppressMessages(message("ABC"))

testit <- function() {
message("testing package startup messages")
packageStartupMessage("initializing ...", appendLF = FALSE)
Sys.sleep(1)
packageStartupMessage(" done")

}

testit()
suppressPackageStartupMessages(testit())
suppressMessages(testit())

missing Does a Formal Argument have a Value?

Description

missing can be used to test whether a value was specified as an argument to a function.

Usage

missing(x)

Arguments

x a formal argument.

Details

missing(x) is only reliable if x has not been altered since entering the function: in particular it will
always be false after x <- match.arg(x).

The example shows how a plotting function can be written to work with either a pair of vectors
giving x and y coordinates of points to be plotted or a single vector giving y values to be plotted
against their indices.

302 mode

Currently missing can only be used in the immediate body of the function that defines the argument,
not in the body of a nested function or a local call. This may change in the future.

This is a ‘special’ primitive function: it must not evaluate its argument.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

substitute for argument expression; NA for missing values in data.

Examples

myplot <- function(x,y) {
if(missing(y)) {

y <- x
x <- 1:length(y)

}
plot(x,y)

}

mode The (Storage) Mode of an Object

Description

Get or set the type or storage mode of an object.

Usage

mode(x)
mode(x) <- value
storage.mode(x)
storage.mode(x) <- value

Arguments

x any R object.

value a character string giving the desired mode or ‘storage mode’ (type) of the object.

Details

Both mode and storage.mode return a character string giving the (storage) mode of the object —
often the same — both relying on the output of typeof(x), see the example below.

mode(x) <- "newmode" changes the mode of object x to newmode. This is only supported if there is
an appropriate as.newmode function, for example "logical", "integer", "double", "complex",
"raw", "character", "list", "expression", "name", "symbol" and "function". Attributes are
preserved (but see below).

mode 303

storage.mode(x) <- "newmode" is a more efficient primitive version of mode<-, which works for
"newmode" which is one of the internal types (see typeof), but not for "single". Attributes are
preserved.

As storage mode "single" is only a pseudo-mode in R, it will not be reported by mode or
storage.mode: use attr(object, "Csingle") to examine this. However, mode<- can be used to
set the mode to "single", which sets the real mode to "double" and the "Csingle" attribute to
TRUE. Setting any other mode will remove this attribute.

Note (in the examples below) that some calls have mode "(" which is S compatible.

Mode names

Modes have the same set of names as types (see typeof) except that

• types "integer" and "double" are returned as "numeric".

• types "special" and "builtin" are returned as "function".

• type "symbol" is called mode "name".

• type "language" is returned as "(" or "call".

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

typeof for the R-internal ‘mode’, attributes.

Examples

require(stats)

sapply(options(),mode)

cex3 <- c("NULL","1","1:1","1i","list(1)","data.frame(x=1)",
"pairlist(pi)", "c", "lm", "formals(lm)[[1]]", "formals(lm)[[2]]",
"y~x","expression((1))[[1]]", "(y~x)[[1]]",
"expression(x <- pi)[[1]][[1]]")

lex3 <- sapply(cex3, function(x) eval(parse(text=x)))
mex3 <- t(sapply(lex3,

function(x) c(typeof(x), storage.mode(x), mode(x))))
dimnames(mex3) <- list(cex3, c("typeof(.)","storage.mode(.)","mode(.)"))
mex3

This also makes a local copy of ’pi’:
storage.mode(pi) <- "complex"
storage.mode(pi)
rm(pi)

304 NA

NA ‘Not Available’ / Missing Values

Description

NA is a logical constant of length 1 which contains a missing value indicator. NA can be coerced to
any other vector type except raw. There are also constants NA_integer_, NA_real_, NA_complex_
and NA_character_ of the other atomic vector types which support missing values: all of these are
reserved words in the R language.

The generic function is.na indicates which elements are missing.

The generic function is.na<- sets elements to NA.

Usage

NA
is.na(x)
S3 method for class ’data.frame’
is.na(x)

is.na(x) <- value

Arguments

x an R object to be tested: the default method handles atomic vectors, lists and
pairlists.

value a suitable index vector for use with x.

Details

The NA of character type is distinct from the string "NA". Programmers who need to specify an
explicit string NA should use NA_character_ rather than "NA", or set elements to NA using is.na<-.

is.na(x) works elementwise when x is a list. It is generic: you can write methods to handle
specific classes of objects, see InternalMethods. A complex value is regarded as NA if either its real
or imaginary part is NA or NaN.

Function is.na<- may provide a safer way to set missingness. It behaves differently for factors,
for example.

Computations using NA will normally result in NA: a possible exception is where NaN is also involved,
in which case either might result.

Value

The default method for is.na applied to an atomic vector returns a logical vector of the same length
as its argument x, containing TRUE for those elements marked NA or, for numeric or complex vectors,
NaN (!) and FALSE otherwise. dim, dimnames and names attributes are preserved.

The default method also works for lists and pairlists: the result for an element is false unless that
element is a length-one atomic vector and the single element of that vector is regarded as NA or NaN.

The method is.na.data.frame returns a logical matrix with the same dimensions as the data
frame, and with dimnames taken from the row and column names of the data frame.

name 305

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

NaN, is.nan, etc., and the utility function complete.cases.

na.action, na.omit, na.fail on how methods can be tuned to deal with missing values.

Examples

is.na(c(1, NA)) #> FALSE TRUE
is.na(paste(c(1, NA))) #> FALSE FALSE

(xx <- c(0:4))
is.na(xx) <- c(2, 4)
xx #> 0 NA 2 NA 4

name Names and Symbols

Description

A ‘name’ (also known as a ‘symbol’) is a way to refer to R objects by name (rather than the value
of the object, if any, bound to that name).

as.name and as.symbol are identical: they attempt to coerce the argument to a name.

is.symbol and the identical is.name return TRUE or FALSE depending on whether the argument is
a name or not.

Usage

as.symbol(x)
is.symbol(x)

as.name(x)
is.name(x)

Arguments

x object to be coerced or tested.

Details

Names are limited to 10,000 bytes (and were to 256 bytes in versions of R before 2.13.0).

as.name first coerces its argument internally to a character vector (so methods for as.character
are not used). It then takes the first element and provided it is not "", returns a symbol of that name
(and if the element is NA_character_, the name is ‘NA‘).

as.name is implemented as as.vector(x, "symbol"), and hence will dispatch methods for the
generic function as.vector.

is.name and is.symbol are primitive functions.

306 names

Value

For as.name and as.symbol, an R object of type "symbol" (see typeof).

For is.name and is.symbol, a length-one logical vector with value TRUE or FALSE.

Note

The term ‘symbol’ is from the LISP background of R, whereas ‘name’ has been the standard S term
for this.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call, is.language. For the internal object mode, typeof.

plotmath for another use of ‘symbol’.

Examples

an <- as.name("arrg")
is.name(an) # TRUE
mode(an) # name
typeof(an) # symbol

names The Names of an Object

Description

Functions to get or set the names of an object.

Usage

names(x)
names(x) <- value

Arguments

x an R object.

value a character vector of up to the same length as x, or NULL.

names 307

Details

names is a generic accessor function, and names<- is a generic replacement function. The default
methods get and set the "names" attribute of a vector (including a list) or pairlist.

If value is shorter than x, it is extended by character NAs to the length of x.

It is possible to update just part of the names attribute via the general rules:
see the examples. This works because the expression there is evaluated as
z <- "names<-"(z, "[<-"(names(z), 3, "c2")).

The name "" is special: it is used to indicate that there is no name associated with an element of a
(atomic or generic) vector. Subscripting by "" will match nothing (not even elements which have
no name).

A name can be character NA, but such a name will never be matched and is likely to lead to confusion.

Both are primitive functions.

Value

For names, NULL or a character vector of the same length as x. (NULL is given if the object has no
names, including for objects of types which cannot have names.)

For names<-, the updated object. (Note that the value of names(x) <- value is that of the assign-
ment, value, not the return value from the left-hand side.)

Note

For vectors, the names are one of the attributes with restrictions on the possible values. For pairlists,
the names are the tags and converted to and from a character vector.

For a one-dimensional array the names attribute really is dimnames[[1]].

Formally classed aka “S4” objects typically have slotNames() (and no names()).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

slotNames, dimnames.

Examples

print the names attribute of the islands data set
names(islands)

remove the names attribute
names(islands) <- NULL
islands
rm(islands) # remove the copy made

z <- list(a=1, b="c", c=1:3)
names(z)
change just the name of the third element.
names(z)[3] <- "c2"
z

308 nargs

z <- 1:3
names(z)
assign just one name
names(z)[2] <- "b"
z

nargs The Number of Arguments to a Function

Description

When used inside a function body, nargs returns the number of arguments supplied to that function,
including positional arguments left blank.

Usage

nargs()

Details

The count includes empty (missing) arguments, so that foo(x,,z) will be considered to have three
arguments (see ‘Examples’). This can occur in rather indirect ways, so for example x[] might
dispatch a call to ‘[.some_method‘(x,) which is considered to have two arguments.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

args, formals and sys.call.

Examples

tst <- function(a, b = 3, ...) {nargs()}
tst() # 0
tst(clicketyclack) # 1 (even non-existing)
tst(c1, a2, rr3) # 3

foo <- function(x, y, z, w) {
cat("call was", deparse(match.call()), "\n")
nargs()

}
foo() # 0
foo(,,3) # 3
foo(z=3) # 1, even though this is the same call

nargs()# not really meaningful

nchar 309

nchar Count the Number of Characters (or Bytes or Width)

Description

nchar takes a character vector as an argument and returns a vector whose elements contain the sizes
of the corresponding elements of x.

nzchar is a fast way to find out if elements of a character vector are non-empty strings.

Usage

nchar(x, type = "chars", allowNA = FALSE)

nzchar(x)

Arguments

x character vector, or a vector to be coerced to a character vector. Giving a factor
is an error.

type character string: partial matching to one of c("bytes", "chars", "width").
See ‘Details’.

allowNA logical: should NA be returned for invalid multibyte strings or "bytes"-encoded
strings (rather than throwing an error)?

Details

The ‘size’ of a character string can be measured in one of three ways

bytes The number of bytes needed to store the string (plus in C a final terminator which is not
counted).

chars The number of human-readable characters.

width The number of columns cat will use to print the string in a monospaced font. The same as
chars if this cannot be calculated.

These will often be the same, and almost always will be in single-byte locales. There will be
differences between the first two with multibyte character sequences, e.g. in UTF-8 locales.

The internal equivalent of the default method of as.character is performed on x (so there is no
method dispatch). If you want to operate on non-vector objects passing them through deparse first
will be required.

Value

For nchar, an integer vector giving the sizes of each element, currently always 2 for missing values
(for NA).

If allowNA = TRUE and an element is invalid in a multi-byte character set such as UTF-8, its number
of characters and the width will be NA. Otherwise the number of characters will be non-negative, so
!is.na(nchar(x, "chars", TRUE)) is a test of validity.

A character string marked with "bytes" encoding has a number of bytes, but neither a known
number of characters nor a width, so the latter two types are NA if allowNA = TRUE, otherwise an
error.

310 nlevels

Names, dims and dimnames are copied from the input.

For nzchar, a logical vector of the same length as x, true if and only if the element has non-zero
length.

Note

This does not by default give the number of characters that will be used to print() the string.
Use encodeString to find the characters used to print the string. This is particularly important on
Windows when ‘\uxxxx’ sequences have been used to enter Unicode characters not representable
in the current encoding. Thus nchar("\u2642") is 1, and it is printed in Rgui as one character, but
it will be printed in Rterm as <U+2642>, which is what encodeString gives.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

strwidth giving width of strings for plotting; paste, substr, strsplit

Examples

x <- c("asfef", "qwerty", "yuiop[", "b", "stuff.blah.yech")
nchar(x)
5 6 6 1 15

nchar(deparse(mean))
18 17

nlevels The Number of Levels of a Factor

Description

Return the number of levels which its argument has.

Usage

nlevels(x)

Arguments

x an object, usually a factor.

Details

This is usually applied to a factor, but other objects can have levels.

The actual factor levels (if they exist) can be obtained with the levels function.

Value

The length of levels(x), which is zero if x has no levels.

noquote 311

See Also

levels, factor.

Examples

nlevels(gl(3,7)) # = 3

noquote Class for ‘no quote’ Printing of Character Strings

Description

Print character strings without quotes.

Usage

noquote(obj)

S3 method for class ’noquote’
print(x, ...)

S3 method for class ’noquote’
c(..., recursive = FALSE)

Arguments

obj any R object, typically a vector of character strings.

x an object of class "noquote".

... further options passed to next methods, such as print.

recursive for compatibility with the generic c function.

Details

noquote returns its argument as an object of class "noquote". There is a method for c() and
subscript method ("[.noquote") which ensures that the class is not lost by subsetting. The print
method (print.noquote) prints character strings without quotes ("...").

These functions exist both as utilities and as an example of using (S3) class and object orientation.

Author(s)

Martin Maechler <maechler@stat.math.ethz.ch>

See Also

methods, class, print.

312 norm

Examples

letters
nql <- noquote(letters)
nql
nql[1:4] <- "oh"
nql[1:12]

cmp.logical <- function(log.v)
{

Purpose: compact printing of logicals
log.v <- as.logical(log.v)
noquote(if(length(log.v)==0)"()" else c(".","|")[1+log.v])

}
cmp.logical(stats::runif(20) > 0.8)

norm Compute the Norm of a Matrix

Description

Computes a matrix norm of x using Lapack. The norm can be the one ("O") norm, the infinity ("I")
norm, the Frobenius ("F") norm, the maximum modulus ("M") among elements of a matrix, or the
“spectral” or "2"-norm, as determined by the value of type.

Usage

norm(x, type = c("O", "I", "F", "M", "2"))

Arguments

x numeric matrix; note that packages such as Matrix define more norm() meth-
ods.

type character string, specifying the type of matrix norm to be computed. A character
indicating the type of norm desired.

"O", "o" or "1" specifies the one norm, (maximum absolute column sum);
"I" or "i" specifies the infinity norm (maximum absolute row sum);
"F" or "f" specifies the Frobenius norm (the Euclidean norm of x treated as if

it were a vector);
"M" or "m" specifies the maximum modulus of all the elements in x; and
"2" specifies the “spectral” or 2-norm, which is the largest singular value (svd)

of x.

The default is "O". Only the first character of type[1] is used.

Details

The base method of norm() calls the Lapack function dlange.

Note that the 1-, Inf- and "M" norm is faster to calculate than the Frobenius one.

Value

The matrix norm, a non-negative number.

http://CRAN.R-project.org/package=Matrix

normalizePath 313

Source

Except for norm = "2", the LAPACK routine DLANGE.

LAPACK is from http://www.netlib.org/lapack.

References

Anderson, E., et al. (1994). LAPACK User’s Guide, 2nd edition, SIAM, Philadelphia.

See Also

rcond for the (reciprocal) condition number.

Examples

(x1 <- cbind(1,1:10))
norm(x1)
norm(x1, "I")
norm(x1, "M")
stopifnot(all.equal(norm(x1, "F"),

sqrt(sum(x1^2))))

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
h9 <- hilbert(9)
all 5 types of norm:
(nTyp <- eval(formals(base::norm)$type))
sapply(nTyp, norm, x=h9)

normalizePath Express File Paths in Canonical Form

Description

Convert file paths to canonical form for the platform, to display them in a user-understandable form
and so that relative and absolute paths can be compared.

Usage

normalizePath(path, winslash = "\\", mustWork = NA)

Arguments

path character vector of file paths.

winslash the separator to be used on Windows – ignored elsewhere. Must be one of
c("/", "\\").

mustWork logical: if TRUE then an error is given if the result cannot be determined; if NA
then a warning.

http://www.netlib.org/lapack

314 NotYet

Details

Tilde-expansion (see path.expand) is first done on paths (as from R 2.13.0).

Where the Unix-alike platform supports it attempts to turn paths into absolute paths in their canon-
ical form (no ‘./’, ‘../’ nor symbolic links). It relies on the POSIX system function realpath: if
the platform does not have that (we know of no current example) then the result will be an absolute
path but might not be canonical. Even where realpath is used the canonical path need not be
unique, for example via hard links or multiple mounts.

On Windows it converts relative paths to absolute paths, converts short names for path elements
to long names and ensures the separator is that specified by winslash. It will match paths case-
insensitively and return the canonical case. UTF-8-encoded paths not valid in the current locale can
be used.

mustWork = FALSE is useful for expressing paths for use in messages.

Value

A character vector.

If an input is not a real path the result is system-dependent (unless mustWork = TRUE, when this
should be an error). It will be either the corresponding input element or a transformation of it into
an absolute path.

Converting to an absolute file path can fail for a large number of reasons. The most common are

• One of more components of the file path does not exist.

• A component before the last is not a directory, or there is insufficient permission to read the
directory.

• For a relative path, the current directory cannot be determined.

• A symbolic link points to a non-existent place or links form a loop.

• The canonicalized path would be exceed the maximum supported length of a file path.

See Also

shortPathName

Examples

random tempdir
cat(normalizePath(c(R.home(), tempdir())), sep = "\n")

NotYet Not Yet Implemented Functions and Unused Arguments

Description

In order to pinpoint missing functionality, the R core team uses these functions for missing R func-
tions and not yet used arguments of existing R functions (which are typically there for compatibility
purposes).

You are very welcome to contribute your code . . .

nrow 315

Usage

.NotYetImplemented()

.NotYetUsed(arg, error = TRUE)

Arguments

arg an argument of a function that is not yet used.

error a logical. If TRUE, an error is signalled; if FALSE; only a warning is given.

See Also

the contrary, Deprecated and Defunct for outdated code.

Examples

require(graphics)
require(stats)
plot.mlm # to see how the "NotYetImplemented"

reference is made automagically
try(plot.mlm())

barplot(1:5, inside = TRUE) # ’inside’ is not yet used

nrow The Number of Rows/Columns of an Array

Description

nrow and ncol return the number of rows or columns present in x. NCOL and NROW do the same
treating a vector as 1-column matrix.

Usage

nrow(x)
ncol(x)
NCOL(x)
NROW(x)

Arguments

x a vector, array or data frame

Value

an integer of length 1 or NULL.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (ncol and nrow.)

316 ns-dblcolon

See Also

dim which returns all dimensions; array, matrix.

Examples

ma <- matrix(1:12, 3, 4)
nrow(ma) # 3
ncol(ma) # 4

ncol(array(1:24, dim = 2:4)) # 3, the second dimension
NCOL(1:12) # 1
NROW(1:12) # 12

ns-dblcolon Double Colon and Triple Colon Operators

Description

Accessing exported and internal variables in a namespace.

Usage

pkg::name
pkg:::name

Arguments

pkg package name: symbol or literal character string.

name variable name: symbol or literal character string.

Details

For a package pkg, pkg::name returns the value of the exported variable name in namespace pkg,
whereas pkg:::name returns the value of the internal variable name. The namespace will be loaded
if it was not loaded before the call, but the package will not be attached to the search path.

Specifying a variable or package that does not exist is an error.

Note that pkg::name does not access the objects in the environment package:pkg (which does not
exist until the package’s namespace is attached): the latter may contain objects not exported from
the namespace. As from R 2.14.0 it can access datasets made available by lazy-loading.

Note

It is typically a design mistake to use ::: in your code since the corresponding object has probably
been kept internal for a good reason. Consider contacting the package maintainer if you feel the
need to access the object for anything but mere inspection.

See Also

get to access an object masked by another of the same name.

ns-hooks 317

Examples

base::log
base::"+"

Beware -- use ’:::’ at your own risk! (see "Details")
stats:::coef.default

ns-hooks Hooks for Namespace Events

Description

Packages can supply functions to be called when loaded, attached, detached or unloaded.

Usage

.onLoad(libname, pkgname)

.onAttach(libname, pkgname)

.onUnload(libpath)

.Last.lib(libpath)

Arguments

libname a character string giving the library directory where the package defining the
namespace was found.

pkgname a character string giving the name of the package.
libpath a character string giving the complete path to the package.

Details

After loading, loadNamespace looks for a hook function named .onLoad and calls it (with two
unnamed arguments) before sealing the namespace and processing exports.
When the package is attached (via library or attachNamespace), the hook function .onAttach
is looked for and if found is called (with two unnamed arguments) before the package environment
is sealed.
If a function .Last.lib is exported in the package, it will be called (with a single argument) when
the package is detached. Beware that it might be called if .onAttach has failed, so it should be
written defensively. (It is called within try, so errors will not stop the package being detached.)
If a namespace is unloaded (via unloadNamespace), a hook function .onUnload is run (with a
single argument) before final unloading.
Note that the code in .onLoad and .onUnload is run without the package being on the search path,
but (unless circumvented) lexical scope will make objects in the namespace and its imports visible.
(Do not use the double colon operator in .onLoad as exports have not been processed at the point it
is run.)
.onLoad, .onUnload and .onAttach are looked for as internal objects in the namespace and should
not be exported (whereas .Last.lib should be).
Anything needed for the functioning of the namespace should be handled at load/unload times by the
.onLoad and .onUnload hooks. For example, DLLs can be loaded (unless done by a useDynLib
directive in the ‘NAMESPACE’ file) and initialized in .onLoad and unloaded in .onUnload. Use
.onAttach only for actions that are needed only when the package becomes visible to the user (for
example a start-up message) or need to be run after the package environment has been created.

318 ns-load

Good practice

Loading a namespace should where possible be silent, with startup messages given by .onAttach.
These messages (and any essential ones from .onLoad) should use packageStartupMessage so
they can be silenced where they would be a distraction.

There should be no calls to library nor require in these hooks. The way for a package to load
other packages is via the ‘Depends’ field in the ‘DESCRIPTION’ file: this ensures that the dependence
is documented and packages are loaded in the correct order. Loading a namespace should not
change the search path, so rather than attach a package, dependence of a namespace on another
package should be achieved by (selectively) importing from the other package’s namespace.

As from R 2.14.0, uses of library with argument help to display basic information about
the package should use format on the computed package information object and pass this to
packageStartupMessage.

There should be no calls to installed.packages in startup code: it is potentially very slow and
may fail in versions of R before 2.14.2 if package installation is going on in parallel. See its help
page for alternatives.

See Also

setHook shows how users can set hooks on the same events, and lists the sequence of events in-
volving all of the hooks.

ns-load Loading and Unloading Namespaces

Description

Functions to load and unload namespaces.

Usage

attachNamespace(ns, pos = 2, dataPath = NULL, depends = NULL)
loadNamespace(package, lib.loc = NULL,

keep.source = getOption("keep.source.pkgs"),
partial = FALSE)

requireNamespace(package, ..., quietly = FALSE)
loadedNamespaces()
unloadNamespace(ns)

Arguments

ns string or namespace object.

pos integer specifying position to attach.

dataPath path to directory containing a database of datasets to be lazy-loaded into the
attached environment.

depends NULL or a character vector of dependencies to be recorded in object .Depends
in the package.

package string naming the package/namespace to load.

lib.loc character vector specifying library search path.

ns-load 319

keep.source Now ignored except during package installation. For more details see this argu-
ment to library.

partial logical; if true, stop just after loading code.

quietly logical: should progress and error messages be suppressed?

... further arguments to be passed to loadNamespace.

Details

The functions loadNamespace and attachNamespace are usually called implicitly when library
is used to load a name space and any imports needed. However it may be useful to call these
functions directly at times.

loadNamespace loads the specified namespace and registers it in an internal data base. A request to
load a namespace when one of that name is already loaded has no effect. The arguments have the
same meaning as the corresponding arguments to library, whose help page explains the details of
how a particular installed package comes to be chosen. After loading, loadNamespace looks for a
hook function named .onLoad as an internal variable in the namespace (it should not be exported).
This function is called with the same arguments as .First.lib. Partial loading is used to support
installation with the ‘--lazy’ option.

loadNamespace does not attach the namespace it loads to the search path. attachNamespace can
be used to attach a frame containing the exported values of a namespace to the search path (but
this is almost always done via library). The hook function .onAttach is run after the namespace
exports are attached.

requireNamespace is a wrapper for loadNamespace analogous to require that returns a logical
value.

loadedNamespaces returns a character vector of the names of the loaded namespaces.

unloadNamespace can be used to attempt to force a namespace to be unloaded. If the namespace
is attached, it is first detached, thereby running a .Last.lib function in the namespace if one is
exported. Then an error is signaled if the namespace is imported by other loaded namespaces, and
the namespace is not unloaded. If defined, a hook function .onUnload is run before removing the
namespace from the internal registry.

See the comments in the help for detach about some issues with unloading and reloading names-
paces.

Value

attachNamespace returns invisibly the package environment it adds to the search path.

loadNamespace returns the namespace environment, either one already loaded or the one the func-
tion causes to be loaded.

requireNamespace returns TRUE if it succeeds or FALSE.

loadedNamespaces returns a character vector.

unloadNamespace returns NULL, invisibly.

Author(s)

Luke Tierney and R-core

320 NULL

ns-topenv Top Level Environment

Description

Finding the top level environment.

Usage

topenv(envir = parent.frame(),
matchThisEnv = getOption("topLevelEnvironment"))

Arguments

envir environment.

matchThisEnv return this environment, if it matches before any other criterion is satisfied. The
default, the option ‘topLevelEnvironment’, is set by sys.source, which treats
a specific environment as the top level environment. Supplying the argument as
NULL means it will never match.

Details

topenv returns the first top level environment found when searching envir and its enclosing envi-
ronments. An environment is considered top level if it is the internal environment of a namespace,
a package environment in the search path, or .GlobalEnv.

Examples

topenv(.GlobalEnv)
topenv(new.env())

NULL The Null Object

Description

NULL represents the null object in R: it is a reserved word. NULL is often returned by expressions
and functions whose value is undefined.

as.null ignores its argument and returns the value NULL.

is.null returns TRUE if its argument is NULL and FALSE otherwise.

Usage

NULL
as.null(x, ...)
is.null(x)

numeric 321

Arguments

x an object to be tested or coerced.

... ignored.

Details

NULL can be indexed (see Extract) in just about any syntactically legal way: whether is makes sense
or not, the result is always NULL. Objects with value NULL can be changed by replacement operators
and will be coerced to the type of the right-hand side.

NULL is also used as the empty pairlist.

Note

is.null is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

is.null(list()) # FALSE (on purpose!)
is.null(integer(0))# F
is.null(logical(0))# F
as.null(list(a=1,b=’c’))

numeric Numeric Vectors

Description

Creates or coerces objects of type "numeric". is.numeric is a more general test of an object being
interpretable as numbers.

Usage

numeric(length = 0)
as.numeric(x, ...)
is.numeric(x)

Arguments

length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.

x object to be coerced or tested.

... further arguments passed to or from other methods.

322 numeric

Details

numeric is identical to double (and real). It creates a double-precision vector of the specified
length with each element equal to 0.

as.numeric is a generic function, but S3 methods must be written for as.double. It is identical to
as.double (and as.real).

is.numeric is an internal generic primitive function: you can write methods to handle specific
classes of objects, see InternalMethods. It is not the same as is.double. Factors are handled by
the default method, and there are methods for classes "Date", "POSIXt" and "difftime" (all of
which return false). Methods for is.numeric should only return true if the base type of the class
is double or integer and values can reasonably be regarded as numeric (e.g. arithmetic on them
makes sense, and comparison should be done via the base type).

Value

for numeric and as.numeric see double.

The default method for is.numeric returns TRUE if its argument is of mode "numeric"
(type "double" or type "integer") and not a factor, and FALSE otherwise. That is,
is.integer(x) || is.double(x), or (mode(x) == "numeric") && !is.factor(x).

S4 methods

as.numeric and is.numeric are internally S4 generic and so methods can be set for them via
setMethod.

To ensure that as.numeric, as.double and as.real remain identical, S4 methods can only be set
for as.numeric.

Note on names

It is a historical anomaly that R has three names for its floating-point vectors, double, numeric and
real.

double is the name of the type. numeric is the name of the mode and also of the implicit class. As
an S4 formal class, use "numeric".

real is deprecated and should not be used in new code.

The potential confusion is that R has used mode "numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thus is.numeric tests the mode, not the class, but as.numeric (which
is identical to as.double) coerces to the class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

double, integer, storage.mode.

Examples

as.numeric(c("-.1"," 2.7 ","B")) # (-0.1, 2.7, NA) + warning
as.numeric(factor(5:10))

NumericConstants 323

NumericConstants Numeric Constants

Description

How R parses numeric constants.

Details

R parses numeric constants in its input in a very similar way to C99 floating-point constants.

Inf and NaN are numeric constants (with typeof(.) "double"). In text input (e.g. in scan and
as.double), these are recognized ignoring case as is infinity as an alternative to Inf. NA_real_
and NA_integer_ are constants of types "double" and "integer" representing missing values. All
other numeric constants start with a digit or period and are either a decimal or hexadecimal constant
optionally followed by L.

Hexadecimal constants start with 0x or 0X followed by a nonempty sequence from 0-9 a-f A-F .
which is interpreted as a hexadecimal number, optionally followed by a binary exponent. A binary
exponent consists of a P or p followed by an optional plus or minus sign followed by a non-empty
sequence of (decimal) digits, and indicates multiplication by a power of two. Thus 0x123p456 is
291× 2456.

Decimal constants consist of a nonempty sequence of digits possibly containing a period (the dec-
imal point), optionally followed by a decimal exponent. A decimal exponent consists of an E or
e followed by an optional plus or minus sign followed by a non-empty sequence of digits, and
indicates multiplication by a power of ten.

Values which are too large or too small to be representable will overflow to Inf or underflow to
0.0.

A numeric constant immediately followed by i is regarded as an imaginary complex number.

An numeric constant immediately followed by L is regarded as an integer number when possible
(and with a warning if it contains a ".").

Only the ASCII digits 0–9 are recognized as digits, even in languages which have other representa-
tions of digits. The ‘decimal separator’ is always a period and never a comma.

Note that a leading plus or minus is not regarded by the parser as part of a numeric constant but as
a unary operator applied to the constant.

Note

When a string is parsed to input a numeric constant, the number may or may not be representable
exactly in the C double type used. If not one of the nearest representable numbers will be returned.

R’s own C code is used to convert constants to binary numbers, so the effect can be expected to
be the same on all platforms implementing full IEC 600559 arithmetic (the most likely area of
difference being the handling of numbers less than .Machine$double.xmin). The same code is
used by scan.

See Also

Syntax.

Quotes for the parsing of character constants,

324 numeric_version

Examples

2.1
typeof(2)
sqrt(1i) # remember elementary math?
utils::str(0xA0)
identical(1L, as.integer(1))

You can combine the "0x" prefix with the "L" suffix :
identical(0xFL, as.integer(15))

numeric_version Numeric Versions

Description

A simple S3 class for representing numeric versions including package versions, and associated
methods.

Usage

numeric_version(x, strict = TRUE)
package_version(x, strict = TRUE)
R_system_version(x, strict = TRUE)
getRversion()

Arguments

x a character vector with suitable numeric version strings (see ‘Details’); for
package_version, alternatively an R version object as obtained by R.version.

strict a logical indicating whether invalid numeric versions should results in an error
(default) or not.

Details

Numeric versions are sequences of one or more non-negative integers, usually (e.g., in package
‘DESCRIPTION’ files) represented as character strings with the elements of the sequence concate-
nated and separated by single ‘.’ or ‘-’ characters. R package versions consist of at least two such
integers, an R system version of exactly three (major, minor and patchlevel).

Functions numeric_version, package_version and R_system_version create a representation
from such strings (if suitable) which allows for coercion and testing, combination, comparison,
summaries (min/max), inclusion in data frames, subscripting, and printing. The classes can hold a
vector of such representations.

getRversion returns the version of the running R as an R system version object.

The [[operator extracts or replaces a single version. To access the integers of a version use two
indices: see the examples.

See Also

compareVersion

octmode 325

Examples

x <- package_version(c("1.2-4", "1.2-3", "2.1"))
x < "1.4-2.3"
c(min(x), max(x))
x[2, 2]
x$major
x$minor

if(getRversion() <= "2.5.0") { ## work around missing feature
cat("Your version of R, ", as.character(getRversion()),

", is outdated.\n",
"Now trying to work around that ...\n", sep = "")

}

x[[c(1,3)]] # ’4’ as a numeric vector, same as x[1, 3]
x[1, 3] # 4 as an integer
x[[2, 3]] <- 0 # zero the patchlevel
x[[c(2,3)]] <- 0 # same
x
x[[3]] <- "2.2.3"; x

octmode Display Numbers in Octal

Description

Convert or print integers in octal format, with as many digits as are needed to display the largest,
using leading zeroes as necessary.

Usage

as.octmode(x)

S3 method for class ’octmode’
as.character(x, ...)

S3 method for class ’octmode’
format(x, width = NULL, ...)

S3 method for class ’octmode’
print(x, ...)

Arguments

x An object, for the methods inheriting from class "octmode".

width NULL or a positive integer specifying the minimum field width to be used, with
padding by leading zeroes.

... further arguments passed to or from other methods.

326 on.exit

Details

Class "octmode" consists of integer vectors with that class attribute, used merely to ensure that they
are printed in octal notation, specifically for Unix-like file permissions such as 755. Subsetting ([)
works too.

If width = NULL (the default), the output is padded with leading zeroes to the smallest width needed
for all the non-missing elements.

as.octmode can convert integers (of type "integer" or "double") and character vectors whose
elements contain only digits 0-7 (or are NA) to class "octmode".

There is a ! method and |, & and xor methods: these recycle their arguments to the length of the
longer and then apply the operators bitwise to each element.

See Also

These are auxiliary functions for file.info.

hexmode, sprintf for other options in converting integers to octal, strtoi to convert octal strings
to integers.

Examples

(on <- as.octmode(c(16,32, 127:129))) # "020" "040" "177" "200" "201"
unclass(on[3:4]) # subsetting

manipulate file modes
fmode <- as.octmode("170")
(fmode | "644") & "755"

umask <- Sys.umask(NA) # depends on platform
c(fmode, "666", "755") & !umask

on.exit Function Exit Code

Description

on.exit records the expression given as its argument as needing to be executed when the current
function exits (either naturally or as the result of an error). This is useful for resetting graphical
parameters or performing other cleanup actions.

If no expression is provided, i.e., the call is on.exit(), then the current on.exit code is removed.

Usage

on.exit(expr = NULL, add = FALSE)

Arguments

expr an expression to be executed.

add if TRUE, add expr to be executed after any previously set expressions; other-
wise (the default) expr will overwrite any previously set expressions.

Ops.Date 327

Details

Where expr was evaluated changed in R 2.8.0, and the following applies only to that and later
versions.

The expr argument passed to on.exit is recorded without evaluation. If it is not subsequently
removed/replaced by another on.exit call in the same function, it is evaluated in the evaluation
frame of the function when it exits (including during standard error handling). Thus any functions
or variables in the expression will be looked for in the function and its environment at the time of
exit: to capture the current value in expr use substitute or similar.

This is a ‘special’ primitive function: it only evaluates the argument add.

Value

Invisible NULL.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

sys.on.exit which returns the expression stored for use by on.exit() in the function in which
sys.on.exit() is evaluated.

Examples

require(graphics)

opar <- par(mai = c(1,1,1,1))
on.exit(par(opar))

Ops.Date Operators on the Date Class

Description

Operators for the "Date" class.

There is an Ops method and specific methods for + and - for the Date class.

Usage

date + x
x + date
date - x
date1 lop date2

328 options

Arguments

date date objects
date1, date2 date objects or character vectors. (Character vectors are converted by as.Date.)
x a numeric vector (in days) or an object of class "difftime", rounded to the

nearest whole day.
lop One of ==, !=, <, <=, > or >=.

Details

x does not need to be integer if specified as a numeric vector, but see the comments about fractional
days in the help for Dates.

Examples

(z <- Sys.Date())
z + 10
z < c("2009-06-01", "2010-01-01", "2015-01-01")

options Options Settings

Description

Allow the user to set and examine a variety of global options which affect the way in which R
computes and displays its results.

Usage

options(...)

getOption(x, default = NULL)

.Options

Arguments

... any options can be defined, using name = value or by passing a list of such
tagged values. However, only the ones below are used in base R. Further,
options(’name’) == options()[’name’], see the example.

x a character string holding an option name.
default if the specified option is not set in the options list, this value is returned. This

facilitates retrieving an option and checking whether it is set and setting it sepa-
rately if not.

Details

Invoking options() with no arguments returns a list with the current values of the options. Note
that not all options listed below are set initially. To access the value of a single option, one should
use getOption("width"), e.g., rather than options("width") which is a list of length one.

.Options also always contains the options() list (as a pairlist, unsorted), for S compatibility.
Assigning to it will make a local copy and not change the original.

options 329

Value

For getOption, the current value set for option x, or NULL if the option is unset.

For options(), a list of all set options sorted by name. For options(name), a list of length one
containing the set value, or NULL if it is unset. For uses setting one or more options, a list with the
previous values of the options changed (returned invisibly).

Options used in base R

add.smooth: typically logical, defaulting to TRUE. Could also be set to an integer for specifying
how many (simulated) smooths should be added. This is currently only used by plot.lm.

browserNLdisabled: logical: whether newline is disabled as a synonym for "n" is the browser.

checkPackageLicense: logical, not set by default. If true, library asks a user to accept any
non-standard license at first use.

check.bounds: logical, defaulting to FALSE. If true, a warning is produced whenever a vector
(atomic or list) is extended, by something like x <- 1:3; x[5] <- 6.

continue: a non-empty string setting the prompt used for lines which continue over one line.

defaultPackages: the packages that are attached by default when R starts up. Initially
set from value of the environment variable R_DEFAULT_PACKAGES, or if that is unset to
c("datasets", "utils", "grDevices", "graphics", "stats", "methods").
(Set R_DEFAULT_PACKAGES to NULL or a comma-separated list of package names.) A call to
options should be in your ‘.Rprofile’ file to ensure that the change takes effect before the
base package is initialized (see Startup).

deparse.max.lines: controls the number of lines used when deparsing in traceback, browser,
and upon entry to a function whose debugging flag is set. Initially unset, and only used if set
to a positive integer.

digits: controls the number of digits to print when printing numeric values. It is a suggestion
only. Valid values are 1. . . 22 with default 7. See the note in print.default about values
greater than 15.

digits.secs: controls the maximum number of digits to print when formatting time values in
seconds. Valid values are 0. . . 6 with default 0. See strftime.

download.file.extra: Extra command-line argument(s) for non-default methods: see
download.file.

download.file.method: Method to be used for download.file. Currently download methods
"internal", "wget" and "lynx" are available. There is no default for this option, when
method = "auto" is chosen: see download.file.

echo: logical. Only used in non-interactive mode, when it controls whether input is echoed.
Command-line option ‘--slave’ sets this to FALSE, but otherwise it starts the session as TRUE.

encoding: The name of an encoding, default "native.enc". See connections.

error: either a function or an expression governing the handling of non-catastrophic errors such
as those generated by stop as well as by signals and internally detected errors. If the option
is a function, a call to that function, with no arguments, is generated as the expression. The
default value is NULL: see stop for the behaviour in that case. The functions dump.frames
and recover provide alternatives that allow post-mortem debugging. Note that these need to
specified as e.g. options(error=utils::recover) in startup files such as ‘.Rprofile’.

expressions: sets a limit on the number of nested expressions that will be evaluated. Valid values
are 25. . . 500000 with default 5000. If you increase it, you may also want to start R with a
larger protection stack; see ‘--max-ppsize’ in Memory. Note too that you may cause a segfault
from overflow of the C stack, and on OSes where it is possible you may want to increase that.

330 options

keep.source: When TRUE, the source code for functions (newly defined or loaded) is stored in-
ternally allowing comments to be kept in the right places. Retrieve the source by printing or
using deparse(fn, control = "useSource").
The default is interactive(), i.e., TRUE for interactive use.

keep.source.pkgs: As for keep.source, used only when packages are installed. Defaults to
FALSE unless the environment variable R_KEEP_PKG_SOURCE is set to yes.

max.print: integer, defaulting to 99999. print or show methods can make use of this option, to
limit the amount of information that is printed, to something in the order of (and typically
slightly less than) max.print entries.

OutDec: character string containing a single-byte character. The character to be used as the decimal
point in output conversions, that is in printing, plotting and as.character but not deparsing.

pager: the command used for displaying text files by file.show. Defaults to "internal", which
uses a pager similar to the GUI console. Another possibility is "console" to use the console
itself. Can be a character string or an R function, in which case it needs to accept the argu-
ments (files, header,title, delete.file) corresponding to the first four arguments of
file.show.

papersize: the default paper format used by postscript; set by environment variable
R_PAPERSIZE when R is started: if that is unset or invalid it defaults to "a4", or "letter" in
US and Canadian locales.

pdfviewer: default PDF viewer. The default is set from the environment variable R_PDFVIEWER,
which defaults to the full path to open.exe, a utility supplied with R.

printcmd: the command used by postscript for printing; set by environment variable
R_PRINTCMD when R is started. This should be a command that expects either input to be
piped to ‘stdin’ or to be given a single filename argument. Usually set to "lpr" on a Unix-
alike.

prompt: a non-empty string to be used for R’s prompt; should usually end in a blank (" ").

save.defaults, save.image.defaults: see save.

scipen: integer. A penalty to be applied when deciding to print numeric values in fixed or expo-
nential notation. Positive values bias towards fixed and negative towards scientific notation:
fixed notation will be preferred unless it is more than scipen digits wider.

showWarnCalls, showErrorCalls: a logical. Should warning and error messages show a sum-
mary of the call stack? By default error calls are shown in non-interactive sessions.

showNCalls: integer. Controls how long the sequence of calls must be (in bytes) before ellipses
are used. Defaults to 40 and should be at least 30 and no more than 500.

show.error.locations: Should source locations of errors be printed? If set to TRUE or "top",
the source location that is highest on the stack (the most recent call) will be printed. "bottom"
will print the location of the earliest call found on the stack.
Integer values can select other entries. The value 0 corresponds to "top" and positive values
count down the stack from there. The value -1 corresponds to "bottom" and negative values
count up from there.

show.error.messages: a logical. Should error messages be printed? Intended for use with try or
a user-installed error handler.

stringsAsFactors: The default setting for arguments of data.frame and read.table.

texi2dvi: used by functions texi2dvi and texi2pdf in package tools.

timeout: integer. The timeout for some Internet operations, in seconds. Default 60 seconds. See
download.file and connections.

topLevelEnvironment: see topenv and sys.source.

options 331

useFancyQuotes: controls the use of directional quotes in sQuote, dQuote and in rendering text
help (see Rd2txt in package tools). Can be TRUE, FALSE, "TeX" or "UTF-8".

verbose: logical. Should R report extra information on progress? Set to TRUE by the command-
line option ‘--verbose’.

warn: sets the handling of warning messages. If warn is negative all warnings are ignored. If warn
is zero (the default) warnings are stored until the top–level function returns. If fewer than
10 warnings were signalled they will be printed otherwise a message saying how many were
signalled. An object called last.warning is created and can be printed through the function
warnings. If warn is one, warnings are printed as they occur. If warn is two or larger all
warnings are turned into errors.

warnPartialMatchArgs: logical. If true, warns if partial matching is used in argument matching.

warnPartialMatchAttr: logical. If true, warns if partial matching is used in extracting attributes
via attr.

warnPartialMatchDollar: logical. If true, warns if partial matching is used for extraction by $.

warning.expression: an R code expression to be called if a warning is generated, replacing the
standard message. If non-null it is called irrespective of the value of option warn.

warning.length: sets the truncation limit for error and warning messages. A non-negative integer,
with allowed values 100. . . 8170, default 1000.

nwarnings: the limit for the number of warnings kept when warn = 0, default 50. This will discard
messages if called whilst they are being collected.

width: controls the maximum number of columns on a line used in printing vectors, matrices and
arrays, and when filling by cat.
Columns are normally the same as characters except in CJK languages.
You may want to change this if you re-size the window that R is running in. Valid values are
10. . . 10000 with default normally 80. (The limits on valid values are in file ‘Print.h’ and
can be changed by re-compiling R.) Some R consoles automatically change the value when
they are resized.
See the examples on Startup for one way to set this automatically from the terminal width
when R is started.

The ‘factory-fresh’ default settings of some of these options are

add.smooth TRUE
check.bounds FALSE
continue "+ "
digits 7
echo TRUE
encoding "native.enc"
error NULL
expressions 5000
keep.source interactive()
keep.source.pkgs FALSE
max.print 99999
OutDec "."
prompt "> "
scipen 0
show.error.messages TRUE
timeout 60
verbose FALSE
warn 0

332 options

warning.length 1000
width 80

Others are set from environment variables or are platform-dependent.

Options set in package grDevices

These will be set when package grDevices (or its namespace) is loaded if not already set.

device: a character string giving the name of a function, or the function object itself, which when
called creates a new graphics device of the default type for that session. The value of this
option defaults to the normal screen device (e.g., X11, windows or quartz) for an interactive
session, and pdf in batch use or if a screen is not available. If set to the name of a device, the
device is looked for first from the global environment (that is down the usual search path) and
then in the grDevices namespace.
The default values in interactive and non-interactive sessions are configurable via environment
variables R_INTERACTIVE_DEVICE and R_DEFAULT_DEVICE respectively.

device.ask.default: logical. The default for devAskNewPage("ask") when a device is opened.

locatorBell: logical. Should selection in locator and identify be confirmed by a bell? Default
TRUE. Honoured at least on X11 and windows devices.

windowsTimeout: (Windows-only) integer vector of length 2 representing two times in millisec-
onds. These control the double-buffering of windows devices when that is enabled: the first
is the delay after plotting finishes (default 100) and the second is the update interval during
continuous plotting (default 500). The values at the time the device is opened are used.

Other options used by package graphics

max.contour.segments: positive integer, defaulting to 25000 if not set. A limit on the number of
segments in a single contour line in contour or contourLines.

Options set in package stats

These will be set when package stats (or its namespace) is loaded if not already set.

contrasts: the default contrasts used in model fitting such as with aov or lm. A character
vector of length two, the first giving the function to be used with unordered factors and the
second the function to be used with ordered factors. By default the elements are named
c("unordered", "ordered"), but the names are unused.

na.action: the name of a function for treating missing values (NA’s) for certain situations.

show.coef.Pvalues: logical, affecting whether P values are printed in summary tables of coeffi-
cients. See printCoefmat.

show.nls.convergence: logical, should nls convergence messages be printed for successful fits?

show.signif.stars: logical, should stars be printed on summary tables of coefficients? See
printCoefmat.

ts.eps: the relative tolerance for certain time series (ts) computations. Default 1e-05.

ts.S.compat: logical. Used to select S compatibility for plotting time-series spectra. See the
description of argument log in plot.spec.

options 333

Options set in package utils

These will be set when package utils (or its namespace) is loaded if not already set.

BioC_mirror: The URL of a Bioconductor mirror for use by setRepositories,
e.g. the default ‘"http://www.bioconductor.org"’ or the European mir-
ror ‘"http://bioconductor.statistik.tu-dortmund.de"’. Can be set by
chooseBioCmirror.

browser: default HTML browser used by help.start() and browseURL on UNIX, or a non-
default browser on Windows. Alternatively, an R function that is called with a URL as its
argument.

ccaddress: default Cc: address used by create.post (and hencebug.report and
help.request). Can be FALSE or "".

de.cellwidth: integer: the cell widths (number of characters) to be used in the data editor
dataentry. If this is unset (the default), 0, negative or NA, variable cell widths are used.

demo.ask: default for the ask argument of demo.

editor: a non-empty string, or a function that is called with a file path as argument. Sets the
default text editor, e.g., for edit. Set from the environment variable EDITOR on UNIX, or if
unset VISUAL or vi.

example.ask: default for the ask argument of example.

help.ports: optional integer vector for setting ports of the internal HTTP server, see
startDynamicHelp.

help.search.types: default types of documentation to be searched by help.search and ??.

help.try.all.packages: default for an argument of help.

help_type: default for an argument of help, used also as the help type by ?.

HTTPUserAgent: string used as the user agent in HTTP requests. If NULL, HTTP requests will be
made without a user agent header. The default is R (<version> <platform> <arch> <os>)

install.lock: logical: should per-directory package locking be used by install.packages?
Most useful for binary installs on Mac OS X and Windows, but can be used in a startup file
for source installs via R CMD INSTALL. For binary installs, can also be the character string
"pkgloack".

internet.info: The minimum level of information to be printed on URL downloads etc. Default
is 2, for failure causes. Set to 1 or 0 to get more information.

mailer: default emailing method used by create.post and hence bug.report and
help.request.

menu.graphics: Logical: should graphical menus be used if available?. Defaults to TRUE. Cur-
rently applies to select.list, chooseCRANmirror, setRepositories and to select from
multiple (text) help files in help.

pkgType: The default type of packages to be downloaded and installed – see install.packages.
Possible values are "win.binary" (the default) and "source". Some Mac OS X builds use
"mac.binary.leopard".

repos: URLs of the repositories for use by update.packages. Defaults to
c(CRAN="@CRAN@"), a value that causes some utilities to prompt for a
CRAN mirror. To avoid this do set the CRAN mirror, by something like
local({r <- getOption("repos"); r["CRAN"] <- "http://my.local.cran";
options(repos=r)}).
Note that you can add more repositories (Bioconductor and Omegahat, notably) using
setRepositories().

334 options

SweaveHooks, SweaveSyntax: see Sweave.

unzip: a character string, the path of the command used for unzipping help files, or "internal".
Defaults to "internal" when the internal unzip code is used.

Options set in package parallel

These will be set when package parallel (or its namespace) is loaded if not already set.

mc.cores: a integer giving the maximum allowed number of additional R processes allowed to be
run in parallel to the current R process. Defaults to the setting of the environment variable
MC_CORES if set. Most applications which use this assume a limit of 2 if it is unset.

Options used on Unix only

dvipscmd: character string giving a command to be used in the (deprecated) off-line printing of
help pages via PostScript. Defaults to "dvips".

Options used on Windows only

warn.FPU: logical, by default undefined. If true, a warning is produced whenever dyn.load repairs
the control word damaged by a buggy DLL.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

op <- options(); utils::str(op) # op() may contain functions.

getOption("width") == options()$width # the latter needs more memory
options(digits = 15)
pi

set the editor, and save previous value
old.o <- options(editor = "nedit")
old.o

options(check.bounds = TRUE, warn = 1)
x <- NULL; x[4] <- "yes" # gives a warning

options(digits=5)
print(1e5)
options(scipen=3); print(1e5)

options(op) # reset (all) initial options
options("digits")

Not run: ## set contrast handling to be like S
options(contrasts = c("contr.helmert", "contr.poly"))

End(Not run)

Not run: ## on error, terminate the R session with error status 66
options(error = quote(q("no", status=66, runLast=FALSE)))

order 335

stop("test it")

End(Not run)

Not run: ## Set error actions for debugging:
enter browser on error, see ?recover:
options(error = recover)
allows to call debugger() afterwards, see ?debugger:
options(error = dump.frames)
A possible setting for non-interactive sessions
options(error = quote({dump.frames(to.file=TRUE); q()}))

End(Not run)

Compare the two ways to get an option and use it
acconting for the possibility it might not be set.

if(as.logical(getOption("performCleanp", TRUE)))
cat("do cleanup\n")

Not run:
a clumsier way of expressing the above w/o the default.

tmp <- getOption("performCleanup")
if(is.null(tmp))

tmp <- TRUE
if(tmp)

cat("do cleanup\n")

End(Not run)

order Ordering Permutation

Description

order returns a permutation which rearranges its first argument into ascending or descending order,
breaking ties by further arguments. sort.list is the same, using only one argument.
See the examples for how to use these functions to sort data frames, etc.

Usage

order(..., na.last = TRUE, decreasing = FALSE)

sort.list(x, partial = NULL, na.last = TRUE, decreasing = FALSE,
method = c("shell", "quick", "radix"))

Arguments

... a sequence of numeric, complex, character or logical vectors, all of the same
length, or a classed R object.

x an atomic vector.

partial vector of indices for partial sorting. (Non-NULL values are not implemented.)

decreasing logical. Should the sort order be increasing or decreasing?

336 order

na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; if NA, they are removed (see ‘Note’.)

method the method to be used: partial matches are allowed.

Details

In the case of ties in the first vector, values in the second are used to break the ties. If the values
are still tied, values in the later arguments are used to break the tie (see the first example). The sort
used is stable (except for method = "quick"), so any unresolved ties will be left in their original
ordering.

Complex values are sorted first by the real part, then the imaginary part.

The sort order for character vectors will depend on the collating sequence of the locale in use: see
Comparison.

The default method for sort.list is a good compromise. Method "quick" is only supported for
numeric x with na.last=NA, and is not stable, but will be faster for long vectors. Method "radix"
is only implemented for integer x with a range of less than 100,000. For such x it is very fast (and
stable), and hence is ideal for sorting factors.

partial = NULL is supported for compatibility with other implementations of S, but no other val-
ues are accepted and ordering is always complete.

For a classed R object, the sort order is taken from xtfrm: as its help page notes, this can be slow
unless a suitable method has been defined or is.numeric(x) is true. For factors, this sorts on the
internal codes, which is particularly appropriate for ordered factors.

Note

sort.list can get called by mistake as a method for sort with a list argument, and gives a suitable
error message for list x.

There is a historical difference in behaviour for na.last = NA: sort.list removes the NAs and
then computes the order amongst the remaining elements: order computes the order amongst the
non-NA elements of the original vector. Thus

x[order(x, na.last = NA)]
zz <- x[!is.na(x)]; zz[sort.list(x, na.last = NA)]

both sort the non-NA values of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

sort, rank, xtfrm.

Examples

require(stats)

(ii <- order(x <- c(1,1,3:1,1:4,3), y <- c(9,9:1), z <-c(2,1:9)))
6 5 2 1 7 4 10 8 3 9

order 337

rbind(x,y,z)[,ii] # shows the reordering (ties via 2nd & 3rd arg)

Suppose we wanted descending order on y.
A simple solution for numeric ’y’ is
rbind(x,y,z)[, order(x, -y, z)]
More generally we can make use of xtfrm
cy <- as.character(y)
rbind(x,y,z)[, order(x, -xtfrm(cy), z)]

Sorting data frames:
dd <- transform(data.frame(x,y,z),

z = factor(z, labels=LETTERS[9:1]))
Either as above {for factor ’z’ : using internal coding}:
dd[order(x, -y, z) ,]
or along 1st column, ties along 2nd, ... *arbitrary* no.{columns}:
dd[do.call(order, dd) ,]

set.seed(1)# reproducible example:
d4 <- data.frame(x = round(rnorm(100)), y = round(10*runif(100)),

z = round(8*rnorm(100)), u = round(50*runif(100)))
(d4s <- d4[do.call(order, d4) ,])
(i <- which(diff(d4s[,3]) == 0))
in 2 places, needed 3 cols to break ties:
d4s[rbind(i,i+1),]

rearrange matched vectors so that the first is in ascending order
x <- c(5:1, 6:8, 12:9)
y <- (x - 5)^2
o <- order(x)
rbind(x[o], y[o])

tests of na.last
a <- c(4, 3, 2, NA, 1)
b <- c(4, NA, 2, 7, 1)
z <- cbind(a, b)
(o <- order(a, b)); z[o,]
(o <- order(a, b, na.last = FALSE)); z[o,]
(o <- order(a, b, na.last = NA)); z[o,]

Not run:
speed examples for long vectors:
x <- factor(sample(letters, 1e6, replace=TRUE))
system.time(o <- sort.list(x)) ## 0.4 secs
stopifnot(!is.unsorted(x[o]))
system.time(o <- sort.list(x, method="quick", na.last=NA)) # 0.1 sec
stopifnot(!is.unsorted(x[o]))
system.time(o <- sort.list(x, method="radix")) # 0.01 sec
stopifnot(!is.unsorted(x[o]))
xx <- sample(1:26, 1e7, replace=TRUE)
system.time(o <- sort.list(xx, method="radix")) # 0.1 sec
xx <- sample(1:100000, 1e7, replace=TRUE)
system.time(o <- sort.list(xx, method="radix")) # 0.5 sec
system.time(o <- sort.list(xx, method="quick", na.last=NA)) # 1.3 sec

End(Not run)

338 outer

outer Outer Product of Arrays

Description

The outer product of the arrays X and Y is the array A with dimen-
sion c(dim(X), dim(Y)) where element A[c(arrayindex.x, arrayindex.y)]
= FUN(X[arrayindex.x], Y[arrayindex.y], ...).

Usage

outer(X, Y, FUN="*", ...)
X %o% Y

Arguments

X, Y First and second arguments for function FUN. Typically a vector or array.

FUN a function to use on the outer products, found via match.fun (except for the
special case "*").

... optional arguments to be passed to FUN.

Details

X and Y must be suitable arguments for FUN. Each will be extended by rep to length the products of
the lengths of X and Y before FUN is called.

FUN is called with these two extended vectors as arguments. Therefore, it must be a vectorized
function (or the name of one), expecting at least two arguments.

Where they exist, the [dim]names of X and Y will be copied to the answer, and a dimension assigned
which is the concatenation of the dimensions of X and Y (or lengths if dimensions do not exist).

FUN = "*" is handled internally as a special case, via as.vector(X) %*% t(as.vector(Y)), and
is intended only for numeric vectors and arrays.

%o% is binary operator providing a wrapper for outer(x, y, "*").

Author(s)

Jonathan Rougier

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

%*% for usual (inner) matrix vector multiplication; kronecker which is based on outer; Vectorize
for vectorizing a non-vectorized function.

Paren 339

Examples

x <- 1:9; names(x) <- x
Multiplication & Power Tables
x %o% x
y <- 2:8; names(y) <- paste(y,":",sep="")
outer(y, x, "^")

outer(month.abb, 1999:2003, FUN = "paste")

three way multiplication table:
x %o% x %o% y[1:3]

Paren Parentheses and Braces

Description

Open parenthesis, (, and open brace, {, are .Primitive functions in R.

Effectively, (is semantically equivalent to the identity function(x) x, whereas { is slightly more
interesting, see examples.

Usage

(...)

{ ... }

Value

For (, the result of evaluating the argument. This has visibility set, so will auto-print if used at
top-level.

For {, the result of the last expression evaluated. This has the visibility of the last evaluation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

if, return, etc for other objects used in the R language itself.

Syntax for operator precedence.

Examples

f <- get("(")
e <- expression(3 + 2 * 4)
identical(f(e), e)

do <- get("{")
do(x <- 3, y <- 2*x-3, 6-x-y); x; y

340 parse

note the differences
(2+3)
{2+3; 4+5}
(invisible(2+3))
{invisible(2+3)}

parse Parse Expressions

Description

parse returns the parsed but unevaluated expressions in a list.

Usage

parse(file = "", n = NULL, text = NULL, prompt = "?", srcfile,
encoding = "unknown")

Arguments

file a connection, or a character string giving the name of a file or a URL to read the
expressions from. If file is "" and text is missing or NULL then input is taken
from the console.

n integer (or coerced to integer). The maximum number of expressions to parse.
If n is NULL or negative or NA the input is parsed in its entirety.

text character vector. The text to parse. Elements are treated as if they were lines of
a file. Other R objects will be coerced to character if possible.

prompt the prompt to print when parsing from the keyboard. NULL means to use R’s
prompt, getOption("prompt").

srcfile NULL, or a srcfile object. See the ‘Details’ section.

encoding encoding to be assumed for input strings. If the value is "latin1" or "UTF-8"
it is used to mark character strings as known to be in Latin-1 or UTF-8: it is not
used to re-encode the input. To do the latter, specify the encoding as part of the
connection con or via options(encoding=): see the example under file.

Details

If text has length greater than zero (after coercion) it is used in preference to file.

All versions of R accept input from a connection with end of line marked by LF (as used on Unix),
CRLF (as used on DOS/Windows) or CR (as used on classic Mac OS). The final line can be incom-
plete, that is missing the final EOL marker.

See source for the limits on the size of functions that can be parsed (by default).

When input is taken from the console, n = NULL is equivalent to n = 1, and n < 0 will read until
an EOF character is read. (The EOF character is Ctrl-Z for the Windows front-ends.) The line-
length limit is 4095 bytes when reading from the console (which may impose a lower limit: see ‘An
Introduction to R’).

The default for srcfile is set as follows. If options("keep.source") is FALSE, srcfile defaults
to NULL. Otherwise, if text is used, srcfile will be set to a srcfilecopy containing the text. If a
character string is used for file, a srcfile object referring to that file will be used.

paste 341

Value

An object of type "expression", with up to n elements if specified as a non-negative integer.

When srcfile is non-NULL, a "srcref" attribute will be attached to the result containing a list of
srcref records corresponding to each element, a "srcfile" attribute will be attached containing
a copy of srcfile, and a "wholeSrcref" attribute will be attached containing a srcref record
corresponding to all of the parsed text.

A syntax error (including an incomplete expression) will throw an error.

Character strings in the result will have a declared encoding if encoding is "latin1" or "UTF-8",
or if text is supplied with every element of known encoding in a Latin-1 or UTF-8 locale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

scan, source, eval, deparse.

Examples

cat("x <- c(1,4)\n x ^ 3 -10 ; outer(1:7,5:9)\n", file="xyz.Rdmped")
parse 3 statements from the file "xyz.Rdmped"
parse(file = "xyz.Rdmped", n = 3)
unlink("xyz.Rdmped")

paste Concatenate Strings

Description

Concatenate vectors after converting to character.

Usage

paste (..., sep = " ", collapse = NULL)
paste0(..., collapse = NULL)

Arguments

... one or more R objects, to be converted to character vectors.

sep a character string to separate the terms. Not NA_character_.

collapse an optional character string to separate the results. Not NA_character_.

342 paste

Details

paste converts its arguments (via as.character) to character strings, and concatenates them (sep-
arating them by the string given by sep). If the arguments are vectors, they are concatenated term-
by-term to give a character vector result. Vector arguments are recycled as needed, with zero-length
arguments being recycled to "".

Note that paste() coerces NA_character_, the character missing value, to "NA" which may
seem undesirable, e.g., when pasting two character vectors, or very desirable, e.g. in
paste("the value of p is ", p).

paste0(..., collapse) is equivalent to paste(..., sep = "", collapse), slightly more ef-
ficiently.

If a value is specified for collapse, the values in the result are then concatenated into a single
string, with the elements being separated by the value of collapse.

Value

A character vector of the concatenated values. This will be of length zero if all the objects are,
unless collapse is non-NULL in which case it is a single empty string.

If any input into an element of the result is in UTF-8 (and none are declared with encoding
"bytes"), that element will be in UTF-8, otherwise in the current encoding in which case the
encoding of the element is declared if the current locale is either Latin-1 or UTF-8, at least one of
the corresponding inputs (including separators) had a declared encoding and all inputs were either
ASCII or declared.

If an input into an element is declared with encoding "bytes", no translation will be done of any of
the elements and the resulting element will have encoding "bytes". If collapse is non-NULL, this
applies also to the second, collapsing, phase, but some translation may have been done in pasting
object together in the first phase.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

String manipulation with as.character, substr, nchar, strsplit; further, cat which concate-
nates and writes to a file, and sprintf for C like string construction.

‘plotmath’ for the use of paste in plot annotation.

Examples

paste(1:12) # same as as.character(1:12)
paste("A", 1:6, sep = "")
stopifnot(identical(paste ("A", 1:6, sep = ""),

paste0("A", 1:6)))
paste("Today is", date())

path.expand 343

path.expand Expand File Paths

Description

Expand a path name, for example by replacing a leading tilde by the user’s home directory (if
defined on that platform).

Usage

path.expand(path)

Arguments

path character vector containing one or more path names.

Details

The definition of the ‘home’ directory is in the ‘rw-FAQ’ Q2.14: it is taken from the R_USER envi-
ronment variable when path.expand is first called in a session.

See Also

basename, normalizePath.

Examples

path.expand("~/foo")

pmatch Partial String Matching

Description

pmatch seeks matches for the elements of its first argument among those of its second.

Usage

pmatch(x, table, nomatch = NA_integer_, duplicates.ok = FALSE)

Arguments

x the values to be matched: converted to a character vector by as.character.

table the values to be matched against: converted to a character vector.

nomatch the value to be returned at non-matching or multiply partially matching posi-
tions. Note that it is coerced to integer.

duplicates.ok should elements be in table be used more than once?

344 pmatch

Details

The behaviour differs by the value of duplicates.ok. Consider first the case if this is true. First
exact matches are considered, and the positions of the first exact matches are recorded. Then unique
partial matches are considered, and if found recorded. (A partial match occurs if the whole of the
element of x matches the beginning of the element of table.) Finally, all remaining elements of x
are regarded as unmatched. In addition, an empty string can match nothing, not even an exact match
to an empty string. This is the appropriate behaviour for partial matching of character indices, for
example.

If duplicates.ok is FALSE, values of table once matched are excluded from the search for subse-
quent matches. This behaviour is equivalent to the R algorithm for argument matching, except for
the consideration of empty strings (which in argument matching are matched after exact and partial
matching to any remaining arguments).

charmatch is similar to pmatch with duplicates.ok true, the differences being that it differentiates
between no match and an ambiguous partial match, it does match empty strings, and it does not
allow multiple exact matches.

NA values are treated as if they were the string constant "NA".

Value

An integer vector (possibly including NA if nomatch = NA) of the same length as x, giving the
indices of the elements in table which matched, or nomatch.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

match, charmatch and match.arg, match.fun, match.call, for function argument matching etc.,
grep etc for more general (regexp) matching of strings.

Examples

pmatch("", "") # returns NA
pmatch("m", c("mean", "median", "mode")) # returns NA
pmatch("med", c("mean", "median", "mode")) # returns 2

pmatch(c("", "ab", "ab"), c("abc", "ab"), dup=FALSE)
pmatch(c("", "ab", "ab"), c("abc", "ab"), dup=TRUE)
compare
charmatch(c("", "ab", "ab"), c("abc", "ab"))

polyroot 345

polyroot Find Zeros of a Real or Complex Polynomial

Description

Find zeros of a real or complex polynomial.

Usage

polyroot(z)

Arguments

z the vector of polynomial coefficients in increasing order.

Details

A polynomial of degree n− 1,

p(x) = z1 + z2x+ · · ·+ znx
n−1

is given by its coefficient vector z[1:n]. polyroot returns the n− 1 complex zeros of p(x) using
the Jenkins-Traub algorithm.

If the coefficient vector z has zeroes for the highest powers, these are discarded.

There is no maximum degree, but numerical stability may be an issue for all but low-degree poly-
nomials.

Value

A complex vector of length n− 1, where n is the position of the largest non-zero element of z.

Source

C translation by Ross Ihaka of Fortran code in the reference, with modifications by the R Core
Team.

References

Jenkins and Traub (1972) TOMS Algorithm 419. Comm. ACM, 15, 97–99.

See Also

uniroot for numerical root finding of arbitrary functions; complex and the zero example in the
demos directory.

Examples

polyroot(c(1, 2, 1))
round(polyroot(choose(8, 0:8)), 11) # guess what!
for (n1 in 1:4) print(polyroot(1:n1), digits = 4)
polyroot(c(1, 2, 1, 0, 0)) # same as the first

346 pretty

pos.to.env Convert Positions in the Search Path to Environments

Description

Returns the environment at a specified position in the search path.

Usage

pos.to.env(x)

Arguments

x an integer between 1 and length(search()), the length of the search path.

Details

Several R functions for manipulating objects in environments (such as get and ls) allow specifying
environments via corresponding positions in the search path. pos.to.env is a convenience function
for programmers which converts these positions to corresponding environments; users will typically
have no need for it. It is primitive.

Examples

pos.to.env(1) # R_GlobalEnv
the next returns the base environment
pos.to.env(length(search()))

pretty Pretty Breakpoints

Description

Compute a sequence of about n+1 equally spaced ‘round’ values which cover the range of the values
in x. The values are chosen so that they are 1, 2 or 5 times a power of 10.

Usage

pretty(x, ...)

Default S3 method:
pretty(x, n = 5, min.n = n %/% 3, shrink.sml = 0.75,

high.u.bias = 1.5, u5.bias = .5 + 1.5*high.u.bias,
eps.correct = 0, ...)

pretty 347

Arguments

x an object coercible to numeric by as.numeric.

n integer giving the desired number of intervals. Non-integer values are rounded
down.

min.n nonnegative integer giving the minimal number of intervals. If min.n == 0,
pretty(.) may return a single value.

shrink.sml positive numeric by a which a default scale is shrunk in the case when range(x)
is very small (usually 0).

high.u.bias non-negative numeric, typically > 1. The interval unit is determined as
{1,2,5,10} times b, a power of 10. Larger high.u.bias values favor larger
units.

u5.bias non-negative numeric multiplier favoring factor 5 over 2. Default and ‘optimal’:
u5.bias = .5 + 1.5*high.u.bias.

eps.correct integer code, one of {0,1,2}. If non-0, an epsilon correction is made at the
boundaries such that the result boundaries will be outside range(x); in the small
case, the correction is only done if eps.correct >=2.

... further arguments for methods.

Details

pretty ignores non-finite values in x.

Let d <- max(x) - min(x) ≥ 0. If d is not (very close) to 0, we let c <- d/n, otherwise more or
less c <- max(abs(range(x)))*shrink.sml / min.n. Then, the 10 base b is 10blog10(c)c such
that b ≤ c < 10b.

Now determine the basic unit u as one of {1, 2, 5, 10}b, depending on c/b ∈ [1, 10) and the two
‘bias’ coefficients, h =high.u.bias and f =u5.bias.

.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

axTicks for the computation of pretty axis tick locations in plots, particularly on the log scale.

Examples

pretty(1:15) # 0 2 4 6 8 10 12 14 16
pretty(1:15, h=2)# 0 5 10 15
pretty(1:15, n=4)# 0 5 10 15
pretty(1:15 * 2) # 0 5 10 15 20 25 30
pretty(1:20) # 0 5 10 15 20
pretty(1:20, n=2) # 0 10 20
pretty(1:20, n=10)# 0 2 4 ... 20

for(k in 5:11) {
cat("k=",k,": "); print(diff(range(pretty(100 + c(0, pi*10^-k)))))}

##-- more bizarre, when min(x) == max(x):

348 Primitive

pretty(pi)

add.names <- function(v) { names(v) <- paste(v); v}
utils::str(lapply(add.names(-10:20), pretty))
utils::str(lapply(add.names(0:20), pretty, min.n = 0))
sapply(add.names(0:20), pretty, min.n = 4)

pretty(1.234e100)
pretty(1001.1001)
pretty(1001.1001, shrink = .2)
for(k in -7:3)

cat("shrink=", formatC(2^k, width=9),":",
formatC(pretty(1001.1001, shrink.sml = 2^k), width=6),"\n")

Primitive Look Up a Primitive Function

Description

.Primitive looks up by name a ‘primitive’ (internally implemented) function.

Usage

.Primitive(name)

Arguments

name name of the R function.

Details

The advantage of .Primitive over .Internal functions is the potential efficiency of argument
passing, and that positional matching can be used where desirable, e.g. in switch. For more
details, see the ‘R Internals Manual’.

All primitive functions are in the base namespace.

This function is almost never used: ‘name‘ or, more carefully, get(name, envir=baseenv())
work equally well and do not depend on knowing which functions are primitive (which does change
as R evolves).

Note

Prior to R 2.14.2 this could also be used to retrieve .Internal functions: this was unintentional.

See Also

.Internal.

Examples

mysqrt <- .Primitive("sqrt")
c
.Internal # this one *must* be primitive!
‘if‘ # need backticks

print 349

print Print Values

Description

print prints its argument and returns it invisibly (via invisible(x)). It is a generic function which
means that new printing methods can be easily added for new classes.

Usage

print(x, ...)

S3 method for class ’factor’
print(x, quote = FALSE, max.levels = NULL,

width = getOption("width"), ...)

S3 method for class ’table’
print(x, digits = getOption("digits"), quote = FALSE,

na.print = "", zero.print = "0", justify = "none", ...)

S3 method for class ’function’
print(x, useSource = TRUE, ...)

Arguments

x an object used to select a method.

... further arguments passed to or from other methods.

quote logical, indicating whether or not strings should be printed with surrounding
quotes.

max.levels integer, indicating how many levels should be printed for a factor; if 0, no extra
"Levels" line will be printed. The default, NULL, entails choosing max.levels
such that the levels print on one line of width width.

width only used when max.levels is NULL, see above.

digits minimal number of significant digits, see print.default.

na.print character string (or NULL) indicating NA values in printed output, see
print.default.

zero.print character specifying how zeros (0) should be printed; for sparse tables, using
"." can produce stronger results.

justify character indicating if strings should left- or right-justified or left alone, passed
to format.

useSource logical indicating if internally stored source should be used for printing when
present, e.g., if options(keep.source=TRUE) has been in use.

Details

The default method, print.default has its own help page. Use methods("print") to get all the
methods for the print generic.

print.factor allows some customization and is used for printing ordered factors as well.

350 print.data.frame

print.table for printing tables allows other customization.

See noquote as an example of a class whose main purpose is a specific print method.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

The default method print.default, and help for the methods above; further options, noquote.

For more customizable (but cumbersome) printing, see cat, format or also write.

Examples

require(stats)

ts(1:20)#-- print is the "Default function" --> print.ts(.) is called
for(i in 1:3) print(1:i)

Printing of factors
attenu$station ## 117 levels -> ’max.levels’ depending on width

ordered factors: levels "l1 < l2 < .."
esoph$agegp[1:12]
esoph$alcgp[1:12]

Printing of sparse (contingency) tables
set.seed(521)
t1 <- round(abs(rt(200, df=1.8)))
t2 <- round(abs(rt(200, df=1.4)))
table(t1,t2) # simple
print(table(t1,t2), zero.print = ".")# nicer to read

print.data.frame Printing Data Frames

Description

Print a data frame.

Usage

S3 method for class ’data.frame’
print(x, ..., digits = NULL,

quote = FALSE, right = TRUE, row.names = TRUE)

Arguments

x object of class data.frame.

... optional arguments to print or plot methods.

digits the minimum number of significant digits to be used: see print.default.

print.default 351

quote logical, indicating whether or not entries should be printed with surrounding
quotes.

right logical, indicating whether or not strings should be right-aligned. The default is
right-alignment.

row.names logical (or character vector), indicating whether (or what) row names should be
printed.

Details

This calls format which formats the data frame column-by-column, then converts to a character
matrix and dispatches to the print method for matrices.

When quote = TRUE only the entries are quoted not the row names nor the column names.

See Also

data.frame.

Examples

(dd <- data.frame(x=1:8, f=gl(2,4), ch=I(letters[1:8])))
print() with defaults

print(dd, quote = TRUE, row.names = FALSE)
suppresses row.names and quotes all entries

print.default Default Printing

Description

print.default is the default method of the generic print function which prints its argument.

Usage

Default S3 method:
print(x, digits = NULL, quote = TRUE,

na.print = NULL, print.gap = NULL, right = FALSE,
max = NULL, useSource = TRUE, ...)

Arguments

x the object to be printed.

digits a non-null value for digits specifies the minimum number of significant digits
to be printed in values. The default, NULL, uses getOption(digits). (For the
interpretation for complex numbers see signif.) Non-integer values will be
rounded down, and only values greater than or equal to 1 and no greater than 22
are accepted.

quote logical, indicating whether or not strings (characters) should be printed with
surrounding quotes.

na.print a character string which is used to indicate NA values in printed output, or NULL
(see ‘Details’).

352 print.default

print.gap a non-negative integer≤ 1024, or NULL (meaning 1), giving the spacing between
adjacent columns in printed vectors, matrices and arrays.

right logical, indicating whether or not strings should be right aligned. The default is
left alignment.

max a non-null value for max specifies the approximate maximum number of entries
to be printed. The default, NULL, uses getOption(max.print); see that help
page for more details.

useSource logical, indicating whether to use source references or copies rather than depars-
ing language objects. The default is to use the original source if it is available.

... further arguments to be passed to or from other methods. They are ignored in
this function.

Details

The default for printing NAs is to print NA (without quotes) unless this is a character NA and quote =
FALSE, when ‘<NA>’ is printed.

The same number of decimal places is used throughout a vector. This means that digits specifies
the minimum number of significant digits to be used, and that at least one entry will be encoded
with that minimum number. However, if all the encoded elements then have trailing zeroes, the
number of decimal places is reduced until at least one element has a non-zero final digit. Decimal
points are only included if at least one decimal place is selected.

Attributes are printed respecting their class(es), using the values of digits to print.default, but
using the default values (for the methods called) of the other arguments.

When the methods package is attached, print will call show for R objects with formal classes if
called with no optional arguments.

Large number of digits

Note that for large values of digits, currently for digits >= 16, the calculation of the number of
significant digits will depend on the platform’s internal (C library) implementation of ‘sprintf()’
functionality.

Single-byte locales

If a non-printable character is encountered during output, it is represented as one of the ANSI escape
sequences (‘\a’, ‘\b’, ‘\f’, ‘\n’, ‘\r’, ‘\t’, ‘\v’, ‘\\’ and ‘\0’: see Quotes), or failing that as a 3-
digit octal code: for example the UK currency pound sign in the C locale (if implemented correctly)
is printed as ‘\243’. Which characters are non-printable depends on the locale. (Because some
versions of Windows get this wrong, all bytes with the upper bit set are regarded as printable on
Windows in a single-byte locale.)

Multi-byte locales

In all locales, the characters in the ASCII range (‘0x00’ to ‘0x7f’) are printed in the same way,
as-is if printable, otherwise via ANSI escape sequences or 3-digit octal escapes as described for
single-byte locales.

Multi-byte non-printing characters are printed as an escape sequence of the form ‘\uxxxx’ (in hex-
adecimal). This is the Unicode point of the character.

It is possible to have a character string in a character vector that is not valid in the current locale. If
a byte is encountered that is not part of a valid character it is printed in hex in the form ‘\xab’ and
this is repeated until the start of a valid character.

prmatrix 353

See Also

The generic print, options. The "noquote" class and print method.

encodeString, which encodes a character vector the way it would be printed.

Examples

pi
print(pi, digits = 16)
LETTERS[1:16]
print(LETTERS, quote = FALSE)

M <- cbind(I = 1, matrix(1:10000, ncol = 10,
dimnames = list(NULL, LETTERS[1:10])))

utils::head(M) # makes more sense than
print(M, max = 1000)# prints 90 rows and a message about omitting 910

prmatrix Print Matrices, Old-style

Description

An earlier method for printing matrices, provided for S compatibility.

Usage

prmatrix(x, rowlab =, collab =,
quote = TRUE, right = FALSE, na.print = NULL, ...)

Arguments

x numeric or character matrix.

rowlab,collab (optional) character vectors giving row or column names respectively. By de-
fault, these are taken from dimnames(x).

quote logical; if TRUE and x is of mode "character", quotes (‘"’) are used.

right if TRUE and x is of mode "character", the output columns are right-justified.

na.print how NAs are printed. If this is non-null, its value is used to represent NA.

... arguments for print methods.

Details

prmatrix is an earlier form of print.matrix, and is very similar to the S function of the same
name.

Value

Invisibly returns its argument, x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

354 proc.time

See Also

print.default, and other print methods.

Examples

prmatrix(m6 <- diag(6), rowlab = rep("",6), collab =rep("",6))

chm <- matrix(scan(system.file("help", "AnIndex", package = "splines"),
what = ""), , 2, byrow = TRUE)

chm # uses print.matrix()
prmatrix(chm, collab = paste("Column",1:3), right=TRUE, quote=FALSE)

proc.time Running Time of R

Description

proc.time determines how much real and CPU time (in seconds) the currently running R process
has already taken.

Usage

proc.time()

Details

proc.time returns five elements for backwards compatibility, but its print method prints a named
vector of length 3. The first two entries are the total user and system CPU times of the current R
process and any child processes on which it has waited, and the third entry is the ‘real’ elapsed time
since the process was started.

Value

An object of class "proc_time" which is a numeric vector of length 5, containing the user, system,
and total elapsed times for the currently running R process, and the cumulative sum of user and
system times of any child processes spawned by it on which it has waited. (The print method
combines the child times with those of the main process.)

The definition of ‘user’ and ‘system’ times is from your OS. Typically it is something like

The ‘user time’ is the CPU time charged for the execution of user instructions of the calling process.
The ‘system time’ is the CPU time charged for execution by the system on behalf of the calling
process.

Times of child processes are not available on Windows and will always be given as NA.

The resolution of the times will be system-specific and on Unix-alikes times are rounded down to
milliseconds. On modern systems they will be that accurate, but on older systems they might be
accurate to 1/100 or 1/60 sec. They are typically available to 10ms on Windows.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

prod 355

See Also

system.time for timing an R expression, gc.time for how much of the time was spent in garbage
collection.

Examples

Not run:
a way to time an R expression: system.time is preferred
ptm <- proc.time()
for (i in 1:50) mad(stats::runif(500))
proc.time() - ptm

End(Not run)

prod Product of Vector Elements

Description

prod returns the product of all the values present in its arguments.

Usage

prod(..., na.rm = FALSE)

Arguments

... numeric or complex or logical vectors.

na.rm logical. Should missing values be removed?

Details

If na.rm is FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

Logical true values are regarded as one, false values as zero. For historical reasons, NULL is accepted
and treated as if it were numeric(0).

Value

The product, a numeric (of type "double") or complex vector of length one. NB: the product of an
empty set is one, by definition.

S4 methods

This is part of the S4 Summary group generic. Methods for it must use the signature x, ..., na.rm.

356 prop.table

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

sum, cumprod, cumsum.

‘plotmath’ for the use of prod in plot annotation.

Examples

print(prod(1:7)) == print(gamma(8))

prop.table Express Table Entries as Fraction of Marginal Table

Description

This is really sweep(x, margin, margin.table(x, margin), "/") for newbies, except that if
margin has length zero, then one gets x/sum(x).

Usage

prop.table(x, margin=NULL)

Arguments

x table

margin index, or vector of indices to generate margin for

Value

Table like x expressed relative to margin

Author(s)

Peter Dalgaard

See Also

margin.table

Examples

m <- matrix(1:4,2)
m
prop.table(m,1)

pushBack 357

pushBack Push Text Back on to a Connection

Description

Functions to push back text lines onto a connection, and to enquire how many lines are currently
pushed back.

Usage

pushBack(data, connection, newLine = TRUE)
pushBackLength(connection)

Arguments

data a character vector.

connection A connection.

newLine logical. If true, a newline is appended to each string pushed back.

Details

Several character strings can be pushed back on one or more occasions. The occasions form a stack,
so the first line to be retrieved will be the first string from the last call to pushBack. Lines which
are pushed back are read prior to the normal input from the connection, by the normal text-reading
functions such as readLines and scan.

Pushback is only allowed for readable connections in text mode.

Not all uses of connections respect pushbacks, in particular the input connection is still wired di-
rectly, so for example parsing commands from the console and scan("") ignore pushbacks on
stdin.

When character strings with a marked encoding (see Encoding) are pushed back they are converted
to the current encoding. This may involve representing characters as ‘<U+xxxx>’ if they cannot be
converted.

Value

pushBack returns nothing.

pushBackLength returns number of lines currently pushed back.

See Also

connections, readLines.

Examples

zz <- textConnection(LETTERS)
readLines(zz, 2)
pushBack(c("aa", "bb"), zz)
pushBackLength(zz)
readLines(zz, 1)
pushBackLength(zz)

358 qr

readLines(zz, 1)
readLines(zz, 1)
close(zz)

qr The QR Decomposition of a Matrix

Description

qr computes the QR decomposition of a matrix.

Usage

qr(x, ...)
Default S3 method:
qr(x, tol = 1e-07 , LAPACK = FALSE, ...)

qr.coef(qr, y)
qr.qy(qr, y)
qr.qty(qr, y)
qr.resid(qr, y)
qr.fitted(qr, y, k = qr$rank)
qr.solve(a, b, tol = 1e-7)
S3 method for class ’qr’
solve(a, b, ...)

is.qr(x)
as.qr(x)

Arguments

x a matrix whose QR decomposition is to be computed.

tol the tolerance for detecting linear dependencies in the columns of x. Only used
if LAPACK is false and x is real.

qr a QR decomposition of the type computed by qr.

y, b a vector or matrix of right-hand sides of equations.

a a QR decomposition or (qr.solve only) a rectangular matrix.

k effective rank.

LAPACK logical. For real x, if true use LAPACK otherwise use LINPACK (the default).

... further arguments passed to or from other methods

Details

The QR decomposition plays an important role in many statistical techniques. In particular it can
be used to solve the equation Ax = b for given matrix A, and vector b. It is useful for computing
regression coefficients and in applying the Newton-Raphson algorithm.

The functions qr.coef, qr.resid, and qr.fitted return the coefficients, residuals and fitted val-
ues obtained when fitting y to the matrix with QR decomposition qr. (If pivoting is used, some

qr 359

of the coefficients will be NA.) qr.qy and qr.qty return Q %*% y and t(Q) %*% y, where Q is the
(complete)Q matrix.

All the above functions keep dimnames (and names) of x and y if there are any.

solve.qr is the method for solve for qr objects. qr.solve solves systems of equations via the
QR decomposition: if a is a QR decomposition it is the same as solve.qr, but if a is a rectangular
matrix the QR decomposition is computed first. Either will handle over- and under-determined
systems, providing a least-squares fit if appropriate.

is.qr returns TRUE if x is a list with components named qr, rank and qraux and FALSE otherwise.

It is not possible to coerce objects to mode "qr". Objects either are QR decompositions or they are
not.

qr.fitted and qr.resid only support the LINPACK interface.

Value

The QR decomposition of the matrix as computed by LINPACK or LAPACK. The components in
the returned value correspond directly to the values returned by DQRDC/DGEQP3/ZGEQP3.

qr a matrix with the same dimensions as x. The upper triangle contains the R of
the decomposition and the lower triangle contains information on the Q of the
decomposition (stored in compact form). Note that the storage used by DQRDC
and DGEQP3 differs.

qraux a vector of length ncol(x) which contains additional information onQ.

rank the rank of x as computed by the decomposition: always full rank in the LA-
PACK case.

pivot information on the pivoting strategy used during the decomposition.

Non-complex QR objects computed by LAPACK have the attribute "useLAPACK" with value TRUE.

Note

To compute the determinant of a matrix (do you really need it?), the QR decomposition is much
more efficient than using Eigen values (eigen). See det.

Using LAPACK (including in the complex case) uses column pivoting and does not attempt to
detect rank-deficient matrices.

Source

For qr, the LINPACK routine DQRDC and the LAPACK routines DGEQP3 and ZGEQP3. Further LIN-
PACK and LAPACK routines are used for qr.coef, qr.qy and qr.aty.

LAPACK and LINPACK are from http://www.netlib.org/lapack and http://www.netlib.
org/linpack and their guides are listed in the references.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: SIAM Publications.

http://www.netlib.org/lapack
http://www.netlib.org/linpack
http://www.netlib.org/linpack
http://www.netlib.org/lapack/lug/lapack_lug.html

360 QR.Auxiliaries

See Also

qr.Q, qr.R, qr.X for reconstruction of the matrices. lm.fit, lsfit, eigen, svd.

det (using qr) to compute the determinant of a matrix.

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
h9 <- hilbert(9); h9
qr(h9)$rank #--> only 7
qrh9 <- qr(h9, tol = 1e-10)
qrh9$rank #--> 9
##-- Solve linear equation system H %*% x = y :
y <- 1:9/10
x <- qr.solve(h9, y, tol = 1e-10) # or equivalently :
x <- qr.coef(qrh9, y) #-- is == but much better than

#-- solve(h9) %*% y
h9 %*% x # = y

overdetermined system
A <- matrix(runif(12), 4)
b <- 1:4
qr.solve(A, b) # or solve(qr(A), b)
solve(qr(A, LAPACK=TRUE), b)
this is a least-squares solution, cf. lm(b ~ 0 + A)

underdetermined system
A <- matrix(runif(12), 3)
b <- 1:3
qr.solve(A, b)
solve(qr(A, LAPACK=TRUE), b)
solutions will have one zero, not necessarily the same one

QR.Auxiliaries Reconstruct the Q, R, or X Matrices from a QR Object

Description

Returns the original matrix from which the object was constructed or the components of the decom-
position.

Usage

qr.X(qr, complete = FALSE, ncol =)
qr.Q(qr, complete = FALSE, Dvec =)
qr.R(qr, complete = FALSE)

Arguments

qr object representing a QR decomposition. This will typically have come from a
previous call to qr or lsfit.

QR.Auxiliaries 361

complete logical expression of length 1. Indicates whether an arbitrary orthogonal com-
pletion of the Q or X matrices is to be made, or whether the R matrix is to be
completed by binding zero-value rows beneath the square upper triangle.

ncol integer in the range 1:nrow(qr$qr). The number of columns to be in
the reconstructed X . The default when complete is FALSE is the first
min(ncol(X), nrow(X)) columns of the original X from which the qr object
was constructed. The default when complete is TRUE is a square matrix with the
originalX in the first ncol(X) columns and an arbitrary orthogonal completion
(unitary completion in the complex case) in the remaining columns.

Dvec vector (not matrix) of diagonal values. Each column of the returned Q will be
multiplied by the corresponding diagonal value. Defaults to all 1s.

Value

qr.X returns X , the original matrix from which the qr object was constructed, provided
ncol(X) <= nrow(X). If complete is TRUE or the argument ncol is greater than ncol(X), ad-
ditional columns from an arbitrary orthogonal (unitary) completion of X are returned.

qr.Q returns part or all of Q, the order-nrow(X) orthogonal (unitary) transformation represented by
qr. If complete is TRUE, Q has nrow(X) columns. If complete is FALSE, Q has ncol(X) columns.
When Dvec is specified, each column of Q is multiplied by the corresponding value in Dvec.

qr.R returns R. This may be pivoted, e.g., if a <- qr(x) then x[, a$pivot] = QR. The number of
rows of R is either nrow(X) or ncol(X) (and may depend on whether complete is TRUE or FALSE).

See Also

qr, qr.qy.

Examples

p <- ncol(x <- LifeCycleSavings[,-1]) # not the ’sr’
qrstr <- qr(x) # dim(x) == c(n,p)
qrstr $ rank # = 4 = p
Q <- qr.Q(qrstr) # dim(Q) == dim(x)
R <- qr.R(qrstr) # dim(R) == ncol(x)
X <- qr.X(qrstr) # X == x
range(X - as.matrix(x))# ~ < 6e-12
X == Q %*% R if there has been no pivoting, as here.
Q %*% R

example of pivoting
x <- cbind(int = 1,

b1=rep(1:0, each=3), b2=rep(0:1, each=3),
c1=rep(c(1,0,0), 2), c2=rep(c(0,1,0), 2), c3=rep(c(0,0,1),2))

x # is singular, columns "b2" and "c3" are "extra"
a <- qr(x)
zapsmall(qr.R(a)) # columns are int b1 c1 c2 b2 c3
a$pivot
pivI <- sort.list(a$pivot) # the inverse permutation
all.equal (x, qr.Q(a) %*% qr.R(a)) # no, no
stopifnot(
all.equal(x[, a$pivot], qr.Q(a) %*% qr.R(a)), # TRUE
all.equal(x , qr.Q(a) %*% qr.R(a)[, pivI]))# TRUE, too!

362 quit

quit Terminate an R Session

Description

The function quit or its alias q terminate the current R session.

Usage

quit(save = "default", status = 0, runLast = TRUE)
q(save = "default", status = 0, runLast = TRUE)

Arguments

save a character string indicating whether the environment (workspace) should be
saved, one of "no", "yes", "ask" or "default".

status the (numerical) error status to be returned to the operating system, where rele-
vant. Conventionally 0 indicates successful completion.

runLast should .Last() be executed?

Details

save must be one of "no", "yes", "ask" or "default". In the first case the workspace is not saved,
in the second it is saved and in the third the user is prompted and can also decide not to quit. The
default is to ask in interactive use but may be overridden by command-line arguments (which must
be supplied in non-interactive use).

Immediately before terminating, .Last() is executed if the function .Last exists and runLast is
true. If in interactive use there are errors in the .Last function, control will be returned to the
command prompt, so do test the function thoroughly. There is a system analogue, .Last.sys(),
which is run after .Last() if runLast is true.

Exactly what happens at termination of an R session depends on the platform and GUI interface
in use. A typical sequence is to run .Last() and .Last.sys() (unless runLast is false), to save
the workspace if requested (and in most cases also to save the session history: see savehistory),
then run any finalizers (see reg.finalizer) that have been set to be run on exit, close all open
graphics devices, remove the session temporary directory and print any remaining warnings (e.g.
from .Last() and device closure).

Some error statuses are used by R itself. The default error handler for non-interactive use effectively
calls q("no", 1, FALSE) and returns error code 1. Error status 2 is used for R ‘suicide’, that
is a catastrophic failure, and other small numbers are used by specific ports for initialization failures.
It is recommended that users choose statuses of 10 or more.

Valid values of status are system-dependent, but 0:255 are normally valid. (Many OSes will
report the last byte of the value, that is report the number modulo 256. But not all.)

Windows calls the status the ‘error code’ or ‘exit code’. It is returned in the environment variable
%ERRORLEVEL% in cmd.exe, and in LASTEXITCODE in Windows PowerShell. Note that the Rterm
reliably reports the status value, but Rgui may give an error code from the GUI interface.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Quotes 363

See Also

.First for setting things on startup.

Examples

Not run: ## Unix-flavour example
.Last <- function() {

cat("Now sending PostScript graphics to the printer:\n")
system("lpr Rplots.ps")
cat("bye bye...\n")

}
quit("yes")
End(Not run)

Quotes Quotes

Description

Descriptions of the various uses of quoting in R.

Details

Three types of quotes are part of the syntax of R: single and double quotation marks and the backtick
(or back quote, ‘‘’). In addition, backslash is used to escape the following character inside character
constants.

Character constants

Single and double quotes delimit character constants. They can be used interchangeably but double
quotes are preferred (and character constants are printed using double quotes), so single quotes are
normally only used to delimit character constants containing double quotes.

Backslash is used to start an escape sequence inside character constants. Escaping a character not
in the following table is an error.

Single quotes need to be escaped by backslash in single-quoted strings, and double quotes in double-
quoted strings.

‘\n’ newline
‘\r’ carriage return
‘\t’ tab
‘\b’ backspace
‘\a’ alert (bell)
‘\f’ form feed
‘\v’ vertical tab
‘\\’ backslash ‘\’
‘\’’ ASCII apostrophe ‘’’
‘\"’ ASCII quotation mark ‘"’
‘\nnn’ character with given octal code (1, 2 or 3 digits)
‘\xnn’ character with given hex code (1 or 2 hex digits)
‘\unnnn’ Unicode character with given code (1–4 hex digits)
‘\Unnnnnnnn’ Unicode character with given code (1–8 hex digits)

364 R.Version

Alternative forms for the last two are ‘\u{nnnn}’ and ‘\U{nnnnnnnn}’. All except the Unicode
escape sequences are also supported when reading character strings by scan and read.table if
allowEscapes = TRUE. Unicode escapes can be used to enter Unicode characters not in the current
locale’s charset (when the string will be stored internally in UTF-8).

The parser does not allow the use of both octal/hex and Unicode escapes in a single string.

These forms will also be used by print.default when outputting non-printable characters (in-
cluding backslash).

Embedded nuls are not allowed in character strings, so using escapes (such as ‘\0’) for a nul will
result in the string being truncated at that point (usually with a warning).

Names and Identifiers

Identifiers consist of a sequence of letters, digits, the period (.) and the underscore. They must not
start with a digit nor underscore, nor with a period followed by a digit. Reserved words are not valid
identifiers.

The definition of a letter depends on the current locale, but only ASCII digits are considered to be
digits.

Such identifiers are also known as syntactic names and may be used directly in R code. Almost
always, other names can be used provided they are quoted. The preferred quote is the backtick
(‘‘’), and deparse will normally use it, but under many circumstances single or double quotes can
be used (as a character constant will often be converted to a name). One place where backticks may
be essential is to delimit variable names in formulae: see formula.

See Also

Syntax for other aspects of the syntax.

sQuote for quoting English text.

shQuote for quoting OS commands.

The R Language Definition manual.

R.Version Version Information

Description

R.Version() provides detailed information about the version of R running.

R.version is a variable (a list) holding this information (and version is a copy of it for S com-
patibility).

Usage

R.Version()
R.version
R.version.string
version

R.Version 365

Value

R.Version returns a list with character-string components

platform the platform for which R was built. A triplet of the form CPU-VENDOR-
OS, as determined by the configure script. E.g, "i586-unknown-linux" or
"i386-pc-mingw32".

arch the architecture (CPU) R was built on/for.

os the underlying operating system

system CPU and OS, separated by a comma.

status the status of the version (e.g., "Alpha")

major the major version number

minor the minor version number, including the patchlevel

year the year the version was released

month the month the version was released

day the day the version was released

svn rev the Subversion revision number, which should be either "unknown" or a single
number. (A range of numbers or a number with ‘M’ or ‘S’ appended indicates
inconsistencies in the sources used to build this version of R.)

language always "R".

version.string a character string concatenating some of the info above, useful for plotting,
etc.

R.version and version are lists of class "simple.list" which has a print method.

Note

Do not use R.version$os to test the platform the code is running on: use .Platform$OS.type
instead. Slightly different versions of the OS may report different values of R.version$os, as may
different versions of R.

R.version.string is a copy of R.version$version.string for simplicity and backwards com-
patibility.

See Also

sessionInfo which provides additional information; getRversion typically used inside R code,
.Platform.

Examples

require(graphics)

R.version$os # to check how lucky you are ...
plot(0) # any plot
mtext(R.version.string, side=1,line=4,adj=1)# a useful bottom-right note

366 Random

Random Random Number Generation

Description

.Random.seed is an integer vector, containing the random number generator (RNG) state for ran-
dom number generation in R. It can be saved and restored, but should not be altered by the user.

RNGkind is a more friendly interface to query or set the kind of RNG in use.

RNGversion can be used to set the random generators as they were in an earlier R version (for
reproducibility).

set.seed is the recommended way to specify seeds.

Usage

.Random.seed <- c(rng.kind, n1, n2, ...)

RNGkind(kind = NULL, normal.kind = NULL)
RNGversion(vstr)
set.seed(seed, kind = NULL, normal.kind = NULL)

Arguments

kind character or NULL. If kind is a character string, set R’s RNG to the kind desired.
Use "default" to return to the R default. See ‘Details’ for the interpretation of
NULL.

normal.kind character string or NULL. If it is a character string, set the method of Normal
generation. Use "default" to return to the R default. NULL makes no change.

seed a single value, interpreted as an integer.

vstr a character string containing a version number, e.g., "1.6.2"

rng.kind integer code in 0:k for the above kind.

n1, n2, ... integers. See the details for how many are required (which depends on
rng.kind).

Details

The currently available RNG kinds are given below. kind is partially matched to this list. The
default is "Mersenne-Twister".

"Wichmann-Hill" The seed, .Random.seed[-1] == r[1:3] is an integer vector of length
3, where each r[i] is in 1:(p[i] - 1), where p is the length 3 vector of primes,
p = (30269, 30307, 30323). The Wichmann–Hill generator has a cycle length of
6.9536× 1012 (= prod(p-1)/4, see Applied Statistics (1984) 33, 123 which corrects the orig-
inal article).

"Marsaglia-Multicarry": A multiply-with-carry RNG is used, as recommended by George
Marsaglia in his post to the mailing list ‘sci.stat.math’. It has a period of more than 260 and
has passed all tests (according to Marsaglia). The seed is two integers (all values allowed).

Random 367

"Super-Duper": Marsaglia’s famous Super-Duper from the 70’s. This is the original version which
does not pass the MTUPLE test of the Diehard battery. It has a period of ≈ 4.6 × 1018 for
most initial seeds. The seed is two integers (all values allowed for the first seed: the second
must be odd).
We use the implementation by Reeds et al. (1982–84).
The two seeds are the Tausworthe and congruence long integers, respectively. A one-to-one
mapping to S’s .Random.seed[1:12] is possible but we will not publish one, not least as this
generator is not exactly the same as that in recent versions of S-PLUS.

"Mersenne-Twister": From Matsumoto and Nishimura (1998). A twisted GFSR with period
219937 − 1 and equidistribution in 623 consecutive dimensions (over the whole period). The
‘seed’ is a 624-dimensional set of 32-bit integers plus a current position in that set.

"Knuth-TAOCP-2002": A 32-bit integer GFSR using lagged Fibonacci sequences with subtraction.
That is, the recurrence used is

Xj = (Xj−100 −Xj−37) mod 230

and the ‘seed’ is the set of the 100 last numbers (actually recorded as 101 numbers, the last
being a cyclic shift of the buffer). The period is around 2129.

"Knuth-TAOCP": An earlier version from Knuth (1997).
The 2002 version was not backwards compatible with the earlier version: the initialization of
the GFSR from the seed was altered. R did not allow you to choose consecutive seeds, the
reported ‘weakness’, and already scrambled the seeds.
Initialization of this generator is done in interpreted R code and so takes a short but noticeable
time.

"L’Ecuyer-CMRG": A ‘combined multiple-recursive generator’ from L’Ecuyer (1999), each ele-
ment of which is a feedback multiplicative generator with three integer elements: thus the
seed is a (signed) integer vector of length 6. The period is around 2191.
The 6 elements of the seed are internally regarded as 32-bit unsigned integers. Neither the
first three nor the last three should be all zero, and they are limited to less than 4294967087
and 4294944443 respectively.
This is not particularly interesting of itself, but provides the basis for the multiple streams used
in package parallel.

"user-supplied": Use a user-supplied generator. See Random.user for details.

normal.kind can be "Kinderman-Ramage", "Buggy Kinderman-Ramage" (not for set.seed),
"Ahrens-Dieter", "Box-Muller", "Inversion" (the default), or "user-supplied". (For inver-
sion, see the reference in qnorm.) The Kinderman-Ramage generator used in versions prior to 1.7.1
(now called "Buggy") had several approximation errors and should only be used for reproduction of
old results. The "Box-Muller" generator is stateful as pairs of normals are generated and returned
sequentially. The state is reset whenever it is selected (even if it is the current normal generator)
and when kind is changed.

set.seed uses its single integer argument to set as many seeds as are required. It is intended
as a simple way to get quite different seeds by specifying small integer arguments, and also as a
way to get valid seed sets for the more complicated methods (especially "Mersenne-Twister" and
"Knuth-TAOCP"). There is no guarantee that different values of seed will seed the RNG differently,
although any exceptions would be extremely rare.

The use of kind = NULL or normal.kind = NULL in RNGkind or set.seed selects the currently-
used generator (including that used in the previous session if the workspace has been restored): if
no generator has been used it selects "default".

368 Random

Value

.Random.seed is an integer vector whose first element codes the kind of RNG and normal gener-
ator. The lowest two decimal digits are in 0:(k-1) where k is the number of available RNGs. The
hundreds represent the type of normal generator (starting at 0).

In the underlying C, .Random.seed[-1] is unsigned; therefore in R .Random.seed[-1] can be
negative, due to the representation of an unsigned integer by a signed integer.

RNGkind returns a two-element character vector of the RNG and normal kinds selected before the
call, invisibly if either argument is not NULL. A type starts a session as the default, and is selected
either by a call to RNGkind or by setting .Random.seed in the workspace.

RNGversion returns the same information as RNGkind about the defaults in a specific R version.

set.seed returns NULL, invisibly.

Note

Initially, there is no seed; a new one is created from the current time (and since R 2.14.0, the process
ID) when one is required. Hence different sessions will give different simulation results, by default.
However, the seed might be restored from a previous session if a previously saved workspace is
restored.

.Random.seed saves the seed set for the uniform random-number generator, at least for the system
generators. It does not necessarily save the state of other generators, and in particular does not save
the state of the Box–Muller normal generator. If you want to reproduce work later, call set.seed
(preferably with explicit values for kind and normal.kind) rather than set .Random.seed.

The object .Random.seed is only looked for in the user’s workspace.

Do not rely on randomness of low-order bits from RNGs. Most of the supplied uniform generators
return 32-bit integer values that are converted to doubles, so they take at most 232 distinct values
and long runs will return duplicated values (Wichmann-Hill is the exception, and all give at least 30
varying bits.)

Author(s)

of RNGkind: Martin Maechler. Current implementation, B. D. Ripley

References

Ahrens, J. H. and Dieter, U. (1973) Extensions of Forsythe’s method for random sampling from the
normal distribution. Mathematics of Computation 27, 927-937.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (set.seed, storing in .Random.seed.)

Box, G. E. P. and Muller, M. E. (1958) A note on the generation of normal random deviates. Annals
of Mathematical Statistics 29, 610–611.

De Matteis, A. and Pagnutti, S. (1993) Long-range Correlation Analysis of the Wichmann-Hill
Random Number Generator, Statist. Comput., 3, 67–70.

Kinderman, A. J. and Ramage, J. G. (1976) Computer generation of normal random variables.
Journal of the American Statistical Association 71, 893-896.

Knuth, D. E. (1997) The Art of Computer Programming. Volume 2, third edition.
Source code at http://www-cs-faculty.stanford.edu/~knuth/taocp.html.

Knuth, D. E. (2002) The Art of Computer Programming. Volume 2, third edition, ninth printing.
See http://Sunburn.Stanford.EDU/~knuth/news02.html.

http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://Sunburn.Stanford.EDU/~knuth/news02.html

Random 369

L’Ecuyer, P. (1999) Good parameters and implementations for combined multiple recursive random
number generators. Operations Research 47, 159–164.

Marsaglia, G. (1997) A random number generator for C. Discussion paper, posting on Usenet news-
group sci.stat.math on September 29, 1997.

Marsaglia, G. and Zaman, A. (1994) Some portable very-long-period random number generators.
Computers in Physics, 8, 117–121.

Matsumoto, M. and Nishimura, T. (1998) Mersenne Twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator, ACM Transactions on Modeling and Computer Simula-
tion, 8, 3–30.
Source code at http://www.math.keio.ac.jp/~matumoto/emt.html.

Reeds, J., Hubert, S. and Abrahams, M. (1982–4) C implementation of SuperDuper, University of
California at Berkeley. (Personal communication from Jim Reeds to Ross Ihaka.)

Wichmann, B. A. and Hill, I. D. (1982) Algorithm AS 183: An Efficient and Portable Pseudo-
random Number Generator, Applied Statistics, 31, 188–190; Remarks: 34, 198 and 35, 89.

See Also

sample for random sampling with and without replacement.

Distributions for functions for random-variate generation from standard distributions.

Examples

require(stats)

the default random seed is 626 integers, so only print a few
runif(1); .Random.seed[1:6]; runif(1); .Random.seed[1:6]
If there is no seed, a "random" new one is created:
rm(.Random.seed); runif(1); .Random.seed[1:6]

ok <- RNGkind()
RNGkind("Wich")# (partial string matching on ’kind’)

This shows how ’runif(.)’ works for Wichmann-Hill,
using only R functions:

p.WH <- c(30269, 30307, 30323)
a.WH <- c(171, 172, 170)
next.WHseed <- function(i.seed = .Random.seed[-1])

{ (a.WH * i.seed) %% p.WH }
my.runif1 <- function(i.seed = .Random.seed)

{ ns <- next.WHseed(i.seed[-1]); sum(ns / p.WH) %% 1 }
rs <- .Random.seed
(WHs <- next.WHseed(rs[-1]))
u <- runif(1)
stopifnot(
next.WHseed(rs[-1]) == .Random.seed[-1],
all.equal(u, my.runif1(rs))

)

.Random.seed
RNGkind("Super")#matches "Super-Duper"
RNGkind()

http://www.math.keio.ac.jp/~matumoto/emt.html

370 Random.user

.Random.seed # new, corresponding to Super-Duper

Reset:
RNGkind(ok[1])

sum(duplicated(runif(1e6))) # around 110 for default generator
and we would expect about almost sure duplicates beyond about
qbirthday(1-1e-6, classes=2e9) # 235,000

Random.user User-supplied Random Number Generation

Description

Function RNGkind allows user-coded uniform and normal random number generators to be supplied.
The details are given here.

Details

A user-specified uniform RNG is called from entry points in dynamically-loaded compiled code.
The user must supply the entry point user_unif_rand, which takes no arguments and returns a
pointer to a double. The example below will show the general pattern.

Optionally, the user can supply the entry point user_unif_init, which is called with an
unsigned int argument when RNGkind (or set.seed) is called, and is intended to be used to
initialize the user’s RNG code. The argument is intended to be used to set the ‘seeds’; it is the seed
argument to set.seed or an essentially random seed if RNGkind is called.

If only these functions are supplied, no information about the generator’s state is recorded in
.Random.seed. Optionally, functions user_unif_nseed and user_unif_seedloc can be supplied
which are called with no arguments and should return pointers to the number of seeds and to an
integer (specifically, ‘Int32’) array of seeds. Calls to GetRNGstate and PutRNGstate will then
copy this array to and from .Random.seed.

A user-specified normal RNG is specified by a single entry point user_norm_rand, which takes no
arguments and returns a pointer to a double.

Warning

As with all compiled code, mis-specifying these functions can crash R. Do include the
‘R_ext/Random.h’ header file for type checking.

Examples

Not run:
Marsaglia’s congruential PRNG
#include <R_ext/Random.h>

static Int32 seed;
static double res;
static int nseed = 1;

double * user_unif_rand()
{

range 371

seed = 69069 * seed + 1;
res = seed * 2.32830643653869e-10;
return &res;

}

void user_unif_init(Int32 seed_in) { seed = seed_in; }
int * user_unif_nseed() { return &nseed; }
int * user_unif_seedloc() { return (int *) &seed; }

/* ratio-of-uniforms for normal */
#include <math.h>
static double x;

double * user_norm_rand()
{

double u, v, z;
do {

u = unif_rand();
v = 0.857764 * (2. * unif_rand() - 1);
x = v/u; z = 0.25 * x * x;
if (z < 1. - u) break;
if (z > 0.259/u + 0.35) continue;

} while (z > -log(u));
return &x;

}

Use under Unix:
R CMD SHLIB urand.c
R
> dyn.load("urand.so")
> RNGkind("user")
> runif(10)
> .Random.seed
> RNGkind(, "user")
> rnorm(10)
> RNGkind()
[1] "user-supplied" "user-supplied"

End(Not run)

range Range of Values

Description

range returns a vector containing the minimum and maximum of all the given arguments.

Usage

range(..., na.rm = FALSE)

Default S3 method:
range(..., na.rm = FALSE, finite = FALSE)

372 rank

Arguments

... any numeric or character objects.

na.rm logical, indicating if NA’s should be omitted.

finite logical, indicating if all non-finite elements should be omitted.

Details

range is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

If na.rm is FALSE, NA and NaN values in any of the arguments will cause NA values to be returned,
otherwise NA values are ignored.

If finite is TRUE, the minimum and maximum of all finite values is computed, i.e., finite=TRUE
includes na.rm=TRUE.

A special situation occurs when there is no (after omission of NAs) nonempty argument left, see min.

S4 methods

This is part of the S4 Summary group generic. Methods for it must use the signature x, ..., na.rm.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

min, max.

The extendrange() utility in package grDevices.

Examples

(r.x <- range(stats::rnorm(100)))
diff(r.x) # the SAMPLE range

x <- c(NA, 1:3, -1:1/0); x
range(x)
range(x, na.rm = TRUE)
range(x, finite = TRUE)

rank Sample Ranks

Description

Returns the sample ranks of the values in a vector. Ties (i.e., equal values) and missing values can
be handled in several ways.

rank 373

Usage

rank(x, na.last = TRUE,
ties.method = c("average", "first", "random", "max", "min"))

Arguments

x a numeric, complex, character or logical vector.

na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; if NA, they are removed; if "keep" they are kept
with rank NA.

ties.method a character string specifying how ties are treated, see ‘Details’; can be abbrevi-
ated.

Details

If all components are different (and no NAs), the ranks are well defined, with values in seq_len(x).
With some values equal (called ‘ties’), the argument ties.method determines the result at the
corresponding indices. The "first" method results in a permutation with increasing values at each
index set of ties. The "random" method puts these in random order whereas the default, "average",
replaces them by their mean, and "max" and "min" replaces them by their maximum and minimum
respectively, the latter being the typical sports ranking.

NA values are never considered to be equal: for na.last = TRUE and na.last = FALSE they
are given distinct ranks in the order in which they occur in x.

NB: rank is not itself generic but xtfrm is, and rank(xtfrm(x),) will have the desired
result if there is a xtfrm method. Otherwise, rank will make use of ==, > and is.na methods for
classed objects, possibly rather slowly.

Value

A numeric vector of the same length as x with names copied from x (unless na.last = NA, when
missing values are removed). The vector is of integer type unless ties.method = "average"
when it is of double type (whether or not there are any ties).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

order and sort.

Examples

(r1 <- rank(x1 <- c(3, 1, 4, 15, 92)))
x2 <- c(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5)
names(x2) <- letters[1:11]
(r2 <- rank(x2)) # ties are averaged

rank() is "idempotent": rank(rank(x)) == rank(x) :
stopifnot(rank(r1) == r1, rank(r2) == r2)

ranks without averaging

374 rapply

rank(x2, ties.method= "first") # first occurrence wins
rank(x2, ties.method= "random") # ties broken at random
rank(x2, ties.method= "random") # and again

keep ties ties, no average
(rma <- rank(x2, ties.method= "max")) # as used classically
(rmi <- rank(x2, ties.method= "min")) # as in Sports
stopifnot(rma + rmi == round(r2 + r2))

rapply Recursively Apply a Function to a List

Description

rapply is a recursive version of lapply.

Usage

rapply(object, f, classes = "ANY", deflt = NULL,
how = c("unlist", "replace", "list"), ...)

Arguments

object A list.

f A function of a single argument.

classes A character vector of class names, or "ANY" to match any class.

deflt The default result (not used if how = "replace").

how A character string matching the three possibilities given: see ‘Details’.

... additional arguments passed to the call to f.

Details

This function has two basic modes. If how = "replace", each element of the list which is not itself
a list and has a class included in classes is replaced by the result of applying f to the element.

If the mode is how = "list" or how = "unlist", the list is copied, all non-list elements which
have a class included in classes are replaced by the result of applying f to the element and all
others are replaced by deflt. Finally, if how = "unlist", unlist(recursive = TRUE) is called
on the result.

The semantics differ in detail from lapply: in particular the arguments are evaluated before calling
the C code.

Value

If how = "unlist", a vector, otherwise a list of similar structure to object.

References

Chambers, J. A. (1998) Programming with Data. Springer.
(rapply is only described briefly there.)

raw 375

See Also

lapply, dendrapply.

Examples

X <- list(list(a=pi, b=list(c=1:1)), d="a test")
rapply(X, function(x) x, how="replace")
rapply(X, sqrt, classes="numeric", how="replace")
rapply(X, nchar, classes="character",

deflt = as.integer(NA), how="list")
rapply(X, nchar, classes="character",

deflt = as.integer(NA), how="unlist")
rapply(X, nchar, classes="character", how="unlist")
rapply(X, log, classes="numeric", how="replace", base=2)

raw Raw Vectors

Description

Creates or tests for objects of type "raw".

Usage

raw(length = 0)
as.raw(x)
is.raw(x)

Arguments

length desired length.
x object to be coerced.

Details

The raw type is intended to hold raw bytes. It is possible to extract subsequences of bytes, and to
replace elements (but only by elements of a raw vector). The relational operators (see Comparison)
work, as do the logical operators (see Logic) with a bitwise interpretation.

A raw vector is printed with each byte separately represented as a pair of hex digits. If you want to
see a character representation (with escape sequences for non-printing characters) use rawToChar.

Coercion to raw treats the input values as representing small (decimal) integers, so the input is first
coerced to integer, and then values which are outside the range [0 ... 255] or are NA are set to 0
(the nul byte).

as.raw and is.raw are primitive functions.

Value

raw creates a raw vector of the specified length. Each element of the vector is equal to 0. Raw
vectors are used to store fixed-length sequences of bytes.

as.raw attempts to coerce its argument to be of raw type. The (elementwise) answer will be 0
unless the coercion succeeds (or if the original value successfully coerces to 0).

is.raw returns true if and only if typeof(x) == "raw".

376 rawConnection

See Also

charToRaw, rawShift, etc.

Examples

xx <- raw(2)
xx[1] <- as.raw(40) # NB, not just 40.
xx[2] <- charToRaw("A")
xx

x <- "A test string"
(y <- charToRaw(x))
is.vector(y) # TRUE
rawToChar(y)
is.raw(x)
is.raw(y)

isASCII <- function(txt) all(charToRaw(txt) <= as.raw(127))
isASCII(x) # true
isASCII("\x9c25.63") # false (in Latin-1, this is an amount in UK pounds)

rawConnection Raw Connections

Description

Input and output raw connections.

Usage

rawConnection(object, open = "r")

rawConnectionValue(con)

Arguments

object character or raw vector. A description of the connection. For an input this is an
R raw vector object, and for an output connection the name for the connection.

open character. Any of the standard connection open modes.

con An output raw connection.

Details

An input raw connection is opened and the raw vector is copied at the time the connection object is
created, and close destroys the copy.

An output raw connection is opened and creates an R raw vector internally. The raw vector can be
retrieved via rawConnectionValue.

If a connection is open for both input and output the initial raw vector supplied is copied when the
connections is open

rawConversion 377

Value

For rawConnection, a connection object of class "rawConnection" which inherits from class
"connection".

For rawConnectionValue, a raw vector.

Note

As output raw connections keep the internal raw vector up to date call-by-call, they are relatively
expensive to use (although over-allocation is used), and it may be better to use an anonymous
file() connection to collect output.

On (rare) platforms where vsnprintf does not return the needed length of output there is a 100,000
character limit on the length of line for output connections: longer lines will be truncated with a
warning.

See Also

connections, showConnections.

Examples

zz <- rawConnection(raw(0), "r+") # start with empty raw vector
writeBin(LETTERS, zz)
seek(zz, 0)
readLines(zz) # raw vector has embedded nuls
seek(zz, 0)
writeBin(letters[1:3], zz)
rawConnectionValue(zz)
close(zz)

rawConversion Convert to or from Raw Vectors

Description

Conversion and manipulation of objects of type "raw".

Usage

charToRaw(x)
rawToChar(x, multiple = FALSE)

rawShift(x, n)

rawToBits(x)
intToBits(x)
packBits(x, type = c("raw", "integer"))

378 rawConversion

Arguments

x object to be converted or shifted.
multiple logical: should the conversion be to a single character string or multiple individ-

ual characters?
n the number of bits to shift. Positive numbers shift right and negative numbers

shift left: allowed values are -8 ... 8.
type the result type.

Details

packBits accepts raw, integer or logical inputs, the last two without any NAs.

Value

charToRaw converts a length-one character string to raw bytes. It does so without taking into
account any declared encoding (see Encoding).

rawToChar converts raw bytes either to a single character string or a character vector of single bytes
(with "" for 0). (Note that a single character string could contain embedded nuls; only trailing nulls
are allowed and will be removed.) In either case it is possible to create a result which is invalid in a
multibyte locale, e.g. one using UTF-8.

rawShift(x,n) shift the bits in x by n positions to the right, see the argument n, above.

rawToBits returns a raw vector of 8 times the length of a raw vector with entries 0 or 1. intToBits
returns a raw vector of 32 times the length of an integer vector with entries 0 or 1. (Non-integral
numeric values are truncated to integers.) In both cases the unpacking is least-significant bit first.

packBits packs its input (using only the lowest bit for raw or integer vectors) least-significant bit
first to a raw or integer vector.

Examples

x <- "A test string"
(y <- charToRaw(x))
is.vector(y) # TRUE

rawToChar(y)
rawToChar(y, multiple = TRUE)
(xx <- c(y, charToRaw("&"), charToRaw("more")))
rawToChar(xx)

rawShift(y, 1)
rawShift(y, -2)

rawToBits(y)

showBits <- function(r) stats::symnum(as.logical(rawToBits(r)))

z <- as.raw(5)
z ; showBits(z)
showBits(rawShift(z, 1)) # shift to right
showBits(rawShift(z, 2))
showBits(z)
showBits(rawShift(z, -1)) # shift to left
showBits(rawShift(z, -2)) # ..
showBits(rawShift(z, -3)) # shifted off entirely

RdUtils 379

RdUtils Utilities for Processing Rd Files

Description

Utilities for converting files in R documentation (Rd) format to other formats or create indices from
them, and for converting documentation in other formats to Rd format.

Usage

R CMD Rdconv [options] file
R CMD Rd2pdf [options] files

Arguments

file the path to a file to be processed.

files a list of file names specifying the R documentation sources to use, by either
giving the paths to the files, or the path to a directory with the sources of a
package.

options further options to control the processing, or for obtaining information about us-
age and version of the utility.

Details

R CMD Rdconv converts Rd format to plain text, HTML or LaTeX formats: it can also extract the
examples.

R CMD Rd2pdf is the user-level program for producing PDF output from Rd sources. It will
make use of the environment variables R_PAPERSIZE (default a4, also legal and executive) and
R_PDFVIEWER (the PDF previewer). Also, RD2PDF_INPUTENC can be set to inputenx to make use
of the LaTeX package of that name rather than inputenc: this might be needed for better support
of the UTF-8 encoding.

Use R CMD foo --help to obtain usage information on utility foo .

See Also

The chapter “Processing Rd format” in the “Writing R Extensions” manual.

readBin Transfer Binary Data To and From Connections

Description

Read binary data from a connection, or write binary data to a connection.

380 readBin

Usage

readBin(con, what, n = 1L, size = NA_integer_, signed = TRUE,
endian = .Platform$endian)

writeBin(object, con, size = NA_integer_,
endian = .Platform$endian, useBytes = FALSE)

Arguments

con A connection object or a character string naming a file or a raw vector.

what Either an object whose mode will give the mode of the vector to be read,
or a character vector of length one describing the mode: one of "numeric",
"double", "integer", "int", "logical", "complex", "character", "raw".

n integer. The (maximal) number of records to be read. You can use an over-
estimate here, but not too large as storage is reserved for n items.

size integer. The number of bytes per element in the byte stream. The default,
NA_integer_, uses the natural size. Size changing is not supported for raw
and complex vectors.

signed logical. Only used for integers of sizes 1 and 2, when it determines if the quantity
on file should be regarded as a signed or unsigned integer.

endian The endian-ness ("big" or "little" of the target system for the file. Using
"swap" will force swapping endian-ness.

object An R object to be written to the connection.

useBytes See writeLines.

Details

These functions are intended to be used with binary-mode connections. If con is a character string,
the functions call file to obtain a binary-mode file connection which is opened for the duration of
the function call.

If the connection is open it is read/written from its current position. If it is not open, it is opened
for the duration of the call in an appropriate mode (binary read or write) and then closed again. An
open connection must be in binary mode.

If readBin is called with con a raw vector, the data in the vector is used as input. If writeBin is
called with con a raw vector, it is just an indication that a raw vector should be returned.

If size is specified and not the natural size of the object, each element of the vector is coerced to
an appropriate type before being written or as it is read. Possible sizes are 1, 2, 4 and possibly 8
for integer or logical vectors, and 4, 8 and possibly 12/16 for numeric vectors. (Note that coercion
occurs as signed types except if signed = FALSE when reading integers of sizes 1 and 2.) Changing
sizes is unlikely to preserve NAs, and the extended precision sizes are unlikely to be portable across
platforms.

readBin and writeBin read and write C-style zero-terminated character strings. Input strings are
limited to 10000 characters. readChar and writeChar can be used to read and write fixed-length
strings. No check is made that the string is valid in the current locale.

Handling R’s missing and special (Inf, -Inf and NaN) values is discussed in the R Data Im-
port/Export manual.

Only 231−1 bytes can be written in a single call (and that is the maximum capacity of a raw vector).

readBin 381

Value

For readBin, a vector of appropriate mode and length the number of items read (which might be
less than n).

For writeBin, a raw vector (if con is a raw vector) or invisibly NULL.

Note

Integer read/writes of size 8 will be available if either C type long is of size 8 bytes or C type
long long exists and is of size 8 bytes.

Real read/writes of size sizeof(long double) (usually 12 or 16 bytes) will be available only if
that type is available and different from double.

If readBin(what = character()) is used incorrectly on a file which does not contain C-style
character strings, warnings (usually many) are given. From a file or connection, the input will be
broken into pieces of length 10000 with any final part being discarded.

Using these functions on a text-mode connection may work but should not be mixed with text-mode
access to the connection, especially if the connection was opened with an encoding argument.

See Also

The R Data Import/Export manual.

readChar to read/write fixed-length strings.

connections, readLines, writeLines.

.Machine for the sizes of long, long long and long double.

Examples

zz <- file("testbin", "wb")
writeBin(1:10, zz)
writeBin(pi, zz, endian="swap")
writeBin(pi, zz, size=4)
writeBin(pi^2, zz, size=4, endian="swap")
writeBin(pi+3i, zz)
writeBin("A test of a connection", zz)
z <- paste("A very long string", 1:100, collapse=" + ")
writeBin(z, zz)
if(.Machine$sizeof.long == 8 || .Machine$sizeof.longlong == 8)

writeBin(as.integer(5^(1:10)), zz, size = 8)
if((s <-.Machine$sizeof.longdouble) > 8)

writeBin((pi/3)^(1:10), zz, size = s)
close(zz)

zz <- file("testbin", "rb")
readBin(zz, integer(), 4)
readBin(zz, integer(), 6)
readBin(zz, numeric(), 1, endian="swap")
readBin(zz, numeric(), size=4)
readBin(zz, numeric(), size=4, endian="swap")
readBin(zz, complex(), 1)
readBin(zz, character(), 1)
z2 <- readBin(zz, character(), 1)
if(.Machine$sizeof.long == 8 || .Machine$sizeof.longlong == 8)

readBin(zz, integer(), 10, size = 8)
if((s <-.Machine$sizeof.longdouble) > 8)

382 readChar

readBin(zz, numeric(), 10, size = s)
close(zz)
unlink("testbin")
stopifnot(z2 == z)

signed vs unsigned ints
zz <- file("testbin", "wb")
x <- as.integer(seq(0, 255, 32))
writeBin(x, zz, size=1)
writeBin(x, zz, size=1)
x <- as.integer(seq(0, 60000, 10000))
writeBin(x, zz, size=2)
writeBin(x, zz, size=2)
close(zz)
zz <- file("testbin", "rb")
readBin(zz, integer(), 8, size=1)
readBin(zz, integer(), 8, size=1, signed=FALSE)
readBin(zz, integer(), 7, size=2)
readBin(zz, integer(), 7, size=2, signed=FALSE)
close(zz)
unlink("testbin")

use of raw
z <- writeBin(pi^{1:5}, raw(), size = 4)
readBin(z, numeric(), 5, size = 4)
z <- writeBin(c("a", "test", "of", "character"), raw())
readBin(z, character(), 4)

readChar Transfer Character Strings To and From Connections

Description

Transfer character strings to and from connections, without assuming they are null-terminated on
the connection.

Usage

readChar(con, nchars, useBytes = FALSE)

writeChar(object, con, nchars = nchar(object, type="chars"),
eos = "", useBytes = FALSE)

Arguments

con A connection object, or a character string naming a file, or a raw vector.

nchars integer vector, giving the lengths in characters of (unterminated) character
strings to be read or written. Elements must be >= 0 and not NA.

useBytes logical: For readChar, should nchars be regarded as a number of bytes not
characters in a multi-byte locale? For writeChar, see writeLines.

object A character vector to be written to the connection, at least as long as nchars.

eos ‘end of string’: character string . The terminator to be written after each string,
followed by an ASCII nul; use NULL for no terminator at all.

readChar 383

Details

These functions complement readBin and writeBin which read and write C-style zero-terminated
character strings. They are for strings of known length, and can optionally write an end-of-string
mark. They are intended only for character strings valid in the current locale.

These functions are intended to be used with binary-mode connections. If con is a character string,
the functions call file to obtain a binary-mode file connection which is opened for the duration of
the function call.

If the connection is open it is read/written from its current position. If it is not open, it is opened
for the duration of the call in an appropriate mode (binary read or write) and then closed again. An
open connection must be in binary mode.

If readChar is called with con a raw vector, the data in the vector is used as input. If writeChar is
called with con a raw vector, it is just an indication that a raw vector should be returned.

Character strings containing ASCII nul(s) will be read correctly by readChar but truncated at the
first nul with a warning.

If the character length requested for readChar is longer than the data available on the connection,
what is available is returned. For writeChar if too many characters are requested the output is
zero-padded, with a warning.

Missing strings are written as NA.

Value

For readChar, a character vector of length the number of items read (which might be less than
length(nchars)).

For writeChar, a raw vector (if con is a raw vector) or invisibly NULL.

Note

Earlier versions of R allowed embedded nul bytes within character strings, but not R >= 2.8.0.
readChar was commonly used to read fixed-size zero-padded byte fields for which readBin was
unsuitable. readChar can still be used for such fields if there are no embedded nuls: otherwise
readBin(what="raw") provides an alternative.

nchars will be interpreted in bytes not characters in a non-UTF-8 multi-byte locale, with a warning.

There is little validity checking of UTF-8 reads.

Using these functions on a text-mode connection may work but should not be mixed with text-mode
access to the connection, especially if the connection was opened with an encoding argument.

See Also

The R Data Import/Export manual.

connections, readLines, writeLines, readBin

Examples

test fixed-length strings
zz <- file("testchar", "wb")
x <- c("a", "this will be truncated", "abc")
nc <- c(3, 10, 3)
writeChar(x, zz, nc, eos=NULL)
writeChar(x, zz, eos="\r\n")
close(zz)

384 readline

zz <- file("testchar", "rb")
readChar(zz, nc)
readChar(zz, nchar(x)+3) # need to read the terminator explicitly
close(zz)
unlink("testchar")

readline Read a Line from the Terminal

Description

readline reads a line from the terminal (in interactive use).

Usage

readline(prompt = "")

Arguments

prompt the string printed when prompting the user for input. Should usually end with a
space " ".

Details

The prompt string will be truncated to a maximum allowed length, normally 256 chars (but can be
changed in the source code).

This can only be used in an interactive session.

Value

A character vector of length one. Both leading and trailing spaces and tabs are stripped from the
result.

In non-interactive use the result is as if the response was RETURN and the value is "".

See Also

readLines for reading text lines from connections, including files.

Examples

fun <- function() {
ANSWER <- readline("Are you a satisfied R user? ")
a better version would check the answer less cursorily, and
perhaps re-prompt
if (substr(ANSWER, 1, 1) == "n")
cat("This is impossible. YOU LIED!\n")

else
cat("I knew it.\n")

}
if(interactive()) fun()

readLines 385

readLines Read Text Lines from a Connection

Description

Read some or all text lines from a connection.

Usage

readLines(con = stdin(), n = -1L, ok = TRUE, warn = TRUE,
encoding = "unknown")

Arguments

con a connection object or a character string.

n integer. The (maximal) number of lines to read. Negative values indicate that
one should read up to the end of input on the connection.

ok logical. Is it OK to reach the end of the connection before n > 0 lines are read?
If not, an error will be generated.

warn logical. Warn if a text file is missing a final EOL.

encoding encoding to be assumed for input strings. It is used to mark character strings
as known to be in Latin-1 or UTF-8: it is not used to re-encode the input.
To do the latter, specify the encoding as part of the connection con or via
options(encoding=): see the example under file. See also ‘Details’.

Details

If the con is a character string, the function calls file to obtain a file connection which is opened
for the duration of the function call. As from R 2.10.0 this can be a compressed file.

If the connection is open it is read from its current position. If it is not open, it is opened in "rt"
mode for the duration of the call and then closed again.

If the final line is incomplete (no final EOL marker) the behaviour depends on whether the con-
nection is blocking or not. For a non-blocking text-mode connection the incomplete line is pushed
back, silently. For all other connections the line will be accepted, with a warning.

Whatever mode the connection is opened in, any of LF, CRLF or CR will be accepted as the EOL
marker for a line.

If con is a not-already-open connection with a non-default encoding argument, the text is converted
to UTF-8 and declared as such (and the encoding argument to readLines is ignored). See the
examples.

Value

A character vector of length the number of lines read.

The elements of the result have a declared encoding if encoding is "latin1" or "UTF-8",

Note

The default connection, stdin, may be different from con = "stdin": see file.

386 readRDS

See Also

connections, writeLines, readBin, scan

Examples

cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file="ex.data",
sep="\n")

readLines("ex.data", n=-1)
unlink("ex.data") # tidy up

difference in blocking
cat("123\nabc", file = "test1")
readLines("test1") # line with a warning

con <- file("test1", "r", blocking = FALSE)
readLines(con) # empty
cat(" def\n", file = "test1", append = TRUE)
readLines(con) # gets both
close(con)

unlink("test1") # tidy up

Not run:
read a ’Windows Unicode’ file
A <- readLines(file("Unicode.txt", encoding="UCS-2LE"))
unique(Encoding(A)) # will most likely be UTF-8

End(Not run)

readRDS Serialization Interface for Single Objects

Description

Functions to write a single R object to a file, and to restore it.

Usage

saveRDS(object, file = "", ascii = FALSE, version = NULL,
compress = TRUE, refhook = NULL)

readRDS(file, refhook = NULL)

Arguments

object R object to serialize.

file a connection or the name of the file where the R object is saved to or read from.

ascii a logical. If TRUE, an ASCII representation is written; otherwise (default except
for text-mode connections), a binary one is used. See the comments in the help
for save.

readRDS 387

version the workspace format version to use. NULL specifies the current default version
(2). Versions prior to 2 are not supported, so this will only be relevant when
there are later versions.

compress a logical specifying whether saving to a named file is to use "gzip" compres-
sion, or one of "gzip", "bzip2" or "xz" to indicate the type of compression to
be used. Ignored if file is a connection.

refhook a hook function for handling reference objects.

Details

These functions provide the means to save a single R object to a connection (typically a file) and to
restore the object, quite possibly under a different name. This differs from save and load, which
save and restore one or more named objects into an environment. They are widely used by R itself,
for example to store metadata for a package and to store the help.search databases: the ".rds"
file extension is most often used.

Functions serialize and unserialize provide a slightly lower-level interface to serialization:
objects serialized to a connection by serialize can be read back by readRDS and conversely.

All of these interfaces use the same serialization format, which has been used since R 1.4.0 (but
extended from time to time as new object types have been added to R). However, save writes a
single line header (typically "RDXs\n") before the serialization of a single object (a pairlist of all
the objects to be saved).

Compression is handled by the connection opened when file is a file name, so is only possible
when file is a connection if handled by the connection. So e.g. url connections will needed to be
wrapped in a call to gzcon.

If a connection is supplied it will be opened (in binary mode) for the duration of the function if not
already open: if it is already open it must be in binary mode for saveRDS(ascii = FALSE) (the
default).

Value

For readRDS, an R object.

For saveRDS, NULL invisibly.

See Also

serialize, save and load.

The ‘R Internals’ manual for details of the format used.

Examples

save a single object to file
saveRDS(women, "women.rds")
restore it under a different name
women2 <- readRDS("women.rds")
identical(women, women2)
or examine the object via a connection, which will be opened as needed.
con <- gzfile("women.rds")
str(readRDS(con))
close(con)

Less convenient ways to restore the object
which demonstrate compatibility with unserialize()

388 readRenviron

con <- gzfile("women.rds", "rb")
identical(unserialize(con), women)
close(con)
con <- gzfile("women.rds", "rb")
wm <- readBin(con, "raw", n = 1e4) # size is a guess
close(con)
identical(unserialize(wm), women)

Format compatibility with serialize():
con <- file("women2", "w")
serialize(women, con) # ASCII, uncompressed
close(con)
identical(women, readRDS("women2"))
con <- bzfile("women3", "w")
serialize(women, con) # binary, bzip2-compressed
close(con)
identical(women, readRDS("women2"))

readRenviron Set Environment Variables from a File

Description

Read as file such as ‘.Renviron’ or ‘Renviron.site’ in the format described in the help for
Startup, and set environment variables as defined in the file.

Usage

readRenviron(path)

Arguments

path A length-one character vector giving the path to the file. Tilde-expansion is
performed where supported.

Value

Scalar logical indicating if the file was read successfully. Returned invisibly. If the file cannot be
opened for reading, a warning is given.

See Also

Startup for the file format.

Examples

Not run:
re-read a startup file (or read it in a vanilla session)
readRenviron("~/.Renviron")

End(Not run)

real 389

real Real Vectors

Description

These functions are the same as their double equivalents and are provided for backwards compati-
bility only.

Usage

real(length = 0)
as.real(x, ...)
is.real(x)

Arguments

length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

as.real is a generic function, but S3 methods must be written for as.double.

Recall Recursive Calling

Description

Recall is used as a placeholder for the name of the function in which it is called. It allows the
definition of recursive functions which still work after being renamed, see example below.

Usage

Recall(...)

Arguments

... all the arguments to be passed.

Note

Recall will not work correctly when passed as a function argument, e.g. to the apply family of
functions.

See Also

do.call and call.

local for another way to write anonymous recursive functions.

390 reg.finalizer

Examples

A trivial (but inefficient!) example:
fib <- function(n)

if(n<=2) { if(n>=0) 1 else 0 } else Recall(n-1) + Recall(n-2)
fibonacci <- fib; rm(fib)
renaming wouldn’t work without Recall
fibonacci(10) # 55

reg.finalizer Finalization of Objects

Description

Registers an R function to be called upon garbage collection of object or (optionally) at the end of
an R session.

Usage

reg.finalizer(e, f, onexit = FALSE)

Arguments

e Object to finalize. Must be an environment or an external pointer.

f Function to call on finalization. Must accept a single argument, which will be
the object to finalize.

onexit logical: should the finalizer be run if the object is still uncollected at the end of
the R session?

Value

NULL.

Note

The purpose of this function is mainly to allow objects that refer to external items (a temporary
file, say) to perform cleanup actions when they are no longer referenced from within R. This only
makes sense for objects that are never copied on assignment, hence the restriction to environments
and external pointers.

See Also

gc and Memory for garbage collection and memory management.

Examples

f <- function(e) print("cleaning....")
g <- function(x){ e <- environment(); reg.finalizer(e,f) }
g()
invisible(gc()) # trigger cleanup

regex 391

regex Regular Expressions as used in R

Description

This help page documents the regular expression patterns supported by grep and related functions
grepl, regexpr, gregexpr, sub and gsub, as well as by strsplit.

Details

A ‘regular expression’ is a pattern that describes a set of strings. Two types of regular expressions
are used in R, extended regular expressions (the default) and Perl-like regular expressions used
by perl = TRUE. There is a also fixed = TRUE which can be considered to use a literal regular
expression.

Other functions which use regular expressions (often via the use of grep) include apropos,
browseEnv, help.search, list.files and ls. These will all use extended regular expressions.

Patterns are described here as they would be printed by cat: (do remember that backslashes need
to be doubled when entering R character strings, e.g. from the keyboard).

Do not assume that long regular expressions will be accepted: the POSIX standard only requires up
to 256 bytes.

Extended Regular Expressions

This section covers the regular expressions allowed in the default mode of grep, regexpr,
gregexpr, sub, gsub and strsplit. They use an implementation of the POSIX 1003.2 stan-
dard: that allows some scope for interpretation and the interpretations here are those used as from
R 2.10.0.

Regular expressions are constructed analogously to arithmetic expressions, by using various opera-
tors to combine smaller expressions. The whole expression matches zero or more characters (read
‘character’ as ‘byte’ if useBytes = TRUE).

The fundamental building blocks are the regular expressions that match a single character. Most
characters, including all letters and digits, are regular expressions that match themselves. Any
metacharacter with special meaning may be quoted by preceding it with a backslash. The metachar-
acters in EREs are ‘. \ | () [{ ^ $ * + ?’, but note that whether these have a special
meaning depends on the context.

Escaping non-metacharacters with a backslash is implementation-dependent. The current imple-
mentation interprets ‘\a’ as ‘BEL’, ‘\e’ as ‘ESC’, ‘\f’ as ‘FF’, ‘\n’ as ‘LF’, ‘\r’ as ‘CR’ and ‘\t’ as
‘TAB’. (Note that these will be interpreted by R’s parser in literal character strings.)

A character class is a list of characters enclosed between ‘[’ and ‘]’ which matches any single
character in that list; unless the first character of the list is the caret ‘^’, when it matches any
character not in the list. For example, the regular expression ‘[0123456789]’ matches any single
digit, and ‘[^abc]’ matches anything except the characters ‘a’, ‘b’ or ‘c’. A range of characters
may be specified by giving the first and last characters, separated by a hyphen. (Because their
interpretation is locale- and implementation-dependent, they are best avoided.) The only portable
way to specify all ASCII letters is to list them all as the character class
‘[ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz]’.
(The current implementation uses numerical order of the encoding: prior to R 2.10.0 locale-specific
collation was used, and might be again.)

392 regex

Certain named classes of characters are predefined. Their interpretation depends on the locale (see
locales); the interpretation below is that of the POSIX locale.

‘[:alnum:]’ Alphanumeric characters: ‘[:alpha:]’ and ‘[:digit:]’.

‘[:alpha:]’ Alphabetic characters: ‘[:lower:]’ and ‘[:upper:]’.

‘[:blank:]’ Blank characters: space and tab, and possibly other locale-dependent characters such
as non-breaking space.

‘[:cntrl:]’ Control characters. In ASCII, these characters have octal codes 000 through 037, and
177 (DEL). In another character set, these are the equivalent characters, if any.

‘[:digit:]’ Digits: ‘0 1 2 3 4 5 6 7 8 9’.

‘[:graph:]’ Graphical characters: ‘[:alnum:]’ and ‘[:punct:]’.

‘[:lower:]’ Lower-case letters in the current locale.

‘[:print:]’ Printable characters: ‘[:alnum:]’, ‘[:punct:]’ and space.

‘[:punct:]’ Punctuation characters:
‘! " # $ % & ’ () * + , - . / : ; < = > ? @ [\] ^ _ ‘ { | } ~’.

‘[:space:]’ Space characters: tab, newline, vertical tab, form feed, carriage return, space and
possibly other locale-dependent characters.

‘[:upper:]’ Upper-case letters in the current locale.

‘[:xdigit:]’ Hexadecimal digits:
‘0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f’.

For example, ‘[[:alnum:]]’ means ‘[0-9A-Za-z]’, except the latter depends upon the locale and
the character encoding, whereas the former is independent of locale and character set. (Note that
the brackets in these class names are part of the symbolic names, and must be included in addition
to the brackets delimiting the bracket list.) Most metacharacters lose their special meaning inside
a character class. To include a literal ‘]’, place it first in the list. Similarly, to include a literal ‘^’,
place it anywhere but first. Finally, to include a literal ‘-’, place it first or last (or, for perl = TRUE
only, precede it by a backslash). (Only ‘^ - \]’ are special inside character classes.)

The period ‘.’ matches any single character. The symbol ‘\w’ matches a ‘word’ character (a
synonym for ‘[[:alnum:]_]’) and ‘\W’ is its negation. Symbols ‘\d’, ‘\s’, ‘\D’ and ‘\S’ denote
the digit and space classes and their negations.

The caret ‘^’ and the dollar sign ‘$’ are metacharacters that respectively match the empty string at
the beginning and end of a line. The symbols ‘\<’ and ‘\>’ match the empty string at the beginning
and end of a word. The symbol ‘\b’ matches the empty string at either edge of a word, and ‘\B’
matches the empty string provided it is not at an edge of a word. (The interpretation of ‘word’
depends on the locale and implementation.)

A regular expression may be followed by one of several repetition quantifiers:

‘?’ The preceding item is optional and will be matched at most once.

‘*’ The preceding item will be matched zero or more times.

‘+’ The preceding item will be matched one or more times.

‘{n}’ The preceding item is matched exactly n times.

‘{n,}’ The preceding item is matched n or more times.

‘{n,m}’ The preceding item is matched at least n times, but not more than m times.

regex 393

By default repetition is greedy, so the maximal possible number of repeats is used. This can be
changed to ‘minimal’ by appending ? to the quantifier. (There are further quantifiers that allow
approximate matching: see the TRE documentation.)

Regular expressions may be concatenated; the resulting regular expression matches any string
formed by concatenating the substrings that match the concatenated subexpressions.

Two regular expressions may be joined by the infix operator ‘|’; the resulting regular expression
matches any string matching either subexpression. For example, ‘abba|cde’ matches either the
string abba or the string cde. Note that alternation does not work inside character classes, where
‘|’ has its literal meaning.

Repetition takes precedence over concatenation, which in turn takes precedence over alternation. A
whole subexpression may be enclosed in parentheses to override these precedence rules.

The backreference ‘\N’, where ‘N = 1 ... 9’, matches the substring previously matched by the
Nth parenthesized subexpression of the regular expression. (This is an extension for extended reg-
ular expressions: POSIX defines them only for basic ones.)

Perl-like Regular Expressions

The perl = TRUE argument to grep, regexpr, gregexpr, sub, gsub and strsplit switches to
the PCRE library that implements regular expression pattern matching using the same syntax and
semantics as Perl 5.10, with just a few differences.

For complete details please consult the man pages for PCRE, especially man pcrepattern and
man pcreapi), on your system or from the sources at http://www.pcre.org. If PCRE support
was compiled from the sources within R, the PCRE version is 8.12 as described here.

Perl regular expressions can be computed byte-by-byte or (UTF-8) character-by-character: the latter
is used in all multibyte locales and if any of the inputs are marked as UTF-8 (see Encoding).

All the regular expressions described for extended regular expressions are accepted except ‘\<’ and
‘\>’: in Perl all backslashed metacharacters are alphanumeric and backslashed symbols always are
interpreted as a literal character. ‘{’ is not special if it would be the start of an invalid interval
specification. There can be more than 9 backreferences (but the replacement in sub can only refer
to the first 9).

Character ranges are interpreted in the numerical order of the characters, either as bytes in a single-
byte locale or as Unicode points in UTF-8 mode. So in either case ‘[A-Za-z]’ specifies the set of
ASCII letters.

In UTF-8 mode the named character classes only match ASCII characters: see ‘\p’ below for an
alternative.

The construct ‘(?...)’ is used for Perl extensions in a variety of ways depending on what imme-
diately follows the ‘?’.

Perl-like matching can work in several modes, set by the options ‘(?i)’ (caseless, equivalent to
Perl’s ‘/i’), ‘(?m)’ (multiline, equivalent to Perl’s ‘/m’), ‘(?s)’ (single line, so a dot matches
all characters, even new lines: equivalent to Perl’s ‘/s’) and ‘(?x)’ (extended, whitespace data
characters are ignored unless escaped and comments are allowed: equivalent to Perl’s ‘/x’). These
can be concatenated, so for example, ‘(?im)’ sets caseless multiline matching. It is also possible
to unset these options by preceding the letter with a hyphen, and to combine setting and unsetting
such as ‘(?im-sx)’. These settings can be applied within patterns, and then apply to the remainder
of the pattern. Additional options not in Perl include ‘(?U)’ to set ‘ungreedy’ mode (so matching is
minimal unless ‘?’ is used as part of the repetition quantifier, when it is greedy). Initially none of
these options are set.

If you want to remove the special meaning from a sequence of characters, you can do so by putting
them between ‘\Q’ and ‘\E’. This is different from Perl in that ‘$’ and ‘@’ are handled as literals in
‘\Q...\E’ sequences in PCRE, whereas in Perl, ‘$’ and ‘@’ cause variable interpolation.

http://www.pcre.org

394 regex

The escape sequences ‘\d’, ‘\s’ and ‘\w’ represent any decimal digit, space character and ‘word’
character (letter, digit or underscore in the current locale: in UTF-8 mode only ASCII letters and
digits are considered) respectively, and their upper-case versions represent their negation. Unlike
POSIX, vertical tab is not regarded as a space character. Sequences ‘\h’, ‘\v’, ‘\H’ and ‘\V’ match
horizontal and vertical space or the negation. (In UTF-8 mode, these do match non-ASCII Unicode
points.)

There are additional escape sequences: ‘\cx’ is ‘cntrl-x’ for any ‘x’, ‘\ddd’ is the octal character
(for up to three digits unless interpretable as a backreference, as ‘\1’ to ‘\7’ always are), and ‘\xhh’
specifies a character by two hex digits. In a UTF-8 locale, ‘\x{h...}’ specifies a Unicode point by
one or more hex digits. (Note that some of these will be interpreted by R’s parser in literal character
strings.)

Outside a character class, ‘\A’ matches at the start of a subject (even in multiline mode, unlike ‘^’),
‘\Z’ matches at the end of a subject or before a newline at the end, ‘\z’ matches only at end of
a subject. and ‘\G’ matches at first matching position in a subject (which is subtly different from
Perl’s end of the previous match). ‘\C’ matches a single byte, including a newline, but its use is
warned against. In UTF-8 mode, ‘\R’ matches any Unicode newline character (not just CR), and
‘\X’ matches any number of Unicode characters that form an extended Unicode sequence.

In UTF-8 mode, some Unicode properties are supported via ‘\p{xx}’ and ‘\P{xx}’ which match
characters with and without property ‘xx’ respectively. For a list of supported properties see the
PCRE documentation, but for example ‘Lu’ is ‘upper case letter’ and ‘Sc’ is ‘currency symbol’.

The sequence ‘(?#’ marks the start of a comment which continues up to the next closing parenthesis.
Nested parentheses are not permitted. The characters that make up a comment play no part at all in
the pattern matching.

If the extended option is set, an unescaped ‘#’ character outside a character class introduces a
comment that continues up to the next newline character in the pattern.

The pattern ‘(?:...)’ groups characters just as parentheses do but does not make a backreference.

Patterns ‘(?=...)’ and ‘(?!...)’ are zero-width positive and negative lookahead assertions: they
match if an attempt to match the ... forward from the current position would succeed (or not), but
use up no characters in the string being processed. Patterns ‘(?<=...)’ and ‘(?<!...)’ are the
lookbehind equivalents: they do not allow repetition quantifiers nor ‘\C’ in

As from R 2.14.0 regexpr and gregexpr support ‘named capture’. If groups are named, e.g.,
"(?<first>[A-Z][a-z]+)" then the positions of the matches are also returned by name. (Named
backreferences are not supported by sub.)

Atomic grouping, possessive qualifiers and conditional and recursive patterns are not covered here.

Author(s)

This help page is based on the documentation of GNU grep 2.4.2, the TRE documentation and the
POSIX standard, and the pcrepattern man page from PCRE 8.0.

See Also

grep, apropos, browseEnv, glob2rx, help.search, list.files, ls and strsplit.

The TRE documentation at http://laurikari.net/tre/documentation/regex-syntax/).

The POSIX 1003.2 standard at http://pubs.opengroup.org/onlinepubs/9699919799/
basedefs/V1_chap09.html#tag_09

The pcrepattern can be found as part of http://www.pcre.org/pcre.txt, and details of Perl’s
own implementation at http://perldoc.perl.org/perlre.html.

http://laurikari.net/tre/documentation/regex-syntax/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09
http://www.pcre.org/pcre.txt
http://perldoc.perl.org/perlre.html

regmatches 395

regmatches Extract or Replace Matched Substrings

Description

Extract or replace matched substrings from match data obtained by regexpr, gregexpr or regexec.

Usage

regmatches(x, m, invert = FALSE)
regmatches(x, m, invert = FALSE) <- value

Arguments

x a character vector

m an object with match data

invert a logical: if TRUE, extract the non-matched substrings.

value an object with suitable replacement values for the matched or non-matched sub-
strings (see Details).

Details

If invert is TRUE (default), regmatches extracts the matched substrings as specified by the match
data. For vector match data (as obtained from regexpr), empty matches are dropped; for list match
data, empty matches give empty components (zero-length character vectors).

If invert is FALSE, regmatches extracts the non-matched substrings, i.e., the strings are split ac-
cording to the matches similar to strsplit (for vector match data, at most a single split is per-
formed).

Note that the match data can be obtained from regular expression matching on a modified version
of x with the same numbers of characters.

The replacement function can be used for replacing the matched or non-matched substrings. For
vector match data, if invert is TRUE, value should be a character vector with length the number of
matched elements in m. Otherwise, it should be a list of character vectors with the same length as
m, each as long as the number of replacements needed. Replacement coerces values to character or
list and generously recycles values as needed. Missing replacement values are not allowed.

Value

For regmatches, a character vector with the matched substrings if m is a vector and invert is
FALSE. Otherwise, a list with the matched or non-matched substrings.

For regmatches<-, the updated character vector.

Examples

x <- c("A and B", "A, B and C", "A, B, C and D", "foobar")
pattern <- "[[:space:]]*(,|and)[[:space:]]"
Match data from regexpr()
m <- regexpr(pattern, x)
regmatches(x, m)
regmatches(x, m, invert = TRUE)

396 remove

Match data from gregexpr()
m <- gregexpr(pattern, x)
regmatches(x, m)
regmatches(x, m, invert = TRUE)

Consider
x <- "John (fishing, hunting), Paul (hiking, biking)"
Suppose we want to split at the comma (plus spaces) between the
persons, but not at the commas in the parenthesized hobby lists.
One idea is to "blank out" the parenthesized parts to match the
parts to be used for splitting, and extract the persons as the
non-matched parts.
First, match the parenthesized hobby lists.
m <- gregexpr("\\([^)]*\\)", x)
Write a little utility for creating blank strings with given numbers
of characters.
blanks <- function(n) {

vapply(Map(rep.int, rep.int(" ", length(n)), n, USE.NAMES = FALSE),
paste, "", collapse = "")

}
Create a copy of x with the parenthesized parts blanked out.
s <- x
regmatches(s, m) <- Map(blanks, lapply(regmatches(s, m), nchar))
s
Compute the positions of the split matches (note that we cannot call
strsplit() on x with match data from s).
m <- gregexpr(", *", s)
And finally extract the non-matched parts.
regmatches(x, m, invert = TRUE)

remove Remove Objects from a Specified Environment

Description

remove and rm can be used to remove objects. These can be specified successively as character
strings, or in the character vector list, or through a combination of both. All objects thus specified
will be removed.

If envir is NULL then the currently active environment is searched first.

If inherits is TRUE then parents of the supplied directory are searched until a variable with the
given name is encountered. A warning is printed for each variable that is not found.

Usage

remove(..., list = character(), pos = -1,
envir = as.environment(pos), inherits = FALSE)

rm (..., list = character(), pos = -1,
envir = as.environment(pos), inherits = FALSE)

remove 397

Arguments

... the objects to be removed, as names (unquoted) or character strings (quoted).

list a character vector naming objects to be removed.

pos where to do the removal. By default, uses the current environment. See ‘details’
for other possibilities.

envir the environment to use. See ‘details’.

inherits should the enclosing frames of the environment be inspected?

Details

The pos argument can specify the environment from which to remove the objects in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys.frame to access the currently active
function calls). The envir argument is an alternative way to specify an environment, but is primarily
there for back compatibility.

It is not allowed to remove variables from the base environment and base namespace, nor from any
environment which is locked (see lockEnvironment).

Earlier versions of R incorrectly claimed that supplying a character vector in ... removed the
objects named in the character vector, but it removed the character vector. Use the list argument
to specify objects via a character vector.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ls, objects

Examples

tmp <- 1:4
work with tmp and cleanup
rm(tmp)

Not run:
remove (almost) everything in the working environment.
You will get no warning, so don’t do this unless you are really sure.
rm(list = ls())

End(Not run)

398 rep

rep Replicate Elements of Vectors and Lists

Description

rep replicates the values in x. It is a generic function, and the (internal) default method is described
here.

rep.int is a faster simplified version for the most common case.

Usage

rep(x, ...)

rep.int(x, times)

Arguments

x a vector (of any mode including a list) or a factor or (except for rep.int) a
POSIXct or POSIXlt or date object; or also, an S4 object containing a vector of
the above kind.

... further arguments to be passed to or from other methods. For the internal default
method these can include:

times A integer vector giving the (non-negative) number of times to repeat each
element if of length length(x), or to repeat the whole vector if of length
1. Negative or NA values are an error.

length.out non-negative integer. The desired length of the output vector.
Other inputs will be coerced to an integer vector and the first element taken.
Ignored if NA or invalid.

each non-negative integer. Each element of x is repeated each times. Other in-
puts will be coerced to an integer vector and the first element taken. Treated
as 1 if NA or invalid.

times see

Details

The default behaviour is as if the call was rep(x, times = 1, length.out = NA, each = 1).
Normally just one of the additional arguments is specified, but if each is specified with either of
the other two, its replication is performed first, and then that implied by times or length.out.

If times consists of a single integer, the result consists of the whole input repeated this many times.
If times is a vector of the same length as x (after replication by each), the result consists of x[1]
repeated times[1] times, x[2] repeated times[2] times and so on.

length.out may be given in place of times, in which case x is repeated as many times as is
necessary to create a vector of this length. If both are given, length.out takes priority and times
is ignored.

Non-integer values of times will be truncated towards zero. If times is a computed quantity it is
prudent to add a small fuzz.

If x has length zero and length.out is supplied and is positive, the values are filled in using the
extraction rules, that is by an NA of the appropriate class for an atomic vector (0 for raw vectors)
and NULL for a list.

rep 399

Value

An object of the same type as x.

rep.int returns no attributes (except the class if returning a factor).

The default method of rep gives the result names (which will almost always contain duplicates) if
x had names, but retains no other attributes.

Note

Function rep.int is a simple case handled by internal code, and provided as a separate function
partly for S compatibility and partly for speed (especially when names can be dropped).

Function rep is a primitive, but (partial) matching of argument names is performed as for normal
functions. You can no longer pass a missing argument to e.g. length.out.

For historical reasons rep works on NULL: the result is always NULL even when length.out is
positive.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

seq, sequence, replicate.

Examples

rep(1:4, 2)
rep(1:4, each = 2) # not the same.
rep(1:4, c(2,2,2,2)) # same as second.
rep(1:4, c(2,1,2,1))
rep(1:4, each = 2, len = 4) # first 4 only.
rep(1:4, each = 2, len = 10) # 8 integers plus two recycled 1’s.
rep(1:4, each = 2, times = 3) # length 24, 3 complete replications

rep(1, 40*(1-.8)) # length 7 on most platforms
rep(1, 40*(1-.8)+1e-7) # better

replicate a list
fred <- list(happy = 1:10, name = "squash")
rep(fred, 5)

date-time objects
x <- .leap.seconds[1:3]
rep(x, 2)
rep(as.POSIXlt(x), rep(2, 3))

named factor
x <- factor(LETTERS[1:4]); names(x) <- letters[1:4]
x
rep(x, 2)
rep(x, each=2)
rep.int(x, 2) # no names

400 Reserved

replace Replace Values in a Vector

Description

replace replaces the values in x with indices given in list by those given in values. If necessary,
the values in values are recycled.

Usage

replace(x, list, values)

Arguments

x vector

list an index vector

values replacement values

Value

A vector with the values replaced.

Note

x is unchanged: remember to assign the result.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Reserved Reserved Words in R

Description

The reserved words in R’s parser are

if else repeat while function for in next break

TRUE FALSE NULL Inf NaN NA NA_integer_ NA_real_ NA_complex_ NA_character_

... and ..1, ..2 etc, which are used to refer to arguments passed down from an enclosing function.

Details

Reserved words outside quotes are always parsed to be references to the objects linked to in the
‘Description’, and hence they are not allowed as syntactic names (see make.names). They are
allowed as non-syntactic names, e.g. inside backtick quotes.

rev 401

rev Reverse Elements

Description

rev provides a reversed version of its argument. It is generic function with a default method for
vectors and one for dendrograms.

Note that this is no longer needed (nor efficient) for obtaining vectors sorted into descending order,
since that is now rather more directly achievable by sort(x, decreasing = TRUE).

Usage

rev(x)

Arguments

x a vector or another object for which reversal is defined.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

seq, sort.

Examples

x <- c(1:5,5:3)
sort into descending order; first more efficiently:
stopifnot(sort(x, decreasing = TRUE) == rev(sort(x)))
stopifnot(rev(1:7) == 7:1)#- don’t need ’rev’ here

Rhome Return the R Home Directory

Description

Return the R home directory.

Usage

R.home(component="home")

Arguments

component As well as "home" which gives the R home directory, other known values are
"bin", "doc", "etc", "modules" and "share" giving the paths to the corre-
sponding parts of an R installation.

402 rle

Details

The R home directory is the top-level directory of the R installation being run.

The R home directory is often referred to as R_HOME , and is the value of an environment variable
of that name in an R session.

Value

A character string giving the R home directory or path to a particular component. Normally the
components are all subdirectories of the R home directory, but this may not be the case in a Unix-
like installation.

The return value for "modules" and on Windows "bin" is to a sub-architecture-specific location.

The function R.home() bases the constructed paths on the current value of the environment variable
R_HOME which is normally set on startup.

On Windows the values of R.home() and R_HOME are guaranteed not to contain spaces, switching to
the 8.3 short form of path elements if required. From R 2.13.0 the value of R_HOME is set on startup
to use forward slashes (since many package maintainers pass it unquoted to shells, for example in
Makefiles).

rle Run Length Encoding

Description

Compute the lengths and values of runs of equal values in a vector – or the reverse operation.

Usage

rle(x)
inverse.rle(x, ...)

S3 method for class ’rle’
print(x, digits = getOption("digits"), prefix = "", ...)

Arguments

x an atomic vector for rle(); an object of class "rle" for inverse.rle().

... further arguments; ignored here.

digits number of significant digits for printing, see print.default.

prefix character string, prepended to each printed line.

Details

Missing values are regarded as unequal to the previous value, even if that is also missing.

inverse.rle() is the inverse function of rle(), reconstructing x from the runs.

Round 403

Value

rle() returns an object of class "rle" which is a list with components:

lengths an integer vector containing the length of each run.

values a vector of the same length as lengths with the corresponding values.

inverse.rle() returns an atomic vector.

Examples

x <- rev(rep(6:10, 1:5))
rle(x)
lengths [1:5] 5 4 3 2 1
values [1:5] 10 9 8 7 6

z <- c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,TRUE)
rle(z)
rle(as.character(z))
print(rle(z), prefix = "..| ")

N <- integer(0)
stopifnot(x == inverse.rle(rle(x)),

identical(N, inverse.rle(rle(N))),
z == inverse.rle(rle(z)))

Round Rounding of Numbers

Description

ceiling takes a single numeric argument x and returns a numeric vector containing the smallest
integers not less than the corresponding elements of x.

floor takes a single numeric argument x and returns a numeric vector containing the largest integers
not greater than the corresponding elements of x.

trunc takes a single numeric argument x and returns a numeric vector containing the integers
formed by truncating the values in x toward 0.

round rounds the values in its first argument to the specified number of decimal places (default 0).

signif rounds the values in its first argument to the specified number of significant digits.

Usage

ceiling(x)
floor(x)
trunc(x, ...)

round(x, digits = 0)
signif(x, digits = 6)

404 Round

Arguments

x a numeric vector. Or, for round and signif, a complex vector.

digits integer indicating the number of decimal places (round) or significant digits
(signif) to be used. Negative values are allowed (see ‘Details’).

... arguments to be passed to methods.

Details

These are generic functions: methods can be defined for them individually or via the Math group
generic.

Note that for rounding off a 5, the IEC 60559 standard is expected to be used, ‘go to the even digit’.
Therefore round(0.5) is 0 and round(-1.5) is -2. However, this is dependent on OS services and
on representation error (since e.g. 0.15 is not represented exactly, the rounding rule applies to the
represented number and not to the printed number, and so round(0.15, 1) could be either 0.1 or
0.2).

Rounding to a negative number of digits means rounding to a power of ten, so for example
round(x, digits = -2) rounds to the nearest hundred.

For signif the recognized values of digits are 1...22, and non-missing values are rounded to
the nearest integer in that range. Complex numbers are rounded to retain the specified number of
digits in the larger of the components. Each element of the vector is rounded individually, unlike
printing.

These are all primitive functions.

S4 methods

These are all (internally) S4 generic.

ceiling, floor and trunc are members of the Math group generic. As an S4 generic, trunc has
only one argument.

round and signif are members of the Math2 group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

as.integer.

Examples

round(.5 + -2:4) # IEEE rounding: -2 0 0 2 2 4 4
(x1 <- seq(-2, 4, by = .5))
round(x1)#-- IEEE rounding !
x1[trunc(x1) != floor(x1)]
x1[round(x1) != floor(x1 + .5)]
(non.int <- ceiling(x1) != floor(x1))

x2 <- pi * 100^(-1:3)
round(x2, 3)
signif(x2, 3)

round.POSIXt 405

round.POSIXt Round / Truncate Data-Time Objects

Description

Round or truncate date-time objects.

Usage

S3 method for class ’POSIXt’
round(x, units = c("secs", "mins", "hours", "days"))
S3 method for class ’POSIXt’
trunc(x, units = c("secs", "mins", "hours", "days"), ...)

S3 method for class ’Date’
round(x, ...)
S3 method for class ’Date’
trunc(x, ...)

Arguments

x an object inheriting from "POSIXt" or "Date".

units one of the units listed. Can be abbreviated.

... arguments to be passed to or from other methods, notably digits for round.

Details

The time is rounded or truncated to the second, minute, hour or day. Timezones are only relevant to
days, when midnight in the current timezone is used.

The methods for class "Date" are of little use except to remove fractional days.

Value

An object of class "POSIXlt" or "Date".

See Also

round for the generic function and default methods.

DateTimeClasses, Date

Examples

round(.leap.seconds + 1000, "hour")
trunc(Sys.time(), "day")

406 row

row Row Indexes

Description

Returns a matrix of integers indicating their row number in a matrix-like object, or a factor indicat-
ing the row labels.

Usage

row(x, as.factor = FALSE)

Arguments

x a matrix-like object, that is one with a two-dimensional dim.

as.factor a logical value indicating whether the value should be returned as a factor of row
labels (created if necessary) rather than as numbers.

Value

An integer (or factor) matrix with the same dimensions as x and whose ij-th element is equal to i
(or the i-th row label).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

col to get columns.

Examples

x <- matrix(1:12, 3, 4)
extract the diagonal of a matrix
dx <- x[row(x) == col(x)]
dx

create an identity 5-by-5 matrix
x <- matrix(0, nrow = 5, ncol = 5)
x[row(x) == col(x)] <- 1
x

row+colnames 407

row+colnames Row and Column Names

Description

Retrieve or set the row or column names of a matrix-like object.

Usage

rownames(x, do.NULL = TRUE, prefix = "row")
rownames(x) <- value

colnames(x, do.NULL = TRUE, prefix = "col")
colnames(x) <- value

Arguments

x a matrix-like R object, with at least two dimensions for colnames.

do.NULL logical. If FALSE and names are NULL, names are created.

prefix for created names.

value a valid value for that component of dimnames(x). For a matrix or array this
is either NULL or a character vector of non-zero length equal to the appropriate
dimension.

Details

The extractor functions try to do something sensible for any matrix-like object x. If the object has
dimnames the first component is used as the row names, and the second component (if any) is used
for the column names. For a data frame, rownames and colnames eventually call row.names and
names respectively, but the latter are preferred.

If do.NULL is FALSE, a character vector (of length NROW(x) or NCOL(x)) is returned in any case,
prepending prefix to simple numbers, if there are no dimnames or the corresponding component
of the dimnames is NULL.

The replacement methods for arrays/matrices coerce vector and factor values of value to character,
but do not dispatch methods for as.character.

For a data frame, value for rownames should be a character vector of non-duplicated and non-
missing names (this is enforced), and for colnames a character vector of (preferably) unique
syntactically-valid names. In both cases, value will be coerced by as.character, and setting
colnames will convert the row names to character.

Note

If the replacement versions are called on a matrix without any existing dimnames, they will add
suitable dimnames. But constructions such as

rownames(x)[3] <- "c"

may not work unless x already has dimnames, since this will create a length-3 value from the NULL
value of rownames(x).

408 row.names

See Also

dimnames, case.names, variable.names.

Examples

m0 <- matrix(NA, 4, 0)
rownames(m0)

m2 <- cbind(1,1:4)
colnames(m2, do.NULL = FALSE)
colnames(m2) <- c("x","Y")
rownames(m2) <- rownames(m2, do.NULL = FALSE, prefix = "Obs.")
m2

row.names Get and Set Row Names for Data Frames

Description

All data frames have a row names attribute, a character vector of length the number of rows with no
duplicates nor missing values.

For convenience, these are generic functions for which users can write other methods, and there are
default methods for arrays. The description here is for the data.frame method.

Usage

row.names(x)
row.names(x) <- value

Arguments

x object of class "data.frame", or any other class for which a method has been
defined.

value an object to be coerced to character unless an integer vector. It should have
(after coercion) the same length as the number of rows of x with no duplicated
nor missing values. NULL is also allowed: see ‘Details’.

Details

A data frame has (by definition) a vector of row names which has length the number of rows in the
data frame, and contains neither missing nor duplicated values. Where a row names sequence has
been added by the software to meet this requirement, they are regarded as ‘automatic’.

Row names are currently allowed to be integer or character, but for backwards compatibility (with
R <= 2.4.0) row.names will always return a character vector. (Use attr(x, "row.names") if you
need to retrieve an integer-valued set of row names.)

Using NULL for the value resets the row names to seq_len(nrow(x)), regarded as ‘automatic’.

Value

row.names returns a character vector.

row.names<- returns a data frame with the row names changed.

rowsum 409

Note

row.names is similar to rownames for arrays, and it has a method that calls rownames for an array
argument.

Row names of the form 1:n for n > 2 are stored internally in a compact form, which might be
seen from C code or by deparsing but never via row.names or attr(x, "row.names"). Addition-
ally, some names of this sort are marked as ‘automatic’ and handled differently by as.matrix and
data.matrix (and potentially other functions). (All zero-row data frames are regarded as having
automatic row.names.)

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, rownames, names.

.row_names_info for the internal representations.

rowsum Give Column Sums of a Matrix or Data Frame, Based on a Grouping
Variable

Description

Compute column sums across rows of a numeric matrix-like object for each level of a grouping
variable. rowsum is generic, with a method for data frames and a default method for vectors and
matrices.

Usage

rowsum(x, group, reorder = TRUE, ...)

S3 method for class ’data.frame’
rowsum(x, group, reorder = TRUE, na.rm = FALSE, ...)

Default S3 method:
rowsum(x, group, reorder = TRUE, na.rm = FALSE, ...)

Arguments

x a matrix, data frame or vector of numeric data. Missing values are allowed. A
numeric vector will be treated as a column vector.

group a vector or factor giving the grouping, with one element per row of x. Missing
values will be treated as another group and a warning will be given.

reorder if TRUE, then the result will be in order of sort(unique(group)), if FALSE, it
will be in the order that groups were encountered.

na.rm logical (TRUE or FALSE). Should NA (including NaN) values be discarded?

... other arguments to be passed to or from methods

410 sample

Details

The default is to reorder the rows to agree with tapply as in the example below. Reordering should
not add noticeably to the time except when there are very many distinct values of group and x has
few columns.

The original function was written by Terry Therneau, but this is a new implementation using hashing
that is much faster for large matrices.

To sum over all the rows of a matrix (ie, a single group) use colSums, which should be even faster.

For integer arguments, over/underflow in forming the sum results in NA.

Value

A matrix or data frame containing the sums. There will be one row per unique value of group.

See Also

tapply, aggregate, rowSums

Examples

require(stats)

x <- matrix(runif(100), ncol=5)
group <- sample(1:8, 20, TRUE)
(xsum <- rowsum(x, group))
Slower versions
tapply(x, list(group[row(x)], col(x)), sum)
t(sapply(split(as.data.frame(x), group), colSums))
aggregate(x, list(group), sum)[-1]

sample Random Samples and Permutations

Description

sample takes a sample of the specified size from the elements of x using either with or without
replacement.

Usage

sample(x, size, replace = FALSE, prob = NULL)

sample.int(n, size = n, replace = FALSE, prob = NULL)

Arguments

x Either a vector of one or more elements from which to choose, or a positive
integer. See ‘Details.’

n a positive number, the number of items to choose from. See ‘Details.’
size a non-negative integer giving the number of items to choose.
replace Should sampling be with replacement?
prob A vector of probability weights for obtaining the elements of the vector being

sampled.

sample 411

Details

If x has length 1, is numeric (in the sense of is.numeric) and x >= 1, sampling via sample takes
place from 1:x. Note that this convenience feature may lead to undesired behaviour when x is of
varying length in calls such as sample(x). See the examples.

Otherwise x can be any R object for which length and subsetting by integers make sense: S3 or
S4 methods for these operations will be dispatched as appropriate.

For sample the default for size is the number of items inferred from the first argument, so that
sample(x) generates a random permutation of the elements of x (or 1:x).

As from R 2.11.0 it is allowed to ask for size = 0 samples with n = 0 or a length-zero x, but
otherwise n > 0 or positive length(x) is required.

Non-integer positive numerical values of n or x will be truncated to the next smallest integer, which
has to be no larger than .Machine$integer.max.

The optional prob argument can be used to give a vector of weights for obtaining the elements of
the vector being sampled. They need not sum to one, but they should be non-negative and not all
zero. If replace is true, Walker’s alias method (Ripley, 1987) is used when there are more than 250
reasonably probable values: this gives results incompatible with those from R < 2.2.0, and there
will be a warning the first time this happens in a session.

If replace is false, these probabilities are applied sequentially, that is the probability of choosing
the next item is proportional to the weights amongst the remaining items. The number of nonzero
weights must be at least size in this case.

sample.int is a bare interface in which both n and size must be supplied as integers.

Value

For sample a vector of length size with elements drawn from either x or from the integers 1:x.

For sample.int, an integer vector of length size with elements from 1:n,

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Ripley, B. D. (1987) Stochastic Simulation. Wiley.

See Also

RNG about random number generation.

CRAN package sampling for other methods of weighted sampling without replacement.

Examples

x <- 1:12
a random permutation
sample(x)
bootstrap resampling -- only if length(x) > 1 !
sample(x, replace=TRUE)

100 Bernoulli trials
sample(c(0,1), 100, replace = TRUE)

More careful bootstrapping -- Consider this when using sample()

http://CRAN.R-project.org/package=sampling

412 save

programmatically (i.e., in your function or simulation)!

sample()’s surprise -- example
x <- 1:10

sample(x[x > 8]) # length 2
sample(x[x > 9]) # oops -- length 10!
sample(x[x > 10]) # length 0

For R >= 2.11.0 only
resample <- function(x, ...) x[sample.int(length(x), ...)]
resample(x[x > 8]) # length 2
resample(x[x > 9]) # length 1
resample(x[x > 10]) # length 0

save Save R Objects

Description

save writes an external representation of R objects to the specified file. The objects can be read
back from the file at a later date by using the function load (or data in some cases).

save.image() is just a short-cut for ‘save my current workspace’, i.e.,
save(list = ls(all=TRUE), file = ".RData"). It is also what happens with q("yes").

Usage

save(..., list = character(),
file = stop("’file’ must be specified"),
ascii = FALSE, version = NULL, envir = parent.frame(),
compress = !ascii, compression_level,
eval.promises = TRUE, precheck = TRUE)

save.image(file = ".RData", version = NULL, ascii = FALSE,
compress = !ascii, safe = TRUE)

Arguments

... the names of the objects to be saved (as symbols or character strings).

list A character vector containing the names of objects to be saved.

file a (writable binary-mode) connection or the name of the file where the data will
be saved (when tilde expansion is done). Must be a file name for version = 1.

ascii if TRUE, an ASCII representation of the data is written. The default value of
ascii is FALSE which leads to a binary file being written.

version the workspace format version to use. NULL specifies the current default format.
The version used from R 0.99.0 to R 1.3.1 was version 1. The default format as
from R 1.4.0 is version 2.

envir environment to search for objects to be saved.

compress logical or character string specifying whether saving to a named file is to use
compression. TRUE corresponds to gzip compression, and (from R 2.10.0) char-
acter strings "gzip", "bzip2" or "xz" specify the type of compression. Ignored
when file is a connection and for workspace format version 1.

save 413

compression_level

integer: the level of compression to be used. Defaults to 6 for gzip compression
and to 9 for bzip2 or xz compression.

eval.promises logical: should objects which are promises be forced before saving?

precheck logical: should the existence of the objects be checked before starting to save
(and in particular before opening the file/connection)? Does not apply to version
1 saves.

safe logical. If TRUE, a temporary file is used for creating the saved workspace. The
temporary file is renamed to file if the save succeeds. This preserves an ex-
isting workspace file if the save fails, but at the cost of using extra disk space
during the save.

Details

The names of the objects specified either as symbols (or character strings) in ... or as a character
vector in list are used to look up the objects from environment envir. By default promises
are evaluated, but if eval.promises = FALSE promises are saved (together with their evaluation
environments). (Promises embedded in objects are always saved unevaluated.)

All R platforms use the XDR (bigendian) representation of C ints and doubles in binary save-d
files, and these are portable across all R platforms. (ASCII saves used to be useful for moving data
between platforms but are now mainly of historical interest. They can be more compact than binary
saves where compression is not used, but are almost always slower to both read and write: binary
saves compress much better than ASCII ones.)

Default values for the ascii, compress, safe and version arguments can be modified with the
"save.defaults" option (used both by save and save.image), see also the ‘Examples’ section. If
a "save.image.defaults" option is set it is used in preference to "save.defaults" for function
save.image (which allows this to have different defaults).

A connection that is not already open will be opened in mode "wb".

Compression

Large files can be reduced considerably in size by compression. A particular 46MB dataset was
saved as 35MB without compression in 2 seconds, 22MB with gzip compression in 8 secs, 19MB
with bzip2 compression in 13 secs and 9.4MB with xz compression in 40 secs. The load times were
1.3, 2.8, 5.5 and 5.7 seconds respectively. These results are indicative, but the relative performances
do depend on the actual file and xz did unusually well here.

It is possible to compress later (with gzip, bzip2 or xz) a file saved with compress = FALSE:
the effect is the same as saving with compression. Also, a saved file can be uncompressed and
re-compressed under a different compression scheme (and see resaveRdaFiles for a way to do so
from within R).

Warnings

The ... arguments only give the names of the objects to be saved: they are searched for in the
environment given by the envir argument, and the actual objects given as arguments need not be
those found.

Saved R objects are binary files, even those saved with ascii = TRUE, so ensure that they are
transferred without conversion of end of line markers and of 8-bit characters. The lines are delimited
by LF on all platforms.

414 scale

Although the default version has not changed since R 1.4.0, this does not mean that saved files are
necessarily backwards compatible. You will be able to load a saved image into an earlier version of
R unless use is made of later additions (for example, raw vectors or external pointers).

Note

The most common reason for failure is lack of write permission in the current directory. For
save.image and for saving at the end of a session this will shown by messages like

Error in gzfile(file, "wb") : unable to open connection
In addition: Warning message:
In gzfile(file, "wb") :
cannot open compressed file ’.RDataTmp’,
probable reason ’Permission denied’

The defaults were changed to use compressed saves for save in 2.3.0 and for save.image in 2.4.0.
Any recent version of R can read compressed save files, and a compressed file can be uncompressed
(by gzip -d) for use with very old versions of R.

file can be a UTF-8-encoded filepath that cannot be translated to the current locale.

See Also

dput, dump, load, data.

For other interfaces to the underlying serialization format, see serialize and saveRDS.

Examples

x <- stats::runif(20)
y <- list(a = 1, b = TRUE, c = "oops")
save(x, y, file = "xy.RData")
save.image()
unlink("xy.RData")
unlink(".RData")

set save defaults using option:
options(save.defaults=list(ascii=TRUE, safe=FALSE))
save.image()
unlink(".RData")

scale Scaling and Centering of Matrix-like Objects

Description

scale is generic function whose default method centers and/or scales the columns of a numeric
matrix.

Usage

scale(x, center = TRUE, scale = TRUE)

scale 415

Arguments

x a numeric matrix(like object).

center either a logical value or a numeric vector of length equal to the number of
columns of x.

scale either a logical value or a numeric vector of length equal to the number of
columns of x.

Details

The value of center determines how column centering is performed. If center is a numeric vector
with length equal to the number of columns of x, then each column of x has the corresponding value
from center subtracted from it. If center is TRUE then centering is done by subtracting the column
means (omitting NAs) of x from their corresponding columns, and if center is FALSE, no centering
is done.

The value of scale determines how column scaling is performed (after centering). If scale is a
numeric vector with length equal to the number of columns of x, then each column of x is divided
by the corresponding value from scale. If scale is TRUE then scaling is done by dividing the
(centered) columns of x by their standard deviations if center is TRUE, and the root mean square
otherwise. If scale is FALSE, no scaling is done.

The root-mean-square for a (possibly centered) column is defined as
√∑

(x2)/(n− 1),
where x is a vector of the non-missing values and n is the number of non-missing
values. In the case center=TRUE, this is the same as the standard deviation, but
in general it is not. (To scale by the standard deviations without centering, use
scale(x,center=FALSE,scale=apply(x,2,sd,na.rm=TRUE)).)

Value

For scale.default, the centered, scaled matrix. The numeric centering and scalings used (if any)
are returned as attributes "scaled:center" and "scaled:scale"

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

sweep which allows centering (and scaling) with arbitrary statistics.

For working with the scale of a plot, see par.

Examples

require(stats)
x <- matrix(1:10, ncol=2)
(centered.x <- scale(x, scale=FALSE))
cov(centered.scaled.x <- scale(x))# all 1

416 scan

scan Read Data Values

Description

Read data into a vector or list from the console or file.

Usage

scan(file = "", what = double(), nmax = -1, n = -1, sep = "",
quote = if(identical(sep, "\n")) "" else "’\"", dec = ".",
skip = 0, nlines = 0, na.strings = "NA",
flush = FALSE, fill = FALSE, strip.white = FALSE,
quiet = FALSE, blank.lines.skip = TRUE, multi.line = TRUE,
comment.char = "", allowEscapes = FALSE,
fileEncoding = "", encoding = "unknown", text)

Arguments

file the name of a file to read data values from. If the specified file is "", then input
is taken from the keyboard (or whatever stdin() reads if input is redirected or
R is embedded). (In this case input can be terminated by a blank line or an EOF
signal, ‘Ctrl-D’ on Unix and ‘Ctrl-Z’ on Windows.)
Otherwise, the file name is interpreted relative to the current working directory
(given by getwd()), unless it specifies an absolute path. Tilde-expansion is
performed where supported. When running R from a script, file="stdin" can
be used to refer to the process’s stdin file stream.
As from R 2.10.0 this can be a compressed file (see file).
Alternatively, file can be a connection, which will be opened if necessary,
and if so closed at the end of the function call. Whatever mode the connection
is opened in, any of LF, CRLF or CR will be accepted as the EOL marker for a
line and so will match sep = "\n".
file can also be a complete URL. (For the supported URL schemes, see the
‘URLs’ section of the help for url.)
To read a data file not in the current encoding (for example a Latin-1 file in a
UTF-8 locale or conversely) use a file connection setting its encoding argu-
ment (or scan’s fileEncoding argument).

what the type of what gives the type of data to be read. The supported types are
logical, integer, numeric, complex, character, raw and list. If what is
a list, it is assumed that the lines of the data file are records each containing
length(what) items (‘fields’) and the list components should have elements
which are one of the first six types listed or NULL, see section ‘Details’ below.

nmax integer: the maximum number of data values to be read, or if what is a list, the
maximum number of records to be read. If omitted or not positive or an invalid
value for an integer (and nlines is not set to a positive value), scan will read to
the end of file.

n integer: the maximum number of data values to be read, defaulting to no limit.
Invalid values will be ignored.

scan 417

sep by default, scan expects to read ‘white-space’ delimited input fields. Alterna-
tively, sep can be used to specify a character which delimits fields. A field is
always delimited by an end-of-line marker unless it is quoted.
If specified this should be the empty character string (the default) or NULL or a
character string containing just one single-byte character.

quote the set of quoting characters as a single character string or NULL. In a multibyte
locale the quoting characters must be ASCII (single-byte).

dec decimal point character. This should be a character string containing just one
single-byte character. (NULL and a zero-length character vector are also ac-
cepted, and taken as the default.)

skip the number of lines of the input file to skip before beginning to read data values.

nlines if positive, the maximum number of lines of data to be read.

na.strings character vector. Elements of this vector are to be interpreted as missing (NA)
values. Blank fields are also considered to be missing values in logical, integer,
numeric and complex fields.

flush logical: if TRUE, scan will flush to the end of the line after reading the last of the
fields requested. This allows putting comments after the last field, but precludes
putting more that one record on a line.

fill logical: if TRUE, scan will implicitly add empty fields to any lines with fewer
fields than implied by what.

strip.white vector of logical value(s) corresponding to items in the what argument. It is used
only when sep has been specified, and allows the stripping of leading and trail-
ing ‘white space’ from character fields (numeric fields are always stripped).
Note: white space inside quoted strings is not stripped.
If strip.white is of length 1, it applies to all fields; otherwise, if
strip.white[i] is TRUE and the i-th field is of mode character (because
what[i] is) then the leading and trailing unquoted white space from field i
is stripped.

quiet logical: if FALSE (default), scan() will print a line, saying how many items have
been read.

blank.lines.skip

logical: if TRUE blank lines in the input are ignored, except when counting skip
and nlines.

multi.line logical. Only used if what is a list. If FALSE, all of a record must appear on
one line (but more than one record can appear on a single line). Note that using
fill = TRUE implies that a record will be terminated at the end of a line.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether (the
default).

allowEscapes logical. Should C-style escapes such as ‘\n’ be processed (the default) or read
verbatim? Note that if not within quotes these could be interpreted as a delimiter
(but not as a comment character).
The escapes which are interpreted are the control characters
‘\a, \b, \f, \n, \r, \t, \v’ and octal and hexadecimal representa-
tions like ‘\040’ and ‘\0x2A’. Any other escaped character is treated as itself,
including backslash. Note that Unicode escapes (starting ‘\u’ or ‘\U’: see
Quotes) are never processed.

418 scan

fileEncoding character string: if non-empty declares the encoding used on a file (not a con-
nection nor the keyboard) so the character data can be re-encoded. See the ‘En-
coding’ section of the help for file, and the ‘R Data Import/Export Manual’.

encoding encoding to be assumed for input strings. If the value is "latin1" or "UTF-8"
it is used to mark character strings as known to be in Latin-1 or UTF-8: it is not
used to re-encode the input (see fileEncoding. See also ‘Details’.

text character string: if file is not supplied and this is, then data are read from the
value of text via a text connection.

Details

The value of what can be a list of types, in which case scan returns a list of vectors with the types
given by the types of the elements in what. This provides a way of reading columnar data. If any of
the types is NULL, the corresponding field is skipped (but a NULL component appears in the result).

The type of what or its components can be one of the six atomic vector types or NULL (see
is.atomic).

‘White space’ is defined for the purposes of this function as one or more contiguous characters from
the set space, horizontal tab, carriage return and line feed. It does not include form feed or vertical
tab, but in Latin-1 and Windows 8-bit locales ’space’ includes non-breaking space.

Empty numeric fields are always regarded as missing values. Empty character fields are scanned as
empty character vectors, unless na.strings contains "" when they are regarded as missing values.

The allowed input for a numeric field is optional whitespace followed either NA or an optional sign
followed by a decimal or hexadecimal constant (see NumericConstants), or NaN, Inf or infinity
(ignoring case). Out-of-range values are recorded as Inf, -Inf or 0.

For an integer field the allowed input is optional whitespace, followed by either NA or an optional
sign and one or more digits (‘0-9’): all out-of-range values are converted to NA_integer_.

If sep is the default (""), the character ‘\’ in a quoted string escapes the following character, so
quotes may be included in the string by escaping them.

If sep is non-default, the fields may be quoted in the style of ‘.csv’ files where separators inside
quotes (’’ or "") are ignored and quotes may be put inside strings by doubling them. However, if
sep = "\n" it is assumed by default that one wants to read entire lines verbatim.

Quoting is only interpreted in character fields and in NULL fields (which might be skipping character
fields).

Note that since sep is a separator and not a terminator, reading a file by
scan("foo", sep="\n", blank.lines.skip=FALSE) will give an empty final line if the
file ends in a linefeed and not if it does not. This might not be what you expected; see also
readLines.

If comment.char occurs (except inside a quoted character field), it signals that the rest of the line
should be regarded as a comment and be discarded. Lines beginning with a comment character
(possibly after white space with the default separator) are treated as blank lines.

There is a line-length limit of 4095 bytes when reading from the console (which may impose a
lower limit: see ‘An Introduction to R’).

There is a check for a user interrupt every 1000 lines if what is a list, otherwise every 10000 items.

If file is a character string and fileEncoding is non-default, or it it is a not-already-open connec-
tion with a non-default encoding argument, the text is converted to UTF-8 and declared as such
(and the encoding argument to scan is ignored). See the examples of readLines.

scan 419

Value

if what is a list, a list of the same length and same names (as any) as what.

Otherwise, a vector of the type of what.

Character strings in the result will have a declared encoding if encoding is "latin1" or "UTF-8".

Note

The default for multi.line differs from S. To read one record per line, use flush = TRUE and
multi.line = FALSE. (Note that quoted character strings can still include embedded newlines.)

If number of items is not specified, the internal mechanism re-allocates memory in powers of two
and so could use up to three times as much memory as needed. (It needs both old and new copies.)
If you can, specify either n or nmax whenever inputting a large vector, and nmax or nlines when
inputting a large list.

Using scan on an open connection to read partial lines can lose chars: use an explicit separator to
avoid this.

Having nul bytes in fields (including ‘\0’ if allowEscapes = TRUE) may lead to interpretation of
the field being terminated at the nul. They not normally present in text files – see readBin.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

read.table for more user-friendly reading of data matrices; readLines to read a file a line at a
time. write.

Quotes for the details of C-style escape sequences.

readChar and readBin to read fixed or variable length character strings or binary representations
of numbers a few at a time from a connection.

Examples

cat("TITLE extra line", "2 3 5 7", "11 13 17", file="ex.data", sep="\n")
pp <- scan("ex.data", skip = 1, quiet= TRUE)
scan("ex.data", skip = 1)
scan("ex.data", skip = 1, nlines=1) # only 1 line after the skipped one
scan("ex.data", what = list("","","")) # flush is F -> read "7"
scan("ex.data", what = list("","",""), flush = TRUE)
unlink("ex.data") # tidy up

"inline" usage
scan(text="1 2 3")

420 seek

search Give Search Path for R Objects

Description

Gives a list of attached packages (see library), and R objects, usually data.frames.

Usage

search()
searchpaths()

Value

A character vector, starting with ".GlobalEnv", and ending with "package:base" which is R’s
base package required always.

searchpaths gives a similar character vector, with the entries for packages being the path to the
package used to load the code.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (search.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.
(searchPaths.)

See Also

.packages to list just the packages on search path.

loadedNamespaces to list loaded namespaces.

attach and detach to change the search path, objects to find R objects in there.

Examples

search()
searchpaths()

seek Functions to Reposition Connections

Description

Functions to re-position connections.

seek 421

Usage

seek(con, ...)
S3 method for class ’connection’
seek(con, where = NA, origin = "start", rw = "", ...)

isSeekable(con)

truncate(con, ...)

Arguments

con a connection.

where numeric. A file position (relative to the origin specified by origin), or NA.

rw character. Empty or "read" or "write", partial matches allowed.

origin character. One of "start", "current", "end": see ‘Details’.

... further arguments passed to or from other methods.

Details

seek with where = NA returns the current byte offset of a connection (from the beginning), and
with a non-missing where argument the connection is re-positioned (if possible) to the specified
position. isSeekable returns whether the connection in principle supports seek: currently only
(possibly gz-compressed) file connections do.

where is stored as a real but should represent an integer: non-integer values are likely to be trun-
cated. Note that the possible values can exceed the largest representable number in an R integer
on 64-bit builds, and on some 32-bit builds.

File connections can be open for both writing/appending, in which case R keeps separate positions
for reading and writing. Which seek refers to can be set by its rw argument: the default is the last
mode (reading or writing) which was used. Most files are only opened for reading or writing and so
default to that state. If a file is open for both reading and writing but has not been used, the default
is to give the reading position (0).

The initial file position for reading is always at the beginning. The initial position for writing is at
the beginning of the file for modes "r+" and "r+b", otherwise at the end of the file. Some platforms
only allow writing at the end of the file in the append modes. (The reported write position for a file
opened in an append mode will typically be unreliable until the file has been written to.)

gzfile connections support seek with a number of limitations, using the file position of the un-
compressed file. They do not support origin = "end". When writing, seeking is only possible
forwards: when reading seeking backwards is supported by rewinding the file and re-reading from
its start.

If seek is called with a non-NA value of where, any pushback on a text-mode connection is dis-
carded.

truncate truncates a file opened for writing at its current position. It works only for file connec-
tions, and is not implemented on all platforms: on others (including Windows) it will not work for
large (> 2Gb) files.

None of these should be expected to work on text-mode connections with re-encoding selected.

422 seq

Value

seek returns the current position (before any move), as a (numeric) byte offset from the origin, if
relevant, or 0 if not. Note that the position can exceed the largest representable number in an R
integer on 64-bit builds, and on some 32-bit builds.

truncate returns NULL: it stops with an error if it fails (or is not implemented).

isSeekable returns a logical value, whether the connection supports seek.

Warning

Use of seek on Windows is discouraged. We have found so many errors in the Windows imple-
mentation of file positioning that users are advised to use it only at their own risk, and asked not to
waste the R developers’ time with bug reports on Windows’ deficiencies.

See Also

connections

seq Sequence Generation

Description

Generate regular sequences. seq is a standard generic with a default method. seq.int is a primitive
which can be much faster but has a few restrictions. seq_along and seq_len are very fast primitives
for two common cases.

Usage

seq(...)

Default S3 method:
seq(from = 1, to = 1, by = ((to - from)/(length.out - 1)),

length.out = NULL, along.with = NULL, ...)

seq.int(from, to, by, length.out, along.with, ...)

seq_along(along.with)
seq_len(length.out)

Arguments

... arguments passed to or from methods.

from, to the starting and (maximal) end values of the sequence. Of length 1 unless just
from is supplied as an unnamed argument.

by number: increment of the sequence.

length.out desired length of the sequence. A non-negative number, which for seq and
seq.int will be rounded up if fractional.

along.with take the length from the length of this argument.

seq 423

Details

The interpretation of the unnamed arguments of seq and seq.int is not standard, and it is recom-
mended always to name the arguments when programming.

seq is generic, and only the default method is described here. Note that it dispatches on the class
of the first argument irrespective of argument names. This can have unintended consequences if it
is called with just one argument intending this to be taken as along.with: it is much better to use
seg_along in that case.

seq.int is an internal generic which dispatches on methods for "seq" based on the class of the
first supplied argument (before argument matching).

Typical usages are

seq(from, to)
seq(from, to, by=)
seq(from, to, length.out=)
seq(along.with=)
seq(from)
seq(length.out=)

The first form generates the sequence from, from+/-1, ..., to (identical to from:to).

The second form generates from, from+by, . . . , up to the sequence value less than or equal to to.
Specifying to - from and by of opposite signs is an error. Note that the computed final value
can go just beyond to to allow for rounding error, but is truncated to to. (‘Just beyond’ is by up to
10−10 times abs(from - to).)

The third generates a sequence of length.out equally spaced values from from to to. (length.out
is usually abbreviated to length or len, and seq_len is much faster.)

The fourth form generates the integer sequence 1, 2, ..., length(along.with).
(along.with is usually abbreviated to along, and seq_along is much faster.)

The fifth form generates the sequence 1, 2, ..., length(from) (as if argument along.with
had been specified), unless the argument is numeric of length 1 when it is interpreted as 1:from
(even for seq(0) for compatibility with S). Using either seq_along or seq_len is much preferred
(unless strict S compatibility is essential).

The final form generates the integer sequence 1, 2, ..., length.out unless length.out = 0,
when it generates integer(0).

Very small sequences (with from - to of the order of 10−14 times the larger of the ends) will return
from.

For seq (only), up to two of from, to and by can be supplied as complex values provided
length.out or along.with is specified. More generally, the default method of seq will handle
classed objects with methods for the Math, Ops and Summary group generics.

seq.int, seq_along and seq_len are primitive.

Value

seq.int and the default method of seq for numeric arguments return a vector of type "integer"
or "double": programmers should not rely on which.

seq_along and seq_len always return an integer vector.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

424 seq.Date

See Also

The methods seq.Date and seq.POSIXt.

:, rep, sequence, row, col.

Examples

seq(0, 1, length.out=11)
seq(stats::rnorm(20)) # effectively ’along’
seq(1, 9, by = 2) # matches ’end’
seq(1, 9, by = pi) # stays below ’end’
seq(1, 6, by = 3)
seq(1.575, 5.125, by=0.05)
seq(17) # same as 1:17, or even better seq_len(17)

seq.Date Generate Regular Sequences of Dates

Description

The method for seq for objects of class class "Date" representing calendar dates.

Usage

S3 method for class ’Date’
seq(from, to, by, length.out = NULL, along.with = NULL, ...)

Arguments

from starting date. Required

to end date. Optional.

by increment of the sequence. Optional. See ‘Details’.

length.out integer, optional. Desired length of the sequence.

along.with take the length from the length of this argument.

... arguments passed to or from other methods.

Details

by can be specified in several ways.

• A number, taken to be in days.

• A object of class difftime

• A character string, containing one of "day", "week", "month" or "year". This can optionally
be preceded by a (positive or negative) integer and a space, or followed by "s".
See seq.POSIXt for the details of "month".

Value

A vector of class "Date".

seq.POSIXt 425

See Also

Date

Examples

first days of years
seq(as.Date("1910/1/1"), as.Date("1999/1/1"), "years")
by month
seq(as.Date("2000/1/1"), by="month", length.out=12)
quarters
seq(as.Date("2000/1/1"), as.Date("2003/1/1"), by="3 months")

find all 7th of the month between two dates, the last being a 7th.
st <- as.Date("1998-12-17")
en <- as.Date("2000-1-7")
ll <- seq(en, st, by="-1 month")
rev(ll[ll > st & ll < en])

seq.POSIXt Generate Regular Sequences of Times

Description

The method for seq for date-time classes.

Usage

S3 method for class ’POSIXt’
seq(from, to, by, length.out = NULL, along.with = NULL, ...)

Arguments

from starting date. Required.

to end date. Optional.

by increment of the sequence. Optional. See ‘Details’.

length.out integer, optional. Desired length of the sequence.

along.with take the length from the length of this argument.

... arguments passed to or from other methods.

Details

by can be specified in several ways.

• A number, taken to be in seconds.

• A object of class difftime

• A character string, containing one of "sec", "min", "hour", "day", "DSTday", "week",
"month" or "year". This can optionally be preceded by a (positive or negative) integer and a
space, or followed by "s".

426 sequence

The difference between "day" and "DSTday" is that the former ignores changes to/from daylight
savings time and the latter takes the same clock time each day. ("week" ignores DST (it is a period
of 144 hours), but "7 DSTdays") can be used as an alternative. "month" and "year" allow for
DST.)

The timezone of the result is taken from from: remember that GMT means UTC (and not the
timezone of Greenwich, England) and so does not have daylight savings time.

Using "month" first advances the month without changing the day: if this results in an invalid day
of the month, it is counted forward into the next month: see the examples.

Value

A vector of class "POSIXct".

See Also

DateTimeClasses

Examples

first days of years
seq(ISOdate(1910,1,1), ISOdate(1999,1,1), "years")
by month
seq(ISOdate(2000,1,1), by = "month", length.out = 12)
seq(ISOdate(2000,1,31), by = "month", length.out = 4)
quarters
seq(ISOdate(1990,1,1), ISOdate(2000,1,1), by = "3 months")
days vs DSTdays: use c() to lose the timezone.
seq(c(ISOdate(2000,3,20)), by = "day", length.out = 10)
seq(c(ISOdate(2000,3,20)), by = "DSTday", length.out = 10)
seq(c(ISOdate(2000,3,20)), by = "7 DSTdays", length.out = 4)

sequence Create A Vector of Sequences

Description

For each element of nvec the sequence seq_len(nvec[i]) is created. These are concatenated and
the result returned.

Usage

sequence(nvec)

Arguments

nvec a non-negative integer vector each element of which specifies the end point of a
sequence.

Details

Earlier versions of sequence used to work for 0 or negative inputs as seq(x) == 1:x.

Note that sequence <- function(nvec) unlist(lapply(nvec, seq_len)) and it mainly ex-
ists in reverence to the very early history of R.

serialize 427

See Also

gl, seq, rep.

Examples

sequence(c(3,2))# the concatenated sequences 1:3 and 1:2.
#> [1] 1 2 3 1 2

serialize Simple Serialization Interface

Description

A simple low-level interface for serializing to connections.

Usage

serialize(object, connection, ascii, xdr = TRUE,
version = NULL, refhook = NULL)

unserialize(connection, refhook = NULL)

Arguments

object R object to serialize.

connection an open connection or (for serialize) NULL or (for unserialize) a raw vector
(see ‘Details’).

ascii a logical. If TRUE, an ASCII representation is written; otherwise binary one. The
default is TRUE for a text-mode connection and FALSE otherwise. See also the
comments in the help for save.

xdr a logical: if a binary representation is used, should a big-endian one (XDR) be
used?

version the workspace format version to use. NULL specifies the current default version
(2). Versions prior to 2 are not supported, so this will only be relevant when
there are later versions.

refhook a hook function for handling reference objects.

Details

The function serialize serializes object to the specified connection. If connection is NULL then
object is serialized to a raw vector, which is returned as the result of serialize.

Sharing of reference objects is preserved within the object but not across separate calls to
serialize.

unserialize reads an object (as written by serialize) from connection or a raw vector.

The refhook functions can be used to customize handling of non-system reference objects (all
external pointers and weak references, and all environments other than namespace and package
environments and .GlobalEnv). The hook function for serialize should return a character vector
for references it wants to handle; otherwise it should return NULL. The hook for unserialize will
be called with character vectors supplied to serialize and should return an appropriate object.

428 sets

For a text-mode connection, the default value of ascii is set to TRUE: only ASCII representations
can be written to text-mode connections and attempting to use ascii = FALSE will throw an error.

The format consists of a single line followed by the data: the first line contains a single character: X
for binary serialization and A for ASCII serialization, followed by a new line. (The format used is
identical to that used by readRDS.)

The option of xdr = FALSE was introduced in R 2.15.0. As almost all systems in current use are
little-endian, this can be used to avoid byte-shuffling at both ends when transferring data from one
little-endian machine to another. Depending on the system, this can speed up serialization and
unserialization by a factor of up to 3x.

Value

For serialize, NULL unless connection = NULL, when the result is returned in a raw vector.

For unserialize an R object.

Warning

These functions have provided a stable interface since R 2.4.0 (when the storage of serialized objects
was changed from character to raw vectors). However, the serialization format may change in future
versions of R, so this interface should not be used for long-term storage of R objects.

A raw vector is limited to 231 − 1 bytes, but R objects can exceed this and their serializations will
normally be larger than the objects.

See Also

saveRDS for a more convenient interface to serialize an object to a file or connection.

save and load to serialize and restore one or more named objects.

The ‘R Internals’ manual for details of the format used.

Examples

x <- serialize(list(1,2,3), NULL)
unserialize(x)

see also the examples for saveRDS

sets Set Operations

Description

Performs set union, intersection, (asymmetric!) difference, equality and membership on two vec-
tors.

Usage

union(x, y)
intersect(x, y)
setdiff(x, y)
setequal(x, y)

is.element(el, set)

setTimeLimit 429

Arguments

x, y, el, set vectors (of the same mode) containing a sequence of items (conceptually) with
no duplicated values.

Details

Each of union, intersect, setdiff and setequal will discard any duplicated values in the argu-
ments, and they apply as.vector to their arguments (and so in particular coerce factors to character
vectors).

is.element(x, y) is identical to x %in% y.

Value

A vector of the same mode as x or y for setdiff and intersect, respectively, and of a common
mode for union.

A logical scalar for setequal and a logical of the same length as x for is.element.

See Also

%in%

‘plotmath’ for the use of union and intersect in plot annotation.

Examples

(x <- c(sort(sample(1:20, 9)),NA))
(y <- c(sort(sample(3:23, 7)),NA))
union(x, y)
intersect(x, y)
setdiff(x, y)
setdiff(y, x)
setequal(x, y)

True for all possible x & y :
setequal(union(x,y),

c(setdiff(x,y), intersect(x,y), setdiff(y,x)))

is.element(x, y)# length 10
is.element(y, x)# length 8

setTimeLimit Set CPU and/or Elapsed Time Limits

Description

Functions to set CPU and/or elapsed time limits for top-level computations or the current session.

Usage

setTimeLimit(cpu = Inf, elapsed = Inf, transient = FALSE)

setSessionTimeLimit(cpu = Inf, elapsed = Inf)

430 shell

Arguments

cpu double. Limit on total cpu time.

elapsed double. Limit on elapsed time.

transient logical. If TRUE, the limits apply only to the rest of the current computation.

Details

setTimeLimit sets limits which apply to each top-level computation, that is a command line (in-
cluding any continuation lines) entered at the console or from a file. If it is called from within
a computation the limits apply to the rest of the computation and (unless transient = TRUE) to
subsequent top-level computations.

setSessionTimeLimit sets limits for the rest of the session. Once a session limit is reached it is
reset to Inf.

Setting any limit has a small overhead – well under 1% on the systems measured.

Time limits are checked whenever a user interrupt could occur. This will happen frequently in R
code and during Sys.sleep, but only at points in compiled C and Fortran code identified by the
code author.

shell Invoke a System Command, using a Shell

Description

shell runs the command specified by cmd, usually under a shell.

Usage

shell(cmd, shell, flag = "/c", intern = FALSE, wait = TRUE,
translate = FALSE, mustWork = FALSE, ...)

Arguments

cmd the system command to be invoked, as a string.

shell a string giving the name of the shell to be used, or NULL (no shell). If missing, a
suitable shell is chosen: see ‘Details’.

flag the switch to run a command under the shell. If the shell is bash or tcsh or sh
the default is changed to "-c".

intern a logical, indicates whether to make the output of the command an R object.

wait should the R interpreter wait for the command to finish? The default is to wait,
and the interpreter will always wait if intern = TRUE.

translate If TRUE, ‘"/"’ in cmd is translated to ‘"\"’.

mustWork a logical; if TRUE failure to run the command will give an R error, if FALSE a
warning and if NA, no R message.

... additional arguments to system.

shell.exec 431

Details

If no shell is specified, the environment variables R_SHELL, SHELL and COMSPEC are tried in turn:
COMSPEC should always succeed. Using shell = NULL invokes the command cmd directly, in which
case an extension of ‘.exe’ is assumed. It is possible to use batch files directly if their extension is
given: Windows (rather than R) then chooses a shell.

See system for fuller details: shell is a more user-friendly wrapper for system. To make use of
Windows file associations, use shell.exec.

Value

If intern = TRUE, a character vector giving the output of the command, one line per character
string, or an error message if the command could not be run.

If intern = FALSE, the return value is an error code, given the invisible attribute (so needs to be
printed explicitly). If the command could not be run for any reason, the value is -1 and an R warning
is generated. Otherwise if wait = FALSE the value is the error code returned by the command, and
if wait = TRUE it is the zero (the conventional success value),

If intern = FALSE and wait = TRUE (the defaults) the text output from a command that is a con-
sole application will appear in the R console (Rgui) or the window running R (Rterm).

See Also

system, shell.exec

shell.exec Open a File or URL using Windows File Associations

Description

Opens the specified file or URL using the application specified in the Windows file associations.

Usage

shell.exec(file)

Arguments

file file or URL to be opened.

Details

The path in file is interpreted relative to the current working directory.

R versions 2.13.0 and earlier interpreted file relative to the R home directory, so a complete path
was usually needed.

Encoded ‘file://’ URLs should be in the Windows standard form, e.g.
"file:///c:/path/to/file.txt".

Value

No value, but informative error messages will be given if the operation fails.

432 showConnections

Author(s)

B. D. Ripley and Duncan Murdoch

See Also

system, shell

Examples

Not run:
the space should not be encoded here
shell.exec("C:\\Program Files\\BreezeSys\\BreezeBrowser\\Breezebrowser.htm")
shell.exec("C:/Program Files/BreezeSys/BreezeBrowser/Breezebrowser.htm")
shell.exec("file:///C:/Program Files/BreezeSys/BreezeBrowser/Breezebrowser.htm")

End(Not run)

showConnections Display Connections

Description

Display aspects of connections.

Usage

showConnections(all = FALSE)
getConnection(what)
closeAllConnections()

stdin()
stdout()
stderr()

isatty(con)

Arguments

all logical: if true all connections, including closed ones and the standard ones are
displayed. If false only open user-created connections are included.

what integer: a row number of the table given by showConnections.

con a connection.

Details

stdin(), stdout() and stderr() are standard connections corresponding to input, output and
error on the console respectively (and not necessarily to file streams). They are text-mode connec-
tions of class "terminal" which cannot be opened or closed, and are read-only, write-only and
write-only respectively. The stdout() and stderr() connections can be re-directed by sink (and
in some circumstances the output from stdout() can be split: see the help page).

The encoding for stdin() when redirected can be set by the command-line flag ‘--encoding’.

showConnections 433

showConnections returns a matrix of information. If a connection object has been lost or forgotten,
getConnection will take a row number from the table and return a connection object for that
connection, which can be used to close the connection, for example. However, if there is no R
level object referring to the connection it will be closed automatically at the next garbage collection
(except for gzcon connections).

closeAllConnections closes (and destroys) all user connections, restoring all sink diversions as
it does so.

isatty returns true if the connection is one of the class "terminal" connections and it is appar-
ently connected to a terminal, otherwise false. This may not be reliable in embedded applications,
including GUI consoles.

Value

stdin(), stdout() and stderr() return connection objects.

showConnections returns a character matrix of information with a row for each connection, by
default only for open non-standard connections.

getConnection returns a connection object, or NULL.

Note

stdin() refers to the ‘console’ and not to the C-level ‘stdin’ of the process. The distinction matters
in GUI consoles (which may not have an active ‘stdin’, and if they do it may not be connected
to console input), and also in embedded applications. If you want access to the C-level file stream
‘stdin’, use file("stdin").

When R is reading a script from a file, the file is the ‘console’: this is traditional usage to allow
in-line data (see ‘An Introduction to R’ for an example).

See Also

connections

Examples

showConnections(all = TRUE)
Not run:
textConnection(letters)
oops, I forgot to record that one
showConnections()
class description mode text isopen can read can write
#3 "letters" "textConnection" "r" "text" "opened" "yes" "no"
mycon <- getConnection(3)

End(Not run)

c(isatty(stdin()), isatty(stdout()), isatty(stderr()))

434 shQuote

shQuote Quote Strings for Use in OS Shells

Description

Quote a string to be passed to an operating system shell.

Usage

shQuote(string, type = c("sh", "csh", "cmd"))

Arguments

string a character vector, usually of length one.

type character: the type of shell. Partial matching is supported. "cmd" refers to the
Windows NT shell, and is the default under Windows.

Details

The default type of quoting supported under Unix-alikes is that for the Bourne shell sh. If the string
does not contain single quotes, we can just surround it with single quotes. Otherwise, the string
is surrounded in double quotes, which suppresses all special meanings of metacharacters except
dollar, backquote and backslash, so these (and of course double quote) are preceded by backslash.
This type of quoting is also appropriate for bash, ksh and zsh.

The other type of quoting is for the C-shell (csh and tcsh). Once again, if the string does not
contain single quotes, we can just surround it with single quotes. If it does contain single quotes,
we can use double quotes provided it does not contain dollar or backquote (and we need to escape
backslash, exclamation mark and double quote). As a last resort, we need to split the string into
pieces not containing single quotes and surround each with single quotes, and the single quotes with
double quotes.

The Windows shell supports only double quoting. All this implementation does is to surround the
string by double quotes and escape internal double quotes by a backslash. As Windows path names
cannot contain double quotes, this makes shQuote safe for use with file paths in system, and with
shell if the default shell is used.

It will usually be safe to use shQuote to quote arguments of a command, but because system does
not use a shell, interpretation of quoted arguments is done by the run-time code of the executable.
This may depend on the compiler used: Microsoft’s rules for the C run-time are given at http:
//msdn2.microsoft.com/en-us/library/ms880421.aspx.

References

Loukides, M. et al (2002) Unix Power Tools Third Edition. O’Reilly. Section 27.12.

http://www.mhuffman.com/notes/dos/bash_cmd.htm

See Also

Quotes for quoting R code.

sQuote for quoting English text.

http://msdn2.microsoft.com/en-us/library/ms880421.aspx
http://msdn2.microsoft.com/en-us/library/ms880421.aspx
http://www.mhuffman.com/notes/dos/bash_cmd.htm

sign 435

Examples

test <- "abc$def‘gh‘i\\j"
cat(shQuote(test), "\n")
Not run: system(paste("echo", shQuote(test)))
test <- "don’t do it!"
cat(shQuote(test), "\n")

tryit <- paste("use the", sQuote("-c"), "switch\nlike this")
cat(shQuote(tryit), "\n")
Not run: system(paste("echo", shQuote(tryit)))
cat(shQuote(tryit, type="csh"), "\n")

Windows-only example.
perlcmd <- ’print "Hello World\n";’
Not run: shell(paste("perl -e", shQuote(perlcmd, type="cmd")))

sign Sign Function

Description

sign returns a vector with the signs of the corresponding elements of x (the sign of a real number
is 1, 0, or −1 if the number is positive, zero, or negative, respectively).

Note that sign does not operate on complex vectors.

Usage

sign(x)

Arguments

x a numeric vector

Details

This is an internal generic primitive function: methods can be defined for it directly or via the Math
group generic.

See Also

abs

Examples

sign(pi) # == 1
sign(-2:3)# -1 -1 0 1 1 1

436 sink

sink Send R Output to a File

Description

sink diverts R output to a connection.

sink.number() reports how many diversions are in use.

sink.number(type = "message") reports the number of the connection currently being used for
error messages.

Usage

sink(file = NULL, append = FALSE, type = c("output", "message"),
split = FALSE)

sink.number(type = c("output", "message"))

Arguments

file a writable connection or a character string naming the file to write to, or NULL to
stop sink-ing.

append logical. If TRUE, output will be appended to file; otherwise, it will overwrite
the contents of file.

type character. Either the output stream or the messages stream.

split logical: if TRUE, output will be sent to the new sink and to the current output
stream, like the Unix program tee.

Details

sink diverts R output to a connection. If file is a character string, a file connection with that name
will be established for the duration of the diversion.

Normal R output (to connection stdout) is diverted by the default type = "output". Only
prompts and (most) messages continue to appear on the console. Messages sent to stderr() (in-
cluding those from message, warning and stop) can be diverted by sink(type = "message")
(see below).

sink() or sink(file=NULL) ends the last diversion (of the specified type). There is a stack of
diversions for normal output, so output reverts to the previous diversion (if there was one). The
stack is of up to 21 connections (20 diversions).

If file is a connection it will be opened if necessary (in "wt" mode) and closed once it is removed
from the stack of diversions.

split = TRUE only splits R output (via Rvprintf) and the default output from writeLines: it
does not split all output that might be sent to stdout().

Sink-ing the messages stream should be done only with great care. For that stream file must be an
already open connection, and there is no stack of connections.

If file is a character string, the file will be opened using the current encoding. If you want a differ-
ent encoding (e.g. to represent strings which have been stored in UTF-8), use a file connection —
but some ways to produce R output will already have converted such strings to the current encoding.

slice.index 437

Value

sink returns NULL.

For sink.number() the number (0, 1, 2, . . .) of diversions of output in place.

For sink.number("message") the connection number used for messages, 2 if no diversion has
been used.

Warning

Do not use a connection that is open for sink for any other purpose. The software will stop you
closing one such inadvertently.

Do not sink the messages stream unless you understand the source code implementing it and hence
the pitfalls.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

capture.output

Examples

sink("sink-examp.txt")
i <- 1:10
outer(i, i, "*")
sink()
unlink("sink-examp.txt")
Not run:
capture all the output to a file.
zz <- file("all.Rout", open="wt")
sink(zz)
sink(zz, type="message")
try(log("a"))
back to the console
sink(type="message")
sink()
try(log("a"))

End(Not run)

slice.index Slice Indexes in an Array

Description

Returns a matrix of integers indicating the number of their slice in a given array.

438 slotOp

Usage

slice.index(x, MARGIN)

Arguments

x an array. If x has no dimension attribute, it is considered a one-dimensional
array.

MARGIN an integer giving the dimension number to slice by.

Value

An integer array y with dimensions corresponding to those of x such that all elements of slice
number i with respect to dimension MARGIN have value i.

See Also

row and col for determining row and column indexes; in fact, these are special cases of
slice.index corresponding to MARGIN equal to 1 and 2, respectively when x is a matrix.

Examples

x <- array(1 : 24, c(2, 3, 4))
slice.index(x, 2)

slotOp Extract Slots

Description

Extract the contents of a slot in a object with a formal (S4) class structure.

Usage

object@name

Arguments

object An object from a formally defined (S4) class.

name The character-string name of the slot.

Details

This operator supports the formal classes of package methods, and is enabled only when methods
is loaded (as per default). See slot for further details.

It is checked that object is an S4 object (see isS4), and it is an error to attempt to use @ on any
other object. (There is an exception for name .Data for internal use only.)

If name is not a slot name, an error is thrown.

Value

The current contents of the slot.

socketSelect 439

See Also

Extract, slot

socketSelect Wait on Socket Connections

Description

Waits for the first of several socket connections to become available.

Usage

socketSelect(socklist, write = FALSE, timeout = NULL)

Arguments

socklist list of open socket connections

write logical. If TRUE wait for corresponding socket to become available for writing;
otherwise wait for it to become available for reading.

timeout numeric or NULL. Time in seconds to wait for a socket to become available; NULL
means wait indefinitely.

Details

The values in write are recycled if necessary to make up a logical vector the same length as
socklist. Socket connections can appear more than once in socklist; this can be useful if you
want to determine whether a socket is available for reading or writing.

Value

Logical the same length as socklist indicating whether the corresponding socket connection is
available for output or input, depending on the corresponding value of write.

Examples

Not run:
test whether socket connection s is available for writing or reading
socketSelect(list(s,s),c(TRUE,FALSE),timeout=0)

End(Not run)

440 solve

solve Solve a System of Equations

Description

This generic function solves the equation a %*% x = b for x, where b can be either a vector or a
matrix.

Usage

solve(a, b, ...)

Default S3 method:
solve(a, b, tol, LINPACK = FALSE, ...)

Arguments

a a square numeric or complex matrix containing the coefficients of the linear
system.

b a numeric or complex vector or matrix giving the right-hand side(s) of the linear
system. If missing, b is taken to be an identity matrix and solve will return the
inverse of a.

tol the tolerance for detecting linear dependencies in the columns of a. If LINPACK is
TRUE the default is 1e-7, otherwise it is .Machine$double.eps. Future versions
of R may use a tighter tolerance. Not currently used with complex matrices a.

LINPACK logical. Should LINPACK be used (for compatibility with R < 1.7.0)? Other-
wise LAPACK is used.

... further arguments passed to or from other methods

Details

a or b can be complex, but this uses double complex arithmetic which might not be available on all
platforms and LAPACK will always be used.

The row and column names of the result are taken from the column names of a and of b respectively.
If b is missing the column names of the result are the row names of a. No check is made that the
column names of a and the row names of b are equal.

For back-compatibility a can be a (real) QR decomposition, although qr.solve should be called in
that case. qr.solve can handle non-square systems.

Note

LINPACK = TRUE (for compatibility with R < 1.7.0) was formally deprecated in R 2.15.2.

Source

The defult method is an interface to the LAPACK routines DGESV and ZGESV.

LAPACK is from http://www.netlib.org/lapack.

http://www.netlib.org/lapack

sort 441

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

solve.qr for the qr method, chol2inv for inverting from the Choleski factor backsolve,
qr.solve.

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
h8 <- hilbert(8); h8
sh8 <- solve(h8)
round(sh8 %*% h8, 3)

A <- hilbert(4)
A[] <- as.complex(A)
might not be supported on all platforms
try(solve(A))

sort Sorting or Ordering Vectors

Description

Sort (or order) a vector or factor (partially) into ascending or descending order. For ordering along
more than one variable, e.g., for sorting data frames, see order.

Usage

sort(x, decreasing = FALSE, ...)

Default S3 method:
sort(x, decreasing = FALSE, na.last = NA, ...)

sort.int(x, partial = NULL, na.last = NA, decreasing = FALSE,
method = c("shell", "quick"), index.return = FALSE)

Arguments

x for sort an R object with a class or a numeric, complex, character or logical
vector. For sort.int, a numeric, complex, character or logical vector, or a
factor.

decreasing logical. Should the sort be increasing or decreasing? Not available for partial
sorting.

... arguments to be passed to or from methods or (for the default methods and
objects without a class) to sort.int.

http://www.netlib.org/lapack/lug/lapack_lug.html

442 sort

na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; if NA, they are removed.

partial NULL or a vector of indices for partial sorting.

method character string specifying the algorithm used. Not available for partial sorting.

index.return logical indicating if the ordering index vector should be returned as well; this
is only available for a few cases, the default na.last = NA and full sorting of
non-factors.

Details

sort is a generic function for which methods can be written, and sort.int is the internal method
which is compatible with S if only the first three arguments are used.

The default sort method makes use of order for classed objects, which in turn makes use
of the generic function xtfrm (and can be slow unless a xtfrm method has been defined or
is.numeric(x) is true).

Complex values are sorted first by the real part, then the imaginary part.

The sort order for character vectors will depend on the collating sequence of the locale in use: see
Comparison. The sort order for factors is the order of their levels (which is particularly appropriate
for ordered factors).

If partial is not NULL, it is taken to contain indices of elements of the result which are to be placed
in their correct positions in the sorted array by partial sorting. For each of the result values in a
specified position, any values smaller than that one are guaranteed to have a smaller index in the
sorted array and any values which are greater are guaranteed to have a bigger index in the sorted
array. (This is included for efficiency, and many of the options are not available for partial sorting.
It is only substantially more efficient if partial has a handful of elements, and a full sort is done
(a Quicksort if possible) if there are more than 10.) Names are discarded for partial sorting.

Method "shell" uses Shellsort (an O(n4/3) variant from Sedgewick (1996)). If x has names a
stable sort is used, so ties are not reordered. (This only matters if names are present.)

Method "quick" uses Singleton (1969)’s implementation of Hoare’s Quicksort method and is only
available when x is numeric (double or integer) and partial is NULL. (For other types of x Shellsort
is used, silently.) It is normally somewhat faster than Shellsort (perhaps 50% faster on vectors of
length a million and twice as fast at a billion) but has poor performance in the rare worst case.
(Peto’s modification using a pseudo-random midpoint is used to make the worst case rarer.) This is
not a stable sort, and ties may be reordered.

Value

For sort, the result depends on the S3 method which is dispatched. If x does not have a class
sort.int is used and it description applies. For classed objects which do not have a specific
method the default method will be used and is equivalent to x[order(x, ...)]: this depends on
the class having a suitable method for [(and also that order will work, which is not the case for a
class based on a list).

For sort.int the value is the sorted vector unless index.return is true, when the result is a list
with components named x and ix containing the sorted numbers and the ordering index vector. In
the latter case, if method == "quick" ties may be reversed in the ordering (unlike sort.list)
as quicksort is not stable. NB: the index vector refers to element numbers after removal of NAs: see
order if you want the original element numbers.

All attributes are removed from the return value (see Becker et al, 1988, p.146) except names,
which are sorted. (If partial is specified even the names are removed.) Note that this means that

sort 443

the returned value has no class, except for factors and ordered factors (which are treated specially
and whose result is transformed back to the original class).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Sedgewick, R. (1986) A new upper bound for Shell sort. J. Algorithms 7, 159–173.

Singleton, R. C. (1969) An efficient algorithm for sorting with minimal storage: Algorithm 347.
Communications of the ACM 12, 185–187.

See Also

‘Comparison’ for how character strings are collated.

order for sorting on or reordering multiple variables.

is.unsorted. rank.

Examples

require(stats)

x <- swiss$Education[1:25]
x; sort(x); sort(x, partial = c(10, 15))
median.default # shows you another example for ’partial’

illustrate ’stable’ sorting (of ties):
sort(c(10:3,2:12), method = "sh", index.return=TRUE) # is stable
$x : 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12
$ix: 9 8 10 7 11 6 12 5 13 4 14 3 15 2 16 1 17 18 19
sort(c(10:3,2:12), method = "qu", index.return=TRUE) # is not
$x : 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12
$ix: 9 10 8 7 11 6 12 5 13 4 14 3 15 16 2 17 1 18 19

x <- c(1:3, 3:5, 10)
is.unsorted(x) # FALSE: is sorted
is.unsorted(x, strictly=TRUE) # TRUE : is not (and cannot be)

sorted strictly
Not run:
Small speed comparison simulation:
N <- 2000
Sim <- 20
rep <- 1000 # << adjust to your CPU
c1 <- c2 <- numeric(Sim)
for(is in seq_len(Sim)){

x <- rnorm(N)
c1[is] <- system.time(for(i in 1:rep) sort(x, method = "shell"))[1]
c2[is] <- system.time(for(i in 1:rep) sort(x, method = "quick"))[1]
stopifnot(sort(x, method = "s") == sort(x, method = "q"))

}
rbind(ShellSort = c1, QuickSort = c2)
cat("Speedup factor of quick sort():\n")
summary({qq <- c1 / c2; qq[is.finite(qq)]})

A larger test
x <- rnorm(1e7)

444 source

system.time(x1 <- sort(x, method = "shell"))
system.time(x2 <- sort(x, method = "quick"))
stopifnot(identical(x1, x2))

End(Not run)

source Read R Code from a File or a Connection

Description

source causes R to accept its input from the named file or URL or connection. Input is read and
parsed from that file until the end of the file is reached, then the parsed expressions are evaluated
sequentially in the chosen environment.

Usage

source(file, local = FALSE, echo = verbose, print.eval = echo,
verbose = getOption("verbose"),
prompt.echo = getOption("prompt"),
max.deparse.length = 150, chdir = FALSE,
encoding = getOption("encoding"),
continue.echo = getOption("continue"),
skip.echo = 0, keep.source = getOption("keep.source"))

Arguments

file a connection or a character string giving the pathname of the file or URL to read
from. "" indicates the connection stdin().

local TRUE, FALSE or an environment, determining where the parsed expressions are
evaluated. FALSE (the default) corresponds to the user’s workspace (the global
environment) and TRUE to the environment from which source is called.

echo logical; if TRUE, each expression is printed after parsing, before evaluation.
print.eval logical; if TRUE, the result of eval(i) is printed for each expression i; defaults

to the value of echo.
verbose if TRUE, more diagnostics (than just echo = TRUE) are printed during parsing

and evaluation of input, including extra info for each expression.
prompt.echo character; gives the prompt to be used if echo = TRUE.
max.deparse.length

integer; is used only if echo is TRUE and gives the maximal number of characters
output for the deparse of a single expression.

chdir logical; if TRUE and file is a pathname, the R working directory is temporarily
changed to the directory containing file for evaluating.

encoding character vector. The encoding(s) to be assumed when file is a character string:
see file. A possible value is "unknown" when the encoding is guessed: see the
‘Encodings’ section.

continue.echo character; gives the prompt to use on continuation lines if echo = TRUE.
skip.echo integer; how many comment lines at the start of the file to skip if echo = TRUE.
keep.source logical: should the source formatting be retained when echoing expressions, if

possible?

source 445

Details

Note that running code via source differs in a few respects from entering it at the R command line.
Since expressions are not executed at the top level, auto-printing is not done. So you will need
to include explicit print calls for things you want to be printed (and remember that this includes
plotting by lattice, FAQ Q7.22). Since the complete file is parsed before any of it is run, syntax
errors result in none of the code being run. If an error occurs in running a syntactically correct
script, anything assigned into the workspace by code that has been run will be kept (just as from
the command line), but diagnostic information such as traceback() will contain additional calls
to withVisible.

All versions of R accept input from a connection with end of line marked by LF (as used on Unix),
CRLF (as used on DOS/Windows) or CR (as used on classic Mac OS) and map this to newline. The
final line can be incomplete, that is missing the final end-of-line marker.

If keep.source is true (the default in interactive use), the source of functions is kept so they can be
listed exactly as input.

Unlike input from a console, lines in the file or on a connection can contain an unlimited number of
characters.

When skip.echo > 0, that many comment lines at the start of the file will not be echoed. This does
not affect the execution of the code at all. If there are executable lines within the first skip.echo
lines, echoing will start with the first of them.

If echo is true and a deparsed expression exceeds max.deparse.length, that many characters are
output followed by [TRUNCATED] .

Encodings

By default the input is read and parsed in the current encoding of the R session. This is usually
what it required, but occasionally re-encoding is needed, e.g. if a file from a UTF-8-using system is
to be read on Windows (or vice versa).

The rest of this paragraph applies if file is an actual filename or URL (and not "" nor a con-
nection). If encoding = "unknown", an attempt is made to guess the encoding: the result of
localeToCharset() is used as a guide. If encoding has two or more elements, they are tried
in turn until the file/URL can be read without error in the trial encoding. If an actual encoding is
specified (rather than the default or "unknown") in a Latin-1 or UTF-8 locale then character strings
in the result will be translated to the current encoding and marked as such (see Encoding).

If file is a connection (including one specified by "", it is not possible to re-encode the input inside
source, and so the encoding argument is just used to mark character strings in the parsed input in
Latin-1 and UTF-8 locales: see parse.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

demo which uses source; eval, parse and scan; options("keep.source").

sys.source which is a streamlined version to source a file into an environment.

‘The R Language Definition’ for a discussion of source directives.

http://CRAN.R-project.org/package=lattice

446 Special

Examples

If you want to source() a bunch of files, something like
the following may be useful:
sourceDir <- function(path, trace = TRUE, ...) {

for (nm in list.files(path, pattern = "\\.[RrSsQq]$")) {
if(trace) cat(nm,":")
source(file.path(path, nm), ...)
if(trace) cat("\n")

}
}

Special Special Functions of Mathematics

Description

Special mathematical functions related to the beta and gamma functions.

Usage

beta(a, b)
lbeta(a, b)

gamma(x)
lgamma(x)
psigamma(x, deriv = 0)
digamma(x)
trigamma(x)

choose(n, k)
lchoose(n, k)
factorial(x)
lfactorial(x)

Arguments

a, b non-negative numeric vectors.

x, n numeric vectors.

k, deriv integer vectors.

Details

The functions beta and lbeta return the beta function and the natural logarithm of the beta function,

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

The formal definition is

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt

(Abramowitz and Stegun section 6.2.1, page 258). Note that it is only defined in R for non-negative
a and b, and is infinite if either is zero.

Special 447

The functions gamma and lgamma return the gamma function Γ(x) and the natural logarithm of the
absolute value of the gamma function. The gamma function is defined by (Abramowitz and Stegun
section 6.1.1, page 255)

Γ(x) =

∫ ∞
0

tx−1e−tdt

for all real x except zero and negative integers (when NaN is returned). There will be a warning on
possible loss of precision for values which are too close (within about 10−8)) to a negative integer
less than ‘-10’.

factorial(x) (x! for non-negative integer x) is defined to be gamma(x+1) and lfactorial to be
lgamma(x+1).

The functions digamma and trigamma return the first and second derivatives of the logarithm of the
gamma function. psigamma(x, deriv) (deriv >= 0) computes the deriv-th derivative of ψ(x).

digamma(x) = ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)

This is often called the ‘polygamma’ function, e.g. in Abramowitz and Stegun (section 6.4.1, page
260); and higher derivatives (deriv = 2:4) have occasionally been called ‘tetragamma’, ‘pen-
tagamma’, and ‘hexagamma’.

The functions choose and lchoose return binomial coefficients and the logarithms of their absolute
values. Note that choose(n,k) is defined for all real numbers n and integer k. For k ≥ 1 it is
defined as n(n− 1) · · · (n− k + 1)/k!, as 1 for k = 0 and as 0 for negative k. Non-integer values
of k are rounded to an integer, with a warning.
choose(*,k) uses direct arithmetic (instead of [l]gamma calls) for small k, for speed and accuracy
reasons. Note the function combn (package utils) for enumeration of all possible combinations.

The gamma, lgamma, digamma and trigamma functions are internal generic primitive functions:
methods can be defined for them individually or via the Math group generic.

Source

gamma, lgamma, beta and lbeta are based on C translations of Fortran subroutines by W. Fullerton
of Los Alamos Scientific Laboratory (now available as part of SLATEC).

digamma, trigamma and psigamma are based on

Amos, D. E. (1983). A portable Fortran subroutine for derivatives of the psi function, Algorithm
610, ACM Transactions on Mathematical Software 9(4), 494–502.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (For gamma and lgamma.)

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 6: Gamma and Related Functions.

See Also

Arithmetic for simple, sqrt for miscellaneous mathematical functions and Bessel for the real
Bessel functions.

For the incomplete gamma function see pgamma.

448 Special

Examples

require(graphics)

choose(5, 2)
for (n in 0:10) print(choose(n, k = 0:n))

factorial(100)
lfactorial(10000)

gamma has 1st order poles at 0, -1, -2, ...
this will generate loss of precision warnings, so turn off
op <- options("warn")
options(warn = -1)
x <- sort(c(seq(-3,4, length.out=201), outer(0:-3, (-1:1)*1e-6, "+")))
plot(x, gamma(x), ylim=c(-20,20), col="red", type="l", lwd=2,

main=expression(Gamma(x)))
abline(h=0, v=-3:0, lty=3, col="midnightblue")
options(op)

x <- seq(.1, 4, length.out = 201); dx <- diff(x)[1]
par(mfrow = c(2, 3))
for (ch in c("", "l","di","tri","tetra","penta")) {

is.deriv <- nchar(ch) >= 2
nm <- paste(ch, "gamma", sep = "")
if (is.deriv) {
dy <- diff(y) / dx # finite difference
der <- which(ch == c("di","tri","tetra","penta")) - 1
nm2 <- paste("psigamma(*, deriv = ", der,")",sep=’’)
nm <- if(der >= 2) nm2 else paste(nm, nm2, sep = " ==\n")
y <- psigamma(x, deriv=der)

} else {
y <- get(nm)(x)

}
plot(x, y, type = "l", main = nm, col = "red")
abline(h = 0, col = "lightgray")
if (is.deriv) lines(x[-1], dy, col = "blue", lty = 2)

}
par(mfrow = c(1, 1))

"Extended" Pascal triangle:
fN <- function(n) formatC(n, width=2)
for (n in -4:10) cat(fN(n),":", fN(choose(n, k= -2:max(3,n+2))), "\n")

R code version of choose() [simplistic; warning for k < 0]:
mychoose <- function(r,k)

ifelse(k <= 0, (k==0),
sapply(k, function(k) prod(r:(r-k+1))) / factorial(k))

k <- -1:6
cbind(k=k, choose(1/2, k), mychoose(1/2, k))

Binomial theorem for n=1/2 ;
sqrt(1+x) = (1+x)^(1/2) = sum_{k=0}^Inf choose(1/2, k) * x^k :
k <- 0:10 # 10 is sufficient for ~ 9 digit precision:
sqrt(1.25)
sum(choose(1/2, k)* .25^k)

split 449

split Divide into Groups and Reassemble

Description

split divides the data in the vector x into the groups defined by f. The replacement forms replace
values corresponding to such a division. unsplit reverses the effect of split.

Usage

split(x, f, drop = FALSE, ...)
split(x, f, drop = FALSE, ...) <- value
unsplit(value, f, drop = FALSE)

Arguments

x vector or data frame containing values to be divided into groups.

f a ‘factor’ in the sense that as.factor(f) defines the grouping, or a list of such
factors in which case their interaction is used for the grouping.

drop logical indicating if levels that do not occur should be dropped (if f is a factor
or a list).

value a list of vectors or data frames compatible with a splitting of x. Recycling applies
if the lengths do not match.

... further potential arguments passed to methods.

Details

split and split<- are generic functions with default and data.frame methods. The data frame
method can also be used to split a matrix into a list of matrices, and the replacement form likewise,
provided they are invoked explicitly.

unsplit works with lists of vectors or data frames (assumed to have compatible structure, as if
created by split). It puts elements or rows back in the positions given by f. In the data frame case,
row names are obtained by unsplitting the row name vectors from the elements of value.

f is recycled as necessary and if the length of x is not a multiple of the length of f a warning is
printed.

Any missing values in f are dropped together with the corresponding values of x.

Value

The value returned from split is a list of vectors containing the values for the groups. The compo-
nents of the list are named by the levels of f (after converting to a factor, or if already a factor and
drop=TRUE, dropping unused levels).

The replacement forms return their right hand side. unsplit returns a vector or data frame for
which split(x, f) equals value

450 split

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

cut to categorize numeric values.

strsplit to split strings.

Examples

require(stats); require(graphics)
n <- 10; nn <- 100
g <- factor(round(n * runif(n * nn)))
x <- rnorm(n * nn) + sqrt(as.numeric(g))
xg <- split(x, g)
boxplot(xg, col = "lavender", notch = TRUE, varwidth = TRUE)
sapply(xg, length)
sapply(xg, mean)

Calculate ’z-scores’ by group (standardize to mean zero, variance one)
z <- unsplit(lapply(split(x, g), scale), g)

or

zz <- x
split(zz, g) <- lapply(split(x, g), scale)

and check that the within-group std dev is indeed one
tapply(z, g, sd)
tapply(zz, g, sd)

data frame variation

Notice that assignment form is not used since a variable is being added

g <- airquality$Month
l <- split(airquality, g)
l <- lapply(l, transform, Oz.Z = scale(Ozone))
aq2 <- unsplit(l, g)
head(aq2)
with(aq2, tapply(Oz.Z, Month, sd, na.rm=TRUE))

Split a matrix into a list by columns
ma <- cbind(x = 1:10, y = (-4:5)^2)
split(ma, col(ma))

split(1:10, 1:2)

sprintf 451

sprintf Use C-style String Formatting Commands

Description

A wrapper for the C function sprintf, that returns a character vector containing a formatted com-
bination of text and variable values.

Usage

sprintf(fmt, ...)
gettextf(fmt, ..., domain = NULL)

Arguments

fmt a character vector of format strings, each of up to 8192 bytes.

... values to be passed into fmt. Only logical, integer, real and character vectors
are supported, but some coercion will be done: see the ‘Details’ section.

domain see gettext.

Details

sprintf is a wrapper for the system sprintf C-library function. Attempts are made to check that
the mode of the values passed match the format supplied, and R’s special values (NA, Inf, -Inf and
NaN) are handled correctly.

gettextf is a convenience function which provides C-style string formatting with possible transla-
tion of the format string.

The arguments (including fmt) are recycled if possible a whole number of times to the length of
the longest, and then the formatting is done in parallel. Zero-length arguments are allowed and will
give a zero-length result. All arguments are evaluated even if unused, and hence some types (e.g.,
"symbol" or "language", see typeof) are not allowed.

The following is abstracted from Kernighan and Ritchie (see References): however the actual im-
plementation will follow the C99 standard and fine details (especially the behaviour under user
error) may depend on the platform.

The string fmt contains normal characters, which are passed through to the output string, and also
conversion specifications which operate on the arguments provided through The allowed con-
version specifications start with a % and end with one of the letters in the set aAdifeEgGosxX%.
These letters denote the following types:

d, i, o, x, X Integer value, o being octal, x and X being hexadecimal (using the same case for
a-f as the code). Numeric variables with exactly integer values will be coerced to integer.
Formats d and i can also be used for logical variables, which will be converted to 0, 1 or NA.

f Double precision value, in “fixed point” decimal notation of the form "[-]mmm.ddd". The num-
ber of decimal places ("d") is specified by the precision: the default is 6; a precision of 0
suppresses the decimal point. Non-finite values are converted to NA, NaN or (perhaps a sign
followed by) Inf.

e, E Double precision value, in “exponential” decimal notation of the form [-]m.ddde[+-]xx or
[-]m.dddE[+-]xx.

452 sprintf

g, G Double precision value, in %e or %E format if the exponent is less than -4 or greater than or
equal to the precision, and %f format otherwise. (The precision (default 6) specifies the number
of significant digits here, whereas in %f, %e, it is the number of digits after the decimal point.)

a, A Double precision value, in binary notation of the form [-]0xh.hhhp[+-]d. This is a binary
fraction expressed in hex multiplied by a (decimal) power of 2. The number of hex digits after
the decimal point is specified by the precision: the default is enough digits to represent exactly
the internal binary representation. Non-finite values are converted to NA, NaN or (perhaps a
sign followed by) Inf. Format %a uses lower-case for x, p and the hex values: format %A uses
upper-case.
This should be supported on all platforms as it is a feature of C99. The format is not uniquely
defined: although it would be possible to make the leading h always zero or one, this is
not always done. Most systems will suppress trailing zeros, but a few do not. On a well-
written platform, for normal numbers there will be a leading one before the decimal point
plus (by default) 13 hexadecimal digits, hence 53 bits. The treatment of denormalized (aka
‘subnormal’) numbers is very platform-dependent.

s Character string. Character NAs are converted to "NA".

% Literal % (none of the extra formatting characters given below are permitted in this case).

Conversion by as.character is used for non-character arguments with s and by as.double for
non-double arguments with f, e, E, g, G. NB: the length is determined before conversion, so do
not rely on the internal coercion if this would change the length. The coercion is done only once,
so if length(fmt) > 1 then all elements must expect the same types of arguments.

In addition, between the initial % and the terminating conversion character there may be, in any
order:

m.n Two numbers separated by a period, denoting the field width (m) and the precision (n).

- Left adjustment of converted argument in its field.

+ Always print number with sign: by default only negative numbers are printed with a sign.

a space Prefix a space if the first character is not a sign.

0 For numbers, pad to the field width with leading zeros.

specifies “alternate output” for numbers, its action depending on the type: For x or X, 0x or 0X
will be prefixed to a non-zero result. For e, e, f, g and G, the output will always have a decimal
point; for g and G, trailing zeros will not be removed.

Further, immediately after % may come 1$ to 99$ to refer to numbered argument: this allows argu-
ments to be referenced out of order and is mainly intended for translators of error messages. If this
is done it is best if all formats are numbered: if not the unnumbered ones process the arguments in
order. See the examples. This notation allows arguments to be used more than once, in which case
they must be used as the same type (integer, double or character).

A field width or precision (but not both) may be indicated by an asterisk *: in this case an argument
specifies the desired number. A negative field width is taken as a ’-’ flag followed by a positive
field width. A negative precision is treated as if the precision were omitted. The argument should
be integer, but a double argument will be coerced to integer.

There is a limit of 8192 bytes on elements of fmt, and on strings included from a single %letter
conversion specification.

Field widths and precisions of %s conversions are interpreted as bytes, not characters, as described
in the C standard.

sprintf 453

Value

A character vector of length that of the longest input. If any element of fmt or any character
argument is declared as UTF-8, the element of the result will be in UTF-8 and have the encoding
declared as UTF-8. Otherwise it will be in the current locale’s encoding.

Warning

The format string is passed down the OS’s sprintf function, and incorrect formats can cause the
latter to crash the R process . R does perform sanity checks on the format, and since R 2.10.0, we
have not seen crashes anymore. But not all possible user errors on all platforms have been tested,
and some might be terminal.

The behaviour on inputs not documented here is ‘undefined’, which means it is allowed to differ by
platform.

Author(s)

Original code by Jonathan Rougier.

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition, Pren-
tice Hall. Describes the format options in table B-1 in the Appendix.

The C Standards, especially ISO/IEC 9899:1999 for ‘C99’. Links can be found at http://
developer.r-project.org/Portability.html.

man sprintf on a Unix-alike system.

See Also

formatC for a way of formatting vectors of numbers in a similar fashion.

paste for another way of creating a vector combining text and values.

gettext for the mechanisms for the automated translation of text.

Examples

be careful with the format: most things in R are floats
only integer-valued reals get coerced to integer.

sprintf("%s is %f feet tall\n", "Sven", 7.1) # OK
try(sprintf("%s is %i feet tall\n", "Sven", 7.1)) # not OK

sprintf("%s is %i feet tall\n", "Sven", 7) # OK

use a literal % :

sprintf("%.0f%% said yes (out of a sample of size %.0f)", 66.666, 3)

various formats of pi :

sprintf("%f", pi)
sprintf("%.3f", pi)
sprintf("%1.0f", pi)
sprintf("%5.1f", pi)
sprintf("%05.1f", pi)
sprintf("%+f", pi)

http://developer.r-project.org/Portability.html
http://developer.r-project.org/Portability.html

454 sQuote

sprintf("% f", pi)
sprintf("%-10f", pi) # left justified
sprintf("%e", pi)
sprintf("%E", pi)
sprintf("%g", pi)
sprintf("%g", 1e6 * pi) # -> exponential
sprintf("%.9g", 1e6 * pi) # -> "fixed"
sprintf("%G", 1e-6 * pi)

no truncation:
sprintf("%1.f",101)

re-use one argument three times, show difference between %x and %X
xx <- sprintf("%1$d %1$x %1$X", 0:15)
xx <- matrix(xx, dimnames=list(rep("", 16), "%d%x%X"))
noquote(format(xx, justify="right"))

More sophisticated:

sprintf("min 10-char string ’%10s’",
c("a", "ABC", "and an even longer one"))

n <- 1:18
sprintf(paste("e with %2d digits = %.",n,"g",sep=""), n, exp(1))

Using arguments out of order
sprintf("second %2$1.0f, first %1$5.2f, third %3$1.0f", pi, 2, 3)

Using asterisk for width or precision
sprintf("precision %.*f, width ’%*.3f’", 3, pi, 8, pi)

Asterisk and argument re-use, ’e’ example reiterated:
sprintf("e with %1$2d digits = %2$.*1$g", n, exp(1))

re-cycle arguments
sprintf("%s %d", "test", 1:3)

binary output showing rounding/representation errors
x <- seq(0, 1.0, 0.1); y <- c(0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1)
cbind(x, sprintf("%a", x), sprintf("%a", y))

sQuote Quote Text

Description

Single or double quote text by combining with appropriate single or double left and right quotation
marks.

Usage

sQuote(x)
dQuote(x)

sQuote 455

Arguments

x an R object, to be coerced to a character vector.

Details

The purpose of the functions is to provide a simple means of markup for quoting text to be used in
the R output, e.g., in warnings or error messages.

The choice of the appropriate quotation marks depends on both the locale and the available character
sets. Older Unix/X11 fonts displayed the grave accent (ASCII code 0x60) and the apostrophe (0x27)
in a way that they could also be used as matching open and close single quotation marks. Using
modern fonts, or non-Unix systems, these characters no longer produce matching glyphs. Unicode
provides left and right single quotation mark characters (U+2018 and U+2019); if Unicode markup
cannot be assumed to be available, it seems good practice to use the apostrophe as a non-directional
single quotation mark.

Similarly, Unicode has left and right double quotation mark characters (U+201C and U+201D); if
only ASCII’s typewriter characteristics can be employed, than the ASCII quotation mark (0x22)
should be used as both the left and right double quotation mark.

Some other locales also have the directional quotation marks, notably on Windows. TeX uses
grave and apostrophe for the directional single quotation marks, and doubled grave and doubled
apostrophe for the directional double quotation marks.

What rendering is used depend on the options setting for useFancyQuotes. If this is FALSE then
the undirectional ASCII quotation style is used. If this is TRUE (the default), Unicode directional
quotes are used are used where available (currently, UTF-8 locales on Unix-alikes and all Windows
locales except C): if set to "UTF-8" UTF-8 markup is used (whatever the current locale). If set to
"TeX", TeX-style markup is used. Finally, if this is set to a character vector of length four, the first
two entries are used for beginning and ending single quotes and the second two for beginning and
ending double quotes: this can be used to implement non-English quoting conventions such as the
use of guillemets.

Where fancy quotes are used, you should be aware that they may not be rendered correctly as
not all fonts include the requisite glyphs: for example some have directional single quotes but
not directional double quotes. This is particularly troublesome in Windows ‘Command Prompt’
windows, which by default are set up to run in the so-called OEM codepage, which in most locales
uses a different encoding from Windows. Further, if the codepage is changed (with chcp.exe, e.g.
to 1252 in a Western European language), the default raster fonts do not support the directional
quotes.

To work around this, the default for options("useFancyQuotes") is FALSE on Windows except for
the Rgui console. There fancy quotes work with the default Courier New font and more elegantly
with Lucida Console and standard the CJK fonts, but directional double quotes are missing in raster
fonts such as Courier and FixedSys.

Value

A character vector in the current locale’s encoding.

References

Markus Kuhn, “ASCII and Unicode quotation marks”. http://www.cl.cam.ac.uk/~mgk25/ucs/
quotes.html

http://www.cl.cam.ac.uk/~mgk25/ucs/quotes.html
http://www.cl.cam.ac.uk/~mgk25/ucs/quotes.html

456 srcfile

See Also

Quotes for quoting R code.

shQuote for quoting OS commands.

Examples

op <- options("useFancyQuotes")
paste("argument", sQuote("x"), "must be non-zero")
options(useFancyQuotes = FALSE)
cat("\ndistinguish plain", sQuote("single"), "and",

dQuote("double"), "quotes\n")
options(useFancyQuotes = TRUE)
cat("\ndistinguish fancy", sQuote("single"), "and",

dQuote("double"), "quotes\n")
options(useFancyQuotes = "TeX")
cat("\ndistinguish TeX", sQuote("single"), "and",

dQuote("double"), "quotes\n")
if(l10n_info()$‘Latin-1‘) {

options(useFancyQuotes = c("\xab", "\xbb", "\xbf", "?"))
cat("\n", sQuote("guillemet"), "and",

dQuote("Spanish question"), "styles\n")
} else if(l10n_info()$‘UTF-8‘) {

options(useFancyQuotes = c("\xc2\xab", "\xc2\xbb", "\xc2\xbf", "?"))
cat("\n", sQuote("guillemet"), "and",

dQuote("Spanish question"), "styles\n")
}
options(op)

srcfile References to source files

Description

These functions are for working with source files.

Usage

srcfile(filename, encoding = getOption("encoding"), Enc = "unknown")
srcfilecopy(filename, lines, timestamp = Sys.time(), isFile = FALSE)
srcfilealias(filename, srcfile)
getSrcLines(srcfile, first, last)
srcref(srcfile, lloc)
S3 method for class ’srcfile’
print(x, ...)
S3 method for class ’srcfile’
summary(object, ...)
S3 method for class ’srcfile’
open(con, line, ...)
S3 method for class ’srcfile’
close(con, ...)
S3 method for class ’srcref’
print(x, useSource = TRUE, ...)

srcfile 457

S3 method for class ’srcref’
summary(object, useSource = FALSE, ...)
S3 method for class ’srcref’
as.character(x, useSource = TRUE, ...)
.isOpen(srcfile)

Arguments

filename The name of a file.

encoding The character encoding to assume for the file.

Enc The encoding with which to make strings: see the encoding argument of parse.

lines A character vector of source lines. Other R objects will be coerced to character.

timestamp The timestamp to use on a copy of a file.

isFile Is this srcfilecopy known to come from a file system file?

srcfile A srcfile object.
first, last, line

Line numbers.

lloc A vector of four, six or eight values giving a source location; see ‘Details’.

x, object, con An object of the appropriate class.

useSource Whether to read the srcfile to obtain the text of a srcref.

... Additional arguments to the methods; these will be ignored.

Details

These functions and classes handle source code references.

The srcfile function produces an object of class srcfile, which contains the name and direc-
tory of a source code file, along with its timestamp, for use in source level debugging (not yet
implemented) and source echoing. The encoding of the file is saved; see file for a discussion of
encodings, and iconvlist for a list of allowable encodings on your platform.

The srcfilecopy function produces an object of the descendant class srcfilecopy, which saves
the source lines in a character vector. It copies the value of the isFile argument, to help debuggers
identify whether this text comes from a real file in the file system.

The srcfilealias function produces an object of the descendant class srcfilealias, which gives
an alternate name to another srcfile. This is produced by the parser when a #line directive is used.

The getSrcLines function reads the specified lines from srcfile.

The srcref function produces an object of class srcref, which describes a range
of characters in a srcfile. The lloc value gives the following values: c
(first_line, first_byte, last_line, last_byte, first_column, last_column, first_parsed, last_parsed).
Bytes (elements 2, 4) and columns (elements 5, 6) may be different due to multibyte characters. If
only four values are given, the columns and bytes are assumed to match. Lines (elements 1, 3) and
parsed lines (elements 7, 8) may differ if a #line directive is used in code: the former will respect
the directive, the latter will just count lines. If only 4 or 6 elements are given, the parsed lines will
be assumed to match the lines.

Methods are defined for print, summary, open, and close for classes srcfile and srcfilecopy.
The open method opens its internal file connection at a particular line; if it was already open, it
will be repositioned to that line.

Methods are defined for print, summary and as.character for class srcref. The as.character
method will read the associated source file to obtain the text corresponding to the reference.

458 Startup

The exact behaviour depends on the class of the source file. If the source file inherits from
class "srcfilecopy", the lines are taken from the saved copy using the "parsed" line counts.
If not, an attempt is made to read the file, and the original line numbers of the srcref record
(i.e. elements 1 and 3) are used. If an error occurs (e.g. the file no longer exists), text like
<srcref: "file" chars 1:1 to 2:10> will be returned instead, indicating the line:column
ranges of the first and last character. The summary method defaults to this type of display.

Lists of srcref objects may be attached to expressions as the "srcref" attribute. (The list
of srcref objects should be the same length as the expression.) By default, expressions are
printed by print.default using the associated srcref. To see deparsed code instead, call print
with argument useSource = FALSE. If a srcref object is printed with useSource = FALSE, the
<srcref: ...> record will be printed.

.isOpen is intended for internal use: it checks whether the connection associated with a srcfile
object is open.

Value

srcfile returns a srcfile object.

srcfilecopy returns a srcfilecopy object.

getSrcLines returns a character vector of source code lines.

srcref returns a srcref object.

Author(s)

Duncan Murdoch

See Also

getSrcFilename for extracting information from a source reference.

Examples

has timestamp
src <- srcfile(system.file("DESCRIPTION", package = "base"))
summary(src)
getSrcLines(src, 1, 4)
ref <- srcref(src, c(1, 1, 2, 1000))
ref
print(ref, useSource = FALSE)

Startup Initialization at Start of an R Session

Description

In R, the startup mechanism is as follows.

Unless ‘--no-environ’ was given on the command line, R searches for site and user files to process
for setting environment variables. The name of the site file is the one pointed to by the environment
variable R_ENVIRON; if this is unset, ‘R_HOME/etc/Renviron.site’ is used (if it exists, which
it does not in a ‘factory-fresh’ installation). The name of the user file can be specified by the

Startup 459

R_ENVIRON_USER environment variable; if this is unset, the files searched for are ‘.Renviron’ in
the current or in the user’s home directory (in that order). See ‘Details’ for how the files are read.

Then R searches for the site-wide startup profile file of R code unless the command line
option ‘--no-site-file’ was given. The path of this file is taken from the value of the
R_PROFILE environment variable (after tilde expansion). If this variable is unset, the default is
‘R_HOME/etc/Rprofile.site’, which is used if it exists (it contains settings from the installer
in a ‘factory-fresh’ installation). This code is sourced into the base package. Users need to be
careful not to unintentionally overwrite objects in base, and it is normally advisable to use local if
code needs to be executed: see the examples.

Then, unless ‘--no-init-file’ was given, R searches for a user profile, a file of R code. The path
of this file can be specified by the R_PROFILE_USER environment variable (and tilde expansion will
be performed). If this is unset, a file called ‘.Rprofile’ is searched for in the current directory or
in the user’s home directory (in that order). The user profile file is sourced into the workspace.

Note that when the site and user profile files are sourced only the base package is loaded, so objects
in other packages need to be referred to by e.g. utils::dump.frames or after explicitly loading
the package concerned.

R then loads a saved image of the user workspace from ‘.RData’ in the current directory if there is
one (unless ‘--no-restore-data’ or ‘--no-restore’ was specified on the command line).

Next, if a function .First is found on the search path, it is executed as .First(). Finally, func-
tion .First.sys() in the base package is run. This calls require to attach the default packages
specified by options("defaultPackages"). If the methods package is included, this will have
been attached earlier (by function .OptRequireMethods()) so that namespace initializations such
as those from the user workspace will proceed correctly.

A function .First (and .Last) can be defined in appropriate ‘.Rprofile’ or ‘Rprofile.site’
files or have been saved in ‘.RData’. If you want a different set of packages than the default
ones when you start, insert a call to options in the ‘.Rprofile’ or ‘Rprofile.site’ file. For
example, options(defaultPackages = character()) will attach no extra packages on startup
(only the base package) (or set R_DEFAULT_PACKAGES=NULL as an environment variable before
running R). Using options(defaultPackages = "") or R_DEFAULT_PACKAGES="" enforces the
R system default.

On front-ends which support it, the commands history is read from the file specified by
the environment variable R_HISTFILE (default ‘.Rhistory’ in the current directory) unless
‘--no-restore-history’ or ‘--no-restore’ was specified.

The command-line option ‘--vanilla’ implies ‘--no-site-file’, ‘--no-init-file’,
‘--no-environ’ and (except for R CMD) ‘--no-restore’ Under Windows, it also implies
‘--no-Rconsole’, which prevents loading the ‘Rconsole’ file.

Details

Note that there are two sorts of files used in startup: environment files which contain lists of envi-
ronment variables to be set, and profile files which contain R code.

Lines in a site or user environment file should be either comment lines starting with #, or lines
of the form name=value . The latter sets the environmental variable name to value , overriding an
existing value. If value contains an expression of the form ${foo-bar}, the value is that of the
environmental variable foo if that exists and is set to a non-empty value, otherwise bar. (If it is
of the form ${foo}, the default is "".) This construction can be nested, so bar can be of the same
form (as in ${foo-${bar-blah}}). Note that the braces are essential: for example $HOME will not
be interpreted.

460 Startup

Leading and trailing white space in value are stripped. value is then processed in a similar way to a
Unix shell: in particular the outermost level of (single or double) quotes is stripped, and backslashes
are removed except inside quotes.

On systems with sub-architectures (mainly Mac OS X and Windows), the files ‘Renviron.site’
and ‘Rprofile.site’ are looked for first in architecture-specific directories, e.g.
‘R_HOME/etc/i386/Renviron.site’. And e.g. ‘.Renviron.i386’ will be used in pref-
erence to ‘.Renviron’.

Note

The startup options are for Rgui, Rterm and R but not for Rcmd: attempting to use e.g. ‘--vanilla’
with the latter will give a warning or error.

Unix versions of R have a file ‘R_HOME/etc/Renviron’ which is read very early in the start-up
processing. It contains environment variables set by R in the configure process, and is not used on
R for Windows.

R CMD check and R CMD build do not always read the standard startup files, but they do always
read specific ‘Renviron’ files such as ‘~/.R/check.Renviron’, ‘~/.R/build.Renviron’ or sub-
architecture-specific versions.

If you want ~/.Renviron or ~/.Rprofile to be ignored by child R processes (such as those run
by R CMD check and R CMD build), set the appropriate environment variable R_ENVIRON_USER or
R_PROFILE_USER to (if possible, which it is not on Windows) "" or to the name of a non-existent
file.

See Also

For the definition of the ‘home’ directory on Windows see the ‘rw-FAQ’ Q2.14. It can be found
from a running R by Sys.getenv("R_USER").

.Last for final actions at the close of an R session. commandArgs for accessing the command line
arguments.

There are examples of using startup files to set defaults for graphics devices in the help for
windows.options.

An Introduction to R for more command-line options: those affecting memory management are
covered in the help file for Memory.

readRenviron to read ‘.Renviron’ files.

For profiling code, see Rprof.

Examples

Not run:
Example ~/.Renviron on Unix
R_LIBS=~/R/library
PAGER=/usr/local/bin/less

Example .Renviron on Windows
R_LIBS=C:/R/library
MY_TCLTK="c:/Program Files/Tcl/bin"

Example of setting R_DEFAULT_PACKAGES (from R CMD check)
R_DEFAULT_PACKAGES=’utils,grDevices,graphics,stats’
this loads the packages in the order given, so they appear on
the search path in reverse order.

stop 461

Example of .Rprofile
options(width=65, digits=5)
options(show.signif.stars=FALSE)
setHook(packageEvent("grDevices", "onLoad"),

function(...) grDevices::ps.options(horizontal=FALSE))
set.seed(1234)
.First <- function() cat("\n Welcome to R!\n\n")
.Last <- function() cat("\n Goodbye!\n\n")

Example of Rprofile.site
local({

add MASS to the default packages, set a CRAN mirror
old <- getOption("defaultPackages"); r <- getOption("repos")
r["CRAN"] <- "http://my.local.cran"
options(defaultPackages = c(old, "MASS"), repos = r)
(for Unix terminal users) set the width from COLUMNS if set
cols <- Sys.getenv("COLUMNS")
if(nzchar(cols)) options(width = as.integer(cols))
interactive sessions get a fortune cookie (needs fortunes package)
if (interactive())
fortunes::fortune()

})

if .Renviron contains
FOOBAR="coo\bar"doh\ex"abc\"def’"

then we get
> cat(Sys.getenv("FOOBAR"), "\n")
coo\bardoh\exabc"def’

End(Not run)

stop Stop Function Execution

Description

stop stops execution of the current expression and executes an error action.

geterrmessage gives the last error message.

Usage

stop(..., call. = TRUE, domain = NULL)
geterrmessage()

Arguments

... zero or more objects which can be coerced to character (and which are pasted
together with no separator) or a single condition object.

call. logical, indicating if the call should become part of the error message.

domain see gettext. If NA, messages will not be translated.

462 stop

Details

The error action is controlled by error handlers established within the executing code and by
the current default error handler set by options(error=). The error is first signaled as if
using signalCondition(). If there are no handlers or if all handlers return, then the error
message is printed (if options("show.error.messages") is true) and the default error han-
dler is used. The default behaviour (the NULL error-handler) in interactive use is to return to
the top level prompt or the top level browser, and in non-interactive use to (effectively) call
q("no", status=1, runLast=FALSE). The default handler stores the error message in a buffer;
it can be retrieved by geterrmessage(). It also stores a trace of the call stack that can be retrieved
by traceback().

Errors will be truncated to getOption("warning.length") characters, default 1000.

If a condition object is supplied it should be the only argument, and further arguments will be
ignored, with a warning.

Value

geterrmessage gives the last error message, as a character string ending in "\n".

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

warning, try to catch errors and retry, and options for setting error handlers. stopifnot for
validity testing. tryCatch and withCallingHandlers can be used to establish custom handlers
while executing an expression.

gettext for the mechanisms for the automated translation of messages.

Examples

options(error = expression(NULL))
don’t stop on stop(.) << Use with CARE! >>

iter <- 12
if(iter > 10) stop("too many iterations")

tst1 <- function(...) stop("dummy error")
tst1(1:10, long, calling, expression)

tst2 <- function(...) stop("dummy error", call. = FALSE)
tst2(1:10, longcalling, expression, but.not.seen.in.Error)

options(error = NULL)# revert to default

stopifnot 463

stopifnot Ensure the Truth of R Expressions

Description

If any of the expressions in ... are not all TRUE, stop is called, producing an error message
indicating the first of the elements of ... which were not true.

Usage

stopifnot(...)

Arguments

... any number of (logical) R expressions, which should evaluate to TRUE.

Details

This function is intended for use in regression tests or also argument checking of functions, in
particular to make them easier to read.

stopifnot(A, B) is conceptually equivalent to { if(any(is.na(A)) || !all(A)) stop(...) ;
if(any(is.na(B)) || !all(B)) stop(...) }.

Value

(NULL if all statements in ... are TRUE.)

See Also

stop, warning.

Examples

stopifnot(1 == 1, all.equal(pi, 3.14159265), 1 < 2) # all TRUE

m <- matrix(c(1,3,3,1), 2,2)
stopifnot(m == t(m), diag(m) == rep(1,2)) # all(.) |=> TRUE

op <- options(error = expression(NULL))
"disable stop(.)" << Use with CARE! >>

stopifnot(all.equal(pi, 3.141593), 2 < 2, all(1:10 < 12), "a" < "b")
stopifnot(all.equal(pi, 3.1415927), 2 < 2, all(1:10 < 12), "a" < "b")

options(op)# revert to previous error handler

464 strptime

strptime Date-time Conversion Functions to and from Character

Description

Functions to convert between character representations and objects of classes "POSIXlt" and
"POSIXct" representing calendar dates and times.

Usage

S3 method for class ’POSIXct’
format(x, format = "", tz = "", usetz = FALSE, ...)
S3 method for class ’POSIXlt’
format(x, format = "", usetz = FALSE, ...)

S3 method for class ’POSIXt’
as.character(x, ...)

strftime(x, format="", tz = "", usetz = FALSE, ...)
strptime(x, format, tz = "")

Arguments

x An object to be converted.

tz A character string specifying the timezone to be used for the conversion.
System-specific (see as.POSIXlt), but "" is the current time zone, and "GMT" is
UTC.

format A character string. The default for the format methods is
"%Y-%m-%d %H:%M:%S" if any component has a time component which is
not midnight, and "%Y-%m-%d" otherwise. If options("digits.secs") is set,
up to the specified number of digits will be printed for seconds.

... Further arguments to be passed from or to other methods.

usetz logical. Should the timezone be appended to the output? This is used in print-
ing times, and as a workaround for problems with using "%Z" on some Linux
systems.

Details

The format and as.character methods and strftime convert objects from the classes "POSIXlt"
and "POSIXct" (not strftime) to character vectors.

strptime converts character vectors to class "POSIXlt": its input x is first converted by
as.character. Each input string is processed as far as necessary for the format specified: any
trailing characters are ignored.

strftime is a wrapper for format.POSIXlt, and it and format.POSIXct first convert to class
"POSIXlt" by calling as.POSIXlt. Note that only that conversion depends on the time zone.

The usual vector re-cycling rules are applied to x and format so the answer will be of length that
of the longer of the vectors.

strptime 465

Locale-specific conversions to and from character strings are used where appropriate and available.
This affects the names of the days and months, the AM/PM indicator (if used) and the separators in
formats such as %x and %X (via the setting of the LC_TIME locale category).

The details of the formats are system-specific, but the following are defined by the ISO C99 /
POSIX standard for strftime and are likely to be widely available. A conversion specification is
introduced by %, usually followed by a single letter or O or E and then a single letter. Any character
in the format string not part of a conversion specification is interpreted literally (and %% gives %).
Widely implemented conversion specifications include

%a Abbreviated weekday name in the current locale. (Also matches full name on input.)
%A Full weekday name in the current locale. (Also matches abbreviated name on input.)
%b Abbreviated month name in the current locale. (Also matches full name on input.)
%B Full month name in the current locale. (Also matches abbreviated name on input.)
%c Date and time. Locale-specific on output, "%a %b %e %H:%M:%S %Y" on input.
%d Day of the month as decimal number (01–31).
%H Hours as decimal number (00–23). As a special exception times such as ‘24:00:00’ are ac-

cepted for input, since ISO 8601 allows these.
%I Hours as decimal number (01–12).
%j Day of year as decimal number (001–366).
%m Month as decimal number (01–12).
%M Minute as decimal number (00–59).
%p AM/PM indicator in the locale. Used in conjunction with %I and not with %H. An empty string

in some locales.
%S Second as decimal number (00–61), allowing for up to two leap-seconds (but POSIX-compliant

implementations will ignore leap seconds).
%U Week of the year as decimal number (00–53) using Sunday as the first day 1 of the week (and

typically with the first Sunday of the year as day 1 of week 1). The US convention.
%w Weekday as decimal number (0–6, Sunday is 0).
%W Week of the year as decimal number (00–53) using Monday as the first day of week (and typi-

cally with the first Monday of the year as day 1 of week 1). The UK convention.
%x Date. Locale-specific on output, "%y/%m/%d" on input.
%X Time. Locale-specific on output, "%H:%M:%S" on input.
%y Year without century (00–99). On input, values 00 to 68 are prefixed by 20 and 69 to 99 by

19 – that is the behaviour specified by the 2004 and 2008 POSIX standards, but they do also
say ‘it is expected that in a future version the default century inferred from a 2-digit year will
change’.

%Y Year with century. Note that whereas there was no zero in the original Gregorian calendar, ISO
8601:2004 defines it to be valid (interpreted as 1BC): see http://en.wikipedia.org/wiki/
0_(year). Note that the standard also says that years before 1582 in its calendar should only
be used with agreement of the parties involved.

%z Signed offset in hours and minutes from UTC, so -0800 is 8 hours behind UTC.
%Z (output only.) Time zone as a character string (empty if not available).

Where leading zeros are shown they will be used on output but are optional on input.

Note that when %z or %Z is used for output with an object with an assigned timezone an attempt is
made to use the values for that timezone — but it is not guaranteed to succeed.

Also defined in the current standards but less widely implemented (e.g. not for output on Windows)
are

http://en.wikipedia.org/wiki/0_(year)
http://en.wikipedia.org/wiki/0_(year)

466 strptime

%C Century (00–99): the integer part of the year divided by 100.

%D Date format such as %m/%d/%y: ISO C99 says it should be that exact format.

%e Day of the month as decimal number (1–31), with a leading space for a single-digit number.

%F Equivalent to %Y-%m-%d (the ISO 8601 date format).

%g The last two digits of the week-based year (see %V). (Accepted but ignored on input.)

%G The week-based year (see %V) as a decimal number. (Accepted but ignored on input.)

%h Equivalent to %b.

%k The 24-hour clock time with single digits preceded by a blank.

%l The 12-hour clock time with single digits preceded by a blank.

%n Newline on output, arbitrary whitespace on input.

%r The 12-hour clock time (using the locale’s AM or PM).

%R Equivalent to %H:%M.

%t Tab on output, arbitrary whitespace on input.

%T Equivalent to %H:%M:%S.

%u Weekday as a decimal number (1–7, Monday is 1).

%V Week of the year as decimal number (00–53) as defined in ISO 8601. If the week (starting on
Monday) containing 1 January has four or more days in the new year, then it is considered
week 1. Otherwise, it is the last week of the previous year, and the next week is week 1.
(Accepted but ignored on input.)

For output there are also %O[dHImMUVwWy] which may emit numbers in an alternative locale-
dependent format (e.g. roman numerals), and %E[cCyYxX] which can use an alternative ‘era’ (e.g.
a different religious calendar). Which of these are supported is OS-dependent. These are accepted
for input, but with the standard interpretation.

Specific to R is %OSn, which for output gives the seconds truncated to 0 <= n <= 6 decimal places
(and if %OS is not followed by a digit, it uses the setting of getOption("digits.secs"), or if that is
unset, n = 3). Further, for strptime %OS will input seconds including fractional seconds. Note
that %S ignores (and not rounds) fractional parts on output.

The behaviour of other conversion specifications (and even if other character sequences commenc-
ing with % are conversion specifications) is system-specific. For output on Windows, a conversion
specification is % optionally followed by # and then by a single letter. Any conversion specification
which is unimplemented is ignored.

Value

The format methods and strftime return character vectors representing the time. NA times are
returned as NA_character_.

strptime turns character representations into an object of class "POSIXlt". The timezone is used
to set the isdst component and to set the "tzone" attribute if tz != "". If the specified time
is invalid (for example ‘"2010-02-30 08:00"’) all the components of the result are NA. (NB: this
does means exactly what it says – if it is an invalid time, not just a time that does not exist in some
timezone.)

strptime 467

Note

The default formats follow the rules of the ISO 8601 international standard which expresses a day
as "2001-02-28" and a time as "14:01:02" using leading zeroes as here. The ISO form uses no
space to separate dates and times.

For strptime the input string need not specify the date completely: it is assumed that unspecified
seconds, minutes or hours are zero, and an unspecified year, month or day is the current one.

If the timezone specified is invalid on your system, what happens is system-specific but it will
probably be ignored.

OS facilities will probably not print years before 1 CE (aka 1 AD) correctly.

Remember that in most timezones some times do not occur and some occur twice because of
transitions to/from summer time. strptime does not validate such times (it does not assume a
specific timezone), but conversion by as.POSIXct) will do so. Conversion by strftime and for-
matting/printing uses OS facilities and may (and does on Windows) return nonsensical results for
non-existent times at DST transitions.

References

International Organization for Standardization (2004, 2000, 1988, 1997, . . .) ISO 8601. Data
elements and interchange formats – Information interchange – Representation of dates and times.
For links to versions available on-line see (at the time of writing) http://www.qsl.net/g1smd/
isopdf.htm; for information on the current official version, see http://www.iso.org/iso/en/
prods-services/popstds/datesandtime.html.

The POSIX 1003.1 standard, which is in some respects stricter than ISO 8601.

See Also

DateTimeClasses for details of the date-time classes; locales to query or set a locale.

Your system’s help pages on strftime and strptime to see how to specify their formats.

(On some Unix-like systems strptime is replaced by corrected code from ‘glibc’, when all the
conversion specifications described here are supported, but with no alternative number representa-
tion nor era available in any locale.)

Windows users will find no help page for strptime: code based on ‘glibc’ is used (with cor-
rections), so all the conversion specifications described here are supported, but with no alternative
number representation nor era available in any locale.

Examples

locale-specific version of date()
format(Sys.time(), "%a %b %d %X %Y %Z")

time to sub-second accuracy (if supported by the OS)
format(Sys.time(), "%H:%M:%OS3")

read in date info in format ’ddmmmyyyy’
This will give NA(s) in some locales; setting the C locale
as in the commented lines will overcome this on most systems.
lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")
x <- c("1jan1960", "2jan1960", "31mar1960", "30jul1960")
z <- strptime(x, "%d%b%Y")
Sys.setlocale("LC_TIME", lct)

http://www.qsl.net/g1smd/isopdf.htm
http://www.qsl.net/g1smd/isopdf.htm
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

468 strsplit

z

read in date/time info in format ’m/d/y h:m:s’
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
times <- c("23:03:20", "22:29:56", "01:03:30", "18:21:03", "16:56:26")
x <- paste(dates, times)
strptime(x, "%m/%d/%y %H:%M:%S")

time with fractional seconds
z <- strptime("20/2/06 11:16:16.683", "%d/%m/%y %H:%M:%OS")
z # prints without fractional seconds
op <- options(digits.secs=3)
z
options(op)

timezones are not portable, but ’EST5EDT’ comes pretty close.
(x <- strptime(c("2006-01-08 10:07:52", "2006-08-07 19:33:02"),

"%Y-%m-%d %H:%M:%S", tz="EST5EDT"))
attr(x, "tzone")

An RFC 822 header (Eastern Canada, during DST)
strptime("Tue, 23 Mar 2010 14:36:38 -0400", "%a, %d %b %Y %H:%M:%S %z")

strsplit Split the Elements of a Character Vector

Description

Split the elements of a character vector x into substrings according to the matches to substring
split within them.

Usage

strsplit(x, split, fixed = FALSE, perl = FALSE, useBytes = FALSE)

Arguments

x character vector, each element of which is to be split. Other inputs, including a
factor, will give an error.

split character vector (or object which can be coerced to such) containing regular ex-
pression(s) (unless fixed = TRUE) to use for splitting. If empty matches occur,
in particular if split has length 0, x is split into single characters. If split has
length greater than 1, it is re-cycled along x.

fixed logical. If TRUE match split exactly, otherwise use regular expressions. Has
priority over perl.

perl logical. Should perl-compatible regexps be used?

useBytes logical. If TRUE the matching is done byte-by-byte rather than character-by-
character, and inputs with marked encodings are not converted. This is forced
(with a warning) if any input is found which is marked as "bytes".

strsplit 469

Details

Argument split will be coerced to character, so you will see uses with split = NULL to mean
split = character(0), including in the examples below.

Note that splitting into single characters can be done via split = character(0) or split = "";
the two are equivalent. The definition of ‘character’ here depends on the locale: in a single-byte
locale it is a byte, and in a multi-byte locale it is the unit represented by a ‘wide character’ (almost
always a Unicode point).

A missing value of split does not split the corresponding element(s) of x at all.

The algorithm applied to each input string is

repeat {
if the string is empty

break.
if there is a match

add the string to the left of the match to the output.
remove the match and all to the left of it.

else
add the string to the output.
break.

}

Note that this means that if there is a match at the beginning of a (non-empty) string, the first
element of the output is "", but if there is a match at the end of the string, the output is the same as
with the match removed.

Value

A list of the same length as x, the i-th element of which contains the vector of splits of x[i].

If any element of x or split is declared to be in UTF-8 (see Encoding), all non-ASCII character
strings in the result will be in UTF-8 and have their encoding declared as UTF-8. As from R 2.10.0,
for perl = TRUE, useBytes = FALSE all non-ASCII strings in a multibyte locale are translated
to UTF-8.

Note

Prior to R 2.11.0 there was an argument extended which could be used to select ‘basic’ regular
expressions: this was often used when fixed = TRUE would be preferable. In the actual implemen-
tation (as distinct from the POSIX standard) the only difference was that ‘?’, ‘+’, ‘{’, ‘|’, ‘(’, and
‘)’ were not interpreted as metacharacters.

See Also

paste for the reverse, grep and sub for string search and manipulation; also nchar, substr.

‘regular expression’ for the details of the pattern specification.

Examples

noquote(strsplit("A text I want to display with spaces", NULL)[[1]])

x <- c(as = "asfef", qu = "qwerty", "yuiop[", "b", "stuff.blah.yech")
split x on the letter e
strsplit(x, "e")

470 strtoi

unlist(strsplit("a.b.c", "."))
[1] "" "" "" "" ""
Note that ’split’ is a regexp!
If you really want to split on ’.’, use
unlist(strsplit("a.b.c", "\\."))
[1] "a" "b" "c"
or
unlist(strsplit("a.b.c", ".", fixed = TRUE))

a useful function: rev() for strings
strReverse <- function(x)

sapply(lapply(strsplit(x, NULL), rev), paste, collapse="")
strReverse(c("abc", "Statistics"))

get the first names of the members of R-core
a <- readLines(file.path(R.home("doc"),"AUTHORS"))[-(1:8)]
a <- a[(0:2)-length(a)]
(a <- sub(" .*","", a))
and reverse them
strReverse(a)

Note that final empty strings are not produced:
strsplit(paste(c("", "a", ""), collapse="#"), split="#")[[1]]
[1] "" "a"
and also an empty string is only produced before a definite match:
strsplit("", " ")[[1]] # character(0)
strsplit(" ", " ")[[1]] # [1] ""

strtoi Convert Strings to Integers

Description

Convert strings to integers according to the given base using the C function strtol, or choose a
suitable base following the C rules.

Usage

strtoi(x, base = 0L)

Arguments

x a character vector, or something coercible to this by as.character.
base an integer which is between 2 and 36 inclusive, or zero (default).

Details

Conversion is based on the C library function strtol.

For the default base = 0L, the base chosen from the string representation of that element of x, so
different elements can have different bases (see the first example). The standard C rules for choosing
the base are that octal constants (prefix 0 not followed by x or X) and hexadecimal constants (prefix
0x or 0X) are interpreted as base 8 and 16; all other strings are interpreted as base 10.

For a base greater than 10, letters a to z (or A to Z) are used to represent 10 to 35.

strtrim 471

Value

An integer vector of the same length as x. Values which cannot be interpreted as integers or would
overflow are returned as NA_integer_.

See Also

For decimal strings as.integer is equally useful.

Examples

strtoi(c("0xff", "077", "123"))
strtoi(c("ffff", "FFFF"), 16L)
strtoi(c("177", "377"), 8L)

strtrim Trim Character Strings to Specified Display Widths

Description

Trim character strings to specified display widths.

Usage

strtrim(x, width)

Arguments

x a character vector, or an object which can be coerced to a character vector by
as.character.

width Positive integer values: recycled to the length of x.

Details

‘Width’ is interpreted as the display width in a monospaced font. What happens with non-printable
characters (such as backspace, tab) is implementation-dependent and may depend on the locale (e.g.
they may be included in the count or they may be omitted).

Using this function rather than substr is important when there might be double-width (e.g. Chi-
nese/Japanese/Korean) characters in the character vector.

Value

A character vector of the same length and with the same attributes as x (after possible coercion).

Elements of the result will be have the encoding declared as that of the current locale (see Encoding)
if the corresponding input had a declared encoding and the current locale is either Latin-1 or UTF-8.

Examples

strtrim(c("abcdef", "abcdef", "abcdef"), c(1,5,10))

472 structure

structure Attribute Specification

Description

structure returns the given object with further attributes set.

Usage

structure(.Data, ...)

Arguments

.Data an object which will have various attributes attached to it.

... attributes, specified in tag=value form, which will be attached to data.

Details

Adding a class "factor" will ensure that numeric codes are given integer storage mode.

For historical reasons (these names are used when deparsing), attributes ".Dim", ".Dimnames",
".Names", ".Tsp" and ".Label" are renamed to "dim", "dimnames", "names", "tsp" and
"levels".

It is possible to give the same tag more than once, in which case the last value assigned wins. As
with other ways of assigning attributes, using tag=NULL removes attribute tag from .Data if it is
present.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attributes, attr.

Examples

structure(1:6, dim = 2:3)

strwrap 473

strwrap Wrap Character Strings to Format Paragraphs

Description

Each character string in the input is first split into paragraphs (or lines containing whitespace only).
The paragraphs are then formatted by breaking lines at word boundaries. The target columns for
wrapping lines and the indentation of the first and all subsequent lines of a paragraph can be con-
trolled independently.

Usage

strwrap(x, width = 0.9 * getOption("width"), indent = 0,
exdent = 0, prefix = "", simplify = TRUE, initial = prefix)

Arguments

x a character vector, or an object which can be converted to a character vector by
as.character.

width a positive integer giving the target column for wrapping lines in the output.

indent a non-negative integer giving the indentation of the first line in a paragraph.

exdent a non-negative integer specifying the indentation of subsequent lines in para-
graphs.

prefix, initial

a character string to be used as prefix for each line except the first, for which
initial is used.

simplify a logical. If TRUE, the result is a single character vector of line text; otherwise,
it is a list of the same length as x the elements of which are character vectors of
line text obtained from the corresponding element of x. (Hence, the result in the
former case is obtained by unlisting that of the latter.)

Details

Whitespace (space, tab or newline characters) in the input is destroyed. Double spaces after periods,
question and explanation marks (thought as representing sentence ends) are preserved. Currently,
possible sentence ends at line breaks are not considered specially.

Indentation is relative to the number of characters in the prefix string.

Value

A character vector in the current locale’s encoding (if simplify is TRUE), or a list of such character
vectors.

Examples

Read in file ’THANKS’.
x <- paste(readLines(file.path(R.home("doc"), "THANKS")), collapse = "\n")
Split into paragraphs and remove the first three ones
x <- unlist(strsplit(x, "\n[\t\n]*\n"))[-(1:3)]
Join the rest

474 subset

x <- paste(x, collapse = "\n\n")
Now for some fun:
writeLines(strwrap(x, width = 60))
writeLines(strwrap(x, width = 60, indent = 5))
writeLines(strwrap(x, width = 60, exdent = 5))
writeLines(strwrap(x, prefix = "THANKS> "))

Note that messages are wrapped AT the target column indicated by
’width’ (and not beyond it).
From an R-devel posting by J. Hosking <jh910@juno.com>.
x <- paste(sapply(sample(10, 100, replace=TRUE),

function(x) substring("aaaaaaaaaa", 1, x)), collapse = " ")
sapply(10:40,

function(m)
c(target = m, actual = max(nchar(strwrap(x, m)))))

subset Subsetting Vectors, Matrices and Data Frames

Description

Return subsets of vectors, matrices or data frames which meet conditions.

Usage

subset(x, ...)

Default S3 method:
subset(x, subset, ...)

S3 method for class ’matrix’
subset(x, subset, select, drop = FALSE, ...)

S3 method for class ’data.frame’
subset(x, subset, select, drop = FALSE, ...)

Arguments

x object to be subsetted.

subset logical expression indicating elements or rows to keep: missing values are taken
as false.

select expression, indicating columns to select from a data frame.

drop passed on to [indexing operator.

... further arguments to be passed to or from other methods.

Details

This is a generic function, with methods supplied for matrices, data frames and vectors (including
lists). Packages and users can add further methods.

For ordinary vectors, the result is simply x[subset & !is.na(subset)].

subset 475

For data frames, the subset argument works on the rows. Note that subset will be evaluated in
the data frame, so columns can be referred to (by name) as variables in the expression (see the
examples).

The select argument exists only for the methods for data frames and matrices. It works by first
replacing column names in the selection expression with the corresponding column numbers in the
data frame and then using the resulting integer vector to index the columns. This allows the use of
the standard indexing conventions so that for example ranges of columns can be specified easily, or
single columns can be dropped (see the examples).

The drop argument is passed on to the indexing method for matrices and data frames: note that the
default for matrices is different from that for indexing.

Factors may have empty levels after subsetting; unused levels are not automatically removed. See
droplevels for a way to drop all unused levels from a data frame.

Value

An object similar to x contain just the selected elements (for a vector), rows and columns (for a
matrix or data frame), and so on.

Warning

This is a convenience function intended for use interactively. For programming it is better to use
the standard subsetting functions like [, and in particular the non-standard evaluation of argument
subset can have unanticipated consequences.

Author(s)

Peter Dalgaard and Brian Ripley

See Also

[, transform droplevels

Examples

subset(airquality, Temp > 80, select = c(Ozone, Temp))
subset(airquality, Day == 1, select = -Temp)
subset(airquality, select = Ozone:Wind)

with(airquality, subset(Ozone, Temp > 80))

sometimes requiring a logical ’subset’ argument is a nuisance
nm <- rownames(state.x77)
start_with_M <- nm %in% grep("^M", nm, value=TRUE)
subset(state.x77, start_with_M, Illiteracy:Murder)
but in recent versions of R this can simply be
subset(state.x77, grepl("^M", nm), Illiteracy:Murder)

476 substitute

substitute Substituting and Quoting Expressions

Description

substitute returns the parse tree for the (unevaluated) expression expr, substituting any variables
bound in env.

quote simply returns its argument. The argument is not evaluated and can be any R expression.

enquote is a simple one-line utility which transforms a call of the form Foo(....) into the call
quote(Foo(....)). This is typically used to protect a call from early evaluation.

Usage

substitute(expr, env)
quote(expr)
enquote(cl)

Arguments

expr any syntactically valid R expression

cl a call, i.e., an R object of class (and mode) "call".

env an environment or a list object. Defaults to the current evaluation environment.

Details

The typical use of substitute is to create informative labels for data sets and plots. The myplot
example below shows a simple use of this facility. It uses the functions deparse and substitute
to create labels for a plot which are character string versions of the actual arguments to the function
myplot.

Substitution takes place by examining each component of the parse tree as follows: If it is not
a bound symbol in env, it is unchanged. If it is a promise object, i.e., a formal argument to a
function or explicitly created using delayedAssign(), the expression slot of the promise replaces
the symbol. If it is an ordinary variable, its value is substituted, unless env is .GlobalEnv in which
case the symbol is left unchanged.

Both quote and substitute are ‘special’ primitive functions which do not evaluate their argu-
ments.

Value

The mode of the result is generally "call" but may in principle be any type. In particular, single-
variable expressions have mode "name" and constants have the appropriate base mode.

Note

substitute works on a purely lexical basis. There is no guarantee that the resulting expression
makes any sense.

Substituting and quoting often cause confusion when the argument is expression(...). The result
is a call to the expression constructor function and needs to be evaluated with eval to give the
actual expression object.

substr 477

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

missing for argument ‘missingness’, bquote for partial substitution, sQuote and dQuote for adding
quotation marks to strings,

all.names to retrieve the symbol names from an expression or call.

Examples

require(graphics)
(s.e <- substitute(expression(a + b), list(a = 1))) #> expression(1 + b)
(s.s <- substitute(a + b, list(a = 1))) #> 1 + b
c(mode(s.e), typeof(s.e)) # "call", "language"
c(mode(s.s), typeof(s.s)) # (the same)
but:
(e.s.e <- eval(s.e)) #> expression(1 + b)
c(mode(e.s.e), typeof(e.s.e)) # "expression", "expression"

substitute(x <- x + 1, list(x=1)) # nonsense

myplot <- function(x, y)
plot(x, y, xlab=deparse(substitute(x)),

ylab=deparse(substitute(y)))

Simple examples about lazy evaluation, etc:

f1 <- function(x, y = x) { x <- x + 1; y }
s1 <- function(x, y = substitute(x)) { x <- x + 1; y }
s2 <- function(x, y) { if(missing(y)) y <- substitute(x); x <- x + 1; y }
a <- 10
f1(a)# 11
s1(a)# 11
s2(a)# a
typeof(s2(a))# "symbol"

substr Substrings of a Character Vector

Description

Extract or replace substrings in a character vector.

Usage

substr(x, start, stop)
substring(text, first, last = 1000000L)
substr(x, start, stop) <- value
substring(text, first, last = 1000000L) <- value

478 substr

Arguments

x, text a character vector.

start, first integer. The first element to be replaced.

stop, last integer. The last element to be replaced.

value a character vector, recycled if necessary.

Details

substring is compatible with S, with first and last instead of start and stop. For vector
arguments, it expands the arguments cyclically to the length of the longest provided none are of
zero length.

When extracting, if start is larger than the string length then "" is returned.

For the extraction functions, x or text will be converted to a character vector by as.character if
it is not already one.

For the replacement functions, if start is larger than the string length then no replacement is done.
If the portion to be replaced is longer than the replacement string, then only the portion the length
of the string is replaced.

If any argument is an NA element, the corresponding element of the answer is NA.

Elements of the result will be have the encoding declared as that of the current locale (see Encoding
if the corresponding input had a declared Latin-1 or UTF-8 encoding and the current locale is either
Latin-1 or UTF-8.

If an input element has declared "bytes" encoding, the subsetting is done in units of bytes not
characters.

Value

For substr, a character vector of the same length and with the same attributes as x (after possible
coercion).

For substring, a character vector of length the longest of the arguments. This will have names
taken from x (if it has any after coercion, repeated as needed), and other attributes copied from x if
it is the longest of the arguments).

Elements of x with a declared encoding (see Encoding) will be returned with the same encoding.

Note

The S4 version of substring<- ignores last; this version does not.

These functions are often used with nchar to truncate a display. That does not really work (you
want to limit the width, not the number of characters, so it would be better to use strtrim), but at
least make sure you use the default nchar(type="c").

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (substring.)

See Also

strsplit, paste, nchar.

sum 479

Examples

substr("abcdef",2,4)
substring("abcdef",1:6,1:6)
strsplit is more efficient ...

substr(rep("abcdef",4),1:4,4:5)
x <- c("asfef", "qwerty", "yuiop[", "b", "stuff.blah.yech")
substr(x, 2, 5)
substring(x, 2, 4:6)

substring(x, 2) <- c("..", "+++")
x

sum Sum of Vector Elements

Description

sum returns the sum of all the values present in its arguments.

Usage

sum(..., na.rm = FALSE)

Arguments

... numeric or complex or logical vectors.

na.rm logical. Should missing values (including NaN) be removed?

Details

This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

If na.rm is FALSE an NA or NaN value in any of the arguments will cause a value of NA or NaN to be
returned, otherwise NA and NaN values are ignored.

Logical true values are regarded as one, false values as zero. For historical reasons, NULL is accepted
and treated as if it were integer(0).

Value

The sum. If all of ... are of type integer or logical, then the sum is integer, and in that case the
result will be NA (with a warning) if integer overflow occurs. Otherwise it is a length-one numeric
or complex vector.

NB: the sum of an empty set is zero, by definition.

S4 methods

This is part of the S4 Summary group generic. Methods for it must use the signature x, ..., na.rm.

‘plotmath’ for the use of sum in plot annotation.

480 summary

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

colSums for row and column sums.

summary Object Summaries

Description

summary is a generic function used to produce result summaries of the results of various model
fitting functions. The function invokes particular methods which depend on the class of the first
argument.

Usage

summary(object, ...)

Default S3 method:
summary(object, ..., digits = max(3, getOption("digits")-3))
S3 method for class ’data.frame’
summary(object, maxsum = 7,

digits = max(3, getOption("digits")-3), ...)

S3 method for class ’factor’
summary(object, maxsum = 100, ...)

S3 method for class ’matrix’
summary(object, ...)

Arguments

object an object for which a summary is desired.

maxsum integer, indicating how many levels should be shown for factors.

digits integer, used for number formatting with signif() (for summary.default) or
format() (for summary.data.frame).

... additional arguments affecting the summary produced.

Details

For factors, the frequency of the first maxsum - 1 most frequent levels is shown, and the less
frequent levels are summarized in "(Others)" (resulting in at most maxsum frequencies).

The functions summary.lm and summary.glm are examples of particular methods which summarize
the results produced by lm and glm.

svd 481

Value

The form of the value returned by summary depends on the class of its argument. See the documen-
tation of the particular methods for details of what is produced by that method.

The default method returns an object of class c("summaryDefault", "table") which has a spe-
cialized print method. The factor method returns an integer vector.

The matrix and data frame methods return a matrix of class "table", obtained by applying summary
to each column and collating the results.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

anova, summary.glm, summary.lm.

Examples

summary(attenu, digits = 4) #-> summary.data.frame(...), default precision
summary(attenu $ station, maxsum = 20) #-> summary.factor(...)

lst <- unclass(attenu$station) > 20 # logical with NAs
summary.default() for logicals -- different from *.factor:
summary(lst)
summary(as.factor(lst))

svd Singular Value Decomposition of a Matrix

Description

Compute the singular-value decomposition of a rectangular matrix.

Usage

svd(x, nu = min(n, p), nv = min(n, p), LINPACK = FALSE)

La.svd(x, nu = min(n, p), nv = min(n, p))

Arguments

x a numeric, logical or complex matrix whose SVD decomposition is to be com-
puted.

nu the number of left singular vectors to be computed. This must between 0 and
n = nrow(x).

nv the number of right singular vectors to be computed. This must be between 0
and p = ncol(x).

LINPACK logical. Should LINPACK be used (for compatibility with R < 1.7.0)? In this
case nu must be 0, nrow(x) or ncol(x).

482 svd

Details

The singular value decomposition plays an important role in many statistical techniques. svd and
La.svd provide two slightly different interfaces.

Computing the singular vectors is the slow part for large matrices. The computation will be more
efficient if nu <= min(n, p) and nv <= min(n, p), and even more efficient if one or both are
zero.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code (most often 1): these can only be interpreted by detailed study of the FORTRAN code
but mean that the algorithm failed to converge.

Value

The SVD decomposition of the matrix as computed by LAPACK/LINPACK,

X = UDV ′,

where U and V are orthogonal, V ′ means V transposed, and D is a diagonal matrix with the
singular values Dii. Equivalently,D = U ′XV , which is verified in the examples, below.

The returned value is a list with components

d a vector containing the singular values of x, of length min(n, p).

u a matrix whose columns contain the left singular vectors of x, present if nu > 0.
Dimension c(n, nu).

v a matrix whose columns contain the right singular vectors of x, present if
nv > 0. Dimension c(p, nv).

For La.svd the return value replaces v by vt, the (conjugated if complex) transpose of v.

Note

LINPACK = TRUE (for compatibility with R < 1.7.0) was formally deprecated in R 2.15.2.

Source

The main functions used are the LAPACK routines DGESDD and ZGESVD; svd(LINPACK = TRUE)
provides an interface to the LINPACK routine DSVDC.

LAPACK and LINPACK are from http://www.netlib.org/lapack and http://www.netlib.
org/linpack and their guides are listed in the references.

References

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: SIAM Publications.

See Also

eigen, qr.

http://www.netlib.org/lapack
http://www.netlib.org/linpack
http://www.netlib.org/linpack
http://www.netlib.org/lapack/lug/lapack_lug.html

sweep 483

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
X <- hilbert(9)[,1:6]
(s <- svd(X))
D <- diag(s$d)
s$u %*% D %*% t(s$v) # X = U D V’
t(s$u) %*% X %*% s$v # D = U’ X V

sweep Sweep out Array Summaries

Description

Return an array obtained from an input array by sweeping out a summary statistic.

Usage

sweep(x, MARGIN, STATS, FUN="-", check.margin=TRUE, ...)

Arguments

x an array.

MARGIN a vector of indices giving the extent(s) of x which correspond to STATS.

STATS the summary statistic which is to be swept out.

FUN the function to be used to carry out the sweep.

check.margin logical. If TRUE (the default), warn if the length or dimensions of STATS do not
match the specified dimensions of x. Set to FALSE for a small speed gain when
you know that dimensions match.

... optional arguments to FUN.

Details

FUN is found by a call to match.fun. As in the default, binary operators can be supplied if quoted
or backquoted.

FUN should be a function of two arguments: it will be called with arguments x and an array of the
same dimensions generated from STATS by aperm.

The consistency check among STATS, MARGIN and x is stricter if STATS is an array than if it
is a vector. In the vector case, some kinds of recycling are allowed without a warning. Use
sweep(x, MARGIN, as.array(STATS)) if STATS is a vector and you want to be warned if any
recycling occurs.

Value

An array with the same shape as x, but with the summary statistics swept out.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

484 switch

See Also

apply on which sweep used to be based; scale for centering and scaling.

Examples

require(stats) # for median
med.att <- apply(attitude, 2, median)
sweep(data.matrix(attitude), 2, med.att)# subtract the column medians

More sweeping:
A <- array(1:24, dim = 4:2)

no warnings in normal use
sweep(A, 1, 5)
(A.min <- apply(A, 1, min)) # == 1:4
sweep(A, 1, A.min)
sweep(A, 1:2, apply(A, 1:2, median))

warnings when mismatch
sweep(A, 1, 1:3)## STATS does not recycle
sweep(A, 1, 6:1)## STATS is longer

exact recycling:
sweep(A, 1, 1:2)## no warning
sweep(A, 1, as.array(1:2))## warning

switch Select One of a List of Alternatives

Description

switch evaluates EXPR and accordingly chooses one of the further arguments (in ...).

Usage

switch(EXPR, ...)

Arguments

EXPR an expression evaluating to a number or a character string.

... the list of alternatives. If it is intended that EXPR has a character-string value
these will be named, perhaps except for one alternative to be used as a ‘default’
value.

Details

switch works in two distinct ways depending whether the first argument evaluates to a character
string or a number.

If the value of EXPR is not a character string it is coerced to integer. If this is between 1 and
nargs()-1 then the corresponding element of ... is evaluated and the result returned: thus if the
first argument is 3 then the fourth argument is evaluated and returned.

switch 485

If EXPR evaluates to a character string then that string is matched (exactly)to the names of the
elements in If there is a match then that element is evaluated unless it is missing, in which case
the next non-missing element is evaluated, so for example switch("cc", a=1, cc=, cd=, d=2)
evaluates to 2. If there is more than one match, the first matching element is used. In the case of no
match, if there is a unnamed element of ... its value is returned. (If there is more than one such
argument an error is returned. Before R 2.13.0 the first one would have been used.)

The first argument is always taken to be EXPR: if it is named its name must (partially) match.

This is implemented as a primitive function that only evaluates its first argument and one other if
one is selected.

Value

The value of one of the elements of ..., or NULL, invisibly (whenever no element is selected).

The result has the visibility (see invisible) of the element evaluated.

Warning

Before R 2.11.0 it was necessary to avoid partial matching: an alternative E = foo matched the
first argument EXPR unless that was named.

It is possible to write calls to switch that can be confusing and may not work in the same way
in earlier versions of R. For compatibility (and clarity), always have EXPR as the first argument,
naming it if partial matching is a possibility. For the character-string form, have a single unnamed
argument as the default after the named values.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(stats)
centre <- function(x, type) {

switch(type,
mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))

}
x <- rcauchy(10)
centre(x, "mean")
centre(x, "median")
centre(x, "trimmed")

ccc <- c("b","QQ","a","A","bb")
note: cat() produces no output for NULL
for(ch in ccc)

cat(ch,":", switch(EXPR = ch, a=1, b=2:3), "\n")
for(ch in ccc)

cat(ch,":", switch(EXPR = ch, a=, A=1, b=2:3, "Otherwise: last"),"\n")

Numeric EXPR does not allow a default value to be specified
-- it is always NULL
for(i in c(-1:3,9)) print(switch(i, 1,2,3,4))

486 Syntax

visibility
switch(1, invisible(pi), pi)
switch(2, invisible(pi), pi)

Syntax Operator Syntax and Precedence

Description

Outlines R syntax and gives the precedence of operators.

Details

The following unary and binary operators are defined. They are listed in precedence groups, from
highest to lowest.

:: ::: access variables in a namespace
$ @ component / slot extraction
[[[indexing
^ exponentiation (right to left)
- + unary minus and plus
: sequence operator
%any% special operators (including %% and %/%)
* / multiply, divide
+ - (binary) add, subtract
< > <= >= == != ordering and comparison
! negation
& && and
| || or
~ as in formulae
-> ->> rightwards assignment
<- <<- assignment (right to left)
= assignment (right to left)
? help (unary and binary)

Within an expression operators of equal precedence are evaluated from left to right except where
indicated. (Note that = is not necessarily an operator.)

The binary operators ::, :::, $ and @ require names or string constants on the right hand side, and
the first two also require them on the left.

The links in the See Also section cover most other aspects of the basic syntax.

Note

There are substantial precedence differences between R and S. In particular, in S ? has the same
precedence as (binary) + - and & && | || have equal precedence.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Sys.getenv 487

See Also

Arithmetic, Comparison, Control, Extract, Logic, NumericConstants, Paren, Quotes,
Reserved.

The R Language Definition manual.

Sys.getenv Get Environment Variables

Description

Sys.getenv obtains the values of the environment variables.

Usage

Sys.getenv(x = NULL, unset = "", names = NA)

Arguments

x a character vector, or NULL.

unset a character string.

names logical: should the result be named? If NA (the default) single-element results
are not named whereas multi-element results are.

Details

Both arguments will be coerced to character if necessary.

Setting unset = NA will enable unset variables and those set to the value "" to be distinguished, if
the OS does. POSIX requires the OS to distinguish, and all known current R platforms do.

Value

A vector of the same length as x, with (if names == TRUE) the variable names as its names
attribute. Each element holds the value of the environment variable named by the corresponding
component of x (or the value of unset if no environment variable with that name was found).

On most platforms Sys.getenv() will return a named vector giving the values of all the environ-
ment variables, sorted in the current locale. It may be confused by names containing = which some
platforms allow but POSIX does not. (Windows is such a platform: there names including = are
truncated just before the first =.)

Argument names was introduced in R 2.13.0 to avoid needing the common use of
as.vector(Sys.getenv()).

See Also

Sys.setenv, Sys.getlocale for the locale in use, getwd for the working directory.

The help for ‘environment variables’ lists many of the environment variables used by R.

488 Sys.glob

Examples

whether HOST is set will be shell-dependent e.g. Solaris’ csh does not.
Sys.getenv(c("R_HOME", "R_PAPERSIZE", "R_PRINTCMD", "HOST"))

names(s <- Sys.getenv()) # all settings (the values could be very long)

Language and Locale settings -- but rather use Sys.getlocale()
s[grep("^L(C|ANG)", names(s))]

Sys.getpid Get the Process ID of the R Session

Description

Get the process ID of the R Session. It is guaranteed by the operating system that two R sessions
running simultaneously will have different IDs, but it is possible that R sessions running at different
times will have the same ID.

Usage

Sys.getpid()

Value

An integer, often between 1 and 32767 under Unix-alikes (but for example FreeBSD and Mac OS
>= 10.5 uses IDs up to 99999) and a positive integer up to 32767) under Windows.

Examples

Sys.getpid()

Sys.glob Wildcard Expansion on File Paths

Description

Function to do wildcard expansion (also known as ‘globbing’) on file paths.

Usage

Sys.glob(paths, dirmark = FALSE)

Arguments

paths character vector of patterns for relative or absolute filepaths. Missing values will
be ignored.

dirmark logical: should matches to directories from patterns that do not already end in /
or \ have a slash appended? May not be supported on all platforms.

Sys.info 489

Details

The glob system call is not part of Windows, and we supply a partial emulation.

Wildcards are * (match zero or more characters) and ? (match a single character). If a filename
starts with . this must be matched explicitly.

In addition, [begins a character class. If the first character in [...] is not !, this is a character
class which matches a single character against any of the characters specified. The class cannot be
empty, so] can be included provided it is first. If the first character is !, the character class matches
a single character which is none of the specified characters.

Character classes can include ranges such as [A-Z]: include - as a character by having it first or last
in a class. (In the current implementation ranges are in numeric order of Unicode points.)

One can remove the special meaning of ?, * and [by preceding them by a backslash (except within
a character class). Note that on Windows ? and * are not valid in file names, so this is mainly for
consistency with other platforms.

File paths in Windows are interpreted with separator \ or /. Paths with a drive but relative (such
as c:foo\bar) are tricky, but an attempt is made to handle them correctly. An attempt is made to
handle UNC paths starting with a double backslash. UTF-8-encoded paths not valid in the current
locale can be used.

Value

A character vector of matched file paths. The order is system-specific (but in the order of the
elements of paths): it is normally collated in either the current locale or in byte (ASCII) order;
however, on Windows collation is in the order of Unicode points.

Directory errors are normally ignored, so the matches are to accessible file paths (but not necessarily
accessible files).

See Also

path.expand.

Quotes for handling backslashes in character strings.

Examples

Not run:
Sys.glob(file.path(R.home(), "library", "*", "R", "*.rdx"))

End(Not run)

Sys.info Extract System and User Information

Description

Reports system and user information.

Usage

Sys.info()

490 Sys.info

Details

This function is not implemented on all R platforms, and returns NULL when not available. Where
possible it is based on POSIX system calls. (Under Windows, it is obtained by Windows system
calls and the last three values are the same.)

Sys.info() returns details of the platform R is running on, whereas R.version gives details of the
platform R was built on: they may well be different.

Value

A character vector with fields

sysname The operating system.

release The OS release.

version The OS version.

nodename A name by which the machine is known on the network (if any).

machine A concise description of the hardware.

login The user’s login name, or "unknown" if it cannot be ascertained.

user The name of the real user ID, or "unknown" if it cannot be ascertained.

effective_user The name of the effective user ID, or "unknown" if it cannot be ascertained. This
may differ from the real user in ‘set-user-ID’ processes.

Note

The meaning of OS ‘release’ and ‘version’ is system-dependent and there is no guarantee that the
node or login or user names will be what you might reasonably expect. (In particular on some Linux
distributions the login name is unknown from sessions with re-directed inputs.)

The use of alternatives such as system("whoami") is not portable: the POSIX command
system("id") is much more portable on Unix-alikes, provided only the POSIX options are used
(and not the many GNU extensions).

See Also

.Platform, and R.version. sessionInfo() gives a synopsis of both your system and the R
session.

Examples

Sys.info()
An alternative (and probably better) way to get the login name on Unix
Sys.getenv("LOGNAME")

Sys.localeconv 491

Sys.localeconv Find Details of the Numerical and Monetary Representations in the
Current Locale

Description

Get details of the numerical and monetary representations in the current locale.

Usage

Sys.localeconv()

Details

Normally R is run without looking at the value of LC_NUMERIC, so the decimal point remains
’.’. So the first three of these components will only be useful if you have set the locale category
LC_NUMERIC using Sys.setlocale in the current R session (when R may not work correctly).

The monetary components will only be set to non-default values (see the ‘Examples’ section if the
LC_MONETARY category is set. It often is not set: set the examples for how to trigger setting it.

Value

A character vector with 18 named components. See your ISO C documentation for details of the
meaning.

It is possible to compile R without support for locales, in which case the value will be NULL.

See Also

Sys.setlocale for ways to set locales.

Examples

Sys.localeconv()
The results in the C locale are
decimal_point thousands_sep grouping int_curr_symbol
"." "" "" ""
currency_symbol mon_decimal_point mon_thousands_sep mon_grouping
"" "" "" ""
positive_sign negative_sign int_frac_digits frac_digits
"" "" "127" "127"
p_cs_precedes p_sep_by_space n_cs_precedes n_sep_by_space
"127" "127" "127" "127"
p_sign_posn n_sign_posn
"127" "127"

Now try your default locale (which might be "C").
Not run: old <- Sys.getlocale()
The category may not be set:
the following may do so, but it might not be supported.
Sys.setlocale("LC_MONETARY", locale = "")
Sys.localeconv()
or set an appropriate value yourself, e.g.
Sys.setlocale("LC_MONETARY", "de_AT")

492 sys.parent

Sys.localeconv()
Sys.setlocale(locale = old)
End(Not run)

Not run: read.table("foo", dec=Sys.localeconv()["decimal_point"])

sys.parent Functions to Access the Function Call Stack

Description

These functions provide access to environments (‘frames’ in S terminology) associated with func-
tions further up the calling stack.

Usage

sys.call(which = 0)
sys.frame(which = 0)
sys.nframe()
sys.function(which = 0)
sys.parent(n = 1)

sys.calls()
sys.frames()
sys.parents()
sys.on.exit()
sys.status()
parent.frame(n = 1)

Arguments

which the frame number if non-negative, the number of frames to go back if negative.

n the number of generations to go back. (See the ‘Details’ section.)

Details

.GlobalEnv is given number 0 in the list of frames. Each subsequent function evaluation increases
the frame stack by 1 and the call, function definition and the environment for evaluation of that
function are returned by sys.call, sys.function and sys.frame with the appropriate index.

sys.call, sys.frame and sys.function accept integer values for the argument which. Non-
negative values of which are frame numbers whereas negative values are counted back from the
frame number of the current evaluation.

The parent frame of a function evaluation is the environment in which the function was called. It
is not necessarily numbered one less than the frame number of the current evaluation, nor is it the
environment within which the function was defined. sys.parent returns the number of the parent
frame if n is 1 (the default), the grandparent if n is 2, and so on. See also the ‘Note’.

sys.nframe returns an integer, the number of the current frame as described in the first paragraph.

sys.calls and sys.frames give a pairlist of all the active calls and frames, respectively, and
sys.parents returns an integer vector of indices of the parent frames of each of those frames.

sys.parent 493

Notice that even though the sys.xxx functions (except sys.status) are interpreted, their contexts
are not counted nor are they reported. There is no access to them.

sys.status() returns a list with components sys.calls, sys.parents and sys.frames, the re-
sults of calls to those three functions (which this will include the call to sys.status: see the first
example).

sys.on.exit() returns the expression stored for use by on.exit in the function currently being
evaluated. (Note that this differs from S, which returns a list of expressions for the current frame
and its parents.)

parent.frame(n) is a convenient shorthand for sys.frame(sys.parent(n)) (implemented
slightly more efficiently).

Value

sys.call returns a call, sys.function a function definition, and sys.frame and parent.frame
return an environment.

For the other functions, see the ‘Details’ section.

Note

Strictly, sys.parent and parent.frame refer to the context of the parent interpreted function. So
internal functions (which may or may not set contexts and so may or may not appear on the call
stack) may not be counted, and S3 methods can also do surprising things.

Beware of the effect of lazy evaluation: these two functions look at the call stack at the time they
are evaluated, not at the time they are called. Passing calls to them as function arguments is unlikely
to be a good idea.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (Not parent.frame.)

See Also

eval for a usage of sys.frame and parent.frame.

Examples

require(utils)

Note: the first two examples will give different results
if run by example().
ff <- function(x) gg(x)
gg <- function(y) sys.status()
str(ff(1))

gg <- function(y) {
ggg <- function() {

cat("current frame is", sys.nframe(), "\n")
cat("parents are", sys.parents(), "\n")
print(sys.function(0)) # ggg
print(sys.function(2)) # gg

}

494 Sys.readlink

if(y > 0) gg(y-1) else ggg()
}
gg(3)

t1 <- function() {
aa <- "here"
t2 <- function() {
in frame 2 here
cat("current frame is", sys.nframe(), "\n")
str(sys.calls()) ## list with two components t1() and t2()
cat("parents are frame numbers", sys.parents(), "\n") ## 0 1
print(ls(envir=sys.frame(-1))) ## [1] "aa" "t2"
invisible()

}
t2()

}
t1()

test.sys.on.exit <- function() {
on.exit(print(1))
ex <- sys.on.exit()
str(ex)
cat("exiting...\n")

}
test.sys.on.exit()
gives ’language print(1)’, prints 1 on exit

An example where the parent is not the next frame up the stack
since method dispatch uses a frame.
as.double.foo <- function(x)
{

str(sys.calls())
print(sys.frames())
print(sys.parents())
print(sys.frame(-1)); print(parent.frame())
x

}
t2 <- function(x) as.double(x)
a <- structure(pi, class = "foo")
t2(a)

Sys.readlink Read File Symbolic Links

Description

Find out if a file path is a symbolic link, and if so what it is linked to, via the system call readlink.

Symbolic links are a Unix concept, not implemented on Windows.

Usage

Sys.readlink(paths)

Sys.setenv 495

Arguments

paths character vector of file paths. Tilde expansion is done: see path.expand.

Value

A character vector of the the same length as paths. The entries are the path of the file linked to, ""
if the path is not a symbolic link, and NA if there is an error (e.g., the path does not exist).

See Also

file.symlink, file.info

Sys.setenv Set or Unset Environment Variables

Description

Sys.setenv sets environment variables (for other processes called from within R or future calls to
Sys.getenv from this R process).

Sys.unsetenv removes environment variables.

Usage

Sys.setenv(...)

Sys.unsetenv(x)

Arguments

... named arguments with values coercible to a character string.

x a character vector, or an object coercible to character.

Details

Non-standard R names must be quoted in Sys.setenv: see the examples. Most platforms (and
POSIX) do not allow names containing "=". Windows does, but the facilities provided by R may
not handle these correctly so they should be avoided. Most platforms allow setting an environment
variable to "", but Windows does not, and there Sys.setenv(FOO="") unsets FOO.

There may be system-specific limits on the maximum length of the values of individual environ-
ment variables or of all environment variables. Windows has a limit of 32,767 characters on the
environment block, and cmd.exe has a limit of 2047 (Windows 2000) or 8192 characters (XP and
later) for each value.

Value

A logical vector, with elements being true if (un)setting the corresponding variable succeeded. (For
Sys.unsetenv this includes attempting to remove a non-existent variable.)

496 Sys.setFileTime

See Also

Sys.getenv, Startup for ways to set environment variables for the R session.

setwd for the working directory.

The help for ‘environment variables’ lists many of the environment variables used by R.

Examples

print(Sys.setenv(R_TEST="testit", "A+C"=123)) # ‘A+C‘ could also be used
Sys.getenv("R_TEST")
Sys.unsetenv("R_TEST")
Sys.getenv("R_TEST", unset=NA)

Sys.setFileTime Set File Time

Description

Uses system calls to set the times on a file or directory.

Usage

Sys.setFileTime(path, time)

Arguments

path A length-one character vector specifying the path to a file or directory.

time A date-time of class "POSIXct" or an object which can be coerced to one. Frac-
tions of a second are ignored.

Details

This attempts sets the file time to the value specified.

On a Unix-alike it uses the system call utimes if that is available, otherwise utimes. On a POSIX
file system it sets both the last-access and modification times.

On Windows it uses the system call SetFileTime to set the ‘last write time’. Some Windows file
systems only record the time at a resolution of two seconds.

Value

Logical, invisibly. An indication if the operation succeeded.

Sys.sleep 497

Sys.sleep Suspend Execution for a Time Interval

Description

Suspend execution of R expressions for a given number of seconds

Usage

Sys.sleep(time)

Arguments

time The time interval to suspend execution for, in seconds.

Details

Using this function allows R to be given very low priority and hence not to interfere with more
important foreground tasks. A typical use is to allow a process launched from R to set itself up and
read its input files before R execution is resumed.

The intention is that this function suspends execution of R expressions but wakes the process up
often enough to respond to GUI events, typically every 0.5 seconds.

There is no guarantee that the process will sleep for the whole of the specified interval, and it may
well take slightly longer in real time to resume execution. The resolution of the time interval is
system-dependent, but will normally be down to 0.02 secs or better. (On modern Unix-alikes it will
be better than 1ms.)

Value

Invisible NULL.

Note

This function may not be implemented on all systems. Where it is not implemented calling it given
an error.

Examples

testit <- function(x)
{

p1 <- proc.time()
Sys.sleep(x)
proc.time() - p1 # The cpu usage should be negligible

}
testit(3.7)

498 sys.source

sys.source Parse and Evaluate Expressions from a File

Description

Parses expressions in the given file, and then successively evaluates them in the specified environ-
ment.

Usage

sys.source(file, envir = baseenv(), chdir = FALSE,
keep.source = getOption("keep.source.pkgs"))

Arguments

file a character string naming the file to be read from

envir an R object specifying the environment in which the expressions are to be eval-
uated. May also be a list or an integer. The default value NULL corresponds to
evaluation in the base environment. This is probably not what you want; you
should typically supply an explicit envir argument.

chdir logical; if TRUE, the R working directory is changed to the directory containing
file for evaluating.

keep.source logical. If TRUE, functions keep their source including comments, see
options(keep.source = *) for more details.

Details

For large files, keep.source = FALSE may save quite a bit of memory.

In order for the code being evaluated to use the correct environment (for example, in global assign-
ments), source code in packages should call topenv(), which will return the namespace, if any, the
environment set up by sys.source, or the global environment if a saved image is being used.

See Also

source, and library which uses sys.source.

Examples

a simple way to put some objects in an environment
high on the search path
tmp <- tempfile()
writeLines("aaa <- pi", tmp)
env <- attach(NULL, name = "myenv")
sys.source(tmp, env)
unlink(tmp)
search()
aaa
detach("myenv")

Sys.time 499

Sys.time Get Current Date and Time

Description

Sys.time and Sys.Date returns the system’s idea of the current date with and without time.

Usage

Sys.time()
Sys.Date()

Details

Sys.time returns an absolute date-time value which can be converted to various time zones and
may return different days.

Sys.Date returns the current day in the current timezone.

Value

Sys.time returns an object of class "POSIXct" (see DateTimeClasses). On almost all systems it
will have sub-second accuracy, possibly microseconds or better. On Windows it increments in clock
ticks (usually 1/60 of a second) reported to millisecond accuracy.

Sys.Date returns an object of class "Date" (see Date).

Note

Sys.time may return fractional seconds, but they are ignored by the default conversions (e.g. print-
ing) for class "POSIXct". See the examples and format.POSIXct for ways to reveal them.

See Also

date for the system time in a fixed-format character string.

Sys.timezone.

Examples

Sys.time()
print with possibly greater accuracy:
op <- options(digits.secs=6)
Sys.time()
options(op)

locale-specific version of date()
format(Sys.time(), "%a %b %d %X %Y")

Sys.Date()

500 Sys.which

Sys.which Find Full Paths to Executables

Description

This is an interface to the system command which, or to an emulation on Windows.

Usage

Sys.which(names)

Arguments

names Character vector of names or paths of possible executables.

Details

The system command which reports on the full path names of an executable (including an exe-
cutable script) as would be executed by a shell, accepting either absolute paths or looking on the
path.

On Windows an ‘executable’ is a file with extension ‘.exe’, ‘.com’, ‘.cmd’ or ‘.bat’. Such files
need not actually be executable, but they are what system tries.

On a Unix-alike the full path to which (usually ‘/usr/bin/which’) is found when R is installed.

Arguments containing spaces or other metacharacters need to be escaped as they would be for a
shell: for example Windows paths containing spaces need to be enclosed in double quotes.

Value

A character vector of the same length as names, named by names. The elements are either the full
path to the executable or some indication that no executable of that name was found. Typically the
indication is "", but this does depend on the OS (and the known exceptions are changed to "").

On Windows the paths will be short paths (8+3 components, no spaces) with \ as the path delimiter.

Note

Except on Windows this calls the system command which: since that is not part of e.g. the POSIX
standards, exactly what it does is OS-dependent. It will usually do tilde-expansion and it may make
use of csh aliases.

Examples

the first two are likely to exist everywhere
texi2dvi exists on most Unix-alikes and under MiKTeX
Sys.which(c("ftp", "ping", "texi2dvi", "this-does-not-exist"))

system 501

system Invoke a System Command

Description

system invokes the OS command specified by command.

Usage

system(command, intern = FALSE,
ignore.stdout = FALSE, ignore.stderr = FALSE,
wait = TRUE, input = NULL, show.output.on.console = TRUE,
minimized = FALSE, invisible = TRUE)

Arguments

command the system command to be invoked, as a character string.

intern a logical (not NA) which indicates whether to capture the output of the command
as an R character vector.

ignore.stdout, ignore.stderr

a logical (not NA) indicating whether messages written to ‘stdout’ or ‘stderr’
should be ignored.

wait a logical (not NA) indicating whether the R interpreter should wait for the com-
mand to finish, or run it asynchronously. This will be ignored (and the interpreter
will always wait) if intern = TRUE.

input if a character vector is supplied, this is copied one string per line to a temporary
file, and the standard input of command is redirected to the file.

show.output.on.console

logical (not NA), indicates whether to capture the output of the command and
show it on the R console (not used by Rterm, which shows the output in the
terminal unless wait is false).

minimized logical (not NA), indicates whether a command window should be displayed ini-
tially as a minimized window.

invisible logical (not NA), indicates whether a command window should be visible on the
screen.

Details

command is parsed as a command plus arguments separated by spaces. So if the path to the command
(or an argument) contains spaces, it must be quoted e.g. by shQuote. Only double quotes are
allowed on Windows: see the examples. (Note: a Windows path name cannot contain a double
quote, so we do not need to worry about escaping embedded quotes.)

command must be an executable (extensions ‘.exe’, ‘.com’) or a batch file (extensions ‘.cmd’ and
‘.bat’): these extensions are tried in turn if none is supplied.) This means that redirection, pipes,
DOS internal commands, . . . cannot be used: see shell.

The search path for command may be system-dependent: it will include the R ‘bin’ directory, the
working directory and the Windows system directories before PATH.

The ordering of arguments after the first two has changed from time to time: it is recommended to
name all arguments after the first.

502 system

There are many pitfalls in using system to ascertain if a command can be run — Sys.which is more
suitable.

Value

If intern = TRUE, a character vector giving the output of the command, one line per character
string. (Output lines of more than 8095 bytes will be split.) If the command could not be run
an R error is generated. Under the Rgui console intern = TRUE also captures stderr unless
ignore.stderr = TRUE. If command runs but gives a non-zero exit status this will be reported with
a warning and in the attribute "status" of the result: an attribute "errmsg" may also be available

If intern = FALSE, the return value is an error code (0 for success), given the invisible attribute
(so needs to be printed explicitly). If the command could not be run for any reason, the value
is 127. Otherwise if wait = TRUE the value is the exit status returned by the command, and if
wait = FALSE it is 0 (the conventional success value). Some Windows commands return out-of-
range status values (e.g. -1) and so only the bottom 16 bits of the value are used.

If intern = FALSE, wait = TRUE, show.output.on.console = TRUE the ‘stdout’ and
‘stderr’ (unless ignore.stdout = TRUE or ignore.stderr = TRUE) output from a command
that is a ‘console application’ should appear in the R console (Rgui) or the window running R
(Rterm).

Not all Windows executables properly respect redirection of output, or may only do so from a
console application such as Rterm and not from Rgui: for example, ‘fc.exe’ was among these in
the past, but we have had more success recently.

Interaction with the command

Precisely what is seen by the user depends on the optional parameters, whether Rgui or Rterm is
being used, and whether a console command or GUI application is run by the command.

By default nothing will be seen in either front-end until the command finishes and the output is
displayed.

For console commands Rgui will open a new ‘console’, so if invisible = FALSE, a commands
window will appear for the duration of the command. For Rterm a separate commands window will
appear for console applications only if wait = FALSE and invisible = FALSE.

GUI applications will not display in either front-end unless invisible is false.

It is possible to interrupt a running command being waited for from the keyboard (using the ‘Esc’
key in Rgui or ‘Ctrl-C’ in Rterm) or from the Rgui menu: this should at least return control to the
R console. R will attempt to shut down the process cleanly, but may need to force it to terminate,
with the possibility of losing unsaved work, etc.

Do not try to run console applications that require user input from Rgui setting intern = TRUE or
show.output.on.console = TRUE. They will not work.

Differences between Unix and Windows

How processes are launched differs fundamentally between Windows and Unix-alike operating
systems, as do the higher-level OS functions on which this R function is built. So it should not be
surprising that there are many differences between OSes in how system behaves. For the benefit of
programmers, the more important ones are summarized in this section.

• The most important difference is that on a Unix-alike system launches a shell which then runs
command. On Windows the command is run directly – use shell for an interface which runs
command via a shell (by default the Windows shell cmd.exe, which has many differences from
the POSIX shell).

system.file 503

This means that it cannot be assumed that redirection or piping will work in system (redi-
rection sometimes does, but we have seen cases where it stopped working after a Windows
security patch), and system2 (or shell) must be used on Windows.

• What happens to stdout and stderr when not captured depends on how R is running: Win-
dows batch commands behave like a Unix-alike, but from the Windows GUI they are generally
lost. system(intern=TRUE) captures ‘stderr’ when run from the Windows GUI console un-
less ignore.stderr = TRUE.

• The behaviour on error is different in subtle ways (and has differed between R versions).
• The quoting conventions for command differ, but shQuote is a portable interface.
• Arguments show.output.on.console, minimized, invisible only do something on Win-

dows (and are most relevant to Rgui there).

See Also

system2.

shell or shell.exec for a less raw interface.

.Platform for platform-specific variables.

pipe to set up a pipe connection.

Examples

launch an editor, wait for it to quit
Not run: system("notepad myfile.txt")
launch your favourite shell:
Not run: system(Sys.getenv("COMSPEC"))
Not run:
note the two sets of quotes here:
system(paste(’"c:/Program Files/Mozilla Firefox/firefox.exe"’,

’-url cran.r-project.org’), wait = FALSE)
End(Not run)

system.file Find Names of R System Files

Description

Finds the full file names of files in packages etc.

Usage

system.file(..., package = "base", lib.loc = NULL, mustWork = FALSE)

Arguments

... character vectors, specifying subdirectory and file(s) within some package. The
default, none, returns the root of the package. Wildcards are not supported.

package a character string with the name of a single package. An error occurs if more
than one package name is given.

lib.loc a character vector with path names of R libraries. See ‘Details’ for the meaning
of the default value of NULL.

mustWork logical. If TRUE, an error is given if there are no matching files.

504 system.time

Details

This checks the existence of the specified files with file.exists. So file paths are only returned if
there are sufficient permissions to establish their existence.

The unnamed arguments in ... are usually character strings, but if character vectors they are
recycled to the same length.

This uses find.package to find the package, and hence with the default lib.loc = NULL looks
first for attached packages then in each library listed in .libPaths().

Value

A character vector of positive length, containing the file paths that matched ..., or the empty string,
"", if none matched (unless mustWork = TRUE).

If matching the root of a package, there is no trailing separator.

system.file() with no arguments gives the root of the base package.

See Also

R.home for the root directory of the R installation, list.files.

Sys.glob to find paths via wildcards.

Examples

system.file() # The root of the ’base’ package
system.file(package = "stats") # The root of package ’stats’
system.file("INDEX")
system.file("help", "AnIndex", package = "splines")

system.time CPU Time Used

Description

Return CPU (and other) times that expr used.

Usage

system.time(expr, gcFirst = TRUE)
unix.time(expr, gcFirst = TRUE)

Arguments

expr Valid R expression to be timed.

gcFirst Logical - should a garbage collection be performed immediately before the tim-
ing? Default is TRUE.

system2 505

Details

system.time calls the function proc.time, evaluates expr, and then calls proc.time once more,
returning the difference between the two proc.time calls.

unix.time is an alias of system.time, for compatibility with S.

Timings of evaluations of the same expression can vary considerably depending on whether the
evaluation triggers a garbage collection. When gcFirst is TRUE a garbage collection (gc) will be
performed immediately before the evaluation of expr. This will usually produce more consistent
timings.

Value

A object of class "proc_time": see proc.time for details.

See Also

proc.time, time which is for time series.

Examples

require(stats)
system.time(for(i in 1:100) mad(runif(1000)))
Not run:
exT <- function(n = 10000) {

Purpose: Test if system.time works ok; n: loop size
system.time(for(i in 1:n) x <- mean(rt(1000, df=4)))

}
#-- Try to interrupt one of the following (using Ctrl-C / Escape):
exT() #- about 4 secs on a 2.5GHz Xeon
system.time(exT()) #~ +/- same

End(Not run)

system2 Invoke a System Command

Description

system2 invokes the OS command specified by command.

Usage

system2(command, args = character(),
stdout = "", stderr = "", stdin = "", input = NULL,
env = character(),
wait = TRUE, minimized = FALSE, invisible = TRUE)

506 system2

Arguments

command the system command to be invoked, as a character string.

args a character vector of arguments to command.

stdout, stderr where output to ‘stdout’ or ‘stderr’ should be sent. Possible values are "", to
the R console (the default), NULL or FALSE (discard output), TRUE (capture the
output in a character vector) or a character string naming a file.

stdin should input be diverted? "" means the default, alternatively a character string
naming a file. Ignored if input is supplied.

input if a character vector is supplied, this is copied one string per line to a temporary
file, and the standard input of command is redirected to the file.

env character vector of name=value strings to set environment variables.

wait a logical (not NA) indicating whether the R interpreter should wait for the com-
mand to finish, or run it asynchronously. This will be ignored (and the interpreter
will always wait) if stdout = TRUE.

minimized logical (not NA), indicates whether the command window should be displayed
initially as a minimized window.

invisible logical (not NA), indicates whether the command window should be visible on
the screen.

Details

Unlike system, command is always quoted by shQuote, so it must be a single command without
arguments.

For details of how command is found see system.

On Windows, env is currently only supported for commands such as R and make which accept
environment variables on their command line.

Some Unix commands (such as ls) change their output depending on whether they think it is
redirected: stdout = TRUE uses a pipe whereas stdout = "some_file_name" uses redirection.

Because of the way it is implemented, on a Unix-alike stderr = TRUE implies
stdout = TRUE: a warning is given if this is not what was specified.

Value

If stdout = TRUE or stderr = TRUE, a character vector giving the output of the command, one
line per character string. (Output lines of more than 8095 bytes will be split.) If the command could
not be run an R error is generated. If command runs but gives a non-zero exit status this will be
reported with a warning and in the attribute "status" of the result: an attribute "errmsg" may also
be available

In other cases, the return value is an error code (0 for success), given the invisible attribute (so needs
to be printed explicitly). If the command could not be run for any reason, the value is 127. Otherwise
if wait = TRUE the value is the exit status returned by the command, and if wait = FALSE it is 0
(the conventional success value). Some Windows commands return out-of-range status values (e.g.
-1) and so only the bottom 16 bits of the value are used.

Note

system2 is a more portable and flexible interface than system, introduced in R 2.12.0. It allows
redirection of output without needing to invoke a shell on Windows, a portable way to set environ-
ment variables for the execution of command, and finer control over the redirection of stdout and

t 507

stderr. Conversely, system (and shell on Windows) allows the invocation of arbitrary command
lines.

There is no guarantee that if stdout and stderr are both TRUE or the same file that the two streams
will be interleaved in order. This depends on both the buffering used by the command and the OS.

See Also

system.

shell and shell.exec.

t Matrix Transpose

Description

Given a matrix or data.frame x, t returns the transpose of x.

Usage

t(x)

Arguments

x a matrix or data frame, typically.

Details

This is a generic function for which methods can be written. The description here applies to the
default and "data.frame" methods.

A data frame is first coerced to a matrix: see as.matrix. When x is a vector, it is treated as a
column, i.e., the result is a 1-row matrix.

Value

A matrix, with dim and dimnames constructed appropriately from those of x, and other attributes
except names copied across.

Note

The conjugate transpose of a complex matrix A, denoted AH or A∗, is computed as Conj(t(A)).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

aperm for permuting the dimensions of arrays.

508 table

Examples

a <- matrix(1:30, 5,6)
ta <- t(a) ##-- i.e., a[i, j] == ta[j, i] for all i,j :
for(j in seq(ncol(a)))

if(! all(a[, j] == ta[j,])) stop("wrong transpose")

table Cross Tabulation and Table Creation

Description

table uses the cross-classifying factors to build a contingency table of the counts at each combina-
tion of factor levels.

Usage

table(..., exclude = if (useNA == "no") c(NA, NaN), useNA = c("no",
"ifany", "always"), dnn = list.names(...), deparse.level = 1)

as.table(x, ...)
is.table(x)

S3 method for class ’table’
as.data.frame(x, row.names = NULL, ...,

responseName = "Freq", stringsAsFactors = TRUE)

Arguments

... one or more objects which can be interpreted as factors (including character
strings), or a list (or data frame) whose components can be so interpreted. (For
as.table and as.data.frame, arguments passed to specific methods.)

exclude levels to remove for all factors in If set to NULL, it implies
useNA = "always". See ‘Details’ for its interpretation for non-factor argu-
ments.

useNA whether to include NA values in the table. See ‘Details’.

dnn the names to be given to the dimensions in the result (the dimnames names).

deparse.level controls how the default dnn is constructed. See ‘Details’.

x an arbitrary R object, or an object inheriting from class "table" for the
as.data.frame method.

row.names a character vector giving the row names for the data frame.

responseName The name to be used for the column of table entries, usually counts.

stringsAsFactors

logical: should the classifying factors be returned as factors (the default) or
character vectors?

table 509

Details

If the argument dnn is not supplied, the internal function list.names is called to compute the
‘dimname names’. If the arguments in ... are named, those names are used. For the remain-
ing arguments, deparse.level = 0 gives an empty name, deparse.level = 1 uses the supplied
argument if it is a symbol, and deparse.level = 2 will deparse the argument.

Only when exclude is specified and non-NULL (i.e., not by default), will table potentially drop
levels of factor arguments.

useNA controls if the table includes counts of NA values: the allowed values correspond to never, only
if the count is positive and even for zero counts. This is overridden by specifying exclude = NULL.
Note that levels specified in exclude are mapped to NA and so included in NA counts.

Both exclude and useNA operate on an "all or none" basis. If you want to control the dimensions
of a multiway table separately, modify each argument using factor or addNA.

It is best to supply factors rather than rely on coercion. In particular, exclude will be used in
coercion to a factor, and so values (not levels) which appear in exclude before coercion will be
mapped to NA rather than be discarded.

The summary method for class "table" (used for objects created by table or xtabs) which gives
basic information and performs a chi-squared test for independence of factors (note that the function
chisq.test currently only handles 2-d tables).

Value

table() returns a contingency table, an object of class "table", an array of integer values. Note
that unlike S the result is always an array, a 1D array if one factor is given.

as.table and is.table coerce to and test for contingency table, respectively.

The as.data.frame method for objects inheriting from class "table" can be used to convert the
array-based representation of a contingency table to a data frame containing the classifying factors
and the corresponding entries (the latter as component named by responseName). This is the inverse
of xtabs.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

tabulate is the underlying function and allows finer control.

Use ftable for printing (and more) of multidimensional tables. margin.table, prop.table,
addmargins.

Examples

require(stats) # for rpois and xtabs
Simple frequency distribution
table(rpois(100,5))
Check the design:
with(warpbreaks, table(wool, tension))
table(state.division, state.region)

simple two-way contingency table
with(airquality, table(cut(Temp, quantile(Temp)), Month))

510 tabulate

a <- letters[1:3]
table(a, sample(a)) # dnn is c("a", "")
table(a, sample(a), deparse.level = 0) # dnn is c("", "")
table(a, sample(a), deparse.level = 2) # dnn is c("a", "sample(a)")

xtabs() <-> as.data.frame.table() :
UCBAdmissions ## already a contingency table
DF <- as.data.frame(UCBAdmissions)
class(tab <- xtabs(Freq ~ ., DF)) # xtabs & table
tab *is* "the same" as the original table:
all(tab == UCBAdmissions)
all.equal(dimnames(tab), dimnames(UCBAdmissions))

a <- rep(c(NA, 1/0:3), 10)
table(a)
table(a, exclude=NULL)
b <- factor(rep(c("A","B","C"), 10))
table(b)
table(b, exclude="B")
d <- factor(rep(c("A","B","C"), 10), levels=c("A","B","C","D","E"))
table(d, exclude="B")
print(table(b,d), zero.print = ".")

NA counting:
is.na(d) <- 3:4
d. <- addNA(d)
d.[1:7]
table(d.) # ", exclude = NULL" is not needed
i.e., if you want to count the NA’s of ’d’, use
table(d, useNA="ifany")

Two-way tables with NA counts. The 3rd variant is absurd, but shows
something that cannot be done using exclude or useNA.
with(airquality,

table(OzHi=Ozone > 80, Month, useNA="ifany"))
with(airquality,

table(OzHi=Ozone > 80, Month, useNA="always"))
with(airquality,

table(OzHi=Ozone > 80, addNA(Month)))

tabulate Tabulation for Vectors

Description

tabulate takes the integer-valued vector bin and counts the number of times each integer occurs
in it.

Usage

tabulate(bin, nbins = max(1, bin, na.rm = TRUE))

tapply 511

Arguments

bin a numeric vector (of positive integers), or a factor.
nbins the number of bins to be used.

Details

tabulate is used as the basis of the table function.

If bin is a factor, its internal integer representation is tabulated.

If the elements of bin are numeric but not integers, they are truncated to the nearest integer.

Value

An integer vector (without names). There is a bin for each of the values 1, ..., nbins; values
outside that range and NAs are (silently) ignored.

See Also

table, factor.

Examples

tabulate(c(2,3,5))
tabulate(c(2,3,3,5), nbins = 10)
tabulate(c(-2,0,2,3,3,5)) # -2 and 0 are ignored
tabulate(c(-2,0,2,3,3,5), nbins = 3)
tabulate(factor(letters[1:10]))

tapply Apply a Function Over a Ragged Array

Description

Apply a function to each cell of a ragged array, that is to each (non-empty) group of values given
by a unique combination of the levels of certain factors.

Usage

tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)

Arguments

X an atomic object, typically a vector.
INDEX list of one of more factors, each of same length as X. The elements are coerced

to factors by as.factor.
FUN the function to be applied, or NULL. In the case of functions like +, %*%, etc.,

the function name must be backquoted or quoted. If FUN is NULL, tapply returns
a vector which can be used to subscript the multi-way array tapply normally
produces.

... optional arguments to FUN: the Note section.
simplify If FALSE, tapply always returns an array of mode "list". If TRUE (the default),

then if FUN always returns a scalar, tapply returns an array with the mode of the
scalar.

512 tapply

Value

If FUN is not NULL, it is passed to match.fun, and hence it can be a function or a symbol or character
string naming a function.

When FUN is present, tapply calls FUN for each cell that has any data in it. If FUN returns a single
atomic value for each such cell (e.g., functions mean or var) and when simplify is TRUE, tapply
returns a multi-way array containing the values, and NA for the empty cells. The array has the same
number of dimensions as INDEX has components; the number of levels in a dimension is the number
of levels (nlevels()) in the corresponding component of INDEX. Note that if the return value has a
class (e.g. an object of class "Date") the class is discarded.

Note that contrary to S, simplify = TRUE always returns an array, possibly 1-dimensional.

If FUN does not return a single atomic value, tapply returns an array of mode list whose compo-
nents are the values of the individual calls to FUN, i.e., the result is a list with a dim attribute.

When there is an array answer, its dimnames are named by the names of INDEX and are based on the
levels of the grouping factors (possibly after coercion).

For a list result, the elements corresponding to empty cells are NULL.

Note

Optional arguments to FUN supplied by the ... argument are not divided into cells. It is therefore
inappropriate for FUN to expect additional arguments with the same length as X.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

the convenience functions by and aggregate (using tapply); apply, lapply with its versions
sapply and mapply.

Examples

require(stats)
groups <- as.factor(rbinom(32, n = 5, prob = 0.4))
tapply(groups, groups, length) #- is almost the same as
table(groups)

contingency table from data.frame : array with named dimnames
tapply(warpbreaks$breaks, warpbreaks[,-1], sum)
tapply(warpbreaks$breaks, warpbreaks[, 3, drop = FALSE], sum)

n <- 17; fac <- factor(rep(1:3, length = n), levels = 1:5)
table(fac)
tapply(1:n, fac, sum)
tapply(1:n, fac, sum, simplify = FALSE)
tapply(1:n, fac, range)
tapply(1:n, fac, quantile)

example of ... argument: find quarterly means
tapply(presidents, cycle(presidents), mean, na.rm = TRUE)

ind <- list(c(1, 2, 2), c("A", "A", "B"))

taskCallback 513

table(ind)
tapply(1:3, ind) #-> the split vector
tapply(1:3, ind, sum)

taskCallback Add or Remove a Top-Level Task Callback

Description

addTaskCallback registers an R function that is to be called each time a top-level task is completed.

removeTaskCallback un-registers a function that was registered earlier via addTaskCallback.

These provide low-level access to the internal/native mechanism for managing task-completion
actions. One can use taskCallbackManager at the S-language level to manage S functions that are
called at the completion of each task. This is easier and more direct.

Usage

addTaskCallback(f, data = NULL, name = character())
removeTaskCallback(id)

Arguments

f the function that is to be invoked each time a top-level task is successfully com-
pleted. This is called with 5 or 4 arguments depending on whether data is spec-
ified or not, respectively. The return value should be a logical value indicating
whether to keep the callback in the list of active callbacks or discard it.

data if specified, this is the 5-th argument in the call to the callback function f.

id a string or an integer identifying the element in the internal callback list to be
removed. Integer indices are 1-based, i.e the first element is 1. The names of
currently registered handlers is available using getTaskCallbackNames and is
also returned in a call to addTaskCallback.

name character: names to be used.

Details

Top-level tasks are individual expressions rather than entire lines of input. Thus an input line of the
form expression1 ; expression2 will give rise to 2 top-level tasks.

A top-level task callback is called with the expression for the top-level task, the result of the top-
level task, a logical value indicating whether it was successfully completed or not (always TRUE at
present), and a logical value indicating whether the result was printed or not. If the data argument
was specified in the call to addTaskCallback, that value is given as the fifth argument.

The callback function should return a logical value. If the value is FALSE, the callback is removed
from the task list and will not be called again by this mechanism. If the function returns TRUE, it
is kept in the list and will be called on the completion of the next top-level task.

514 taskCallback

Value

addTaskCallback returns an integer value giving the position in the list of task callbacks that this
new callback occupies. This is only the current position of the callback. It can be used to remove
the entry as long as no other values are removed from earlier positions in the list first.

removeTaskCallback returns a logical value indicating whether the specified element was re-
moved. This can fail (i.e., return FALSE) if an incorrect name or index is given that does not
correspond to the name or position of an element in the list.

Note

There is also C-level access to top-level task callbacks to allow C routines rather than R functions
be used.

See Also

getTaskCallbackNames taskCallbackManager http://developer.r-project.org/
TaskHandlers.pdf

Examples

times <- function(total = 3, str="Task a") {
ctr <- 0

function(expr, value, ok, visible) {
ctr <<- ctr + 1
cat(str, ctr, "\n")
if(ctr == total) {

cat("handler removing itself\n")
}
return(ctr < total)
}

}

add the callback that will work for
4 top-level tasks and then remove itself.
n <- addTaskCallback(times(4))

now remove it, assuming it is still first in the list.
removeTaskCallback(n)

Not run:
There is no point in running this
as
addTaskCallback(times(4))

sum(1:10)
sum(1:10)
sum(1:10)
sum(1:10)
sum(1:10)

End(Not run)

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf

taskCallbackManager 515

taskCallbackManager Create an R-level Task Callback Manager

Description

This provides an entirely S-language mechanism for managing callbacks or actions that are invoked
at the conclusion of each top-level task. Essentially, we register a single R function from this
manager with the underlying, native task-callback mechanism and this function handles invoking
the other R callbacks under the control of the manager. The manager consists of a collection of
functions that access shared variables to manage the list of user-level callbacks.

Usage

taskCallbackManager(handlers = list(), registered = FALSE,
verbose = FALSE)

Arguments

handlers this can be a list of callbacks in which each element is a list with an element
named "f" which is a callback function, and an optional element named "data"
which is the 5-th argument to be supplied to the callback when it is invoked.
Typically this argument is not specified, and one uses add to register callbacks
after the manager is created.

registered a logical value indicating whether the evaluate function has already been reg-
istered with the internal task callback mechanism. This is usually FALSE and
the first time a callback is added via the add function, the evaluate function
is automatically registered. One can control when the function is registered by
specifying TRUE for this argument and calling addTaskCallback manually.

verbose a logical value, which if TRUE, causes information to be printed to the console
about certain activities this dispatch manager performs. This is useful for de-
bugging callbacks and the handler itself.

Value

A list containing 6 functions:

add register a callback with this manager, giving the function, an optional 5-th ar-
gument, an optional name by which the callback is stored in the list, and a
register argument which controls whether the evaluate function is registered
with the internal C-level dispatch mechanism if necessary.

remove remove an element from the manager’s collection of callbacks, either by name
or position/index.

evaluate the ‘real’ callback function that is registered with the C-level dispatch mech-
anism and which invokes each of the R-level callbacks within this manager’s
control.

suspend a function to set the suspend state of the manager. If it is suspended, none of
the callbacks will be invoked when a task is completed. One sets the state by
specifying a logical value for the status argument.

516 taskCallbackNames

register a function to register the evaluate function with the internal C-level dispatch
mechanism. This is done automatically by the add function, but can be called
manually.

callbacks returns the list of callbacks being maintained by this manager.

See Also

addTaskCallback, removeTaskCallback, getTaskCallbackNames\ http://developer.
r-project.org/TaskHandlers.pdf

Examples

create the manager
h <- taskCallbackManager()

add a callback
h$add(function(expr, value, ok, visible) {

cat("In handler\n")
return(TRUE)

}, name = "simpleHandler")

look at the internal callbacks.
getTaskCallbackNames()

look at the R-level callbacks
names(h$callbacks())

getTaskCallbackNames()
removeTaskCallback("R-taskCallbackManager")

taskCallbackNames Query the Names of the Current Internal Top-Level Task Callbacks

Description

This provides a way to get the names (or identifiers) for the currently registered task callbacks that
are invoked at the conclusion of each top-level task. These identifiers can be used to remove a
callback.

Usage

getTaskCallbackNames()

Value

A character vector giving the name for each of the registered callbacks which are invoked when a
top-level task is completed successfully. Each name is the one used when registering the callbacks
and returned as the in the call to addTaskCallback.

Note

One can use taskCallbackManager to manage user-level task callbacks, i.e., S-language functions,
entirely within the S language and access the names more directly.

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf

tempfile 517

See Also

addTaskCallback, removeTaskCallback, taskCallbackManager\ http://developer.
r-project.org/TaskHandlers.pdf

Examples

n <- addTaskCallback(function(expr, value, ok, visible) {
cat("In handler\n")
return(TRUE)

}, name = "simpleHandler")

getTaskCallbackNames()

now remove it by name
removeTaskCallback("simpleHandler")

h <- taskCallbackManager()
h$add(function(expr, value, ok, visible) {

cat("In handler\n")
return(TRUE)

}, name = "simpleHandler")
getTaskCallbackNames()
removeTaskCallback("R-taskCallbackManager")

tempfile Create Names for Temporary Files

Description

tempfile returns a vector of character strings which can be used as names for temporary files.

Usage

tempfile(pattern = "file", tmpdir = tempdir(), fileext = "")
tempdir()

Arguments

pattern a non-empty character vector giving the initial part of the name.

tmpdir a non-empty character vector giving the directory name

fileext a non-empty character vector giving the file extension

Details

The length of the result is the maximum of the lengths of the three arguments; values of shorter
arguments are recycled.

The names are very likely to be unique among calls to tempfile in an R session and across simul-
taneous R sessions (unless tmpdir is specified). The filenames are guaranteed not to be currently
in use.

The file name is made by concatenating the path given by tmpdir, the pattern string, a random
string in hex and a suffix of fileext.

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf

518 textConnection

By default, tmpdir will be the directory given by tempdir(). This will be a subdirectory of the
per-session temporary directory found by the following rule when the R session is started. The
environment variables TMPDIR, TMP and TEMP are checked in turn and the first found which points
to a writable directory is used: if none succeeds the value of R_USER (see Rconsole) is used. If
the path to the directory contains a space in any of the components, the path returned will use the
shortnames version of the path. Note that setting any of these environment variables in the R session
has no effect on tempdir(): the per-session temporary directory is created before the interpreter is
started.

Value

For tempfile a character vector giving the names of possible (temporary) files. Note that no files
are generated by tempfile.

For tempdir, the path of the per-session temporary directory.

Both will use backslash as the path separator.

Note on parallel

R processes forked by functions such as mclapply in package parallel (or multicore) share a per-
session temporary directory. Further, the ‘guaranteed not to be currently in use’ applies only at the
time of asking, and two children could ask simultaneously. As from R 2.14.1 this is avoided by
ensuring that tempfile calls in different children try different names.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unlink for deleting files.

Examples

tempfile(c("ab", "a b c")) # give file name with spaces in!

tempfile("plot", fileext=c(".ps", ".pdf"))

tempdir() # works on all platforms with a platform-dependent result

textConnection Text Connections

Description

Input and output text connections.

http://CRAN.R-project.org/package=multicore

textConnection 519

Usage

textConnection(object, open = "r", local = FALSE,
encoding = c("", "bytes", "UTF-8"))

textConnectionValue(con)

Arguments

object character. A description of the connection. For an input this is an R character
vector object, and for an output connection the name for the R character vector
to receive the output, or NULL (for none).

open character. Either "r" (or equivalently "") for an input connection or "w" or "a"
for an output connection.

local logical. Used only for output connections. If TRUE, output is assigned to a
variable in the calling environment. Otherwise the global environment is used.

encoding character. Used only for input connections. How marked strings in object
should be handled: converted to the current locale, used byte-by-byte or trans-
lated to UTF-8.

con An output text connection.

Details

An input text connection is opened and the character vector is copied at time the connection object
is created, and close destroys the copy. object should be the name of a character vector: however,
short expressions will be accepted provided they deparse to less than 60 bytes.

An output text connection is opened and creates an R character vector of the given name in the
user’s workspace or in the calling environment, depending on the value of the local argument.
This object will at all times hold the completed lines of output to the connection, and isIncomplete
will indicate if there is an incomplete final line. Closing the connection will output the final line,
complete or not. (A line is complete once it has been terminated by end-of-line, represented by "\n"
in R.) The output character vector has locked bindings (see lockBinding) until close is called on
the connection. The character vector can also be retrieved via textConnectionValue, which is
the only way to do so if object = NULL. If the current locale is detected as Latin-1 or UTF-8,
non-ASCII elements of the character vector will be marked accordingly (see Encoding).

Opening a text connection with mode = "a" will attempt to append to an existing character vector
with the given name in the user’s workspace or the calling environment. If none is found (even if
an object exists of the right name but the wrong type) a new character vector will be created, with a
warning.

You cannot seek on a text connection, and seek will always return zero as the position.

Text connections have slightly unusual semantics: they are always open, and throwing away an
input text connection without closing it (so it get garbage-collected) does not give a warning.

Value

For textConnection, a connection object of class "textConnection" which inherits from class
"connection".

For textConnectionValue, a character vector.

520 textConnection

Note

As output text connections keep the character vector up to date line-by-line, they are relatively
expensive to use, and it is often better to use an anonymous file() connection to collect output.

On (rare) platforms where vsnprintf does not return the needed length of output there is a 100,000
character limit on the length of line for output connections: longer lines will be truncated with a
warning.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.
[S has input text connections only.]

See Also

connections, showConnections, pushBack, capture.output.

Examples

zz <- textConnection(LETTERS)
readLines(zz, 2)
scan(zz, "", 4)
pushBack(c("aa", "bb"), zz)
scan(zz, "", 4)
close(zz)

zz <- textConnection("foo", "w")
writeLines(c("testit1", "testit2"), zz)
cat("testit3 ", file=zz)
isIncomplete(zz)
cat("testit4\n", file=zz)
isIncomplete(zz)
close(zz)
foo

Not run: # capture R output: use part of example from help(lm)
zz <- textConnection("foo", "w")
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.5, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)
sink(zz)
anova(lm.D9 <- lm(weight ~ group))
cat("\nSummary of Residuals:\n\n")
summary(resid(lm.D9))
sink()
close(zz)
cat(foo, sep = "\n")

End(Not run)

tilde 521

tilde Tilde Operator

Description

Tilde is used to separate the left- and right-hand sides in model formula.

Usage

y ~ model

Arguments

y, model symbolic expressions.

Details

The left-hand side is optional, and one-sided formulae are used in some contexts.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models in S eds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

formula

timezones Time Zones

Description

Information about time zones in R. Sys.timezone returns the current time zone.

Usage

Sys.timezone()

Details

Time zones are a system-specific topic, but these days almost all R platforms use the same underly-
ing code, used by Linux, Mac OS X, Solaris, AIX, FreeBSD, Sun Java >= 1.4 and Tcl >= 8.5, and
installed with R on Windows.

It is not in general possible to retrieve the system’s own name(s) for the current timezone, but
Sys.timezone will retrieve the name it uses for the current time (and the name may differ depend-
ing on whether daylight saving time is in effect).

On most platforms it is possible to set the time zone via the environment variable TZ: see the section
on ‘Time zone names’ for suitable values.

522 timezones

Note that the principal difficulty with time zones is their individual history: over the last 100 years
places have changed their affiliation between major time zones, have opted out of (or in to) DST in
various years or adopted rule changes late or not at all. This often involves tiny administrative units
in the US/Canada: Iowa had 23 different implementations of DST in the 1960’s!

Time zones did not come into use until the second half of the nineteenth century, and DST was first
introduced in the early twentieth century, most widely during the First World War (in 1916).

Value

Sys.timezone returns an OS-specific character string, possibly an empty string. Typically this is
an abbreviation such as "EST".

Time zone names

Where OSes describe their valid time zones can be obscure. The help for the C function tzset can
be helpful, but it can also be inaccurate. There is a cumbersome POSIX specification (listed under
environment variable TZ at http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
V1_chap08.html#tag_08), which is often at least partially supported, but there usually are other
more user-friendly ways to specify timezones.

Many systems make use of a timezone database compiled by Arthur Olson, in which the pre-
ferred way to refer to a time zone by a location (typically of a city) e.g. Europe/London,
America/Los_Angeles, Pacific/Easter. Some traditional designations are also allowed such
as EST5EDT or GB. (Beware that some of these designations may not be what you think: in particular
EST is a time zone used in Canada without daylight savings time, and not EST5EDT nor (Australian)
Eastern Standard Time.) The designation can also be an optional colon prepended to the path to
a file giving complied zone information (and the examples above are all files in a system-specific
location). See http://www.twinsun.com/tz/tz-link.htm for more details and references. By
convention, regions with a unique timezone history since 1970 have specific names, but those with
different earlier histories may not.

R under Windows uses the Olson database. The current version of the database will be
given in file ‘R_HOME\share\zoneinfo\VERSION’. Environment variable TZDIR can be used
to point to a later ‘zoneinfo’ directory. A file listing most known time zones can be found at
‘R_HOME\share\zoneinfo\zone.tab’ (see ‘Examples’). By convention, regions with a unique
timezone history since 1970 have specific names, but those with different earlier histories may not.

An attempt is made (once only per session) to map Windows’ idea of the current time zone to
a location, following an earlier version of http://unicode.org/repos/cldr/trunk/common/
supplemental/windowsZones.xml If this is not successful, it can be overridden by setting the
TZ environment variable.

Windows documents a specification of the form GST-1GDT: this is interpreted as POSIX-like and
hence the ‘US rules’ for changing to/from DST are applied (and are incorrect for Germany). Ver-
sions of R prior to 2.7.0 used Windows’ system functions and hence this form: it is still accepted
for backwards compatibility but was (and remains) unreliable and gives a warning.

Many systems support timezones of the form ‘GMT+n’ and ‘GMT-n’, which are at a fixed offset from
UTC (hence no DST). Contrary to some usage (but consistent with names such as ‘PST8PDT’),
negative offsets are times ahead of (east of) UTC, positive offsets are times behind (west of) UTC.

Note

There is currently (since 2007) considerable disruption over changes to the timings of the DST
transitions, aimed at energy conservation. These often have short notice and timezone databases
may not be up to date (even if the OS has been updated recently).

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08
http://www.twinsun.com/tz/tz-link.htm
http://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
http://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml

toString 523

Note that except on Windows, the operation of time zones is an OS service, and even on Windows
a third-party database is used and can be updated (see the section on ‘Time zone names’). Incorrect
results will never be an R issue, so please ensure that you have the courtesy not to blame R for
them.

See Also

Sys.time, as.POSIXlt.

http://en.wikipedia.org/wiki/Time_zone and http://www.twinsun.com/tz/tz-link.htm
for extensive sets of links.

Examples

Sys.timezone()

tzfile <- file.path(R.home("share"), "zoneinfo", "zone.tab")
tzones <- read.delim(tzfile, row.names = NULL, header = FALSE,

col.names = c("country", "coords", "name", "comments"),
as.is = TRUE, fill = TRUE, comment.char = "#")

str(tzones$name)

toString Convert an R Object to a Character String

Description

This is a helper function for format to produce a single character string describing an R object.

Usage

toString(x, ...)

Default S3 method:
toString(x, width = NULL, ...)

Arguments

x The object to be converted.

width Suggestion for the maximum field width. Values of NULL or 0 indicate no maxi-
mum. The minimum value accepted is 6 and smaller values are taken as 6.

... Optional arguments passed to or from methods.

Details

This is a generic function for which methods can be written: only the default method is described
here. Most methods should honor the width argument to specify the maximum display width (as
measured by nchar(type = "width") of the result.

The default method first converts x to character and then concatenates the elements separated by
", ". If width is supplied and is not NULL, the default method returns the first width - 4 characters
of the result with appended, if the full result would use more than width characters.

http://en.wikipedia.org/wiki/Time_zone
http://www.twinsun.com/tz/tz-link.htm

524 trace

Value

A character vector of length 1 is returned.

Author(s)

Robert Gentleman

See Also

format

Examples

x <- c("a", "b", "aaaaaaaaaaa")
toString(x)
toString(x, width=8)

trace Interactive Tracing and Debugging of Calls to a Function or Method

Description

A call to trace allows you to insert debugging code (e.g., a call to browser or recover) at chosen
places in any function. A call to untrace cancels the tracing. Specified methods can be traced the
same way, without tracing all calls to the function. Trace code can be any R expression. Tracing
can be temporarily turned on or off globally by calling tracingState.

Usage

trace(what, tracer, exit, at, print, signature,
where = topenv(parent.frame()), edit = FALSE)

untrace(what, signature = NULL, where = topenv(parent.frame()))

tracingState(on = NULL)
.doTrace(expr, msg)

Arguments

what The name (quoted or not) of a function to be traced or untraced. For untrace
or for trace with more than one argument, more than one name can be given in
the quoted form, and the same action will be applied to each one.

tracer Either a function or an unevaluated expression. The function will be called or
the expression will be evaluated either at the beginning of the call, or before
those steps in the call specified by the argument at. See the details section.

exit Either a function or an unevaluated expression. The function will be called or
the expression will be evaluated on exiting the function. See the details section.

at optional numeric vector or list. If supplied, tracer will be called just before the
corresponding step in the body of the function. See the details section.

print If TRUE (as per default), a descriptive line is printed before any trace expression
is evaluated.

trace 525

signature If this argument is supplied, it should be a signature for a method for function
what. In this case, the method, and not the function itself, is traced.

edit For complicated tracing, such as tracing within a loop inside the function, you
will need to insert the desired calls by editing the body of the function. If so,
supply the edit argument either as TRUE, or as the name of the editor you want
to use. Then trace() will call edit and use the version of the function after
you edit it. See the details section for additional information.

where where to look for the function to be traced; by default, the top-level environment
of the call to trace.
An important use of this argument is to trace a function when it is called from
a package with a namespace. The current namespace mechanism imports the
functions to be called (with the exception of functions in the base package). The
functions being called are not the same objects seen from the top-level (in gen-
eral, the imported packages may not even be attached). Therefore, you must
ensure that the correct versions are being traced. The way to do this is to set
argument where to a function in the namespace. The tracing computations will
then start looking in the environment of that function (which will be the names-
pace of the corresponding package). (Yes, it’s subtle, but the semantics here are
central to how namespaces work in R.)

on logical; a call to the support function tracingState returns TRUE if tracing is
globally turned on, FALSE otherwise. An argument of one or the other of those
values sets the state. If the tracing state is FALSE, none of the trace actions will
actually occur (used, for example, by debugging functions to shut off tracing
during debugging).

expr, msg arguments to the support function .doTrace, calls to which are inserted into
the modified function or method: expr is the tracing action (such as a call to
browser(), and msg is a string identifying the place where the trace action oc-
curs.

Details

The trace function operates by constructing a revised version of the function (or of the method, if
signature is supplied), and assigning the new object back where the original was found. If only
the what argument is given, a line of trace printing is produced for each call to the function (back
compatible with the earlier version of trace).

The object constructed by trace is from a class that extends "function" and which contains the
original, untraced version. A call to untrace re-assigns this version.

If the argument tracer or exit is the name of a function, the tracing expression will be a call to that
function, with no arguments. This is the easiest and most common case, with the functions browser
and recover the likeliest candidates; the former browses in the frame of the function being traced,
and the latter allows browsing in any of the currently active calls.

The tracer or exit argument can also be an unevaluated expression (such as returned by a call to
quote or substitute). This expression itself is inserted in the traced function, so it will typically
involve arguments or local objects in the traced function. An expression of this form is useful if you
only want to interact when certain conditions apply (and in this case you probably want to supply
print=FALSE in the call to trace also).

When the at argument is supplied, it can be a vector of integers referring to the substeps of the
body of the function (this only works if the body of the function is enclosed in { ...}. In this
case tracer is not called on entry, but instead just before evaluating each of the steps listed in at.

526 trace

(Hint: you don’t want to try to count the steps in the printed version of a function; instead, look at
as.list(body(f)) to get the numbers associated with the steps in function f.)

The at argument can also be a list of integer vectors. In this case, each vector refers to a step
nested within another step of the function. For example, at = list(c(3,4)) will call the tracer
just before the fourth step of the third step of the function. See the example below.

Using setBreakpoint (from package utils) may be an alternative, calling
trace(...., at, ...).

An intrinsic limitation in the exit argument is that it won’t work if the function itself uses on.exit,
since the existing calls will override the one supplied by trace.

Tracing does not nest. Any call to trace replaces previously traced versions of that function or
method (except for edited versions as discussed below), and untrace always restores an untraced
version. (Allowing nested tracing has too many potentials for confusion and for accidentally leaving
traced versions behind.)

When the edit argument is used repeatedly with no call to untrace on the same function or method
in between, the previously edited version is retained. If you want to throw away all the previous
tracing and then edit, call untrace before the next call to trace. Editing may be combined with
automatic tracing; just supply the other arguments such as tracer, and the edit argument as well.
The edit=TRUE argument uses the default editor (see edit).

Tracing primitive functions (builtins and specials) from the base package works, but only by a spe-
cial mechanism and not very informatively. Tracing a primitive causes the primitive to be replaced
by a function with argument . . . (only). You can get a bit of information out, but not much. A
warning message is issued when trace is used on a primitive.

The practice of saving the traced version of the function back where the function came from means
that tracing carries over from one session to another, if the traced function is saved in the session
image. (In the next session, untrace will remove the tracing.) On the other hand, functions that
were in a package, not in the global environment, are not saved in the image, so tracing expires with
the session for such functions.

Tracing a method is basically just like tracing a function, with the exception that the traced version
is stored by a call to setMethod rather than by direct assignment, and so is the untraced version
after a call to untrace.

The version of trace described here is largely compatible with the version in S-Plus, although
the two work by entirely different mechanisms. The S-Plus trace uses the session frame, with
the result that tracing never carries over from one session to another (R does not have a session
frame). Another relevant distinction has nothing directly to do with trace: The browser in S-Plus
allows changes to be made to the frame being browsed, and the changes will persist after exiting
the browser. The R browser allows changes, but they disappear when the browser exits. This may
be relevant in that the S-Plus version allows you to experiment with code changes interactively, but
the R version does not. (A future revision may include a ‘destructive’ browser for R.)

Value

In the simple version (just the first argument), invisible NULL. Otherwise, the traced function(s)
name(s). The relevant consequence is the assignment that takes place.

Note

The version of function tracing that includes any of the arguments except for the function name
requires the methods package (because it uses special classes of objects to store and restore versions
of the traced functions).

trace 527

If methods dispatch is not currently on, trace will load the methods namespace, but will not put
the methods package on the search list.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

browser and recover, the likeliest tracing functions; also, quote and substitute for constructing
general expressions.

Examples

require(graphics)

Very simple use
trace(sum)
hist(stats::rnorm(100)) # shows about 3-4 calls to sum()
untrace(sum)

if(.isMethodsDispatchOn()) { # non-simple use needs ’methods’ package

f <- function(x, y) {
y <- pmax(y, 0.001)
if (x > 0) x ^ y else stop("x must be positive")

}

arrange to call the browser on entering and exiting
function f
trace("f", quote(browser(skipCalls=4)),

exit = quote(browser(skipCalls=4)))

instead, conditionally assign some data, and then browse
on exit, but only then. Don’t bother me otherwise

trace("f", quote(if(any(y < 0)) yOrig <- y),
exit = quote(if(exists("yOrig")) browser(skipCalls=4)),
print = FALSE)

Enter the browser just before stop() is called. First, find
the step numbers

as.list(body(f))
as.list(body(f)[[3]])

Now call the browser there

trace("f", quote(browser(skipCalls=4)), at=list(c(3,4)))

trace a utility function, with recover so we
can browse in the calling functions as well.

trace("as.matrix", recover)

turn off the tracing

528 traceback

untrace(c("f", "as.matrix"))

Not run:
trace calls to the function lm() that come from
the nlme package.
(The function nlme is in that package, and the package
has a namespace, so the where= argument must be used
to get the right version of lm)

trace(lm, exit = recover, where = nlme)

End(Not run)
}

traceback Print Call Stacks

Description

By default traceback() prints the call stack of the last uncaught error, i.e., the sequence of calls
that lead to the error. This is useful when an error occurs with an unidentifiable error message. It
can also be used to print the current stack or arbitrary lists of deparsed calls.

Usage

traceback(x = NULL, max.lines = getOption("deparse.max.lines"))

Arguments

x NULL (default, meaning .Traceback), or an integer count of calls to skip in the
current stack, or a list or pairlist of deparsed calls. See the details.

max.lines The maximum number of lines to be printed per call. The default is unlimited.

Details

The default display is of the stack of the last uncaught error as stored as a list of deparsed calls in
.Traceback, which traceback prints in a user-friendly format. The stack of deparsed calls always
contains all function calls and all foreign function calls (such as .Call): if profiling is in progress
it will include calls to some primitive functions. (Calls to builtins are included, but not to specials.)

Errors which are caught via try or tryCatch do not generate a traceback, so what is printed is the
call sequence for the last uncaught error, and not necessarily for the last error.

If x is numeric, then the current stack is printed, skipping x entries at the top of the stack. For
example, options(error=function() traceback(2)) will print the stack at the time of the error,
skipping the call to traceback() and the error function that called it.

Otherwise, x is assumed to be a list or pairlist of deparsed calls and will be displayed in the same
way.

Value

traceback() prints the deparsed call stack deepest call first, and returns it invisibly. The calls may
print on more than one line, and the first line for each call is labelled by the frame number. The
number of lines printed per call can be limited via max.lines.

tracemem 529

Warning

It is undocumented where .Traceback is stored nor that it is visible, and this is subject to change.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

foo <- function(x) { print(1); bar(2) }
bar <- function(x) { x + a.variable.which.does.not.exist }
Not run:
foo(2) # gives a strange error
traceback()
End(Not run)
2: bar(2)
1: foo(2)
bar
Ah, this is the culprit ...

This will print the stack trace at the time of the error.
options(error=function() traceback(2))

tracemem Trace Copying of Objects

Description

This function marks an object so that a message is printed whenever the internal code copies the
object. It is a major cause of hard-to-predict memory use in R.

Usage

tracemem(x)
untracemem(x)
retracemem(x, previous = NULL)

Arguments

x An R object, not a function or environment or NULL.

previous A value as returned by tracemem or retracemem.

Details

This functionality is optional, determined at compilation, because it makes R run a little more
slowly even when no objects are being traced. tracemem and untracemem give errors when R
is not compiled with memory profiling; retracemem does not (so it can be left in code during
development).

It is enabled in the standard Mac OS X and Windows builds of R.

When an object is traced any copying of the object by the C function duplicate produces a message
to standard output, as does type coercion and copying when passing arguments to .C or .Fortran.

530 transform

The message consists of the string tracemem, the identifying strings for the object being copied
and the new object being created, and a stack trace showing where the duplication occurred.
retracemem() is used to indicate that a variable should be considered a copy of a previous variable
(e.g. after subscripting).

The messages can be turned off with tracingState.

It is not possible to trace functions, as this would conflict with trace and it is not useful to trace
NULL, environments, promises, weak references, or external pointer objects, as these are not dupli-
cated.

These functions are primitive.

Value

A character string for identifying the object in the trace output (an address in hex enclosed in angle
brackets), or NULL (invisibly).

See Also

capabilities("profmem") to see if this was enabled for this build of R.

trace, Rprofmem

http://developer.r-project.org/memory-profiling.html

Examples

Not run:
a <- 1:10
tracemem(a)
b and a share memory
b <- a
b[1] <- 1
untracemem(a)

copying in lm: less than R <= 2.15.0
d <- stats::rnorm(10)
tracemem(d)
lm(d ~ a+log(b))

f is not a copy and is not traced
f <- d[-1]
f+1
indicate that f should be traced as a copy of d
retracemem(f, retracemem(d))
f+1

End(Not run)

transform Transform an Object, for Example a Data Frame

Description

transform is a generic function, which—at least currently—only does anything useful with data
frames. transform.default converts its first argument to a data frame if possible and calls
transform.data.frame.

http://developer.r-project.org/memory-profiling.html

Trig 531

Usage

transform(‘_data‘, ...)

Arguments

_data The object to be transformed

... Further arguments of the form tag=value

Details

The ... arguments to transform.data.frame are tagged vector expressions, which are evaluated
in the data frame _data. The tags are matched against names(_data), and for those that match, the
value replace the corresponding variable in _data, and the others are appended to _data.

Value

The modified value of _data.

Note

Prior to R 2.3.0, the first argument was named x, but this caused trouble if people wanted to create
a variable of that name. Names starting with an underscore are syntactically invalid, so the current
choice should be less problematic.

If some of the values are not vectors of the appropriate length, you deserve whatever you get!

Author(s)

Peter Dalgaard

See Also

within for a more flexible approach, subset, list, data.frame

Examples

transform(airquality, Ozone = -Ozone)
transform(airquality, new = -Ozone, Temp = (Temp-32)/1.8)

attach(airquality)
transform(Ozone, logOzone = log(Ozone)) # marginally interesting ...
detach(airquality)

Trig Trigonometric Functions

Description

These functions give the obvious trigonometric functions. They respectively compute the cosine,
sine, tangent, arc-cosine, arc-sine, arc-tangent, and the two-argument arc-tangent.

532 Trig

Usage

cos(x)
sin(x)
tan(x)
acos(x)
asin(x)
atan(x)
atan2(y, x)

Arguments

x, y numeric or complex vectors.

Details

The arc-tangent of two arguments atan2(y, x) returns the angle between the x-axis and the vector
from the origin to (x, y), i.e., for positive arguments atan2(y, x) == atan(y/x).

Angles are in radians, not degrees (i.e., a right angle is π/2).

All except atan2 are internal generic primitive functions: methods can be defined for them individ-
ually or via the Math group generic.

Complex values

For the inverse trigonometric functions, branch cuts are defined as in Abramowitz and Stegun, figure
4.4, page 79.

For asin and acos, there are two cuts, both along the real axis: (−∞,−1] and [1,∞).

For atan there are two cuts, both along the pure imaginary axis: (−∞i,−1i] and [1i,∞i).

The behaviour actually on the cuts follows the C99 standard which requires continuity coming
round the endpoint in a counter-clockwise direction.

S4 methods

All except atan2 are S4 generic functions: methods can be defined for them individually or via the
Math group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions, New York: Dover.
Chapter 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyper-
bolic Functions

try 533

try Try an Expression Allowing Error Recovery

Description

try is a wrapper to run an expression that might fail and allow the user’s code to handle error-
recovery.

Usage

try(expr, silent = FALSE)

Arguments

expr an R expression to try.

silent logical: should the report of error messages be suppressed?

Details

try evaluates an expression and traps any errors that occur during the evaluation. If
an error occurs then the error message is printed to the stderr connection unless
options("show.error.messages") is false or the call includes silent = TRUE. The error mes-
sage is also stored in a buffer where it can be retrieved by geterrmessage. (This should not be
needed as the value returned in case of an error contains the error message.)

try is implemented using tryCatch; for programming, instead of try(expr, silent=TRUE),
something like tryCatch(expr, error = function(e) e) (or other simple error handler func-
tions) may be more efficient and flexible.

Value

The value of the expression if expr is evaluated without error, but an invisible object of class
"try-error" containing the error message, and the error condition as the "condition" attribute,
if it fails.

See Also

options for setting error handlers and suppressing the printing of error messages; geterrmessage
for retrieving the last error message. tryCatch provides another means of catching and handling
errors.

Examples

this example will not work correctly in example(try), but
it does work correctly if pasted in
options(show.error.messages = FALSE)
try(log("a"))
print(.Last.value)
options(show.error.messages = TRUE)

alternatively,
print(try(log("a"), TRUE))

534 typeof

run a simulation, keep only the results that worked.
set.seed(123)
x <- stats::rnorm(50)
doit <- function(x)
{

x <- sample(x, replace=TRUE)
if(length(unique(x)) > 30) mean(x)
else stop("too few unique points")

}
alternative 1
res <- lapply(1:100, function(i) try(doit(x), TRUE))
alternative 2
Not run: res <- vector("list", 100)
for(i in 1:100) res[[i]] <- try(doit(x), TRUE)
End(Not run)
unlist(res[sapply(res, function(x) !inherits(x, "try-error"))])

typeof The Type of an Object

Description

typeof determines the (R internal) type or storage mode of any object

Usage

typeof(x)

Arguments

x any R object.

Value

A character string. The possible values are listed in the structure TypeTable in ‘src/main/util.c’.
Current values are the vector types "logical", "integer", "double", "complex", "character",
"raw" and "list", "NULL", "closure" (function), "special" and "builtin" (basic functions and
operators), "environment", "S4" (some S4 objects) and others that are unlikely to be seen at user
level ("symbol", "pairlist", "promise", "language", "char", "...", "any", "expression",
"externalptr", "bytecode" and "weakref").

See Also

mode, storage.mode.

isS4 to determine if an object has an S4 class.

Examples

typeof(2)
mode(2)

unique 535

unique Extract Unique Elements

Description

unique returns a vector, data frame or array like x but with duplicate elements/rows removed.

Usage

unique(x, incomparables = FALSE, ...)

Default S3 method:
unique(x, incomparables = FALSE, fromLast = FALSE, ...)

S3 method for class ’matrix’
unique(x, incomparables = FALSE, MARGIN = 1,

fromLast = FALSE, ...)

S3 method for class ’array’
unique(x, incomparables = FALSE, MARGIN = 1,

fromLast = FALSE, ...)

Arguments

x a vector or a data frame or an array or NULL.

incomparables a vector of values that cannot be compared. FALSE is a special value, meaning
that all values can be compared, and may be the only value accepted for methods
other than the default. It will be coerced internally to the same type as x.

fromLast logical indicating if duplication should be considered from the last, i.e., the last
(or rightmost) of identical elements will be kept. This only matters for names or
dimnames.

... arguments for particular methods.

MARGIN the array margin to be held fixed: a single integer.

Details

This is a generic function with methods for vectors, data frames and arrays (including matrices).

The array method calculates for each element of the dimension specified by MARGIN if the remaining
dimensions are identical to those for an earlier element (in row-major order). This would most
commonly be used for matrices to find unique rows (the default) or columns (with MARGIN = 2).

Note that unlike the Unix command uniq this omits duplicated and not just repeated elements/rows.
That is, an element is omitted if it is equal to any previous element and not just if it is equal the
immediately previous one. (For the latter, see rle).

Missing values are regarded as equal, but NaN is not equal to NA_real_. Character strings are
regarded as equal if they are in different encodings but would agree when translated to UTF-8.

Values in incomparables will never be marked as duplicated. This is intended to be used for a
fairly small set of values and will not be efficient for a very large set.

536 unlink

When used on a data frame with more than one column, or an array or matrix when comparing
dimensions of length greater than one, this tests for identity of character representations. This will
catch people who unwisely rely on exact equality of floating-point numbers!

Character strings will be compared as byte sequences if any input is marked as "bytes".

Value

For a vector, an object of the same type of x, but with only one copy of each duplicated element.
No attributes are copied (so the result has no names).

For a data frame, a data frame is returned with the same columns but possibly fewer rows (and with
row names from the first occurrences of the unique rows).

A matrix or array is subsetted by [, drop = FALSE], so dimensions and dimnames are copied
appropriately, and the result always has the same number of dimensions as x.

Warning

Using this for lists is potentially slow, especially if the elements are not atomic vectors (see vector)
or differ only in their attributes. In the worst case it is O(n2).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

duplicated which gives the indices of duplicated elements.

rle which is the equivalent of the Unix uniq -c command.

Examples

x <- c(3:5, 11:8, 8 + 0:5)
(ux <- unique(x))
(u2 <- unique(x, fromLast = TRUE)) # different order
stopifnot(identical(sort(ux), sort(u2)))

length(unique(sample(100, 100, replace=TRUE)))
approximately 100(1 - 1/e) = 63.21

unique(iris)

unlink Delete Files and Directories

Description

unlink deletes the file(s) or directories specified by x.

Usage

unlink(x, recursive = FALSE, force = FALSE)

unlist 537

Arguments

x a character vector with the names of the file(s) or directories to be deleted. Wild-
cards (normally ‘*’ and ‘?’) are allowed.

recursive logical. Should directories be deleted recursively?

force logical. Should permissions be changed (if possible) to allow the file or directory
to be removed?

Details

Tilde-expansion (see path.expand) is done on x.

If recursive = FALSE directories are not deleted, not even empty ones.

Wildcard expansion is done by the internal code of Sys.glob. Wildcards never match a leading ‘.’
in the filename, and files ‘.’ and ‘..’ will never be considered for deletion.

Value

0 for success, 1 for failure, invisibly. Not deleting a non-existent file is not a failure, nor is being
unable to delete a directory if recursive = FALSE. However, missing values in x are regarded as
failures.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

file.remove.

unlist Flatten Lists

Description

Given a list structure x, unlist simplifies it to produce a vector which contains all the atomic
components which occur in x.

Usage

unlist(x, recursive = TRUE, use.names = TRUE)

Arguments

x an R object, typically a list or vector.

recursive logical. Should unlisting be applied to list components of x?

use.names logical. Should names be preserved?

538 unlist

Details

unlist is generic: you can write methods to handle specific classes of objects, see InternalMethods,
and note, e.g., relist with the unlist method for relistable objects.

If recursive = FALSE, the function will not recurse beyond the first level items in x.

Factors are treated specially. If all non-list elements of x are factors (or ordered factors) then the
result will be a factor with levels the union of the level sets of the elements, in the order the levels
occur in the level sets of the elements (which means that if all the elements have the same level set,
that is the level set of the result).

x can be an atomic vector, but then unlist does nothing useful, not even drop names.

By default, unlist tries to retain the naming information present in x. If use.names = FALSE all
naming information is dropped.

Where possible the list elements are coerced to a common mode during the unlisting, and so the
result often ends up as a character vector. Vectors will be coerced to the highest type of the com-
ponents in the hierarchy NULL < raw < logical < integer < real < complex < character < list <
expression: pairlists are treated as lists.

A list is a (generic) vector, and the simplified vector might still be a list (and might be unchanged).
Non-vector elements of the list (for example language elements such as names, formulas and calls)
are not coerced, and so a list containing one or more of these remains a list. (The effect of unlisting
an lm fit is a list which has individual residuals as components.)

Value

NULL or an expression or a vector of an appropriate mode to hold the list components.

The output type is determined from the highest type of the components in the hierarchy NULL <
raw < logical < integer < real < complex < character < list < expression, after coercion of pairlists
to lists.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

c, as.list, relist.

Examples

unlist(options())
unlist(options(), use.names=FALSE)

l.ex <- list(a = list(1:5, LETTERS[1:5]), b = "Z", c = NA)
unlist(l.ex, recursive = FALSE)
unlist(l.ex, recursive = TRUE)

l1 <- list(a="a", b=2, c=pi+2i)
unlist(l1) # a character vector
l2 <- list(a="a", b=as.name("b"), c=pi+2i)
unlist(l2) # remains a list

unname 539

unname Remove names or dimnames

Description

Remove the names or dimnames attribute of an R object.

Usage

unname(obj, force = FALSE)

Arguments

obj an R object.

force logical; if true, the dimnames (names and row names) are removed even from
data.frames.

Value

Object as obj but without names or dimnames.

Examples

require(graphics); require(stats)

Answering a question on R-help (14 Oct 1999):
col3 <- 750+ 100*rt(1500, df = 3)
breaks <- factor(cut(col3,breaks=360+5*(0:155)))
z <- table(breaks)
z[1:5] # The names are larger than the data ...
barplot(unname(z), axes= FALSE)

UseMethod Class Methods

Description

R possesses a simple generic function mechanism which can be used for an object-oriented style
of programming. Method dispatch takes place based on the class(es) of the first argument to the
generic function or of the object supplied as an argument to UseMethod or NextMethod.

Usage

UseMethod(generic, object)

NextMethod(generic = NULL, object = NULL, ...)

540 UseMethod

Arguments

generic a character string naming a function (and not a built-in operator). Required for
UseMethod.

object for UseMethod: an object whose class will determine the method to be dis-
patched. Defaults to the first argument of the enclosing function.

... further arguments to be passed to the next method.

Details

An R object is a data object which has a class attribute (and this can be tested by is.object). A
class attribute is a character vector giving the names of the classes from which the object inherits.
If the object does not have a class attribute, it has an implicit class. Matrices and arrays have
class "matrix" or"array" followed by the class of the underlying vector. Most vectors have class
the result of mode(x), except that integer vectors have class c("integer", "numeric") and real
vectors have class c("double", "numeric").

When a function calling UseMethod("fun") is applied to an object with class attribute
c("first", "second"), the system searches for a function called fun.first and, if it finds it,
applies it to the object. If no such function is found a function called fun.second is tried. If no
class name produces a suitable function, the function fun.default is used, if it exists, or an error
results.

Function methods can be used to find out about the methods for a particular generic function or
class.

UseMethod is a primitive function but (as from R 2.11.0) uses standard argument matching. It is not
the only means of dispatch of methods, for there are internal generic and group generic functions.
UseMethod currently dispatches on the implicit class even for arguments that are not objects, but
the other means of dispatch do not.

NextMethod invokes the next method (determined by the class vector, either of the object supplied
to the generic, or of the first argument to the function containing NextMethod if a method was
invoked directly). Normally NextMethod is used with only one argument, generic, but if further
arguments are supplied these modify the call to the next method.

NextMethod should not be called except in methods called by UseMethod or from internal gener-
ics (see InternalGenerics). In particular it will not work inside anonymous calling functions (e.g.
get("print.ts")(AirPassengers)).

Namespaces can register methods for generic functions. To support this, UseMethod and
NextMethod search for methods in two places: first in the environment in which the generic function
is called, and then in the registration data base for the environment in which the generic is defined
(typically a namespace). So methods for a generic function need to be available in the environment
of the call to the generic, or they must be registered. (It does not matter whether they are visible in
the environment in which the generic is defined.)

Technical Details

Now for some obscure details that need to appear somewhere. These comments will be slightly
different than those in Chambers(1992). (See also the draft ‘R Language Definition’.) UseMethod
creates a new function call with arguments matched as they came in to the generic. Any local
variables defined before the call to UseMethod are retained (unlike S). Any statements after the call
to UseMethod will not be evaluated as UseMethod does not return. UseMethod can be called with
more than two arguments: a warning will be given and additional arguments ignored. (They are not
completely ignored in S.) If it is called with just one argument, the class of the first argument of the

UseMethod 541

enclosing function is used as object: unlike S this is the first actual argument passed and not the
current value of the object of that name.

NextMethod works by creating a special call frame for the next method. If no new arguments are
supplied, the arguments will be the same in number, order and name as those to the current method
but their values will be promises to evaluate their name in the current method and environment. Any
named arguments matched to ... are handled specially: they either replace existing arguments of
the same name or are appended to the argument list. They are passed on as the promise that was
supplied as an argument to the current environment. (S does this differently!) If they have been
evaluated in the current (or a previous environment) they remain evaluated. (This is a complex area,
and subject to change: see the draft ‘R Language Definition’.)

The search for methods for NextMethod is slightly different from that for UseMethod. Finding no
fun.default is not necessarily an error, as the search continues to the generic itself. This is to pick
up an internal generic like [which has no separate default method, and succeeds only if the generic
is a primitive function or a wrapper for a .Internal function of the same name. (When a primitive
is called as the default method, argument matching may not work as described above due to the
different semantics of primitives.)

You will see objects such as .Generic, .Method, and .Class used in methods. These are set in the
environment within which the method is evaluated by the dispatch mechanism, which is as follows:

1. Find the context for the calling function (the generic): this gives us the unevaluated arguments
for the original call.

2. Evaluate the object (usually an argument) to be used for dispatch, and find a method (possibly
the default method) or throw an error.

3. Create an environment for evaluating the method and insert special variables (see below) into
that environment. Also copy any variables in the environment of the generic that are not formal
(or actual) arguments.

4. Fix up the argument list to be the arguments of the call matched to the formals of the method.

.Generic is a length-one character vector naming the generic function.

.Method is a character vector (normally of length one) naming the method function. (For functions
in the group generic Ops it is of length two.)

.Class is a character vector of classes used to find the next method. NextMethod adds an attribute
"previous" to .Class giving the .Class last used for dispatch, and shifts .Class along to that
used for dispatch.

.GenericCallEnv and .GenericDefEnv are the environments of the call to be generic and defining
the generic respectively. (The latter is used to find methods registered for the generic.)

Note that .Class is set when the generic is called, and is unchanged if the class of the dispatching
argument is changed in a method. It is possible to change the method that NextMethod would dis-
patch by manipulating .Class, but ‘this is not recommended unless you understand the inheritance
mechanism thoroughly’ (Chambers & Hastie, 1992, p. 469).

Note

This scheme is called S3 (S version 3). For new projects, it is recommended to use the more flexible
and robust S4 scheme provided in the methods package.

References

Chambers, J. M. (1992) Classes and methods: object-oriented programming in S. Appendix A of
Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

542 userhooks

See Also

The draft ‘R Language Definition’.

methods, class, getS3method, is.object.

userhooks Functions to Get and Set Hooks for Load, Attach, Detach and Unload

Description

These functions allow users to set actions to be taken before packages are attached/detached and
namespaces are (un)loaded.

Usage

getHook(hookName)
setHook(hookName, value,

action = c("append", "prepend", "replace"))

packageEvent(pkgname,
event = c("onLoad", "attach", "detach", "onUnload"))

Arguments

hookName character string: the hook name

pkgname character string: the package/namespace name.

event character string: an event for the package

value A function, or for action="replace", NULL.

action The action to be taken. The names can be abbreviated.

Details

setHook provides a general mechanism for users to register hooks, a list of functions to be called
from system (or user) functions. The initial set of hooks was associated with events on pack-
ages/namespaces: these hooks are named via calls to packageEvent.

To remove a hook completely, call setHook(hookName, NULL, "replace").

When an R package is attached by library or loaded by other means, it can call initialization code.
See .onLoad for a description of the package hook functions called during initialization. Users can
add their own initialization code via the hooks provided by setHook(), functions which will be
called as funname(pkgname, pkgpath) inside a try call.

The sequence of events depends on which hooks are defined, and whether a package is attached
or just loaded. In the case where all hooks are defined and a package is attached, the order of
initialization events is as follows:

1. The package namespace is loaded.

2. The package’s .onLoad function is run.

3. The namespace is sealed.

4. The user’s "onLoad" hook is run.

userhooks 543

5. The package is added to the search path.

6. The package’s .onAttach function is run.

7. The package environment is sealed.

8. The user’s "attach" hook is run.

A similar sequence (but in reverse) is run when a package is detached and its namespace unloaded:

1. The user’s "detach" hook is run.

2. The package’s .Last.lib function is run.

3. The package is removed from the search path.

4. The user’s "onUnload" hook is run.

5. The package’s .onUnload function is run.

6. The package namespace is unloaded.

Note that when an R session is finished, packages are not detached and namespaces are not un-
loaded, so the corresponding hooks will not be run.

Also note that some of the user hooks are run without the package being on the search path, so in
those hooks objects in the package need to be referred to using the double (or triple) colon operator,
as in the example.

If multiple hooks are added, they are normally run in the order shown by getHook, but the "detach"
and "onUnload" hooks are run in reverse order so the default for package events is to add hooks
‘inside’ existing ones.

The hooks are stored in the environment .userHooksEnv in the base package, with ‘mangled’
names.

Value

For getHook function, a list of functions (possibly empty). For setHook function, no return value.
For packageEvent, the derived hook name (a character string).

See Also

library, detach, loadNamespace.

See :: for a discussion of the double and triple colon operators.

Other hooks may be added later: functions plot.new and persp already have them.

Examples

setHook(packageEvent("grDevices", "onLoad"),
function(...) grDevices::ps.options(horizontal=FALSE))

544 utf8Conversion

utf8Conversion Convert to or from UTF-8-encoded Character Vectors

Description

Conversion of UTF-8 encoded character vectors to and from integer vectors.

Usage

utf8ToInt(x)
intToUtf8(x, multiple = FALSE)

Arguments

x object to be converted.

multiple logical: should the conversion be to a single character string or multiple individ-
ual characters?

Details

These will work in any locale, including on machines that do not otherwise support multi-byte
character sets.

Value

utf8ToInt converts a length-one character string encoded in UTF-8 to an integer vector of (nu-
meric) UTF-8 code points.

intToUtf8 converts a vector of (numeric) UTF-8 code points either to a single character string or a
character vector of single characters. (For a single character string 0 is silently omitted: otherwise 0
is mapped to "". Non-integral numeric values are truncated to integers.) The Encoding is declared
as "UTF-8".

As from R 2.11.0 NA inputs are mapped to NA output.

Examples

Not run:
will only display in some locales and fonts
intToUtf8(0x03B2L) # Greek beta

End(Not run)

vector 545

vector Vectors

Description

vector produces a vector of the given length and mode.

as.vector, a generic, attempts to coerce its argument into a vector of mode mode (the default is
to coerce to whichever vector mode is most convenient): if the result is atomic all attributes are
removed.

is.vector returns TRUE if x is a vector of the specified mode having no attributes other than names.
It returns FALSE otherwise.

Usage

vector(mode = "logical", length = 0)
as.vector(x, mode = "any")
is.vector(x, mode = "any")

Arguments

mode A character string giving an atomic mode or "list", or (except for vector)
"any".

length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.

x An object.

Details

The atomic modes are "logical", "integer", "numeric" (synonym "double"), "complex",
"character" and "raw".

If mode = "any", is.vector may return TRUE for the atomic modes, list and expression. For
any mode, it will return FALSE if x has any attributes except names. (This is incompatible with S.)
On the other hand, as.vector removes all attributes including names for results of atomic mode
(but not those of mode "list" nor "expression").

Note that factors are not vectors; is.vector returns FALSE and as.vector converts a factor to a
character vector for mode = "any".

Value

For vector, a vector of the given length and mode. Logical vector elements are initialized to FALSE,
numeric vector elements to 0, character vector elements to "", raw vector elements to nul bytes and
list elements to NULL.

For as.vector, a vector (atomic or of type list). All attributes are removed from the result if it is of
an atomic mode, but not in general for a list result. The default method handles 24 input types and
12 values of type: the details of most coercions are undocumented and subject to change.

For is.vector, TRUE or FALSE. is.vector(x, mode = "numeric") can be true for vectors of
types "integer" or "double" whereas is.vector(x, mode = "double") can only be true for
those of type "double".

546 vector

Methods for as.vector()

Writers of methods for as.vector need to take care to follow the conventions of the default method.
In particular

• Argument mode can be "any", any of the atomic modes, "list", "expression", "symbol",
"pairlist" or one of the aliases "double" and "name".

• The return value should be of the appropriate mode. For mode = "any" this means an atomic
vector or list.

• Attributes should be treated appropriately: in particular when the result is an atomic vector
there should be no attributes, not even names.

• is.vector(as.vector(x, m), m) should be true for any mode m, including the default
"any".

Note

as.vector and is.vector are quite distinct from the meaning of the formal class "vector" in the
methods package, and hence as(x, "vector") and is(x, "vector").

Note that as.vector(x) is not necessarily a null operation if is.vector(x) is true: any names
will be removed from an atomic vector.

modes of "symbol" (synonym "name"), "pairlist" and "expression" are allowed but have long
been undocumented: they are used to implement as.name, as.pairlist and as.expression, and
those functions should preferably be used directly. None of the description here applies to those
modes: see the help for the preferred forms.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

c, is.numeric, is.list, etc.

Examples

df <- data.frame(x=1:3, y=5:7)
Not run: ## Error:

as.vector(data.frame(x=1:3, y=5:7), mode="numeric")

End(Not run)

x <- c(a = 1, b = 2)
is.vector(x)
as.vector(x)
all.equal(x, as.vector(x)) ## FALSE

###-- All the following are TRUE:
is.list(df)
! is.vector(df)
! is.vector(df, mode="list")

is.vector(list(), mode="list")

Vectorize 547

Vectorize Vectorize a Scalar Function

Description

Vectorize creates a function wrapper that vectorizes the action of its argument FUN.

Usage

Vectorize(FUN, vectorize.args = arg.names, SIMPLIFY = TRUE,
USE.NAMES = TRUE)

Arguments

FUN function to apply, found via match.fun.

vectorize.args a character vector of arguments which should be vectorized. Defaults to all
arguments of FUN.

SIMPLIFY logical or character string; attempt to reduce the result to a vector, matrix or
higher dimensional array; see the simplify argument of sapply.

USE.NAMES logical; use names if the first . . . argument has names, or if it is a character vector,
use that character vector as the names.

Details

The arguments named in the vectorize.args argument to Vectorize are the arguments passed in
the ... list to mapply. Only those that are actually passed will be vectorized; default values will
not. See the examples.

Vectorize cannot be used with primitive functions as they do not have a value for formals.

Value

A function with the same arguments as FUN, wrapping a call to mapply.

Examples

We use rep.int as rep is primitive
vrep <- Vectorize(rep.int)
vrep(1:4, 4:1)
vrep(times = 1:4, x = 4:1)

vrep <- Vectorize(rep.int, "times")
vrep(times = 1:4, x = 42)

f <- function(x = 1:3, y) c(x,y)
vf <- Vectorize(f, SIMPLIFY = FALSE)
f(1:3, 1:3)
vf(1:3, 1:3)
vf(y = 1:3) # Only vectorizes y, not x

Nonlinear regression contour plot, based on nls() example
require(graphics)
SS <- function(Vm, K, resp, conc) {

548 warning

pred <- (Vm * conc)/(K + conc)
sum((resp - pred)^2 / pred)

}
vSS <- Vectorize(SS, c("Vm", "K"))
Treated <- subset(Puromycin, state == "treated")

Vm <- seq(140, 310, length.out = 50)
K <- seq(0, 0.15, length.out = 40)
SSvals <- outer(Vm, K, vSS, Treated$rate, Treated$conc)
contour(Vm, K, SSvals, levels = (1:10)^2, xlab = "Vm", ylab = "K")

warning Warning Messages

Description

Generates a warning message that corresponds to its argument(s) and (optionally) the expression or
function from which it was called.

Usage

warning(..., call. = TRUE, immediate. = FALSE, domain = NULL)
suppressWarnings(expr)

Arguments

... zero or more objects which can be coerced to character (and which are pasted
together with no separator) or a single condition object.

call. logical, indicating if the call should become part of the warning message.

immediate. logical, indicating if the call should be output immediately, even if
getOption("warn") <= 0.

expr expression to evaluate.

domain see gettext. If NA, messages will not be translated.

Details

The result depends on the value of options("warn") and on handlers established in the executing
code.

If a condition object is supplied it should be the only argument, and further arguments will be
ignored, with a message.

warning signals a warning condition by (effectively) calling signalCondition. If there are no
handlers or if all handlers return, then the value of warn = getOption("warn") is used to deter-
mine the appropriate action. If warn is negative warnings are ignored; if it is zero they are stored
and printed after the top–level function has completed; if it is one they are printed as they occur and
if it is 2 (or larger) warnings are turned into errors. Calling warning(immediate. = TRUE) turns
warn <= 0 into warn = 1 for this call only.

If warn is zero (the default), a read-only variable last.warning is created. It contains the warnings
which can be printed via a call to warnings.

Warnings will be truncated to getOption("warning.length") characters, default 1000, indicated
by [... truncated].

warnings 549

While the warning is being processed, a muffleWarning restart is available. If this restart is invoked
with invokeRestart, then warning returns immediately.

An attempt is made to coerce other types of inputs to warning to character vectors.

suppressWarnings evaluates its expression in a context that ignores all warnings.

Value

The warning message as character string, invisibly.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

stop for fatal errors, message for diagnostic messages, warnings, and options with argument
warn=.

gettext for the mechanisms for the automated translation of messages.

Examples

testit <- function() warning("testit")
testit() ## shows call
testit <- function() warning("problem in testit", call. = FALSE)
testit() ## no call
suppressWarnings(warning("testit"))

warnings Print Warning Messages

Description

warnings and its print method print the variable last.warning in a pleasing form.

Usage

warnings(...)

Arguments

... arguments to be passed to cat.

Details

See the description of options("warn") for the circumstances under which there is a
last.warning object and warnings() is used. In essence this is if options(warn = 0) and
warning has been called at least once.

It is possible that last.warning refers to the last recorded warning and not to the last warning, for
example if options(warn) has been changed or if a catastrophic error occurred.

550 weekdays

Warning

It is undocumented where last.warning is stored nor that it is visible, and this is subject to change.
Prior to R 2.4.0 it was stored in the workspace, but no longer.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

warning.

Examples

NB this example is intended to be pasted in,
rather than run by example()
ow <- options("warn")
for(w in -1:1) {

options(warn = w); cat("\n warn =",w,"\n")
for(i in 1:3) { cat(i,"..\n"); m <- matrix(1:7, 3,4) }

}
warnings()
options(ow) # reset

weekdays Extract Parts of a POSIXt or Date Object

Description

Extract the weekday, month or quarter, or the Julian time (days since some origin). These are
generic functions: the methods for the internal date-time classes are documented here.

Usage

weekdays(x, abbreviate)
S3 method for class ’POSIXt’
weekdays(x, abbreviate = FALSE)
S3 method for class ’Date’
weekdays(x, abbreviate = FALSE)

months(x, abbreviate)
S3 method for class ’POSIXt’
months(x, abbreviate = FALSE)
S3 method for class ’Date’
months(x, abbreviate = FALSE)

quarters(x, abbreviate)
S3 method for class ’POSIXt’
quarters(x, ...)
S3 method for class ’Date’
quarters(x, ...)

weekdays 551

julian(x, ...)
S3 method for class ’POSIXt’
julian(x, origin = as.POSIXct("1970-01-01", tz="GMT"), ...)
S3 method for class ’Date’
julian(x, origin = as.Date("1970-01-01"), ...)

Arguments

x an object inheriting from class "POSIXt" or "Date".

abbreviate logical. Should the names be abbreviated?

origin an length-one object inheriting from class "POSIXt" or "Date".

... arguments for other methods.

Value

weekdays and months return a character vector of names in the locale in use.

quarters returns a character vector of "Q1" to "Q4".

julian returns the number of days (possibly fractional) since the origin, with the origin as a
"origin" attribute. All time calculations in R are done ignoring leap-seconds.

Note

Other components such as the day of the month or the year are very easy to compute: just use
as.POSIXlt and extract the relevant component. Alternatively (especially if the components are
desired as character strings), use strftime.

See Also

DateTimeClasses, Date

Examples

weekdays(.leap.seconds)
months(.leap.seconds)
quarters(.leap.seconds)

Julian Day Number (JDN, http://en.wikipedia.org/wiki/Julian_day)
is the number of days since noon UTC on the first day of 4317 BC.
in the proleptic Julian calendar. To more recently, in
’Terrestrial Time’ which differs from UTC by a few seconds
See http://en.wikipedia.org/wiki/Terrestrial_Time
julian(Sys.Date(), -2440588) # from a day
floor(as.numeric(julian(Sys.time())) + 2440587.5) # from a date-time

552 which

which Which indices are TRUE?

Description

Give the TRUE indices of a logical object, allowing for array indices.

Usage

which(x, arr.ind = FALSE, useNames = TRUE)
arrayInd(ind, .dim, .dimnames = NULL, useNames = FALSE)

Arguments

x a logical vector or array. NAs are allowed and omitted (treated as if FALSE).

arr.ind logical; should array indices be returned when x is an array?

ind integer-valued index vector, as resulting from which(x).

.dim dim(.) integer vector

.dimnames optional list of character dimnames(.), of which only .dimnames[[1]] is used.

useNames logical indicating if the value of arrayInd() should have (non-null) dimnames
at all.

Value

If arr.ind == FALSE (the default), an integer vector with length equal to sum(x), i.e., to the
number of TRUEs in x; Basically, the result is (1:length(x))[x].

If arr.ind == TRUE and x is an array (has a dim attribute), the result is
arrayInd(which(x), dim(x), dimnames(x)), namely a matrix whose rows each are the
indices of one element of x; see Examples below.

Author(s)

Werner Stahel and Peter Holzer (ETH Zurich) proposed the arr.ind option.

See Also

Logic, which.min for the index of the minimum or maximum, and match for the first index of an
element in a vector, i.e., for a scalar a, match(a,x) is equivalent to min(which(x == a)) but much
more efficient.

Examples

which(LETTERS == "R")
which(ll <- c(TRUE,FALSE,TRUE,NA,FALSE,FALSE,TRUE))#> 1 3 7
names(ll) <- letters[seq(ll)]
which(ll)
which((1:12)%%2 == 0) # which are even?
which(1:10 > 3, arr.ind=TRUE)

(m <- matrix(1:12,3,4))
which(m %% 3 == 0)

which.min 553

which(m %% 3 == 0, arr.ind=TRUE)
rownames(m) <- paste("Case",1:3, sep="_")
which(m %% 5 == 0, arr.ind=TRUE)

dim(m) <- c(2,2,3); m
which(m %% 3 == 0, arr.ind=FALSE)
which(m %% 3 == 0, arr.ind=TRUE)

vm <- c(m)
dim(vm) <- length(vm) #-- funny thing with length(dim(...)) == 1
which(vm %% 3 == 0, arr.ind=TRUE)

which.min Where is the Min() or Max() ?

Description

Determines the location, i.e., index of the (first) minimum or maximum of a numeric vector.

Usage

which.min(x)
which.max(x)

Arguments

x numeric (integer or double) vector, whose min or max is searched for.

Value

Missing and NaN values are discarded.

an integer of length 1 or 0 (iff x has no non-NAs), giving the index of the first minimum or maxi-
mum respectively of x.

If this extremum is unique (or empty), the results are the same as (but more efficient than)
which(x == min(x)) or which(x == max(x)) respectively.

Author(s)

Martin Maechler

See Also

which, max.col, max, etc.

Use arrayInd(), if you need array/matrix indices instead of 1D vector ones.

which.is.max in package nnet differs in breaking ties at random (and having a ‘fuzz’ in the defi-
nition of ties).

http://CRAN.R-project.org/package=nnet

554 with

Examples

x <- c(1:4,0:5,11)
which.min(x)
which.max(x)

it *does* work with NA’s present, by discarding them:
presidents[1:30]
range(presidents, na.rm = TRUE)
which.min(presidents) # 28
which.max(presidents) # 2

with Evaluate an Expression in a Data Environment

Description

Evaluate an R expression in an environment constructed from data, possibly modifying the original
data.

Usage

with(data, expr, ...)
within(data, expr, ...)

Arguments

data data to use for constructing an environment. For the default with method this
may be an environment, a list, a data frame, or an integer as in sys.call. For
within, it can be a list or a data frame.

expr expression to evaluate.

... arguments to be passed to future methods.

Details

with is a generic function that evaluates expr in a local environment constructed from data. The
environment has the caller’s environment as its parent. This is useful for simplifying calls to mod-
eling functions. (Note: if data is already an environment then this is used with its existing parent.)

Note that assignments within expr take place in the constructed environment and not in the user’s
workspace.

within is similar, except that it examines the environment after the evaluation of expr and makes
the corresponding modifications to data (this may fail in the data frame case if objects are created
which cannot be stored in a data frame), and returns it. within can be used as an alternative to
transform.

Value

For with, the value of the evaluated expr. For within, the modified object.

See Also

evalq, attach, assign, transform.

with 555

Examples

require(stats); require(graphics)
#examples from glm:
Not run:
library(MASS)
with(anorexia, {

anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
family = gaussian)

summary(anorex.1)
})

End(Not run)

aq <- within(airquality, { # Notice that multiple vars can be changed
lOzone<-log(Ozone)
Month<-factor(month.abb[Month])
cTemp <- round((Temp - 32) * 5/9, 1) # From Fahrenheit to Celsius
rm(Day, Temp)

})
head(aq)

with(data.frame(u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12)),

list(summary(glm(lot1 ~ log(u), family = Gamma)),
summary(glm(lot2 ~ log(u), family = Gamma))))

example from boxplot:
with(ToothGrowth, {

boxplot(len ~ dose, boxwex = 0.25, at = 1:3 - 0.2,
subset = (supp == "VC"), col = "yellow",
main = "Guinea Pigs’ Tooth Growth",
xlab = "Vitamin C dose mg",
ylab = "tooth length", ylim = c(0,35))

boxplot(len ~ dose, add = TRUE, boxwex = 0.25, at = 1:3 + 0.2,
subset = supp == "OJ", col = "orange")

legend(2, 9, c("Ascorbic acid", "Orange juice"),
fill = c("yellow", "orange"))

})

alternate form that avoids subset argument:
with(subset(ToothGrowth, supp == "VC"),

boxplot(len ~ dose, boxwex = 0.25, at = 1:3 - 0.2,
col = "yellow", main = "Guinea Pigs’ Tooth Growth",
xlab = "Vitamin C dose mg",
ylab = "tooth length", ylim = c(0,35)))

with(subset(ToothGrowth, supp == "OJ"),
boxplot(len ~ dose, add = TRUE, boxwex = 0.25, at = 1:3 + 0.2,

col = "orange"))
legend(2, 9, c("Ascorbic acid", "Orange juice"),

fill = c("yellow", "orange"))

556 withVisible

withVisible Return both a value and its visibility

Description

This function evaluates an expression, returning it in a two element list containing its value and a
flag showing whether it would automatically print.

Usage

withVisible(x)

Arguments

x An expression to be evaluated.

Details

The argument is evaluated in the caller’s context.

This is a primitive function.

Value

value The value of x after evaluation.

visible logical; whether the value would auto-print.

See Also

invisible, eval

Examples

x <- 1
withVisible(x <- 1)
x
withVisible(x)

Wrap the call in evalq() for special handling

df <- data.frame(a=1:5, b=1:5)
evalq(withVisible(a + b), envir=df)

write 557

write Write Data to a File

Description

The data (usually a matrix) x are written to file file. If x is a two-dimensional matrix you need to
transpose it to get the columns in file the same as those in the internal representation.

Usage

write(x, file = "data",
ncolumns = if(is.character(x)) 1 else 5,
append = FALSE, sep = " ")

Arguments

x the data to be written out.

file A connection, or a character string naming the file to write to. If "", print to the
standard output connection.

ncolumns the number of columns to write the data in.

append if TRUE the data x are appended to the connection.

sep a string used to separate columns. Using sep = "\t" gives tab delimited output;
default is " ".

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

write is a wrapper for cat, which gives further details on the format used.

save for writing any R objects, write.table for data frames, and scan for reading data.

Examples

create a 2 by 5 matrix
x <- matrix(1:10,ncol=5)

the file data contains x, two rows, five cols
1 3 5 7 9 will form the first row
write(t(x))

Writing to the "console" ’tab-delimited’
two rows, five cols but the first row is 1 2 3 4 5
write(x, "", sep = "\t")
unlink("data") # tidy up

558 xtfrm

writeLines Write Lines to a Connection

Description

Write text lines to a connection.

Usage

writeLines(text, con = stdout(), sep = "\n", useBytes = FALSE)

Arguments

text A character vector

con A connection object or a character string.

sep character. A string to be written to the connection after each line of text.

useBytes logical. See ‘Details’.

Details

If the con is a character string, the function calls file to obtain a file connection which is opened
for the duration of the function call.

If the connection is open it is written from its current position. If it is not open, it is opened for the
duration of the call in "wt" mode and then closed again.

Normally writeLines is used with a text-mode connection, and the default separator is converted to
the normal separator for that platform (LF on Unix/Linux, CRLF on Windows). For more control,
open a binary connection and specify the precise value you want written to the file in sep. For even
more control, use writeChar on a binary connection.

useBytes is for expert use. Normally (when false) character strings with marked encodings are
converted to the current encoding before being passed to the connection (which might do further
re-encoding). useBytes = TRUE suppresses the re-encoding of marked strings so they are passed
byte-by-byte to the connection: this can be useful when strings have already been re-encoded by
e.g. iconv. (It is invoked automatically for strings with marked encoding "bytes".)

See Also

connections, writeChar, writeBin, readLines, cat

xtfrm Auxiliary Function for Sorting and Ranking

Description

A generic auxiliary function that produces a numeric vector which will sort in the same order as x.

Usage

xtfrm(x)

zapsmall 559

Arguments

x an R object.

Details

This is a special case of ranking, but as a less general function than rank is more suitable to be made
generic. The default method is similar to rank(x, ties.method="min", na.last="keep"),
so NA values are given rank NA and all tied values are given equal integer rank.

The factor method extracts the codes. The Surv method sorts first on times and then on status
code(s).

The default method will unclass the object if is.numeric(x) is true but otherwise make use of ==
and > methods for the class of x[i] (for integers i), and the is.na method for the class of x, but
might be rather slow when doing so.

This is an internal generic primitive, so S3 or S4 methods can be written for it.

Value

A numeric (usually integer) vector of the same length as x.

See Also

rank, sort, order.

zapsmall Rounding of Numbers

Description

zapsmall determines a digits argument dr for calling round(x, digits = dr) such that values
close to zero (compared with the maximal absolute value) are ‘zapped’, i.e., treated as 0.

Usage

zapsmall(x, digits = getOption("digits"))

Arguments

x a numeric or complex vector.

digits integer indicating the precision to be used.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

Examples

x2 <- pi * 100^(-1:3)
print(x2 / 1000, digits=4)
zapsmall(x2 / 1000, digits=4)

zapsmall(exp(1i*0:4*pi/2))

560 zpackages

zpackages Listing of Packages

Description

.packages returns information about package availability.

Usage

.packages(all.available = FALSE, lib.loc = NULL)

Arguments

all.available logical; if TRUE return a character vector of all available packages in lib.loc.

lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to .libPaths().

Details

.packages() returns the names of the currently attached packages invisibly whereas

.packages(all.available = TRUE) gives (visibly) all packages available in the library location
path lib.loc.

For a package to be regarded as being ‘available’ it must have valid metadata (and hence be an
installed package). However, this will report a package as available if the metadata does not match
the directory name: use find.package to confirm that the metadata match or installed.packages
for a much slower but more comprehensive check of ‘available’ packages.

Value

A character vector of package base names, invisible unless all.available = TRUE.

Author(s)

R core; Guido Masarotto for the all.available=TRUE part of .packages.

See Also

library, .libPaths, installed.packages.

Examples

(.packages()) # maybe just "base"
.packages(all.available = TRUE) # return all available as character vector
require(splines)
(.packages()) # "splines", too
detach("package:splines")

zutils 561

zutils Miscellaneous Internal/Programming Utilities

Description

Miscellaneous internal/programming utilities.

Usage

.standard_regexps()

Details

.standard_regexps returns a list of ‘standard’ regexps, including elements named
valid_package_name and valid_package_version with the obvious meanings. The reg-
exps are not anchored.

562 zutils

Chapter 2

The datasets package

datasets-package The R Datasets Package

Description

Base R datasets

Details

This package contains a variety of datasets. For a complete list, use library(help="datasets").

Author(s)

R Core Team and contributors worldwide

Maintainer: R Core Team <R-core@r-project.org>

ability.cov Ability and Intelligence Tests

Description

Six tests were given to 112 individuals. The covariance matrix is given in this object.

Usage

ability.cov

563

564 airmiles

Details

The tests are described as

general: a non-verbal measure of general intelligence using Cattell’s culture-fair test.

picture: a picture-completion test

blocks: block design

maze: mazes

reading: reading comprehension

vocab: vocabulary

Bartholomew gives both covariance and correlation matrices, but these are inconsistent. Neither are
in the original paper.

Source

Bartholomew, D. J. (1987) Latent Variable Analysis and Factor Analysis. Griffin.

Bartholomew, D. J. and Knott, M. (1990) Latent Variable Analysis and Factor Analysis. Second
Edition, Arnold.

References

Smith, G. A. and Stanley G. (1983) Clocking g: relating intelligence and measures of timed perfor-
mance. Intelligence, 7, 353–368.

Examples

require(stats)
(ability.FA <- factanal(factors = 1, covmat=ability.cov))
update(ability.FA, factors = 2)
The signs of factors and hence the signs of correlations are
arbitrary with promax rotation.
update(ability.FA, factors = 2, rotation = "promax")

airmiles Passenger Miles on Commercial US Airlines, 1937–1960

Description

The revenue passenger miles flown by commercial airlines in the United States for each year from
1937 to 1960.

Usage

airmiles

Format

A time series of 24 observations; yearly, 1937–1960.

AirPassengers 565

Source

F.A.A. Statistical Handbook of Aviation.

References

Brown, R. G. (1963) Smoothing, Forecasting and Prediction of Discrete Time Series. Prentice-Hall.

Examples

require(graphics)
plot(airmiles, main = "airmiles data",

xlab = "Passenger-miles flown by U.S. commercial airlines", col = 4)

AirPassengers Monthly Airline Passenger Numbers 1949-1960

Description

The classic Box & Jenkins airline data. Monthly totals of international airline passengers, 1949 to
1960.

Usage

AirPassengers

Format

A monthly time series, in thousands.

Source

Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1976) Time Series Analysis, Forecasting and
Control. Third Edition. Holden-Day. Series G.

Examples

Not run:
These are quite slow and so not run by example(AirPassengers)

The classic ’airline model’, by full ML
(fit <- arima(log10(AirPassengers), c(0, 1, 1),

seasonal = list(order=c(0, 1 ,1), period=12)))
update(fit, method = "CSS")
update(fit, x=window(log10(AirPassengers), start = 1954))
pred <- predict(fit, n.ahead = 24)
tl <- pred$pred - 1.96 * pred$se
tu <- pred$pred + 1.96 * pred$se
ts.plot(AirPassengers, 10^tl, 10^tu, log = "y", lty = c(1,2,2))

full ML fit is the same if the series is reversed, CSS fit is not
ap0 <- rev(log10(AirPassengers))
attributes(ap0) <- attributes(AirPassengers)
arima(ap0, c(0, 1, 1), seasonal = list(order=c(0, 1 ,1), period=12))

566 airquality

arima(ap0, c(0, 1, 1), seasonal = list(order=c(0, 1 ,1), period=12),
method = "CSS")

Structural Time Series
ap <- log10(AirPassengers) - 2
(fit <- StructTS(ap, type= "BSM"))
par(mfrow=c(1,2))
plot(cbind(ap, fitted(fit)), plot.type = "single")
plot(cbind(ap, tsSmooth(fit)), plot.type = "single")

End(Not run)

airquality New York Air Quality Measurements

Description

Daily air quality measurements in New York, May to September 1973.

Usage

airquality

Format

A data frame with 154 observations on 6 variables.

[,1] Ozone numeric Ozone (ppb)
[,2] Solar.R numeric Solar R (lang)
[,3] Wind numeric Wind (mph)
[,4] Temp numeric Temperature (degrees F)
[,5] Month numeric Month (1–12)
[,6] Day numeric Day of month (1–31)

Details

Daily readings of the following air quality values for May 1, 1973 (a Tuesday) to September 30,
1973.

• Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island

• Solar.R: Solar radiation in Langleys in the frequency band 4000–7700 Angstroms from 0800
to 1200 hours at Central Park

• Wind: Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia Airport

• Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport.

Source

The data were obtained from the New York State Department of Conservation (ozone data) and the
National Weather Service (meteorological data).

anscombe 567

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data
Analysis. Belmont, CA: Wadsworth.

Examples

require(graphics)
pairs(airquality, panel = panel.smooth, main = "airquality data")

anscombe Anscombe’s Quartet of ‘Identical’ Simple Linear Regressions

Description

Four x-y datasets which have the same traditional statistical properties (mean, variance, correlation,
regression line, etc.), yet are quite different.

Usage

anscombe

Format

A data frame with 11 observations on 8 variables.

x1 == x2 == x3 the integers 4:14, specially arranged
x4 values 8 and 19

y1, y2, y3, y4 numbers in (3, 12.5) with mean 7.5 and sdev 2.03

Source

Tufte, Edward R. (1989) The Visual Display of Quantitative Information, 13–14. Graphics Press.

References

Anscombe, Francis J. (1973) Graphs in statistical analysis. American Statistician, 27, 17–21.

Examples

require(stats); require(graphics)
summary(anscombe)

##-- now some "magic" to do the 4 regressions in a loop:
ff <- y ~ x
mods <- setNames(as.list(1:4), paste0("lm", 1:4))
for(i in 1:4) {

ff[2:3] <- lapply(paste0(c("y","x"), i), as.name)
or ff[[2]] <- as.name(paste0("y", i))
ff[[3]] <- as.name(paste0("x", i))
mods[[i]] <- lmi <- lm(ff, data= anscombe)
print(anova(lmi))

}

568 attenu

See how close they are (numerically!)
sapply(mods, coef)
lapply(mods, function(fm) coef(summary(fm)))

Now, do what you should have done in the first place: PLOTS
op <- par(mfrow=c(2,2), mar=.1+c(4,4,1,1), oma= c(0,0,2,0))
for(i in 1:4) {

ff[2:3] <- lapply(paste0(c("y","x"), i), as.name)
plot(ff, data=anscombe, col="red", pch=21, bg = "orange", cex = 1.2,

xlim=c(3,19), ylim=c(3,13))
abline(mods[[i]], col="blue")

}
mtext("Anscombe’s 4 Regression data sets", outer = TRUE, cex=1.5)
par(op)

attenu The Joyner–Boore Attenuation Data

Description

This data gives peak accelerations measured at various observation stations for 23 earthquakes in
California. The data have been used by various workers to estimate the attenuating affect of distance
on ground acceleration.

Usage

attenu

Format

A data frame with 182 observations on 5 variables.

[,1] event numeric Event Number
[,2] mag numeric Moment Magnitude
[,3] station factor Station Number
[,4] dist numeric Station-hypocenter distance (km)
[,5] accel numeric Peak acceleration (g)

Source

Joyner, W.B., D.M. Boore and R.D. Porcella (1981). Peak horizontal acceleration and velocity
from strong-motion records including records from the 1979 Imperial Valley, California earthquake.
USGS Open File report 81-365. Menlo Park, Ca.

References

Boore, D. M. and Joyner, W.B.(1982) The empirical prediction of ground motion, Bull. Seism. Soc.
Am., 72, S269–S268.

Bolt, B. A. and Abrahamson, N. A. (1982) New attenuation relations for peak and expected accel-
erations of strong ground motion, Bull. Seism. Soc. Am., 72, 2307–2321.

Bolt B. A. and Abrahamson, N. A. (1983) Reply to W. B. Joyner & D. M. Boore’s “Comments on:
New attenuation relations for peak and expected accelerations for peak and expected accelerations

attitude 569

of strong ground motion”, Bull. Seism. Soc. Am., 73, 1481–1483.

Brillinger, D. R. and Preisler, H. K. (1984) An exploratory analysis of the Joyner-Boore attenuation
data, Bull. Seism. Soc. Am., 74, 1441–1449.

Brillinger, D. R. and Preisler, H. K. (1984) Further analysis of the Joyner-Boore attenuation data.
Manuscript.

Examples

require(graphics)
check the data class of the variables
sapply(attenu, data.class)
summary(attenu)
pairs(attenu, main = "attenu data")
coplot(accel ~ dist | as.factor(event), data = attenu, show.given = FALSE)
coplot(log(accel) ~ log(dist) | as.factor(event),

data = attenu, panel = panel.smooth, show.given = FALSE)

attitude The Chatterjee–Price Attitude Data

Description

From a survey of the clerical employees of a large financial organization, the data are aggregated
from the questionnaires of the approximately 35 employees for each of 30 (randomly selected)
departments. The numbers give the percent proportion of favourable responses to seven questions
in each department.

Usage

attitude

Format

A dataframe with 30 observations on 7 variables. The first column are the short names from the
reference, the second one the variable names in the data frame:

Y rating numeric Overall rating
X[1] complaints numeric Handling of employee complaints
X[2] privileges numeric Does not allow special privileges
X[3] learning numeric Opportunity to learn
X[4] raises numeric Raises based on performance
X[5] critical numeric Too critical
X[6] advancel numeric Advancement

Source

Chatterjee, S. and Price, B. (1977) Regression Analysis by Example. New York: Wiley. (Section
3.7, p.68ff of 2nd ed.(1991).)

Examples

require(stats); require(graphics)

570 beavers

pairs(attitude, main = "attitude data")
summary(attitude)
summary(fm1 <- lm(rating ~ ., data = attitude))
opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
summary(fm2 <- lm(rating ~ complaints, data = attitude))
plot(fm2)
par(opar)

austres Quarterly Time Series of the Number of Australian Residents

Description

Numbers (in thousands) of Australian residents measured quarterly from March 1971 to March
1994. The object is of class "ts".

Usage

austres

Source

P. J. Brockwell and R. A. Davis (1996) Introduction to Time Series and Forecasting. Springer

beavers Body Temperature Series of Two Beavers

Description

Reynolds (1994) describes a small part of a study of the long-term temperature dynamics of beaver
Castor canadensis in north-central Wisconsin. Body temperature was measured by telemetry every
10 minutes for four females, but data from a one period of less than a day for each of two animals
is used there.

Usage

beaver1
beaver2

Format

The beaver1 data frame has 114 rows and 4 columns on body temperature measurements at 10
minute intervals.

The beaver2 data frame has 100 rows and 4 columns on body temperature measurements at 10
minute intervals.

The variables are as follows:

BJsales 571

day Day of observation (in days since the beginning of 1990), December 12–13 (beaver1) and
November 3–4 (beaver2).

time Time of observation, in the form 0330 for 3:30am

temp Measured body temperature in degrees Celsius.

activ Indicator of activity outside the retreat.

Note

The observation at 22:20 is missing in beaver1.

Source

P. S. Reynolds (1994) Time-series analyses of beaver body temperatures. Chapter 11 of Lange, N.,
Ryan, L., Billard, L., Brillinger, D., Conquest, L. and Greenhouse, J. eds (1994) Case Studies in
Biometry. New York: John Wiley and Sons.

Examples

require(graphics)
(yl <- range(beaver1$temp, beaver2$temp))

beaver.plot <- function(bdat, ...) {
nam <- deparse(substitute(bdat))
with(bdat, {
Hours since start of day:
hours <- time %/% 100 + 24*(day - day[1]) + (time %% 100)/60
plot (hours, temp, type = "l", ...,

main = paste(nam, "body temperature"))
abline(h = 37.5, col = "gray", lty = 2)
is.act <- activ == 1
points(hours[is.act], temp[is.act], col = 2, cex = .8)

})
}
op <- par(mfrow = c(2,1), mar = c(3,3,4,2), mgp = .9* 2:0)
beaver.plot(beaver1, ylim = yl)
beaver.plot(beaver2, ylim = yl)

par(op)

BJsales Sales Data with Leading Indicator

Description

The sales time series BJsales and leading indicator BJsales.lead each contain 150 observations.
The objects are of class "ts".

Usage

BJsales
BJsales.lead

572 BOD

Source

The data are given in Box & Jenkins (1976). Obtained from the Time Series Data Library at http:
//www-personal.buseco.monash.edu.au/~hyndman/TSDL/

References

G. E. P. Box and G. M. Jenkins (1976): Time Series Analysis, Forecasting and Control, Holden-Day,
San Francisco, p. 537.

P. J. Brockwell and R. A. Davis (1991): Time Series: Theory and Methods, Second edition, Springer
Verlag, NY, pp. 414.

BOD Biochemical Oxygen Demand

Description

The BOD data frame has 6 rows and 2 columns giving the biochemical oxygen demand versus time
in an evaluation of water quality.

Usage

BOD

Format

This data frame contains the following columns:

Time A numeric vector giving the time of the measurement (days).
demand A numeric vector giving the biochemical oxygen demand (mg/l).

Source

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications, Wiley,
Appendix A1.4.

Originally from Marske (1967), Biochemical Oxygen Demand Data Interpretation Using Sum of
Squares Surface M.Sc. Thesis, University of Wisconsin – Madison.

Examples

require(stats)
simplest form of fitting a first-order model to these data
fm1 <- nls(demand ~ A*(1-exp(-exp(lrc)*Time)), data = BOD,

start = c(A = 20, lrc = log(.35)))
coef(fm1)
fm1
using the plinear algorithm
fm2 <- nls(demand ~ (1-exp(-exp(lrc)*Time)), data = BOD,

start = c(lrc = log(.35)), algorithm = "plinear", trace = TRUE)
using a self-starting model
fm3 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
summary(fm3)

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/

cars 573

cars Speed and Stopping Distances of Cars

Description

The data give the speed of cars and the distances taken to stop. Note that the data were recorded in
the 1920s.

Usage

cars

Format

A data frame with 50 observations on 2 variables.

[,1] speed numeric Speed (mph)
[,2] dist numeric Stopping distance (ft)

Source

Ezekiel, M. (1930) Methods of Correlation Analysis. Wiley.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

require(stats); require(graphics)
plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

las = 1)
lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")
title(main = "cars data")
plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

las = 1, log = "xy")
title(main = "cars data (logarithmic scales)")
lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")
summary(fm1 <- lm(log(dist) ~ log(speed), data = cars))
opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
par(opar)

An example of polynomial regression
plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

las = 1, xlim = c(0, 25))
d <- seq(0, 25, length.out = 200)
for(degree in 1:4) {

fm <- lm(dist ~ poly(speed, degree), data = cars)
assign(paste("cars", degree, sep="."), fm)
lines(d, predict(fm, data.frame(speed=d)), col = degree)

}
anova(cars.1, cars.2, cars.3, cars.4)

574 ChickWeight

ChickWeight Weight versus age of chicks on different diets

Description

The ChickWeight data frame has 578 rows and 4 columns from an experiment on the effect of diet
on early growth of chicks.

Usage

ChickWeight

Format

This object of class c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame")
containing the following columns:

weight a numeric vector giving the body weight of the chick (gm).

Time a numeric vector giving the number of days since birth when the measurement was made.

Chick an ordered factor with levels 18 < . . . < 48 giving a unique identifier for the chick. The
ordering of the levels groups chicks on the same diet together and orders them according to
their final weight (lightest to heaviest) within diet.

Diet a factor with levels 1,. . . ,4 indicating which experimental diet the chick received.

Details

The body weights of the chicks were measured at birth and every second day thereafter until day
20. They were also measured on day 21. There were four groups on chicks on different protein
diets.

This dataset was originally part of package nlme, and that has methods (including for [,
as.data.frame, plot and print) for its grouped-data classes.

Source

Crowder, M. and Hand, D. (1990), Analysis of Repeated Measures, Chapman and Hall (example
5.3)

Hand, D. and Crowder, M. (1996), Practical Longitudinal Data Analysis, Chapman and Hall (table
A.2)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

See Also

SSlogis for models fitted to this dataset.

Examples

require(graphics)
coplot(weight ~ Time | Chick, data = ChickWeight,

type = "b", show.given = FALSE)

chickwts 575

chickwts Chicken Weights by Feed Type

Description

An experiment was conducted to measure and compare the effectiveness of various feed supple-
ments on the growth rate of chickens.

Usage

chickwts

Format

A data frame with 71 observations on 2 variables.

weight a numeric variable giving the chick weight.

feed a factor giving the feed type.

Details

Newly hatched chicks were randomly allocated into six groups, and each group was given a different
feed supplement. Their weights in grams after six weeks are given along with feed types.

Source

Anonymous (1948) Biometrika, 35, 214.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(stats); require(graphics)
boxplot(weight ~ feed, data = chickwts, col = "lightgray",

varwidth = TRUE, notch = TRUE, main = "chickwt data",
ylab = "Weight at six weeks (gm)")

anova(fm1 <- lm(weight ~ feed, data = chickwts))
opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
par(opar)

576 CO2

CO2 Carbon Dioxide Uptake in Grass Plants

Description

The CO2 data frame has 84 rows and 5 columns of data from an experiment on the cold tolerance of
the grass species Echinochloa crus-galli.

Usage

CO2

Format

This object of class c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame")
containing the following columns:

Plant an ordered factor with levels Qn1 < Qn2 < Qn3 < . . . < Mc1 giving a unique identifier for each
plant.

Type a factor with levels Quebec Mississippi giving the origin of the plant

Treatment a factor with levels nonchilled chilled

conc a numeric vector of ambient carbon dioxide concentrations (mL/L).

uptake a numeric vector of carbon dioxide uptake rates (µmol/m2 sec).

Details

The CO2 uptake of six plants from Quebec and six plants from Mississippi was measured at several
levels of ambient CO2 concentration. Half the plants of each type were chilled overnight before the
experiment was conducted.

This dataset was originally part of package nlme, and that has methods (including for [,
as.data.frame, plot and print) for its grouped-data classes.

Source

Potvin, C., Lechowicz, M. J. and Tardif, S. (1990) “The statistical analysis of ecophysiological
response curves obtained from experiments involving repeated measures”, Ecology, 71, 1389–1400.

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

require(stats); require(graphics)

coplot(uptake ~ conc | Plant, data = CO2, show.given = FALSE, type = "b")
fit the data for the first plant
fm1 <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0),

data = CO2, subset = Plant == ’Qn1’)
summary(fm1)
fit each plant separately
fmlist <- list()
for (pp in levels(CO2$Plant)) {

fmlist[[pp]] <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0),

co2 577

data = CO2, subset = Plant == pp)
}
check the coefficients by plant
print(sapply(fmlist, coef), digits=3)

co2 Mauna Loa Atmospheric CO2 Concentration

Description

Atmospheric concentrations of CO2 are expressed in parts per million (ppm) and reported in the
preliminary 1997 SIO manometric mole fraction scale.

Usage

co2

Format

A time series of 468 observations; monthly from 1959 to 1997.

Details

The values for February, March and April of 1964 were missing and have been obtained by inter-
polating linearly between the values for January and May of 1964.

Source

Keeling, C. D. and Whorf, T. P., Scripps Institution of Oceanography (SIO), University of Califor-
nia, La Jolla, California USA 92093-0220.

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2.

References

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

Examples

require(graphics)
plot(co2, ylab = expression("Atmospheric concentration of CO"[2]),

las = 1)
title(main = "co2 data set")

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2

578 crimtab

crimtab Student’s 3000 Criminals Data

Description

Data of 3000 male criminals over 20 years old undergoing their sentences in the chief prisons of
England and Wales.

Usage

crimtab

Format

A table object of integer counts, of dimension 42×22 with a total count, sum(crimtab) of 3000.

The 42 rownames ("9.4", "9.5", . . .) correspond to midpoints of intervals of finger lengths whereas
the 22 column names (colnames) ("142.24", "144.78", . . .) correspond to (body) heights of 3000
criminals, see also below.

Details

Student is the pseudonym of William Sealy Gosset. In his 1908 paper he wrote (on page 13) at the
beginning of section VI entitled Practical Test of the forgoing Equations:

“Before I had succeeded in solving my problem analytically, I had endeavoured to do so empirically.
The material used was a correlation table containing the height and left middle finger measurements
of 3000 criminals, from a paper by W. R. MacDonell (Biometrika, Vol. I., p. 219). The measure-
ments were written out on 3000 pieces of cardboard, which were then very thoroughly shuffled and
drawn at random. As each card was drawn its numbers were written down in a book, which thus
contains the measurements of 3000 criminals in a random order. Finally, each consecutive set of 4
was taken as a sample—750 in all—and the mean, standard deviation, and correlation of each sam-
ple determined. The difference between the mean of each sample and the mean of the population
was then divided by the standard deviation of the sample, giving us the z of Section III.”

The table is in fact page 216 and not page 219 in MacDonell(1902). In the MacDonell table,
the middle finger lengths were given in mm and the heights in feet/inches intervals, they are
both converted into cm here. The midpoints of intervals were used, e.g., where MacDonell has
4′7′′9/16−−8′′9/16, we have 142.24 which is 2.54*56 = 2.54*(4′8′′).

MacDonell credited the source of data (page 178) as follows: The data on which the memoir is
based were obtained, through the kindness of Dr Garson, from the Central Metric Office, New
Scotland Yard... He pointed out on page 179 that : The forms were drawn at random from the mass
on the office shelves; we are therefore dealing with a random sampling.

Source

http://pbil.univ-lyon1.fr/R/donnees/criminals1902.txt thanks to Jean R. Lobry and
Anne-Béatrice Dufour.

http://pbil.univ-lyon1.fr/R/donnees/criminals1902.txt

crimtab 579

References

Garson, J.G. (1900) The metric system of identification of criminals, as used in in Great Britain and
Ireland. The Journal of the Anthropological Institute of Great Britain and Ireland 30, 161–198.

MacDonell, W.R. (1902) On criminal anthropometry and the identification of criminals. Biometrika
1, 2, 177–227.

Student (1908) The probable error of a mean. Biometrika 6, 1–25.

Examples

require(stats)
dim(crimtab)
utils::str(crimtab)
for nicer printing:
local({cT <- crimtab

colnames(cT) <- substring(colnames(cT), 2,3)
print(cT, zero.print = " ")

})

Repeat Student’s experiment:

1) Reconstitute 3000 raw data for heights in inches and rounded to
nearest integer as in Student’s paper:

(heIn <- round(as.numeric(colnames(crimtab)) / 2.54))
d.hei <- data.frame(height = rep(heIn, colSums(crimtab)))

2) shuffle the data:

set.seed(1)
d.hei <- d.hei[sample(1:3000), , drop = FALSE]

3) Make 750 samples each of size 4:

d.hei$sample <- as.factor(rep(1:750, each = 4))

4) Compute the means and standard deviations (n) for the 750 samples:

h.mean <- with(d.hei, tapply(height, sample, FUN = mean))
h.sd <- with(d.hei, tapply(height, sample, FUN = sd)) * sqrt(3/4)

5) Compute the difference between the mean of each sample and
the mean of the population and then divide by the
standard deviation of the sample:

zobs <- (h.mean - mean(d.hei[,"height"]))/h.sd

6) Replace infinite values by +/- 6 as in Student’s paper:

zobs[infZ <- is.infinite(zobs)] # 3 of them
zobs[infZ] <- 6 * sign(zobs[infZ])

7) Plot the distribution:

require(grDevices); require(graphics)
hist(x = zobs, probability = TRUE, xlab = "Student’s z",

580 DNase

col = grey(0.8), border = grey(0.5),
main = "Distribution of Student’s z score for ’crimtab’ data")

discoveries Yearly Numbers of Important Discoveries

Description

The numbers of “great” inventions and scientific discoveries in each year from 1860 to 1959.

Usage

discoveries

Format

A time series of 100 values.

Source

The World Almanac and Book of Facts, 1975 Edition, pages 315–318.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

require(graphics)
plot(discoveries, ylab = "Number of important discoveries",

las = 1)
title(main = "discoveries data set")

DNase Elisa assay of DNase

Description

The DNase data frame has 176 rows and 3 columns of data obtained during development of an
ELISA assay for the recombinant protein DNase in rat serum.

Usage

DNase

esoph 581

Format

This object of class c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame")
containing the following columns:

Run an ordered factor with levels 10 < . . . < 3 indicating the assay run.

conc a numeric vector giving the known concentration of the protein.

density a numeric vector giving the measured optical density (dimensionless) in the assay. Dupli-
cate optical density measurements were obtained.

Details

This dataset was originally part of package nlme, and that has methods (including for [,
as.data.frame, plot and print) for its grouped-data classes.

Source

Davidian, M. and Giltinan, D. M. (1995) Nonlinear Models for Repeated Measurement Data, Chap-
man & Hall (section 5.2.4, p. 134)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

require(stats); require(graphics)

coplot(density ~ conc | Run, data = DNase,
show.given = FALSE, type = "b")

coplot(density ~ log(conc) | Run, data = DNase,
show.given = FALSE, type = "b")

fit a representative run
fm1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal),

data = DNase, subset = Run == 1)
compare with a four-parameter logistic
fm2 <- nls(density ~ SSfpl(log(conc), A, B, xmid, scal),

data = DNase, subset = Run == 1)
summary(fm2)
anova(fm1, fm2)

esoph Smoking, Alcohol and (O)esophageal Cancer

Description

Data from a case-control study of (o)esophageal cancer in Ille-et-Vilaine, France.

Usage

esoph

Format

A data frame with records for 88 age/alcohol/tobacco combinations.

582 esoph

[,1] "agegp" Age group 1 25–34 years
2 35–44
3 45–54
4 55–64
5 65–74
6 75+

[,2] "alcgp" Alcohol consumption 1 0–39 gm/day
2 40–79
3 80–119
4 120+

[,3] "tobgp" Tobacco consumption 1 0– 9 gm/day
2 10–19
3 20–29
4 30+

[,4] "ncases" Number of cases
[,5] "ncontrols" Number of controls

Author(s)

Thomas Lumley

Source

Breslow, N. E. and Day, N. E. (1980) Statistical Methods in Cancer Research. 1: The Analysis of
Case-Control Studies. IARC Lyon / Oxford University Press.

Examples

require(stats)
require(graphics) # for mosaicplot
summary(esoph)
effects of alcohol, tobacco and interaction, age-adjusted
model1 <- glm(cbind(ncases, ncontrols) ~ agegp + tobgp * alcgp,

data = esoph, family = binomial())
anova(model1)
Try a linear effect of alcohol and tobacco
model2 <- glm(cbind(ncases, ncontrols) ~ agegp + unclass(tobgp)

+ unclass(alcgp),
data = esoph, family = binomial())

summary(model2)
Re-arrange data for a mosaic plot
ttt <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)
o <- with(esoph, order(tobgp, alcgp, agegp))
ttt[ttt == 1] <- esoph$ncases[o]
tt1 <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)
tt1[tt1 == 1] <- esoph$ncontrols[o]
tt <- array(c(ttt, tt1), c(dim(ttt),2),

c(dimnames(ttt), list(c("Cancer", "control"))))
mosaicplot(tt, main = "esoph data set", color = TRUE)

euro 583

euro Conversion Rates of Euro Currencies

Description

Conversion rates between the various Euro currencies.

Usage

euro
euro.cross

Format

euro is a named vector of length 11, euro.cross a matrix of size 11 by 11, with dimnames.

Details

The data set euro contains the value of 1 Euro in all currencies participating in the European mon-
etary union (Austrian Schilling ATS, Belgian Franc BEF, German Mark DEM, Spanish Peseta ESP,
Finnish Markka FIM, French Franc FRF, Irish Punt IEP, Italian Lira ITL, Luxembourg Franc LUF,
Dutch Guilder NLG and Portuguese Escudo PTE). These conversion rates were fixed by the Euro-
pean Union on December 31, 1998. To convert old prices to Euro prices, divide by the respective
rate and round to 2 digits.

The data set euro.cross contains conversion rates between the various Euro currencies, i.e., the
result of outer(1 / euro, euro).

Examples

cbind(euro)

These relations hold:
euro == signif(euro,6) # [6 digit precision in Euro’s definition]
all(euro.cross == outer(1/euro, euro))

Convert 20 Euro to Belgian Franc
20 * euro["BEF"]
Convert 20 Austrian Schilling to Euro
20 / euro["ATS"]
Convert 20 Spanish Pesetas to Italian Lira
20 * euro.cross["ESP", "ITL"]

require(graphics)
dotchart(euro,

main = "euro data: 1 Euro in currency unit")
dotchart(1/euro,

main = "euro data: 1 currency unit in Euros")
dotchart(log(euro, 10),

main = "euro data: log10(1 Euro in currency unit)")

584 EuStockMarkets

eurodist Distances Between European Cities

Description

The data give the road distances (in km) between 21 cities in Europe. The data are taken from a
table in The Cambridge Encyclopaedia.

Usage

eurodist

Format

A dist object based on 21 objects. (You must have the stats package loaded to have the methods
for this kind of object available).

Source

Crystal, D. Ed. (1990) The Cambridge Encyclopaedia. Cambridge: Cambridge University Press,

EuStockMarkets Daily Closing Prices of Major European Stock Indices, 1991–1998

Description

Contains the daily closing prices of major European stock indices: Germany DAX (Ibis), Switzer-
land SMI, France CAC, and UK FTSE. The data are sampled in business time, i.e., weekends and
holidays are omitted.

Usage

EuStockMarkets

Format

A multivariate time series with 1860 observations on 4 variables. The object is of class "mts".

Source

The data were kindly provided by Erste Bank AG, Vienna, Austria.

faithful 585

faithful Old Faithful Geyser Data

Description

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in
Yellowstone National Park, Wyoming, USA.

Usage

faithful

Format

A data frame with 272 observations on 2 variables.

[,1] eruptions numeric Eruption time in mins
[,2] waiting numeric Waiting time to next eruption (in mins)

Details

A closer look at faithful$eruptions reveals that these are heavily rounded times originally in
seconds, where multiples of 5 are more frequent than expected under non-human measurement. For
a better version of the eruption times, see the example below.

There are many versions of this dataset around: Azzalini and Bowman (1990) use a more complete
version.

Source

W. Härdle.

References

Härdle, W. (1991) Smoothing Techniques with Implementation in S. New York: Springer.

Azzalini, A. and Bowman, A. W. (1990). A look at some data on the Old Faithful geyser. Applied
Statistics 39, 357–365.

See Also

geyser in package MASS for the Azzalini–Bowman version.

Examples

require(stats); require(graphics)
f.tit <- "faithful data: Eruptions of Old Faithful"

ne60 <- round(e60 <- 60 * faithful$eruptions)
all.equal(e60, ne60) # relative diff. ~ 1/10000
table(zapsmall(abs(e60 - ne60))) # 0, 0.02 or 0.04
faithful$better.eruptions <- ne60 / 60
te <- table(ne60)

http://CRAN.R-project.org/package=MASS

586 Formaldehyde

te[te >= 4] # (too) many multiples of 5 !
plot(names(te), te, type="h", main = f.tit, xlab = "Eruption time (sec)")

plot(faithful[, -3], main = f.tit,
xlab = "Eruption time (min)",
ylab = "Waiting time to next eruption (min)")

lines(lowess(faithful$eruptions, faithful$waiting, f = 2/3, iter = 3),
col = "red")

Formaldehyde Determination of Formaldehyde

Description

These data are from a chemical experiment to prepare a standard curve for the determination of
formaldehyde by the addition of chromatropic acid and concentrated sulphuric acid and the reading
of the resulting purple color on a spectrophotometer.

Usage

Formaldehyde

Format

A data frame with 6 observations on 2 variables.

[,1] carb numeric Carbohydrate (ml)
[,2] optden numeric Optical Density

Source

Bennett, N. A. and N. L. Franklin (1954) Statistical Analysis in Chemistry and the Chemical Indus-
try. New York: Wiley.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(stats); require(graphics)
plot(optden ~ carb, data = Formaldehyde,

xlab = "Carbohydrate (ml)", ylab = "Optical Density",
main = "Formaldehyde data", col = 4, las = 1)

abline(fm1 <- lm(optden ~ carb, data = Formaldehyde))
summary(fm1)
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(fm1)
par(opar)

freeny 587

freeny Freeny’s Revenue Data

Description

Freeny’s data on quarterly revenue and explanatory variables.

Usage

freeny
freeny.x
freeny.y

Format

There are three ‘freeny’ data sets.

freeny.y is a time series with 39 observations on quarterly revenue from (1962,2Q) to (1971,4Q).

freeny.x is a matrix of explanatory variables. The columns are freeny.y lagged 1 quarter, price
index, income level, and market potential.

Finally, freeny is a data frame with variables y, lag.quarterly.revenue, price.index,
income.level, and market.potential obtained from the above two data objects.

Source

A. E. Freeny (1977) A Portable Linear Regression Package with Test Programs. Bell Laboratories
memorandum.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(stats); require(graphics)
summary(freeny)
pairs(freeny, main = "freeny data")
gives warning: freeny$y has class "ts"

summary(fm1 <- lm(y ~ ., data = freeny))
opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
par(opar)

588 HairEyeColor

HairEyeColor Hair and Eye Color of Statistics Students

Description

Distribution of hair and eye color and sex in 592 statistics students.

Usage

HairEyeColor

Format

A 3-dimensional array resulting from cross-tabulating 592 observations on 3 variables. The vari-
ables and their levels are as follows:

No Name Levels
1 Hair Black, Brown, Red, Blond
2 Eye Brown, Blue, Hazel, Green
3 Sex Male, Female

Details

The Hair × Eye table comes rom a survey of students at the University of Delaware reported by
Snee (1974). The split by Sex was added by Friendly (1992a) for didactic purposes.

This data set is useful for illustrating various techniques for the analysis of contingency tables, such
as the standard chi-squared test or, more generally, log-linear modelling, and graphical methods
such as mosaic plots, sieve diagrams or association plots.

Source

http://euclid.psych.yorku.ca/ftp/sas/vcd/catdata/haireye.sas

Snee (1974) gives the two-way table aggregated over Sex. The Sex split of the ‘Brown hair, Brown
eye’ cell was changed in R 2.6.0 to agree with that used by Friendly (2000).

References

Snee, R. D. (1974) Graphical display of two-way contingency tables. The American Statistician,
28, 9–12.

Friendly, M. (1992a) Graphical methods for categorical data. SAS User Group International Confer-
ence Proceedings, 17, 190–200. http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html

Friendly, M. (1992b) Mosaic displays for loglinear models. Proceedings of the Statistical Graphics
Section, American Statistical Association, pp. 61–68. http://www.math.yorku.ca/SCS/Papers/
asa92.html

Friendly, M. (2000) Visualizing Categorical Data. SAS Institute, ISBN 1-58025-660-0.

See Also

chisq.test, loglin, mosaicplot

http://euclid.psych.yorku.ca/ftp/sas/vcd/catdata/haireye.sas
http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/Papers/asa92.html
http://www.math.yorku.ca/SCS/Papers/asa92.html

Harman23.cor 589

Examples

require(graphics)
Full mosaic
mosaicplot(HairEyeColor)
Aggregate over sex (as in Snee’s original data)
x <- apply(HairEyeColor, c(1, 2), sum)
x
mosaicplot(x, main = "Relation between hair and eye color")

Harman23.cor Harman Example 2.3

Description

A correlation matrix of eight physical measurements on 305 girls between ages seven and seventeen.

Usage

Harman23.cor

Source

Harman, H. H. (1976) Modern Factor Analysis, Third Edition Revised, University of Chicago Press,
Table 2.3.

Examples

require(stats)
(Harman23.FA <- factanal(factors = 1, covmat = Harman23.cor))
for(factors in 2:4) print(update(Harman23.FA, factors = factors))

Harman74.cor Harman Example 7.4

Description

A correlation matrix of 24 psychological tests given to 145 seventh and eight-grade children in a
Chicago suburb by Holzinger and Swineford.

Usage

Harman74.cor

Source

Harman, H. H. (1976) Modern Factor Analysis, Third Edition Revised, University of Chicago Press,
Table 7.4.

590 Indometh

Examples

require(stats)
(Harman74.FA <- factanal(factors = 1, covmat = Harman74.cor))
for(factors in 2:5) print(update(Harman74.FA, factors = factors))
Harman74.FA <- factanal(factors = 5, covmat = Harman74.cor,

rotation="promax")
print(Harman74.FA$loadings, sort = TRUE)

Indometh Pharmacokinetics of Indomethacin

Description

The Indometh data frame has 66 rows and 3 columns of data on the pharmacokinetics of in-
dometacin (or, older spelling, ‘indomethacin’).

Usage

Indometh

Format

This object of class c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame")
containing the following columns:

Subject an ordered factor with containing the subject codes. The ordering is according to increas-
ing maximum response.

time a numeric vector of times at which blood samples were drawn (hr).

conc a numeric vector of plasma concentrations of indometacin (mcg/ml).

Details

Each of the six subjects were given an intravenous injection of indometacin.

This dataset was originally part of package nlme, and that has methods (including for [,
as.data.frame, plot and print) for its grouped-data classes.

Source

Kwan, Breault, Umbenhauer, McMahon and Duggan (1976) Kinetics of Indomethacin absorption,
elimination, and enterohepatic circulation in man. Journal of Pharmacokinetics and Biopharma-
ceutics 4, 255–280.

Davidian, M. and Giltinan, D. M. (1995) Nonlinear Models for Repeated Measurement Data, Chap-
man & Hall (section 5.2.4, p. 129)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

See Also

SSbiexp for models fitted to this dataset.

infert 591

infert Infertility after Spontaneous and Induced Abortion

Description

This is a matched case-control study dating from before the availability of conditional logistic re-
gression.

Usage

infert

Format

1. Education 0 = 0-5 years
1 = 6-11 years
2 = 12+ years

2. age age in years of case
3. parity count
4. number of prior 0 = 0

induced abortions 1 = 1
2 = 2 or more

5. case status 1 = case
0 = control

6. number of prior 0 = 0
spontaneous abortions 1 = 1

2 = 2 or more
7. matched set number 1-83
8. stratum number 1-63

Note

One case with two prior spontaneous abortions and two prior induced abortions is omitted.

Source

Trichopoulos et al. (1976) Br. J. of Obst. and Gynaec. 83, 645–650.

Examples

require(stats)
model1 <- glm(case ~ spontaneous+induced, data=infert,family=binomial())
summary(model1)
adjusted for other potential confounders:
summary(model2 <- glm(case ~ age+parity+education+spontaneous+induced,

data=infert,family=binomial()))
Really should be analysed by conditional logistic regression
which is in the survival package
if(require(survival)){

592 iris

model3 <- clogit(case~spontaneous+induced+strata(stratum),data=infert)
print(summary(model3))
detach()# survival (conflicts)

}

InsectSprays Effectiveness of Insect Sprays

Description

The counts of insects in agricultural experimental units treated with different insecticides.

Usage

InsectSprays

Format

A data frame with 72 observations on 2 variables.

[,1] count numeric Insect count
[,2] spray factor The type of spray

Source

Beall, G., (1942) The Transformation of data from entomological field experiments, Biometrika,
29, 243–262.

References

McNeil, D. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(stats); require(graphics)
boxplot(count ~ spray, data = InsectSprays,

xlab = "Type of spray", ylab = "Insect count",
main = "InsectSprays data", varwidth = TRUE, col = "lightgray")

fm1 <- aov(count ~ spray, data = InsectSprays)
summary(fm1)
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(fm1)
fm2 <- aov(sqrt(count) ~ spray, data = InsectSprays)
summary(fm2)
plot(fm2)
par(opar)

iris Edgar Anderson’s Iris Data

iris 593

Description

This famous (Fisher’s or Anderson’s) iris data set gives the measurements in centimeters of the
variables sepal length and width and petal length and width, respectively, for 50 flowers from each
of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

Usage

iris
iris3

Format

iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width, and Species.

iris3 gives the same data arranged as a 3-dimensional array of size 50 by 4 by 3, as represented
by S-PLUS. The first dimension gives the case number within the species subsample, the second
the measurements with names Sepal L., Sepal W., Petal L., and Petal W., and the third the
species.

Source

Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics,
7, Part II, 179–188.

The data were collected by Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of
the American Iris Society, 59, 2–5.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (has iris3 as iris.)

See Also

matplot some examples of which use iris.

Examples

dni3 <- dimnames(iris3)
ii <- data.frame(matrix(aperm(iris3, c(1,3,2)), ncol=4,

dimnames = list(NULL, sub(" L.",".Length",
sub(" W.",".Width", dni3[[2]])))),

Species = gl(3, 50, labels=sub("S", "s", sub("V", "v", dni3[[3]]))))
all.equal(ii, iris) # TRUE

594 JohnsonJohnson

islands Areas of the World’s Major Landmasses

Description

The areas in thousands of square miles of the landmasses which exceed 10,000 square miles.

Usage

islands

Format

A named vector of length 48.

Source

The World Almanac and Book of Facts, 1975, page 406.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

require(graphics)
dotchart(log(islands, 10),

main = "islands data: log10(area) (log10(sq. miles))")
dotchart(log(islands[order(islands)], 10),

main = "islands data: log10(area) (log10(sq. miles))")

JohnsonJohnson Quarterly Earnings per Johnson & Johnson Share

Description

Quarterly earnings (dollars) per Johnson & Johnson share 1960–80.

Usage

JohnsonJohnson

Format

A quarterly time series

Source

Shumway, R. H. and Stoffer, D. S. (2000) Time Series Analysis and its Applications. Second Edi-
tion. Springer. Example 1.1.

LakeHuron 595

Examples

require(stats); require(graphics)
JJ <- log10(JohnsonJohnson)
plot(JJ)
This example gives a possible-non-convergence warning on some
platforms, but does seem to converge on x86 Linux and Windows.
(fit <- StructTS(JJ, type="BSM"))
tsdiag(fit)
sm <- tsSmooth(fit)
plot(cbind(JJ, sm[, 1], sm[, 3]-0.5), plot.type = "single",

col = c("black", "green", "blue"))
abline(h = -0.5, col = "grey60")

monthplot(fit)

LakeHuron Level of Lake Huron 1875–1972

Description

Annual measurements of the level, in feet, of Lake Huron 1875–1972.

Usage

LakeHuron

Format

A time series of length 98.

Source

Brockwell, P. J. and Davis, R. A. (1991). Time Series and Forecasting Methods. Second edition.
Springer, New York. Series A, page 555.
Brockwell, P. J. and Davis, R. A. (1996). Introduction to Time Series and Forecasting. Springer,
New York. Sections 5.1 and 7.6.

lh Luteinizing Hormone in Blood Samples

Description

A regular time series giving the luteinizing hormone in blood samples at 10 mins intervals from a
human female, 48 samples.

Usage

lh

Source

P.J. Diggle (1990) Time Series: A Biostatistical Introduction. Oxford, table A.1, series 3

596 LifeCycleSavings

LifeCycleSavings Intercountry Life-Cycle Savings Data

Description

Data on the savings ratio 1960–1970.

Usage

LifeCycleSavings

Format

A data frame with 50 observations on 5 variables.

[,1] sr numeric aggregate personal savings
[,2] pop15 numeric % of population under 15
[,3] pop75 numeric % of population over 75
[,4] dpi numeric real per-capita disposable income
[,5] ddpi numeric % growth rate of dpi

Details

Under the life-cycle savings hypothesis as developed by Franco Modigliani, the savings ratio (aggre-
gate personal saving divided by disposable income) is explained by per-capita disposable income,
the percentage rate of change in per-capita disposable income, and two demographic variables:
the percentage of population less than 15 years old and the percentage of the population over 75
years old. The data are averaged over the decade 1960–1970 to remove the business cycle or other
short-term fluctuations.

Source

The data were obtained from Belsley, Kuh and Welsch (1980). They in turn obtained the data from
Sterling (1977).

References

Sterling, Arnie (1977) Unpublished BS Thesis. Massachusetts Institute of Technology.

Belsley, D. A., Kuh. E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

Examples

require(stats); require(graphics)
pairs(LifeCycleSavings, panel = panel.smooth,

main = "LifeCycleSavings data")
fm1 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
summary(fm1)

Loblolly 597

Loblolly Growth of Loblolly pine trees

Description

The Loblolly data frame has 84 rows and 3 columns of records of the growth of Loblolly pine
trees.

Usage

Loblolly

Format

This object of class c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame")
containing the following columns:

height a numeric vector of tree heights (ft).

age a numeric vector of tree ages (yr).

Seed an ordered factor indicating the seed source for the tree. The ordering is according to increas-
ing maximum height.

Details

This dataset was originally part of package nlme, and that has methods (including for [,
as.data.frame, plot and print) for its grouped-data classes.

Source

Kung, F. H. (1986), Fitting logistic growth curve with predetermined carrying capacity, in Proceed-
ings of the Statistical Computing Section, American Statistical Association, 340–343.

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

require(stats); require(graphics)
plot(height ~ age, data = Loblolly, subset = Seed == 329,

xlab = "Tree age (yr)", las = 1,
ylab = "Tree height (ft)",
main = "Loblolly data and fitted curve (Seed 329 only)")

fm1 <- nls(height ~ SSasymp(age, Asym, R0, lrc),
data = Loblolly, subset = Seed == 329)

age <- seq(0, 30, length.out = 101)
lines(age, predict(fm1, list(age = age)))

598 longley

longley Longley’s Economic Regression Data

Description

A macroeconomic data set which provides a well-known example for a highly collinear regression.

Usage

longley

Format

A data frame with 7 economical variables, observed yearly from 1947 to 1962 (n = 16).

GNP.deflator: GNP implicit price deflator (1954 = 100)

GNP: Gross National Product.

Unemployed: number of unemployed.

Armed.Forces: number of people in the armed forces.

Population: ‘noninstitutionalized’ population ≥ 14 years of age.

Year: the year (time).

Employed: number of people employed.

The regression lm(Employed ~ .) is known to be highly collinear.

Source

J. W. Longley (1967) An appraisal of least-squares programs from the point of view of the user.
Journal of the American Statistical Association, 62, 819–841.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(stats); require(graphics)
give the data set in the form it is used in S-PLUS:
longley.x <- data.matrix(longley[, 1:6])
longley.y <- longley[, "Employed"]
pairs(longley, main = "longley data")
summary(fm1 <- lm(Employed ~ ., data = longley))
opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
par(opar)

lynx 599

lynx Annual Canadian Lynx trappings 1821–1934

Description

Annual numbers of lynx trappings for 1821–1934 in Canada. Taken from Brockwell & Davis
(1991), this appears to be the series considered by Campbell & Walker (1977).

Usage

lynx

Source

Brockwell, P. J. and Davis, R. A. (1991) Time Series and Forecasting Methods. Second edition.
Springer. Series G (page 557).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Campbell, M. J.and A. M. Walker (1977). A Survey of statistical work on the Mackenzie River
series of annual Canadian lynx trappings for the years 1821–1934 and a new analysis. Journal of
the Royal Statistical Society series A, 140, 411–431.

morley Michelson Speed of Light Data

Description

A classical data of Michelson (but not this one with Morley) on measurements done in 1879 on the
speed of light. The data consists of five experiments, each consisting of 20 consecutive ‘runs’. The
response is the speed of light measurement, suitably coded (km/sec, with 299000 subtracted).

Usage

morley

Format

A data frame contains the following components:

Expt The experiment number, from 1 to 5.

Run The run number within each experiment.

Speed Speed-of-light measurement.

600 mtcars

Details

The data is here viewed as a randomized block experiment with ‘experiment’ and ‘run’ as the
factors. ‘run’ may also be considered a quantitative variate to account for linear (or polynomial)
changes in the measurement over the course of a single experiment.

Note

This is the same dataset as michelson in package MASS.

Source

A. J. Weekes (1986) A Genstat Primer. London: Edward Arnold.

S. M. Stigler (1977) Do robust estimators work with real data? Annals of Statistics 5, 1055–1098.
(See Table 6.)

A. A. Michelson (1882) Experimental determination of the velocity of light made at the United
States Naval Academy, Annapolis. Astronomic Papers 1 135–8. U.S. Nautical Almanac Office.
(See Table 24.)

Examples

require(stats); require(graphics)
morley$Expt <- factor(morley$Expt)
morley$Run <- factor(morley$Run)

xtabs(~ Expt + Run, data = morley)# 5 x 20 balanced (two-way)
plot(Speed ~ Expt, data = morley,

main = "Speed of Light Data", xlab = "Experiment No.")
fm <- aov(Speed ~ Run + Expt, data = morley)
summary(fm)
fm0 <- update(fm, . ~ . - Run)
anova(fm0, fm)

mtcars Motor Trend Car Road Tests

Description

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption
and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

Usage

mtcars

Format

A data frame with 32 observations on 11 variables.

[, 1] mpg Miles/(US) gallon
[, 2] cyl Number of cylinders
[, 3] disp Displacement (cu.in.)
[, 4] hp Gross horsepower

nhtemp 601

[, 5] drat Rear axle ratio
[, 6] wt Weight (lb/1000)
[, 7] qsec 1/4 mile time
[, 8] vs V/S
[, 9] am Transmission (0 = automatic, 1 = manual)
[,10] gear Number of forward gears
[,11] carb Number of carburetors

Source

Henderson and Velleman (1981), Building multiple regression models interactively. Biometrics, 37,
391–411.

Examples

require(graphics)
pairs(mtcars, main = "mtcars data")
coplot(mpg ~ disp | as.factor(cyl), data = mtcars,

panel = panel.smooth, rows = 1)

nhtemp Average Yearly Temperatures in New Haven

Description

The mean annual temperature in degrees Fahrenheit in New Haven, Connecticut, from 1912 to
1971.

Usage

nhtemp

Format

A time series of 60 observations.

Source

Vaux, J. E. and Brinker, N. B. (1972) Cycles, 1972, 117–121.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(stats); require(graphics)
plot(nhtemp, main = "nhtemp data",

ylab = "Mean annual temperature in New Haven, CT (deg. F)")

602 Nile

Nile Flow of the River Nile

Description

Measurements of the annual flow of the river Nile at Ashwan 1871–1970.

Usage

Nile

Format

A time series of length 100.

Source

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press. http://www.ssfpack.com/DKbook.html

References

Balke, N. S. (1993) Detecting level shifts in time series. Journal of Business and Economic Statistics
11, 81–92.

Cobb, G. W. (1978) The problem of the Nile: conditional solution to a change-point problem.
Biometrika 65, 243–51.

Examples

require(stats); require(graphics)
par(mfrow = c(2,2))
plot(Nile)
acf(Nile)
pacf(Nile)
ar(Nile) # selects order 2
cpgram(ar(Nile)$resid)
par(mfrow = c(1,1))
arima(Nile, c(2, 0, 0))

Now consider missing values, following Durbin & Koopman
NileNA <- Nile
NileNA[c(21:40, 61:80)] <- NA
arima(NileNA, c(2, 0, 0))
plot(NileNA)
pred <-

predict(arima(window(NileNA, 1871, 1890), c(2,0,0)), n.ahead = 20)
lines(pred$pred, lty = 3, col = "red")
lines(pred$pred + 2*pred$se, lty=2, col="blue")
lines(pred$pred - 2*pred$se, lty=2, col="blue")
pred <-

predict(arima(window(NileNA, 1871, 1930), c(2,0,0)), n.ahead = 20)
lines(pred$pred, lty = 3, col = "red")
lines(pred$pred + 2*pred$se, lty=2, col="blue")

http://www.ssfpack.com/DKbook.html

nottem 603

lines(pred$pred - 2*pred$se, lty=2, col="blue")

Structural time series models
par(mfrow = c(3, 1))
plot(Nile)
local level model
(fit <- StructTS(Nile, type = "level"))
lines(fitted(fit), lty = 2) # contemporaneous smoothing
lines(tsSmooth(fit), lty = 2, col = 4) # fixed-interval smoothing
plot(residuals(fit)); abline(h = 0, lty = 3)
local trend model
(fit2 <- StructTS(Nile, type = "trend")) ## constant trend fitted
pred <- predict(fit, n.ahead = 30)
with 50% confidence interval
ts.plot(Nile, pred$pred,

pred$pred + 0.67*pred$se, pred$pred -0.67*pred$se)

Now consider missing values
plot(NileNA)
(fit3 <- StructTS(NileNA, type = "level"))
lines(fitted(fit3), lty = 2)
lines(tsSmooth(fit3), lty = 3)
plot(residuals(fit3)); abline(h = 0, lty = 3)

nottem Average Monthly Temperatures at Nottingham, 1920–1939

Description

A time series object containing average air temperatures at Nottingham Castle in degrees Fahrenheit
for 20 years.

Usage

nottem

Source

Anderson, O. D. (1976) Time Series Analysis and Forecasting: The Box-Jenkins approach. Butter-
worths. Series R.

Examples

Not run: require(stats); require(graphics)
nott <- window(nottem, end=c(1936,12))
fit <- arima(nott,order=c(1,0,0), list(order=c(2,1,0), period=12))
nott.fore <- predict(fit, n.ahead=36)
ts.plot(nott, nott.fore$pred, nott.fore$pred+2*nott.fore$se,

nott.fore$pred-2*nott.fore$se, gpars=list(col=c(1,1,4,4)))

End(Not run)

604 Orange

occupationalStatus Occupational Status of Fathers and their Sons

Description

Cross-classification of a sample of British males according to each subject’s occupational status and
his father’s occupational status.

Usage

occupationalStatus

Format

A table of counts, with classifying factors origin (father’s occupational status; levels 1:8) and
destination (son’s occupational status; levels 1:8).

Source

Goodman, L. A. (1979) Simple Models for the Analysis of Association in Cross-Classifications
having Ordered Categories. J. Am. Stat. Assoc., 74 (367), 537–552.

The data set has been in package gnm and been provided by the package authors.

Examples

require(stats); require(graphics)

plot(occupationalStatus)

Fit a uniform association model separating diagonal effects
Diag <- as.factor(diag(1:8))
Rscore <- scale(as.numeric(row(occupationalStatus)), scale = FALSE)
Cscore <- scale(as.numeric(col(occupationalStatus)), scale = FALSE)
modUnif <- glm(Freq ~ origin + destination + Diag + Rscore:Cscore,

family = poisson, data = occupationalStatus)

summary(modUnif)
plot(modUnif) # 4 plots, with warning about h_ii ~= 1

Orange Growth of Orange Trees

Description

The Orange data frame has 35 rows and 3 columns of records of the growth of orange trees.

Usage

Orange

http://CRAN.R-project.org/package=gnm

OrchardSprays 605

Format

This object of class c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame")
containing the following columns:

Tree an ordered factor indicating the tree on which the measurement is made. The ordering is
according to increasing maximum diameter.

age a numeric vector giving the age of the tree (days since 1968/12/31)

circumference a numeric vector of trunk circumferences (mm). This is probably “circumference
at breast height”, a standard measurement in forestry.

Details

This dataset was originally part of package nlme, and that has methods (including for [,
as.data.frame, plot and print) for its grouped-data classes.

Source

Draper, N. R. and Smith, H. (1998), Applied Regression Analysis (3rd ed), Wiley (exercise 24.N).

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

require(stats); require(graphics)
coplot(circumference ~ age | Tree, data = Orange, show.given = FALSE)
fm1 <- nls(circumference ~ SSlogis(age, Asym, xmid, scal),

data = Orange, subset = Tree == 3)
plot(circumference ~ age, data = Orange, subset = Tree == 3,

xlab = "Tree age (days since 1968/12/31)",
ylab = "Tree circumference (mm)", las = 1,
main = "Orange tree data and fitted model (Tree 3 only)")

age <- seq(0, 1600, length.out = 101)
lines(age, predict(fm1, list(age = age)))

OrchardSprays Potency of Orchard Sprays

Description

An experiment was conducted to assess the potency of various constituents of orchard sprays in
repelling honeybees, using a Latin square design.

Usage

OrchardSprays

Format

A data frame with 64 observations on 4 variables.

[,1] rowpos numeric Row of the design
[,2] colpos numeric Column of the design
[,3] treatment factor Treatment level
[,4] decrease numeric Response

606 PlantGrowth

Details

Individual cells of dry comb were filled with measured amounts of lime sulphur emulsion in sucrose
solution. Seven different concentrations of lime sulphur ranging from a concentration of 1/100 to
1/1,562,500 in successive factors of 1/5 were used as well as a solution containing no lime sulphur.

The responses for the different solutions were obtained by releasing 100 bees into the chamber for
two hours, and then measuring the decrease in volume of the solutions in the various cells.

An 8× 8 Latin square design was used and the treatments were coded as follows:

A highest level of lime sulphur
B next highest level of lime sulphur
.
.
.

G lowest level of lime sulphur
H no lime sulphur

Source

Finney, D. J. (1947) Probit Analysis. Cambridge.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
pairs(OrchardSprays, main = "OrchardSprays data")

PlantGrowth Results from an Experiment on Plant Growth

Description

Results from an experiment to compare yields (as measured by dried weight of plants) obtained
under a control and two different treatment conditions.

Usage

PlantGrowth

Format

A data frame of 30 cases on 2 variables.

[, 1] weight numeric
[, 2] group factor

The levels of group are ‘ctrl’, ‘trt1’, and ‘trt2’.

precip 607

Source

Dobson, A. J. (1983) An Introduction to Statistical Modelling. London: Chapman and Hall.

Examples

One factor ANOVA example from Dobson’s book, cf. Table 7.4:
require(stats); require(graphics)
boxplot(weight ~ group, data = PlantGrowth, main = "PlantGrowth data",

ylab = "Dried weight of plants", col = "lightgray",
notch = TRUE, varwidth = TRUE)

anova(lm(weight ~ group, data = PlantGrowth))

precip Annual Precipitation in US Cities

Description

The average amount of precipitation (rainfall) in inches for each of 70 United States (and Puerto
Rico) cities.

Usage

precip

Format

A named vector of length 70.

Source

Statistical Abstracts of the United States, 1975.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
dotchart(precip[order(precip)], main = "precip data")
title(sub = "Average annual precipitation (in.)")

608 pressure

presidents Quarterly Approval Ratings of US Presidents

Description

The (approximately) quarterly approval rating for the President of the United states from the first
quarter of 1945 to the last quarter of 1974.

Usage

presidents

Format

A time series of 120 values.

Details

The data are actually a fudged version of the approval ratings. See McNeil’s book for details.

Source

The Gallup Organisation.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(stats); require(graphics)
plot(presidents, las = 1, ylab = "Approval rating (%)",

main = "presidents data")

pressure Vapor Pressure of Mercury as a Function of Temperature

Description

Data on the relation between temperature in degrees Celsius and vapor pressure of mercury in
millimeters (of mercury).

Usage

pressure

Format

A data frame with 19 observations on 2 variables.

[, 1] temperature numeric temperature (deg C)
[, 2] pressure numeric pressure (mm)

Puromycin 609

Source

Weast, R. C., ed. (1973) Handbook of Chemistry and Physics. CRC Press.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
plot(pressure, xlab = "Temperature (deg C)",

ylab = "Pressure (mm of Hg)",
main = "pressure data: Vapor Pressure of Mercury")

plot(pressure, xlab = "Temperature (deg C)", log = "y",
ylab = "Pressure (mm of Hg)",
main = "pressure data: Vapor Pressure of Mercury")

Puromycin Reaction Velocity of an Enzymatic Reaction

Description

The Puromycin data frame has 23 rows and 3 columns of the reaction velocity versus substrate
concentration in an enzymatic reaction involving untreated cells or cells treated with Puromycin.

Usage

Puromycin

Format

This data frame contains the following columns:

conc a numeric vector of substrate concentrations (ppm)

rate a numeric vector of instantaneous reaction rates (counts/min/min)

state a factor with levels treated untreated

Details

Data on the velocity of an enzymatic reaction were obtained by Treloar (1974). The number of
counts per minute of radioactive product from the reaction was measured as a function of substrate
concentration in parts per million (ppm) and from these counts the initial rate (or velocity) of the
reaction was calculated (counts/min/min). The experiment was conducted once with the enzyme
treated with Puromycin, and once with the enzyme untreated.

Source

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications, Wiley,
Appendix A1.3.

Treloar, M. A. (1974), Effects of Puromycin on Galactosyltransferase in Golgi Membranes, M.Sc.
Thesis, U. of Toronto.

610 quakes

See Also

SSmicmen for other models fitted to this dataset.

Examples

require(stats); require(graphics)

plot(rate ~ conc, data = Puromycin, las = 1,
xlab = "Substrate concentration (ppm)",
ylab = "Reaction velocity (counts/min/min)",
pch = as.integer(Puromycin$state),
col = as.integer(Puromycin$state),
main = "Puromycin data and fitted Michaelis-Menten curves")

simplest form of fitting the Michaelis-Menten model to these data
fm1 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,

subset = state == "treated",
start = c(Vm = 200, K = 0.05))

fm2 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,
subset = state == "untreated",
start = c(Vm = 160, K = 0.05))

summary(fm1)
summary(fm2)
add fitted lines to the plot
conc <- seq(0, 1.2, length.out = 101)
lines(conc, predict(fm1, list(conc = conc)), lty = 1, col = 1)
lines(conc, predict(fm2, list(conc = conc)), lty = 2, col = 2)
legend(0.8, 120, levels(Puromycin$state),

col = 1:2, lty = 1:2, pch = 1:2)

using partial linearity
fm3 <- nls(rate ~ conc/(K + conc), data = Puromycin,

subset = state == "treated", start = c(K = 0.05),
algorithm = "plinear")

quakes Locations of Earthquakes off Fiji

Description

The data set give the locations of 1000 seismic events of MB > 4.0. The events occurred in a cube
near Fiji since 1964.

Usage

quakes

Format

A data frame with 1000 observations on 5 variables.

[,1] lat numeric Latitude of event
[,2] long numeric Longitude
[,3] depth numeric Depth (km)
[,4] mag numeric Richter Magnitude
[,5] stations numeric Number of stations reporting

randu 611

Details

There are two clear planes of seismic activity. One is a major plate junction; the other is the Tonga
trench off New Zealand. These data constitute a subsample from a larger dataset of containing 5000
observations.

Source

This is one of the Harvard PRIM-H project data sets. They in turn obtained it from Dr. John
Woodhouse, Dept. of Geophysics, Harvard University.

Examples

require(graphics)
pairs(quakes, main = "Fiji Earthquakes, N = 1000", cex.main=1.2, pch=".")

randu Random Numbers from Congruential Generator RANDU

Description

400 triples of successive random numbers were taken from the VAX FORTRAN function RANDU
running under VMS 1.5.

Usage

randu

Format

A data frame with 400 observations on 3 variables named x, y and z which give the first, second
and third random number in the triple.

Details

In three dimensional displays it is evident that the triples fall on 15 parallel planes in 3-space. This
can be shown theoretically to be true for all triples from the RANDU generator.

These particular 400 triples start 5 apart in the sequence, that is they are ((U[5i+1], U[5i+2],
U[5i+3]), i= 0, . . . , 399), and they are rounded to 6 decimal places.

Under VMS versions 2.0 and higher, this problem has been fixed.

Source

David Donoho

612 rock

Examples

Not run: ## We could re-generate the dataset by the following R code
seed <- as.double(1)
RANDU <- function() {

seed <<- ((2^16 + 3) * seed) %% (2^31)
seed/(2^31)

}
for(i in 1:400) {

U <- c(RANDU(), RANDU(), RANDU(), RANDU(), RANDU())
print(round(U[1:3], 6))

}
End(Not run)

rivers Lengths of Major North American Rivers

Description

This data set gives the lengths (in miles) of 141 “major” rivers in North America, as compiled by
the US Geological Survey.

Usage

rivers

Format

A vector containing 141 observations.

Source

World Almanac and Book of Facts, 1975, page 406.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

rock Measurements on Petroleum Rock Samples

Description

Measurements on 48 rock samples from a petroleum reservoir.

Usage

rock

Format

A data frame with 48 rows and 4 numeric columns.

sleep 613

[,1] area area of pores space, in pixels out of 256 by 256
[,2] peri perimeter in pixels
[,3] shape perimeter/sqrt(area)
[,4] perm permeability in milli-Darcies

Details

Twelve core samples from petroleum reservoirs were sampled by 4 cross-sections. Each core sam-
ple was measured for permeability, and each cross-section has total area of pores, total perimeter of
pores, and shape.

Source

Data from BP Research, image analysis by Ronit Katz, U. Oxford.

sleep Student’s Sleep Data

Description

Data which show the effect of two soporific drugs (increase in hours of sleep compared to control)
on 10 patients.

Usage

sleep

Format

A data frame with 20 observations on 3 variables.

[, 1] extra numeric increase in hours of sleep
[, 2] group factor drug given
[, 3] ID factor patient ID

Details

The group variable name may be misleading about the data: They represent measurements on 10
persons, not in groups.

Source

Cushny, A. R. and Peebles, A. R. (1905) The action of optical isomers: II hyoscines. The Journal
of Physiology 32, 501–510.

Student (1908) The probable error of the mean. Biometrika, 6, 20.

References

Scheffé, Henry (1959) The Analysis of Variance. New York, NY: Wiley.

614 stackloss

Examples

require(stats)
Student’s paired t-test
with(sleep,

t.test(extra[group == 1],
extra[group == 2], paired = TRUE))

stackloss Brownlee’s Stack Loss Plant Data

Description

Operational data of a plant for the oxidation of ammonia to nitric acid.

Usage

stackloss

stack.x
stack.loss

Format

stackloss is a data frame with 21 observations on 4 variables.

[,1] Air Flow Flow of cooling air
[,2] Water Temp Cooling Water Inlet Temperature
[,3] Acid Conc. Concentration of acid [per 1000, minus 500]
[,4] stack.loss Stack loss

For compatibility with S-PLUS, the data sets stack.x, a matrix with the first three (independent)
variables of the data frame, and stack.loss, the numeric vector giving the fourth (dependent)
variable, are provided as well.

Details

“Obtained from 21 days of operation of a plant for the oxidation of ammonia (NH3) to nitric acid
(HNO3). The nitric oxides produced are absorbed in a countercurrent absorption tower”. (Brownlee,
cited by Dodge, slightly reformatted by MM.)

Air Flow represents the rate of operation of the plant. Water Temp is the temperature of cooling
water circulated through coils in the absorption tower. Acid Conc. is the concentration of the acid
circulating, minus 50, times 10: that is, 89 corresponds to 58.9 per cent acid. stack.loss (the
dependent variable) is 10 times the percentage of the ingoing ammonia to the plant that escapes
from the absorption column unabsorbed; that is, an (inverse) measure of the over-all efficiency of
the plant.

Source

Brownlee, K. A. (1960, 2nd ed. 1965) Statistical Theory and Methodology in Science and Engi-
neering. New York: Wiley. pp. 491–500.

state 615

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dodge, Y. (1996) The guinea pig of multiple regression. In: Robust Statistics, Data Analysis, and
Computer Intensive Methods; In Honor of Peter Huber’s 60th Birthday, 1996, Lecture Notes in
Statistics 109, Springer-Verlag, New York.

Examples

require(stats)
summary(lm.stack <- lm(stack.loss ~ stack.x))

state US State Facts and Figures

Description

Data sets related to the 50 states of the United States of America.

Usage

state.abb
state.area
state.center
state.division
state.name
state.region
state.x77

Details

R currently contains the following “state” data sets. Note that all data are arranged according to
alphabetical order of the state names.

state.abb: character vector of 2-letter abbreviations for the state names.

state.area: numeric vector of state areas (in square miles).

state.center: list with components named x and y giving the approximate geographic center of
each state in negative longitude and latitude. Alaska and Hawaii are placed just off the West
Coast.

state.division: factor giving state divisions (New England, Middle Atlantic, South Atlantic,
East South Central, West South Central, East North Central, West North Central, Mountain,
and Pacific).

state.name: character vector giving the full state names.

state.region: factor giving the region (Northeast, South, North Central, West) that each state
belongs to.

state.x77: matrix with 50 rows and 8 columns giving the following statistics in the respective
columns.

Population: population estimate as of July 1, 1975
Income: per capita income (1974)

616 sunspot.month

Illiteracy: illiteracy (1970, percent of population)

Life Exp: life expectancy in years (1969–71)

Murder: murder and non-negligent manslaughter rate per 100,000 population (1976)

HS Grad: percent high-school graduates (1970)

Frost: mean number of days with minimum temperature below freezing (1931–1960) in cap-
ital or large city

Area: land area in square miles

Source

U.S. Department of Commerce, Bureau of the Census (1977) Statistical Abstract of the United
States.

U.S. Department of Commerce, Bureau of the Census (1977) County and City Data Book.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

sunspot.month Monthly Sunspot Data, 1749–1997

Description

Monthly numbers of sunspots.

Usage

sunspot.month

Format

The univariate time series sunspot.year and sunspot.month contain 289 and 2988 observations,
respectively. The objects are of class "ts".

Source

World Data Center-C1 For Sunspot Index Royal Observatory of Belgium, Av. Circulaire, 3, B-1180
BRUSSELS http://www.oma.be/KSB-ORB/SIDC/sidc_txt.html

See Also

sunspot.month is a longer version of sunspots that runs until 1988 rather than 1983.

http://www.oma.be/KSB-ORB/SIDC/sidc_txt.html

sunspot.year 617

Examples

require(stats); require(graphics)
Compare the monthly series
plot (sunspot.month, main = "sunspot.month [stats]", col = 2)
lines(sunspots) # "very barely" see something

Now look at the difference :
all(tsp(sunspots) [c(1,3)] ==

tsp(sunspot.month)[c(1,3)]) ## Start & Periodicity are the same
n1 <- length(sunspots)
table(eq <- sunspots == sunspot.month[1:n1]) #> 132 are different !
i <- which(!eq)
rug(time(eq)[i])
s1 <- sunspots[i] ; s2 <- sunspot.month[i]
cbind(i = i, sunspots = s1, ss.month = s2,

perc.diff = round(100*2*abs(s1-s2)/(s1+s2), 1))

sunspot.year Yearly Sunspot Data, 1700–1988

Description

Yearly numbers of sunspots.

Usage

sunspot.year

Format

The univariate time series sunspot.year contains 289 observations, and is of class "ts".

Source

H. Tong (1996) Non-Linear Time Series. Clarendon Press, Oxford, p. 471.

sunspots Monthly Sunspot Numbers, 1749–1983

Description

Monthly mean relative sunspot numbers from 1749 to 1983. Collected at Swiss Federal Observa-
tory, Zurich until 1960, then Tokyo Astronomical Observatory.

Usage

sunspots

Format

A time series of monthly data from 1749 to 1983.

618 swiss

Source

Andrews, D. F. and Herzberg, A. M. (1985) Data: A Collection of Problems from Many Fields for
the Student and Research Worker. New York: Springer-Verlag.

See Also

sunspot.month has a longer (and a bit different) series.

Examples

require(graphics)
plot(sunspots, main = "sunspots data", xlab = "Year",

ylab = "Monthly sunspot numbers")

swiss Swiss Fertility and Socioeconomic Indicators (1888) Data

Description

Standardized fertility measure and socio-economic indicators for each of 47 French-speaking
provinces of Switzerland at about 1888.

Usage

swiss

Format

A data frame with 47 observations on 6 variables, each of which is in percent, i.e., in [0, 100].

[,1] Fertility Ig , ‘common standardized fertility measure’
[,2] Agriculture % of males involved in agriculture as occupation
[,3] Examination % draftees receiving highest mark on army examination
[,4] Education % education beyond primary school for draftees.
[,5] Catholic % ‘catholic’ (as opposed to ‘protestant’).
[,6] Infant.Mortality live births who live less than 1 year.

All variables but ‘Fertility’ give proportions of the population.

Details

(paraphrasing Mosteller and Tukey):

Switzerland, in 1888, was entering a period known as the demographic transition; i.e., its fertility
was beginning to fall from the high level typical of underdeveloped countries.

The data collected are for 47 French-speaking “provinces” at about 1888.

Here, all variables are scaled to [0, 100], where in the original, all but "Catholic" were scaled to
[0, 1].

Theoph 619

Note

Files for all 182 districts in 1888 and other years have been available at http://opr.princeton.
edu/archive/eufert/switz.html or http://opr.princeton.edu/archive/pefp/switz.asp.

They state that variables Examination and Education are averages for 1887, 1888 and 1889.

Source

Project “16P5”, pages 549–551 in

Mosteller, F. and Tukey, J. W. (1977) Data Analysis and Regression: A Second Course in Statistics.
Addison-Wesley, Reading Mass.

indicating their source as “Data used by permission of Franice van de Walle. Office of Population
Research, Princeton University, 1976. Unpublished data assembled under NICHD contract number
No 1-HD-O-2077.”

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(stats); require(graphics)
pairs(swiss, panel = panel.smooth, main = "swiss data",

col = 3 + (swiss$Catholic > 50))
summary(lm(Fertility ~ . , data = swiss))

Theoph Pharmacokinetics of Theophylline

Description

The Theoph data frame has 132 rows and 5 columns of data from an experiment on the pharma-
cokinetics of theophylline.

Usage

Theoph

Format

This object of class c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame")
containing the following columns:

Subject an ordered factor with levels 1, . . . , 12 identifying the subject on whom the observation
was made. The ordering is by increasing maximum concentration of theophylline observed.

Wt weight of the subject (kg).

Dose dose of theophylline administered orally to the subject (mg/kg).

Time time since drug administration when the sample was drawn (hr).

conc theophylline concentration in the sample (mg/L).

http://opr.princeton.edu/archive/eufert/switz.html
http://opr.princeton.edu/archive/eufert/switz.html
http://opr.princeton.edu/archive/pefp/switz.asp

620 Titanic

Details

Boeckmann, Sheiner and Beal (1994) report data from a study by Dr. Robert Upton of the kinetics
of the anti-asthmatic drug theophylline. Twelve subjects were given oral doses of theophylline then
serum concentrations were measured at 11 time points over the next 25 hours.

These data are analyzed in Davidian and Giltinan (1995) and Pinheiro and Bates (2000) using a
two-compartment open pharmacokinetic model, for which a self-starting model function, SSfol, is
available.

This dataset was originally part of package nlme, and that has methods (including for [,
as.data.frame, plot and print) for its grouped-data classes.

Source

Boeckmann, A. J., Sheiner, L. B. and Beal, S. L. (1994), NONMEM Users Guide: Part V, NON-
MEM Project Group, University of California, San Francisco.

Davidian, M. and Giltinan, D. M. (1995) Nonlinear Models for Repeated Measurement Data, Chap-
man & Hall (section 5.5, p. 145 and section 6.6, p. 176)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer (Appendix
A.29)

See Also

SSfol

Examples

require(stats); require(graphics)

coplot(conc ~ Time | Subject, data = Theoph, show.given = FALSE)
Theoph.4 <- subset(Theoph, Subject == 4)
fm1 <- nls(conc ~ SSfol(Dose, Time, lKe, lKa, lCl),

data = Theoph.4)
summary(fm1)
plot(conc ~ Time, data = Theoph.4,

xlab = "Time since drug administration (hr)",
ylab = "Theophylline concentration (mg/L)",
main = "Observed concentrations and fitted model",
sub = "Theophylline data - Subject 4 only",
las = 1, col = 4)

xvals <- seq(0, par("usr")[2], length.out = 55)
lines(xvals, predict(fm1, newdata = list(Time = xvals)),

col = 4)

Titanic Survival of passengers on the Titanic

Description

This data set provides information on the fate of passengers on the fatal maiden voyage of the ocean
liner ‘Titanic’, summarized according to economic status (class), sex, age and survival.

Titanic 621

Usage

Titanic

Format

A 4-dimensional array resulting from cross-tabulating 2201 observations on 4 variables. The vari-
ables and their levels are as follows:

No Name Levels
1 Class 1st, 2nd, 3rd, Crew
2 Sex Male, Female
3 Age Child, Adult
4 Survived No, Yes

Details

The sinking of the Titanic is a famous event, and new books are still being published about it. Many
well-known facts—from the proportions of first-class passengers to the ‘women and children first’
policy, and the fact that that policy was not entirely successful in saving the women and children in
the third class—are reflected in the survival rates for various classes of passenger.

These data were originally collected by the British Board of Trade in their investigation of the
sinking. Note that there is not complete agreement among primary sources as to the exact numbers
on board, rescued, or lost.

Due in particular to the very successful film ‘Titanic’, the last years saw a rise in public interest in
the Titanic. Very detailed data about the passengers is now available on the Internet, at sites such as
Encyclopedia Titanica (http://www.rmplc.co.uk/eduweb/sites/phind).

Source

Dawson, Robert J. MacG. (1995), The ‘Unusual Episode’ Data Revisited. Journal of Statistics
Education, 3. http://www.amstat.org/publications/jse/v3n3/datasets.dawson.html

The source provides a data set recording class, sex, age, and survival status for each person on board
of the Titanic, and is based on data originally collected by the British Board of Trade and reprinted
in:

British Board of Trade (1990), Report on the Loss of the ‘Titanic’ (S.S.). British Board of Trade
Inquiry Report (reprint). Gloucester, UK: Allan Sutton Publishing.

Examples

require(graphics)
mosaicplot(Titanic, main = "Survival on the Titanic")
Higher survival rates in children?
apply(Titanic, c(3, 4), sum)
Higher survival rates in females?
apply(Titanic, c(2, 4), sum)
Use loglm() in package ’MASS’ for further analysis ...

http://www.rmplc.co.uk/eduweb/sites/phind
http://www.amstat.org/publications/jse/v3n3/datasets.dawson.html

622 treering

ToothGrowth The Effect of Vitamin C on Tooth Growth in Guinea Pigs

Description

The response is the length of odontoblasts (teeth) in each of 10 guinea pigs at each of three dose
levels of Vitamin C (0.5, 1, and 2 mg) with each of two delivery methods (orange juice or ascorbic
acid).

Usage

ToothGrowth

Format

A data frame with 60 observations on 3 variables.

[,1] len numeric Tooth length
[,2] supp factor Supplement type (VC or OJ).
[,3] dose numeric Dose in milligrams.

Source

C. I. Bliss (1952) The Statistics of Bioassay. Academic Press.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
coplot(len ~ dose | supp, data = ToothGrowth, panel = panel.smooth,

xlab = "ToothGrowth data: length vs dose, given type of supplement")

treering Yearly Treering Data, -6000–1979

Description

Contains normalized tree-ring widths in dimensionless units.

Usage

treering

Format

A univariate time series with 7981 observations. The object is of class "ts".

Each tree ring corresponds to one year.

trees 623

Details

The data were recorded by Donald A. Graybill, 1980, from Gt Basin Bristlecone Pine 2805M,
3726-11810 in Methuselah Walk, California.

Source

Time Series Data Library: http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/,
series ‘CA535.DAT’

References

For background on Bristlecone pines and Methuselah Walk, see http://www.sonic.net/
bristlecone/; for some photos see http://www.ltrr.arizona.edu/~hallman/sitephotos/
meth.html

trees Girth, Height and Volume for Black Cherry Trees

Description

This data set provides measurements of the girth, height and volume of timber in 31 felled black
cherry trees. Note that girth is the diameter of the tree (in inches) measured at 4 ft 6 in above the
ground.

Usage

trees

Format

A data frame with 31 observations on 3 variables.

[,1] Girth numeric Tree diameter in inches
[,2] Height numeric Height in ft
[,3] Volume numeric Volume of timber in cubic ft

Source

Ryan, T. A., Joiner, B. L. and Ryan, B. F. (1976) The Minitab Student Handbook. Duxbury Press.

References

Atkinson, A. C. (1985) Plots, Transformations and Regression. Oxford University Press.

Examples

require(stats); require(graphics)
pairs(trees, panel = panel.smooth, main = "trees data")
plot(Volume ~ Girth, data = trees, log = "xy")
coplot(log(Volume) ~ log(Girth) | Height, data = trees,

panel = panel.smooth)

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www.sonic.net/bristlecone/
http://www.sonic.net/bristlecone/
http://www.ltrr.arizona.edu/~hallman/sitephotos/meth.html
http://www.ltrr.arizona.edu/~hallman/sitephotos/meth.html

624 UCBAdmissions

summary(fm1 <- lm(log(Volume) ~ log(Girth), data = trees))
summary(fm2 <- update(fm1, ~ . + log(Height), data = trees))
step(fm2)
i.e., Volume ~= c * Height * Girth^2 seems reasonable

UCBAdmissions Student Admissions at UC Berkeley

Description

Aggregate data on applicants to graduate school at Berkeley for the six largest departments in 1973
classified by admission and sex.

Usage

UCBAdmissions

Format

A 3-dimensional array resulting from cross-tabulating 4526 observations on 3 variables. The vari-
ables and their levels are as follows:

No Name Levels
1 Admit Admitted, Rejected
2 Gender Male, Female
3 Dept A, B, C, D, E, F

Details

This data set is frequently used for illustrating Simpson’s paradox, see Bickel et al.\ (1975). At
issue is whether the data show evidence of sex bias in admission practices. There were 2691 male
applicants, of whom 1198 (44.5%) were admitted, compared with 1835 female applicants of whom
557 (30.4%) were admitted. This gives a sample odds ratio of 1.83, indicating that males were
almost twice as likely to be admitted. In fact, graphical methods (as in the example below) or
log-linear modelling show that the apparent association between admission and sex stems from
differences in the tendency of males and females to apply to the individual departments (females
used to apply more to departments with higher rejection rates).

This data set can also be used for illustrating methods for graphical display of categorical data,
such as the general-purpose mosaic plot or the fourfold display for 2-by-2-by-k tables. See the
home page of Michael Friendly (http://www.math.yorku.ca/SCS/friendly.html) for further
information.

References

Bickel, P. J., Hammel, E. A., and O’Connell, J. W. (1975) Sex bias in graduate admissions: Data
from Berkeley. Science, 187, 398–403.

Examples

require(graphics)
Data aggregated over departments
apply(UCBAdmissions, c(1, 2), sum)

http://www.math.yorku.ca/SCS/friendly.html

UKDriverDeaths 625

mosaicplot(apply(UCBAdmissions, c(1, 2), sum),
main = "Student admissions at UC Berkeley")

Data for individual departments
opar <- par(mfrow = c(2, 3), oma = c(0, 0, 2, 0))
for(i in 1:6)

mosaicplot(UCBAdmissions[,,i],
xlab = "Admit", ylab = "Sex",
main = paste("Department", LETTERS[i]))

mtext(expression(bold("Student admissions at UC Berkeley")),
outer = TRUE, cex = 1.5)

par(opar)

UKDriverDeaths Road Casualties in Great Britain 1969–84

Description

UKDriverDeaths is a time series giving the monthly totals of car drivers in Great Britain killed or
seriously injured Jan 1969 to Dec 1984. Compulsory wearing of seat belts was introduced on 31
Jan 1983.

Seatbelts is more information on the same problem.

Usage

UKDriverDeaths
Seatbelts

Format

Seatbelts is a multiple time series, with columns

DriversKilled car drivers killed.
drivers same as UKDriverDeaths.
front front-seat passengers killed or seriously injured.
rear rear-seat passengers killed or seriously injured.
kms distance driven.
PetrolPrice petrol price.
VanKilled number of van (‘light goods vehicle’) drivers.
law 0/1: was the law in effect that month?

Source

Harvey, A.C. (1989) Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge
University Press, pp. 519–523.

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press. http://www.ssfpack.com/dkbook/

References

Harvey, A. C. and Durbin, J. (1986) The effects of seat belt legislation on British road casualties:
A case study in structural time series modelling. Journal of the Royal Statistical Society series B,
149, 187–227.

http://www.ssfpack.com/dkbook/

626 UKgas

Examples

require(stats); require(graphics)
work with pre-seatbelt period to identify a model, use logs
work <- window(log10(UKDriverDeaths), end = 1982+11/12)
par(mfrow = c(3,1))
plot(work); acf(work); pacf(work)
par(mfrow = c(1,1))
(fit <- arima(work, c(1,0,0), seasonal = list(order= c(1,0,0))))
z <- predict(fit, n.ahead = 24)
ts.plot(log10(UKDriverDeaths), z$pred, z$pred+2*zse, zpred-2*z$se,

lty = c(1,3,2,2), col = c("black", "red", "blue", "blue"))

now see the effect of the explanatory variables
X <- Seatbelts[, c("kms", "PetrolPrice", "law")]
X[, 1] <- log10(X[, 1]) - 4
arima(log10(Seatbelts[, "drivers"]), c(1,0,0),

seasonal = list(order= c(1,0,0)), xreg = X)

UKgas UK Quarterly Gas Consumption

Description

Quarterly UK gas consumption from 1960Q1 to 1986Q4, in millions of therms.

Usage

UKgas

Format

A quarterly time series of length 108.

Source

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press. http://www.ssfpack.com/dkbook/

Examples

maybe str(UKgas) ; plot(UKgas) ...

http://www.ssfpack.com/dkbook/

UKLungDeaths 627

UKLungDeaths Monthly Deaths from Lung Diseases in the UK

Description

Three time series giving the monthly deaths from bronchitis, emphysema and asthma in the UK,
1974–1979, both sexes (ldeaths), males (mdeaths) and females (fdeaths).

Usage

ldeaths
fdeaths
mdeaths

Source

P. J. Diggle (1990) Time Series: A Biostatistical Introduction. Oxford, table A.3

Examples

require(stats); require(graphics) # for time
plot(ldeaths)
plot(mdeaths, fdeaths)
Better labels:
yr <- floor(tt <- time(mdeaths))
plot(mdeaths, fdeaths,

xy.labels = paste(month.abb[12*(tt - yr)], yr-1900, sep="’"))

USAccDeaths Accidental Deaths in the US 1973–1978

Description

A time series giving the monthly totals of accidental deaths in the USA. The values for the first six
months of 1979 are 7798 7406 8363 8460 9217 9316.

Usage

USAccDeaths

Source

P. J. Brockwell and R. A. Davis (1991) Time Series: Theory and Methods. Springer, New York.

628 USJudgeRatings

USArrests Violent Crime Rates by US State

Description

This data set contains statistics, in arrests per 100,000 residents for assault, murder, and rape in each
of the 50 US states in 1973. Also given is the percent of the population living in urban areas.

Usage

USArrests

Format

A data frame with 50 observations on 4 variables.

[,1] Murder numeric Murder arrests (per 100,000)
[,2] Assault numeric Assault arrests (per 100,000)
[,3] UrbanPop numeric Percent urban population
[,4] Rape numeric Rape arrests (per 100,000)

Source

World Almanac and Book of facts 1975. (Crime rates).

Statistical Abstracts of the United States 1975. (Urban rates).

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

See Also

The state data sets.

Examples

require(graphics)
pairs(USArrests, panel = panel.smooth, main = "USArrests data")

USJudgeRatings Lawyers’ Ratings of State Judges in the US Superior Court

Description

Lawyers’ ratings of state judges in the US Superior Court.

Usage

USJudgeRatings

USPersonalExpenditure 629

Format

A data frame containing 43 observations on 12 numeric variables.

[,1] CONT Number of contacts of lawyer with judge.
[,2] INTG Judicial integrity.
[,3] DMNR Demeanor.
[,4] DILG Diligence.
[,5] CFMG Case flow managing.
[,6] DECI Prompt decisions.
[,7] PREP Preparation for trial.
[,8] FAMI Familiarity with law.
[,9] ORAL Sound oral rulings.

[,10] WRIT Sound written rulings.
[,11] PHYS Physical ability.
[,12] RTEN Worthy of retention.

Source

New Haven Register, 14 January, 1977 (from John Hartigan).

Examples

require(graphics)
pairs(USJudgeRatings, main = "USJudgeRatings data")

USPersonalExpenditure Personal Expenditure Data

Description

This data set consists of United States personal expenditures (in billions of dollars) in the categories;
food and tobacco, household operation, medical and health, personal care, and private education for
the years 1940, 1945, 1950, 1955 and 1960.

Usage

USPersonalExpenditure

Format

A matrix with 5 rows and 5 columns.

Source

The World Almanac and Book of Facts, 1962, page 756.

References

Tukey, J. W. (1977) Exploratory Data Analysis. Addison-Wesley.

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

630 VADeaths

Examples

require(stats) # for medpolish
USPersonalExpenditure
medpolish(log10(USPersonalExpenditure))

uspop Populations Recorded by the US Census

Description

This data set gives the population of the United States (in millions) as recorded by the decennial
census for the period 1790–1970.

Usage

uspop

Format

A time series of 19 values.

Source

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
plot(uspop, log = "y", main = "uspop data", xlab = "Year",

ylab = "U.S. Population (millions)")

VADeaths Death Rates in Virginia (1940)

Description

Death rates per 1000 in Virginia in 1940.

Usage

VADeaths

Format

A matrix with 5 rows and 4 columns.

Details

The death rates are measured per 1000 population per year. They are cross-classified by age group
(rows) and population group (columns). The age groups are: 50–54, 55–59, 60–64, 65–69, 70–74
and the population groups are Rural/Male, Rural/Female, Urban/Male and Urban/Female.

This provides a rather nice 3-way analysis of variance example.

volcano 631

Source

Molyneaux, L., Gilliam, S. K., and Florant, L. C.(1947) Differences in Virginia death rates by color,
sex, age, and rural or urban residence. American Sociological Review, 12, 525–535.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

require(stats); require(graphics)
n <- length(dr <- c(VADeaths))
nam <- names(VADeaths)
d.VAD <- data.frame(
Drate = dr,
age = rep(ordered(rownames(VADeaths)),length.out=n),
gender= gl(2,5,n, labels= c("M", "F")),
site = gl(2,10, labels= c("rural", "urban")))

coplot(Drate ~ as.numeric(age) | gender * site, data = d.VAD,
panel = panel.smooth, xlab = "VADeaths data - Given: gender")

summary(aov.VAD <- aov(Drate ~ .^2, data = d.VAD))
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(aov.VAD)
par(opar)

volcano Topographic Information on Auckland’s Maunga Whau Volcano

Description

Maunga Whau (Mt Eden) is one of about 50 volcanos in the Auckland volcanic field. This data set
gives topographic information for Maunga Whau on a 10m by 10m grid.

Usage

volcano

Format

A matrix with 87 rows and 61 columns, rows corresponding to grid lines running east to west and
columns to grid lines running south to north.

Source

Digitized from a topographic map by Ross Ihaka. These data should not be regarded as accurate.

See Also

filled.contour for a nice plot.

632 warpbreaks

Examples

require(grDevices); require(graphics)
filled.contour(volcano, color.palette = terrain.colors, asp = 1)
title(main = "volcano data: filled contour map")

warpbreaks The Number of Breaks in Yarn during Weaving

Description

This data set gives the number of warp breaks per loom, where a loom corresponds to a fixed length
of yarn.

Usage

warpbreaks

Format

A data frame with 54 observations on 3 variables.

[,1] breaks numeric The number of breaks
[,2] wool factor The type of wool (A or B)
[,3] tension factor The level of tension (L, M, H)

There are measurements on 9 looms for each of the six types of warp (AL, AM, AH, BL, BM, BH).

Source

Tippett, L. H. C. (1950) Technological Applications of Statistics. Wiley. Page 106.

References

Tukey, J. W. (1977) Exploratory Data Analysis. Addison-Wesley.

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

See Also

xtabs for ways to display these data as a table.

Examples

require(stats); require(graphics)
summary(warpbreaks)
opar <- par(mfrow = c(1,2), oma = c(0, 0, 1.1, 0))
plot(breaks ~ tension, data = warpbreaks, col = "lightgray",

varwidth = TRUE, subset = wool == "A", main = "Wool A")
plot(breaks ~ tension, data = warpbreaks, col = "lightgray",

varwidth = TRUE, subset = wool == "B", main = "Wool B")
mtext("warpbreaks data", side = 3, outer = TRUE)
par(opar)
summary(fm1 <- lm(breaks ~ wool*tension, data = warpbreaks))

WorldPhones 633

anova(fm1)

women Average Heights and Weights for American Women

Description

This data set gives the average heights and weights for American women aged 30–39.

Usage

women

Format

A data frame with 15 observations on 2 variables.

[,1] height numeric Height (in)
[,2] weight numeric Weight (lbs)

Details

The data set appears to have been taken from the American Society of Actuaries Build and Blood
Pressure Study for some (unknown to us) earlier year.

The World Almanac notes: “The figures represent weights in ordinary indoor clothing and shoes,
and heights with shoes”.

Source

The World Almanac and Book of Facts, 1975.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

require(graphics)
plot(women, xlab = "Height (in)", ylab = "Weight (lb)",

main = "women data: American women aged 30-39")

WorldPhones The World’s Telephones

Description

The number of telephones in various regions of the world (in thousands).

Usage

WorldPhones

634 WWWusage

Format

A matrix with 7 rows and 8 columns. The columns of the matrix give the figures for a given region,
and the rows the figures for a year.

The regions are: North America, Europe, Asia, South America, Oceania, Africa, Central America.

The years are: 1951, 1956, 1957, 1958, 1959, 1960, 1961.

Source

AT&T (1961) The World’s Telephones.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
matplot(rownames(WorldPhones), WorldPhones, type = "b", log = "y",

xlab = "Year", ylab = "Number of telephones (1000’s)")
legend(1951.5, 80000, colnames(WorldPhones), col = 1:6, lty = 1:5,

pch = rep(21, 7))
title(main = "World phones data: log scale for response")

WWWusage Internet Usage per Minute

Description

A time series of the numbers of users connected to the Internet through a server every minute.

Usage

WWWusage

Format

A time series of length 100.

Source

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press. http://www.ssfpack.com/dkbook/

References

Makridakis, S., Wheelwright, S. C. and Hyndman, R. J. (1998) Forecasting: Methods and Applica-
tions. Wiley.

http://www.ssfpack.com/dkbook/

WWWusage 635

Examples

require(graphics)
work <- diff(WWWusage)
par(mfrow = c(2,1)); plot(WWWusage); plot(work)
Not run:
require(stats)
aics <- matrix(, 6, 6, dimnames=list(p=0:5, q=0:5))
for(q in 1:5) aics[1, 1+q] <- arima(WWWusage, c(0,1,q),

optim.control = list(maxit = 500))$aic
for(p in 1:5)

for(q in 0:5) aics[1+p, 1+q] <- arima(WWWusage, c(p,1,q),
optim.control = list(maxit = 500))$aic

round(aics - min(aics, na.rm=TRUE), 2)

End(Not run)

636 WWWusage

Chapter 3

The grDevices package

grDevices-package The R Graphics Devices and Support for Colours and Fonts

Description

Graphics devices and support for base and grid graphics

Details

This package contains functions which support both base and grid graphics.

For a complete list of functions, use library(help="grDevices").

Author(s)

R Core Team and contributors worldwide

Maintainer: R Core Team <R-core@r-project.org>

adjustcolor Adjust Colors in One or More Directions Conveniently.

Description

Adjust or modify a vector of colors by “turning knobs” on one or more coordinates in (r, g, b, α)
space, typically by up or down scaling them.

Usage

adjustcolor(col, alpha.f = 1, red.f = 1, green.f = 1, blue.f = 1,
offset = c(0, 0, 0, 0),
transform = diag(c(red.f, green.f, blue.f, alpha.f)))

637

638 adjustcolor

Arguments

col vector of colors, in any format that col2rgb() accepts

alpha.f factor modifying the opacity alpha; typically in [0,1]

red.f, green.f, blue.f

factors modifying the “red-”, “green-” or “blue-”ness of the colors, respectively.

offset

transform

Value

a color vector of the same length as col, effectively the result of rgb().

See Also

rgb, col2rgb. For more sophisticated color constructions: convertColor

Examples

Illustrative examples :
opal <- palette("default")
stopifnot(identical(adjustcolor(1:8, 0.75),

adjustcolor(palette(), 0.75)))
cbind(palette(), adjustcolor(1:8, 0.75))

alpha = 1/2 * previous alpha --> opaque colors
x <- palette(adjustcolor(palette(), 0.5))

sines <- outer(1:20, 1:4, function(x, y) sin(x / 20 * pi * y))
matplot(sines, type = "b", pch = 21:23, col = 2:5, bg = 2:5,

main = "Using an ’opaque (’translucent’) color palette")

x. <- adjustcolor(x, offset=c(0.5,0.5,0.5, 0), # <- "more white"
transform=diag(c(.7, .7, .7, 0.6)))

cbind(x, x.)
op <- par(bg=adjustcolor("goldenrod",offset=-rep(.4,4)), xpd=NA)
plot(0:9,0:9, type="n",axes=FALSE, xlab="",ylab="",

main="adjustcolor() -> translucent")
text(1:8, labels=paste(x,"++",sep=""), col=x., cex=8)
par(op)

and

(M <- cbind(rbind(matrix(1/3, 3,3), 0), c(0,0,0,1)))
adjustcolor(x, transform = M)

revert to previous palette: active
palette(opal)

as.graphicsAnnot 639

as.graphicsAnnot Coerce an Object for Graphics Annotation

Description

Coerce an R object into a form suitable for graphics annotation.

Usage

as.graphicsAnnot(x)

Arguments

x an R object

Details

Expressions, calls and names (as used by plotmath) are passed through unchanged. All other objects
with an explicit class (as determined by is.object) are coerced by as.character to character
vectors.

All the graphics and grid functions which use this coerce calls and names to expressions internally.

Value

A language object or a character vector.

as.raster Create a Raster Object

Description

Functions to create a raster object (representing a bitmap image) and coerce other objects to a raster
object.

Usage

is.raster(x)
as.raster(x, ...)

S3 method for class ’logical’
as.raster(x, max=1, ...)
S3 method for class ’numeric’
as.raster(x, max=1, ...)
S3 method for class ’character’
as.raster(x, max=1, ...)
S3 method for class ’matrix’
as.raster(x, max=1, ...)
S3 method for class ’array’
as.raster(x, max=1, ...)

640 as.raster

Arguments

x Any R object.

max number giving the maximum of the color values range.

... further arguments passed to or from other methods.

Details

An object of class "raster" is a matrix of colour values as given by rgb representing a bitmap
image.

It is not expected that the user will need to call these functions directly; functions to render bitmap
images in graphics packages will make use of the as.raster() function to generate a raster object
from their input.

The as.raster() function is generic so methods can be written to convert other R objects to a
raster object.

The default implementation for numeric matrices interprets scalar values on black-to-white scale.

Raster objects can be subsetted like a matrix and it is possible to assign to a subset of a raster object.

There is a method for converting a raster object to a matrix (of colour strings).

Raster objects can be compared for equality or inequality (with each other or with a colour string).

As from R 2.14.0 there is a is.na method which returns a logical matrix of the same dimensions
as the raster object. Note that NA values are interpreted as the fully transparent colour by some (but
not all) graphics devices.

Value

For as.raster(), a raster object.

For is.raster(), a logical indicating whether x is a raster object.

Examples

A red gradient
as.raster(matrix(hcl(0, 80, seq(50, 80, 10)),

nrow=4, ncol=5))

Vectors are 1-column matrices ...
character vectors are color names ...
as.raster(hcl(0, 80, seq(50, 80, 10)))
numeric vectors are greyscale ...
as.raster(1:5, max=5)
locigal vectors are black and white ...
as.raster(1:10 %% 2 == 0)

... unless nrow/ncol are supplied ...
as.raster(1:10 %% 2 == 0, nrow=1)

Matrix can also be logical or numeric ...
as.raster(matrix(c(TRUE, FALSE), nrow=3, ncol=2))
as.raster(matrix(1:3/4, nrow=3, ncol=4))

An array can be 3-plane numeric (R, G, B planes) ...
as.raster(array(c(0:1, rep(0.5, 4)), c(2, 1, 3)))

axisTicks 641

... or 4-plane numeric (R, G, B, A planes)
as.raster(array(c(0:1, rep(0.5, 6)), c(2, 1, 4)))

subsetting
r <- as.raster(matrix(colors()[1:100], ncol=10))
r[, 2]
r[2:4, 2:5]

assigning to subset
r[2:4, 2:5] <- "white"

comparison
r == "white"

axisTicks Compute Pretty Axis Tick Scales

Description

Compute pretty axis scales and tick mark locations, the same way as traditional R graphics do it.
This is interesting particularly for log scale axes.

Usage

axisTicks(usr, log, axp = NULL, nint = 5)
.axisPars(usr, log = FALSE, nintLog = 5)

Arguments

usr numeric vector of length 2, with c(min, max) axis extents.

log logical indicating if a log scale is (thought to be) in use.

axp numeric vector of length 3, c(mi, ma, n.), with identical meaning to
par("?axp") (where ? is x or y), namely “pretty” axis extents, and an inte-
ger code n..

nint, nintLog positive integer value indicating (approximately) the desired number of inter-
vals. nintLog is used only for the case log = TRUE.

Details

axisTicks(usr, *) calls .axisPars(usr, ..) when axp is missing (or NULL).

Value

axisTicks() returns a numeric vector of potential axis tick locations, of length approximately
nint+1.

.axisPars() returns a list with components

axp numeric vector of length 2, c(min., max.), of pretty axis extents.

n integer (code), with the same meaning as par("?axp")[3].

642 boxplot.stats

See Also

axTicks; axis, and par (from the graphics package).

Examples

##--- Demonstrating correspondence between graphics’
##--- axis() and the graphics-engine agnostic axisTicks() :

require("graphics")
plot(10*(0:10)); (pu <- par("usr"))
aX <- function(side, at, ...)

axis(side, at=at, labels=FALSE, lwd.ticks=2, col.ticks=2, tck=0.05, ...)
aX(1, print(xa <- axisTicks(pu[1:2], log=FALSE)))# x axis
aX(2, print(ya <- axisTicks(pu[3:4], log=FALSE)))# y axis

axisTicks(pu[3:4], log=FALSE, n = 10)

plot(10*(0:10), log="y"); (pu <- par("usr"))
aX(2, print(ya <- axisTicks(pu[3:4], log=TRUE)))# y axis

plot(2^(0:9), log="y"); (pu <- par("usr"))
aX(2, print(ya <- axisTicks(pu[3:4], log=TRUE)))# y axis

boxplot.stats Box Plot Statistics

Description

This function is typically called by another function to gather the statistics necessary for producing
box plots, but may be invoked separately.

Usage

boxplot.stats(x, coef = 1.5, do.conf = TRUE, do.out = TRUE)

Arguments

x a numeric vector for which the boxplot will be constructed (NAs and NaNs are
allowed and omitted).

coef this determines how far the plot ‘whiskers’ extend out from the box. If coef is
positive, the whiskers extend to the most extreme data point which is no more
than coef times the length of the box away from the box. A value of zero causes
the whiskers to extend to the data extremes (and no outliers be returned).

do.conf,do.out logicals; if FALSE, the conf or out component respectively will be empty in the
result.

boxplot.stats 643

Details

The two ‘hinges’ are versions of the first and third quartile, i.e., close to quantile(x, c(1,3)/4).
The hinges equal the quartiles for odd n (where n <- length(x)) and differ for even n. Whereas
the quartiles only equal observations for n %% 4 == 1 (n ≡ 1 mod 4), the hinges do so additionally
for n %% 4 == 2 (n ≡ 2 mod 4), and are in the middle of two observations otherwise.

The notches (if requested) extend to +/-1.58 IQR/sqrt(n). This seems to be based on the same
calculations as the formula with 1.57 in Chambers et al. (1983, p. 62), given in McGill et al. (1978,
p. 16). They are based on asymptotic normality of the median and roughly equal sample sizes for
the two medians being compared, and are said to be rather insensitive to the underlying distributions
of the samples. The idea appears to be to give roughly a 95% confidence interval for the difference
in two medians.

Value

List with named components as follows:

stats a vector of length 5, containing the extreme of the lower whisker, the lower
‘hinge’, the median, the upper ‘hinge’ and the extreme of the upper whisker.

n the number of non-NA observations in the sample.

conf the lower and upper extremes of the ‘notch’ (if(do.conf)). See the details.

out the values of any data points which lie beyond the extremes of the whiskers
(if(do.out)).

Note that $stats and $conf are sorted in increasing order, unlike S, and that $n and $out include
any +- Inf values.

References

Tukey, J. W. (1977) Exploratory Data Analysis. Section 2C.

McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of box plots. The American Statisti-
cian 32, 12–16.

Velleman, P. F. and Hoaglin, D. C. (1981) Applications, Basics and Computing of Exploratory Data
Analysis. Duxbury Press.

Emerson, J. D and Strenio, J. (1983). Boxplots and batch comparison. Chapter 3 of Understanding
Robust and Exploratory Data Analysis, eds. D. C. Hoaglin, F. Mosteller and J. W. Tukey. Wiley.

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data
Analysis. Wadsworth & Brooks/Cole.

See Also

fivenum, boxplot, bxp.

Examples

require(stats)
x <- c(1:100, 1000)
(b1 <- boxplot.stats(x))
(b2 <- boxplot.stats(x, do.conf=FALSE, do.out=FALSE))
stopifnot(b1 $ stats == b2 $ stats) # do.out=F is still robust
boxplot.stats(x, coef = 3, do.conf=FALSE)
no outlier treatment:
boxplot.stats(x, coef = 0)

644 cairo

boxplot.stats(c(x, NA)) # slight change : n is 101
(r <- boxplot.stats(c(x, -1:1/0)))
stopifnot(r$out == c(1000, -Inf, Inf))

bringToTop Assign Focus to a Window

Description

bringToTop brings the specified screen device’s window to the front of the window stack (and gives
it focus). With first argument -1 it brings the console to the top.

If stay = TRUE, the window is designated as a topmost window, i.e. it will stay on top of any
regular window. stay may only be used when Rgui is run in SDI mode. This corresponds to the
“Stay on top” popup menu item in Rgui.

Usage

bringToTop(which = dev.cur(), stay = FALSE)

Arguments

which a device number, or -1.

stay whether to make the window stay on top.

See Also

msgWindow, windows

cairo Cairo-based SVG, PDF and PostScript Graphics Devices

Description

Graphics devices for SVG, PDF and PostScript graphics files.

Usage

svg(filename = if(onefile) "Rplots.svg" else "Rplot%03d.svg",
width = 7, height = 7, pointsize = 12,
onefile = FALSE, family = "sans", bg = "white",
antialias = c("default", "none", "gray", "subpixel"))

cairo_pdf(filename = if(onefile) "Rplots.pdf" else "Rplot%03d.pdf",
width = 7, height = 7, pointsize = 12,
onefile = FALSE, family = "sans", bg = "white",

cairo 645

antialias = c("default", "none", "gray", "subpixel"))

cairo_ps(filename = if(onefile) "Rplots.ps" else "Rplot%03d.ps",
width = 7, height = 7, pointsize = 12,
onefile = FALSE, family = "sans", bg = "white",
antialias = c("default", "none", "gray", "subpixel"))

Arguments

filename the name of the output file. The page number is substituted if a C integer format
is included in the character string, as in the default. (The result must be less than
PATH_MAX characters long, and may be truncated if not. See postscript for
further details.) Tilde expansion is performed where supported by the platform.

width the width of the device in inches.
height the height of the device in inches.
pointsize the default pointsize of plotted text (in big points).
onefile should all plots appear in one file or in separate files?
family one of the device-independent font families, "sans", "serif" and "mono", or a

character string specify a font family to be searched for in a system-dependent
way.

bg the initial background colour: can be overridden by setting par("bg").
antialias string, the type of anti-aliasing (if any) to be used; defaults to "default".

Details

SVG (Scalar Vector Graphics) is a W3C standard for vector graphics. See http://www.w3.org/
Graphics/SVG/. The output is SVG version 1.1 for onefile = FALSE (the default), otherwise
SVG 1.2. (Very few SVG viewers are capable of displaying multi-page SVG files.) Although this
only requires cairo >= 1.2, the output produced by cairo 1.2.4 (in Centos/RHEL 5) is incorrect.

Note that unlike postscript and pdf, cairo_pdf and cairo_ps sometimes record bitmaps and not
vector graphics: a resolution of 72dpi is used. On the other hand, they can (on suitable platforms)
include a much wider range of UTF-8 glyphs, and embed the fonts used.

The output produced by cairo_ps(onefile = FALSE) will be encapsulated postscript on a plat-
form with cairo >= 1.6.

R can be compiled without support for any of these devices: this will be reported if you attempt to
use them on a system where they are not supported. They all require cairo version 1.2 or later.

If you plot more than one page on one of these devices and do not include something like %d for the
sequence number in file (or set onefile=TRUE) the file will contain the last page plotted.

There is full support of transparency, but using this is one of the things liable to trigger bitmap
output (and will always do so for cairo_ps).

Value

A plot device is opened: nothing is returned to the R interpreter.

Anti-aliasing

Anti-aliasing is applied to both graphics and fonts. It is generally preferable for lines and text, but
can lead to undesirable effects for fills, e.g. for image plots, and so is never used for fills.

antialias = "default" is in principle platform-dependent, but seems most often equivalent to
antialias = "gray".

http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/

646 check.options

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”.

• The default device size is in pixels (svg) or inches.

• Font sizes are in big points.

• The default font family is Helvetica.

• Line widths are multiples of 1/96 inch.

• Circle radii have a minimum of 1/72 inch.

• Colours are interpreted by the viewing application.

See Also

Devices, dev.print, pdf, postscript

capabilities to see if cairo is supported.

check.options Set Options with Consistency Checks

Description

Utility function for setting options with some consistency checks. The attributes of the new
settings in new are checked for consistency with the model (often default) list in name.opt.

Usage

check.options(new, name.opt, reset = FALSE, assign.opt = FALSE,
envir = .GlobalEnv,
check.attributes = c("mode", "length"),
override.check = FALSE)

Arguments

new a named list

name.opt character with the name of R object containing the default list.

reset logical; if TRUE, reset the options from name.opt. If there is more than one R
object with name name.opt, remove the first one in the search() path.

assign.opt logical; if TRUE, assign the . . .

envir the environment used for get and assign.
check.attributes

character containing the attributes which check.options should check.

override.check logical vector of length length(new) (or 1 which entails recycling). For those
new[i] where override.check[i] == TRUE, the checks are overridden and
the changes made anyway.

chull 647

Value

A list of components with the same names as the one called name.opt. The values of the compo-
nents are changed from the new list, as long as these pass the checks (when these are not overridden
according to override.check).

Note

Option "names" is exempt from all the checks or warnings, as in the application it can be NULL or a
variable-length character vector.

Author(s)

Martin Maechler

See Also

ps.options and pdf.options, which use check.options.

Examples

(L1 <- list(a=1:3, b=pi, ch="CH"))
check.options(list(a=0:2), name.opt = "L1")
check.options(NULL, reset = TRUE, name.opt = "L1")

chull Compute Convex Hull of a Set of Points

Description

Computes the subset of points which lie on the convex hull of the set of points specified.

Usage

chull(x, y = NULL)

Arguments

x, y coordinate vectors of points. This can be specified as two vectors x and y, a
2-column matrix x, a list x with two components, etc, see xy.coords.

Details

xy.coords is used to interpret the specification of the points. The algorithm is that given by Eddy
(1977).

‘Peeling’ as used in the S function chull can be implemented by calling chull recursively.

Value

An integer vector giving the indices of the points lying on the convex hull, in clockwise order.

648 cm

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Eddy, W. F. (1977) A new convex hull algorithm for planar sets. ACM Transactions on Mathemati-
cal Software, 3, 398–403.

Eddy, W. F. (1977) Algorithm 523. CONVEX, A new convex hull algorithm for planar sets[Z].
ACM Transactions on Mathematical Software, 3, 411–412.

See Also

xy.coords,polygon

Examples

require(stats)
X <- matrix(rnorm(2000), ncol = 2)
chull(X)
Not run:

Example usage from graphics package
plot(X, cex = 0.5)
hpts <- chull(X)
hpts <- c(hpts, hpts[1])
lines(X[hpts,])

End(Not run)

cm Unit Transformation

Description

Translates from inches to cm (centimeters).

Usage

cm(x)

Arguments

x numeric vector

Examples

cm(1)# = 2.54

Translate *from* cm *to* inches:

10 / cm(1) # -> 10cm are 3.937 inches

col2rgb 649

col2rgb Color to RGB Conversion

Description

R color to RGB (red/green/blue) conversion.

Usage

col2rgb(col, alpha = FALSE)

Arguments

col vector of any of the three kind of R colors, i.e., either a color name (an element
of colors()), a hexadecimal string of the form "#rrggbb" or "#rrggbbaa" (see
rgb), or an integer i meaning palette()[i]. Non-string values are coerced to
integer.

alpha logical value indicating whether alpha channel (opacity) values should be re-
turned.

Details

For integer colors, 0 is shorthand for the current par("bg") (and hence is only relevant to base
graphics and not grid graphics, and is an error if graphics is not loaded), and NA means transparent.

For character colors, "NA" is equivalent to NA, transparent.

Value

an integer matrix with three or four rows and number of columns the length (and names if any) as
col.

Author(s)

Martin Maechler

See Also

rgb, colors, palette, etc.

Examples

col2rgb("peachpuff")
col2rgb(c(blu = "royalblue", reddish = "tomato")) # names kept

col2rgb(1:8)# the ones from the palette() :

col2rgb(paste("gold", 1:4, sep=""))

col2rgb("#08a0ff")
all three kind of colors mixed :
col2rgb(c(red="red", palette= 1:3, hex="#abcdef"))

650 colorRamp

##-- NON-INTRODUCTORY examples --

grC <- col2rgb(paste("gray",0:100,sep=""))
table(print(diff(grC["red",])))# ’2’ or ’3’: almost equidistant
The ’named’ grays are in between {"slate gray" is not gray, strictly}
col2rgb(c(g66="gray66", darkg= "dark gray", g67="gray67",

g74="gray74", gray = "gray", g75="gray75",
g82="gray82", light="light gray", g83="gray83"))

crgb <- col2rgb(cc <- colors())
colnames(crgb) <- cc
t(crgb)## The whole table

ccodes <- c(256^(2:0) %*% crgb)## = internal codes
How many names are ’aliases’ of each other:
table(tcc <- table(ccodes))
length(uc <- unique(sort(ccodes))) # 502
All the multiply named colors:
mult <- uc[tcc >= 2]
cl <- lapply(mult, function(m) cc[ccodes == m])
names(cl) <- apply(col2rgb(sapply(cl, function(x)x[1])),

2, function(n)paste(n, collapse=","))
utils::str(cl)
Not run:
if(require(xgobi)) { ## Look at the color cube dynamically :
tc <- t(crgb[, !duplicated(ccodes)])
table(is.gray <- tc[,1] == tc[,2] & tc[,2] == tc[,3])# (397, 105)
xgobi(tc, color = c("gold", "gray")[1 + is.gray])

}

End(Not run)

colorRamp Color interpolation

Description

These functions return functions that interpolate a set of given colors to create new color palettes
(like topo.colors) and color ramps, functions that map the interval [0, 1] to colors (like grey).

Usage

colorRamp(colors, bias = 1, space = c("rgb", "Lab"),
interpolate = c("linear", "spline"))

colorRampPalette(colors, ...)

Arguments

colors colors to interpolate; must be a valid argument to col2rgb().
bias a positive number. Higher values give more widely spaced colors at the high

end.
space a character string; interpolation in RGB or CIE Lab color spaces.
interpolate use spline or linear interpolation.
... arguments to pass to colorRamp.

colorRamp 651

Details

The CIE Lab color space is approximately perceptually uniform, and so gives smoother and more
uniform color ramps. On the other hand, palettes that vary from one hue to another via white may
have a more symmetrical appearance in RGB space.

The conversion formulas in this function do not appear to be completely accurate and the color ramp
may not reach the extreme values in Lab space. Future changes in the R color model may change
the colors produced with space="Lab".

Value

colorRamp returns a function that maps values between 0 and 1 to colors. colorRampPalette
returns a function that takes an integer argument and returns that number of colors interpolating the
given sequence (similar to heat.colors or terrain.colors.

See Also

Good starting points for interpolation are the “sequential” and “diverging” ColorBrewer palettes in
the RColorBrewer package.

splinefun or approxfun are used for interpolation.

Examples

Both return a *function* :
colorRamp(c("red","green"))((0:4)/4) ## (x) , x in [0,1]
colorRampPalette(c("blue","red"))(4) ## (n)

require(graphics)

Here space="rgb" gives palettes that vary only in saturation,
as intended.
With space="Lab" the steps are more uniform, but the hues
are slightly purple.
filled.contour(volcano,

color.palette =
colorRampPalette(c("red", "white", "blue")),

asp = 1)
filled.contour(volcano,

color.palette =
colorRampPalette(c("red", "white", "blue"),

space = "Lab"),
asp = 1)

Interpolating a ’sequential’ ColorBrewer palette
YlOrBr <- c("#FFFFD4", "#FED98E", "#FE9929", "#D95F0E", "#993404")
filled.contour(volcano,

color.palette = colorRampPalette(YlOrBr, space = "Lab"),
asp = 1)

filled.contour(volcano,
color.palette = colorRampPalette(YlOrBr, space = "Lab",

bias = 0.5),
asp = 1)

’jet.colors’ is "as in Matlab"
(and hurting the eyes by over-saturation)
jet.colors <-

652 colors

colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan",
"#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000"))

filled.contour(volcano, color = jet.colors, asp = 1)

space="Lab" helps when colors don’t form a natural sequence
m <- outer(1:20,1:20,function(x,y) sin(sqrt(x*y)/3))
rgb.palette <- colorRampPalette(c("red", "orange", "blue"),

space = "rgb")
Lab.palette <- colorRampPalette(c("red", "orange", "blue"),

space = "Lab")
filled.contour(m, col = rgb.palette(20))
filled.contour(m, col = Lab.palette(20))

colors Color Names

Description

Returns the built-in color names which R knows about.

Usage

colors()
colours()

Details

These color names can be used with a col= specification in graphics functions.

An even wider variety of colors can be created with primitives rgb and hsv or the derived rainbow,
heat.colors, etc.

Value

A character vector containing all the built-in color names.

See Also

palette for setting the ‘palette’ of colors for par(col=<num>); rgb, hsv, hcl, gray; rainbow for
a nice example; and heat.colors, topo.colors for images.

col2rgb for translating to RGB numbers and extended examples.

Examples

cl <- colors()
length(cl); cl[1:20]

----------- Show (almost) all named colors ---------------------

1) with traditional ’graphics’ package:
showCols1 <- function(bg = "gray", cex = 0.75, srt = 30) {

m <- ceiling(sqrt(n <- length(cl <- colors())))
length(cl) <- m*m; cm <- matrix(cl, m)
##

contourLines 653

require("graphics")
op <- par(mar=rep(0,4), ann=FALSE, bg = bg); on.exit(par(op))
plot(1:m,1:m, type="n", axes=FALSE)
text(col(cm), rev(row(cm)), cm, col = cl, cex=cex, srt=srt)

}
showCols1()

2) with ’grid’ package:
showCols2 <- function(bg = "grey", cex = 0.75, rot = 30) {

m <- ceiling(sqrt(n <- length(cl <- colors())))
length(cl) <- m*m; cm <- matrix(cl, m)
##
require("grid")
grid.newpage(); vp <- viewport(w = .92, h = .92)
grid.rect(gp=gpar(fill=bg))
grid.text(cm, x = col(cm)/m, y = rev(row(cm))/m, rot = rot,

vp=vp, gp=gpar(cex = cex, col = cm))
}
showCols2()
showCols2(bg = "gray33")

contourLines Calculate Contour Lines

Description

Calculate contour lines for a given set of data.

Usage

contourLines(x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)),
z, nlevels = 10,
levels = pretty(range(z, na.rm=TRUE), nlevels))

Arguments

x,y locations of grid lines at which the values in z are measured. These must be in
ascending order. By default, equally spaced values from 0 to 1 are used. If x is
a list, its components x$x and x$y are used for x and y, respectively. If the list
has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that x can
be used instead of z for convenience.

nlevels number of contour levels desired iff levels is not supplied.

levels numeric vector of levels at which to draw contour lines.

Details

contourLines draws nothing, but returns a set of contour lines.

There is currently no documentation about the algorithm. The source code is in
‘R_HOME/src/main/plot3d.c’.

654 convertColor

Value

A list of contours. Each contour is a list with elements:

level The contour level.

x The x-coordinates of the contour.

y The y-coordinates of the contour.

See Also

options("max.contour.segments") for the maximal complexity of a single contour line.

contour.

Examples

x <- 10*1:nrow(volcano)
y <- 10*1:ncol(volcano)
contourLines(x, y, volcano)

convertColor Convert between Colour Spaces

Description

Convert colours between their representations in standard colour spaces.

Usage

convertColor(color, from, to, from.ref.white, to.ref.white,
scale.in=1, scale.out=1, clip=TRUE)

Arguments

color A matrix whose rows specify colors.

from,to Input and output color spaces. See ‘Details’ below.

from.ref.white,to.ref.white

Reference whites or NULL if these are built in to the definition, as for RGB
spaces. D65 is the default, see ‘Details’ for others.

scale.in, scale.out

Input is divided by scale.in, output is multiplied by scale.out. Use NULL to
suppress scaling when input or output is not numeric.

clip If TRUE, truncate RGB output to [0,1], FALSE return out-of-range RGB, NA set
out of range colors to NaN.

convertColor 655

Details

Color spaces are specified by objects of class colorConverter, created by colorConverter or
make.rgb. Built-in color spaces may be referenced by strings: "XYZ", "sRGB", "Apple RGB",
"CIE RGB", "Lab", "Luv". The converters for these colour spaces are in the object colorspaces.

The "sRGB" color space is that used by standard PC monitors. "Apple RGB" is used by Apple
monitors. "Lab" and "Luv" are approximately perceptually uniform spaces standardized by the
Commission Internationale d’Eclairage. XYZ is a 1931 CIE standard capable of representing all
visible colors (and then some), but not in a perceptually uniform way.

The Lab and Luv spaces describe colors of objects, and so require the specification of a reference
‘white light’ color. Illuminant D65 is a standard indirect daylight, Illuminant D50 is close to direct
sunlight, and Illuminant A is the light from a standard incandescent bulb. Other standard CIE illumi-
nants supported are B, C, E and D55. RGB colour spaces are defined relative to a particular reference
white, and can be only approximately translated to other reference whites. The Bradford chromatic
adaptation algorithm is used for this.

The RGB color spaces are specific to a particular class of display. An RGB space cannot represent
all colors, and the clip option controls what is done to out-of-range colors.

Value

A 3-row matrix whose columns specify the colors.

References

For all the conversion equations http://www.brucelindbloom.com/.

For the white points http://www.efg2.com/Lab/Graphics/Colors/Chromaticity.htm.

See Also

col2rgb and colors for ways to specify colors in graphics.

make.rgb for specifying other colour spaces.

Examples

require(graphics); require(stats) # for na.omit
par(mfrow=c(2,2))
The displayable colors from four planes of Lab space
ab <- expand.grid(a=(-10:15)*10,b=(-15:10)*10)

Lab <- cbind(L=20,ab)
srgb <- convertColor(Lab,from="Lab",to="sRGB",clip=NA)
clipped <- attr(na.omit(srgb),"na.action")
srgb[clipped,] <- 0
cols <- rgb(srgb[,1],srgb[,2],srgb[,3])
image((-10:15)*10,(-15:10)*10,matrix(1:(26*26),ncol=26),col=cols,

xlab="a",ylab="b",main="Lab: L=20")

Lab <- cbind(L=40,ab)
srgb <- convertColor(Lab,from="Lab",to="sRGB",clip=NA)
clipped <- attr(na.omit(srgb),"na.action")
srgb[clipped,] <- 0
cols <- rgb(srgb[,1],srgb[,2],srgb[,3])
image((-10:15)*10,(-15:10)*10,matrix(1:(26*26),ncol=26),col=cols,

xlab="a",ylab="b",main="Lab: L=40")

http://www.brucelindbloom.com/
http://www.efg2.com/Lab/Graphics/Colors/Chromaticity.htm

656 densCols

Lab <- cbind(L=60,ab)
srgb <- convertColor(Lab,from="Lab",to="sRGB",clip=NA)
clipped <- attr(na.omit(srgb),"na.action")
srgb[clipped,] <- 0
cols <- rgb(srgb[,1],srgb[,2],srgb[,3])
image((-10:15)*10,(-15:10)*10,matrix(1:(26*26),ncol=26),col=cols,

xlab="a",ylab="b",main="Lab: L=60")

Lab <- cbind(L=80,ab)
srgb <- convertColor(Lab,from="Lab",to="sRGB",clip=NA)
clipped <- attr(na.omit(srgb),"na.action")
srgb[clipped,] <- 0
cols <- rgb(srgb[,1],srgb[,2],srgb[,3])
image((-10:15)*10,(-15:10)*10,matrix(1:(26*26),ncol=26),col=cols,

xlab="a",ylab="b",main="Lab: L=80")

(cols <- t(col2rgb(palette())))
zapsmall(lab <- convertColor(cols,from="sRGB",to="Lab",scale.in=255))
round(convertColor(lab,from="Lab",to="sRGB",scale.out=255))

densCols Colors for Smooth Density Plots

Description

densCols produces a vector containing colors which encode the local densities at each point in a
scatterplot.

Usage

densCols(x, y = NULL, nbin = 128, bandwidth,
colramp = colorRampPalette(blues9[-(1:3)]))

blues9

Arguments

x, y the x and y arguments provide the x and y coordinates of the points. Any reason-
able way of defining the coordinates is acceptable. See the function xy.coords
for details. If supplied separately, they must be of the same length.

nbin numeric vector of length one (for both directions) or two (for x and y separately)
specifying the number of equally spaced grid points for the density estimation;
directly used as gridsize in bkde2D().

bandwidth numeric vector (length 1 or 2) of smoothing bandwidth(s). If missing, a more
or less useful default is used. bandwidth is subsequently passed to function
bkde2D.

colramp function accepting an integer n as an argument and returning n colors.

Details

densCols computes and returns the set of colors that will be used in plotting, calling
bkde2D(*, bandwidth, gridsize=nbin, ..) from package KernSmooth.

blues9 is a set of 9 color shades of blue used as the default in plotting.

http://CRAN.R-project.org/package=KernSmooth

dev 657

Value

densCols returns a vector of length nrow(x) that contains colors to be used in a subsequent scat-
terplot. Each color represents the local density around the corresponding point.

Author(s)

Florian Hahne at FHCRC, originally

See Also

bkde2D from package KernSmooth; further, smoothScatter() (package graphics) which builds
on the same computations as densCols.

Examples

x1 <- matrix(rnorm(1e3), ncol=2)
x2 <- matrix(rnorm(1e3, mean=3, sd=1.5), ncol=2)
x <- rbind(x1,x2)

dcols <- densCols(x)
graphics::plot(x, col = dcols, pch=20, main = "n = 1000")

dev Control Multiple Devices

Description

These functions provide control over multiple graphics devices.

Usage

dev.cur()
dev.list()
dev.next(which = dev.cur())
dev.prev(which = dev.cur())
dev.off(which = dev.cur())
dev.set(which = dev.next())
dev.new(...)
graphics.off()

Arguments

which An integer specifying a device number.

... arguments to be passed to the device selected.

http://CRAN.R-project.org/package=KernSmooth

658 dev

Details

Only one device is the ‘active’ device: this is the device in which all graphics operations occur.
There is a "null device" which is always open but is really a placeholder: any attempt to use it
will open a new device specified by getOption("device")).

Devices are associated with a name (e.g., "X11" or "postscript") and a number in the range 1 to
63; the "null device" is always device 1. Once a device has been opened the null device is not
considered as a possible active device. There is a list of open devices, and this is considered as a
circular list not including the null device. dev.next and dev.prev select the next open device in
the appropriate direction, unless no device is open.

dev.off shuts down the specified (by default the current) device. If the current device is shut down
and any other devices are open, the next open device is made current. It is an error to attempt to
shut down device 1. graphics.off() shuts down all open graphics devices. Normal termination
of a session runs the internal equivalent of graphics.off().

dev.set makes the specified device the active device. If there is no device with that number, it is
equivalent to dev.next. If which = 1 it opens a new device and selects that.

dev.new opens a new device. Normally R will open a new device automatically when needed,
but this enables you to open further devices in a platform-independent way. (For which de-
vice is used see getOption("device").) Note that care is needed with file-based devices such
as pdf and postscript and in that case file names such as ‘Rplots.pdf’, ‘Rplots1.pdf’, . . . ,
‘Rplots999.pdf’ are tried in turn. Only named arguments are passed to the device, and then only
if they match the argument list of the device. Even so, care is needed with the interpretation of e.g.
width, and for the standard bitmap devices units="in", res=72 is forced if neither is supplied
but both width and height are.

Value

dev.cur returns a length-one named integer vector giving the number and name of the active device,
or 1, the null device, if none is active.

dev.list returns the numbers of all open devices, except device 1, the null device. This is a
numeric vector with a names attribute giving the device names, or NULL is there is no open device.

dev.next and dev.prev return the number and name of the next / previous device in the list of
devices. This will be the null device if and only if there are no open devices.

dev.off returns the number and name of the new active device (after the specified device has been
shut down).

dev.set returns the number and name of the new active device.

dev.new returns the return value of the device opened, usually invisible NULL.

See Also

Devices, such as postscript, etc.

layout and its links for setting up plotting regions on the current device.

Examples

Not run: ## Unix-specific example
x11()
plot(1:10)
x11()
plot(rnorm(10))
dev.set(dev.prev())

dev.capabilities 659

abline(0,1)# through the 1:10 points
dev.set(dev.next())
abline(h=0, col="gray")# for the residual plot
dev.set(dev.prev())
dev.off(); dev.off()#- close the two X devices

End(Not run)

dev.capabilities Query Capabilities of the Current Graphics Device

Description

Query the capabilities of the current graphics device.

Usage

dev.capabilities(what = NULL)

Arguments

what a character vector partially matching the names of the components listed in sec-
tion ‘Value’, or NULL which lists all available capabilities.

Details

The capabilities have to be specified by the author of the graphics device, unless they can be deduced
from missing hooks. Thus they will often by returned as NA, and may reflect the maximal capabilities
of the underlying device where several output formats are supported by one device.

Most recent devices support semi-transparent colours provided the graphics format does (which
PostScript does not). On the other hand, relatively few graphics formats support (fully or semi-)
transparent backgrounds: generally the latter is found only in PDF and PNG plots.

Value

A named list with some or all of the following components, any of which may take value NA:

semiTransparency

logical: Does the device support semi-transparent colours?
transparentBackground

character: Does the device support (semi)-transparent backgrounds? Possible
values are "no", "fully" (only full transparency) and "semi" (semi-transparent
background colours are supported).

rasterImage character: To what extent does the device support raster images as used
by rasterImage and grid.raster? Possible values "no", "yes" and
"non-missing" (support only for arrays without any missing values).

capture logical: Does the current device support raster capture as used by grid.cap?

locator logical: Does the current device support locator and identify?

events character: Which events can be generated on this device? Currently this will be
a subset of c("MouseDown", "MouseMove", "MouseUp", "Keybd"), but
other events may be supported in the future.

660 dev.flush

See Also

See getGraphicsEvent for details on interactive events.

Examples

dev.capabilities()

dev.capture Capture device output as a raster image

Description

dev.capture captures the current contents of a graphics device as a raster (bitmap) image.

Usage

dev.capture(native = FALSE)

Arguments

native Logical. If FALSE the result is a matrix of R color names, if TRUE the output is
returned as a nativeRaster object which is more efficient for plotting, but not
portable.

Details

Not all devices support capture of the output as raster bitmaps. Typically, only image-based devices
do and even not all of them.

Value

NULL if the device does not support capture, otherwise a matrix of color names (for
native = FALSE) or a nativeRaster object (for native = TRUE).

dev.flush Hold or Flush Output on an On-Screen Graphics Device.

Description

This gives a way to hold/flush output on certain on-screen devices, and is ignored by other devices.

Usage

dev.hold(level = 1L)
dev.flush(level = 1L)

Arguments

level Integer >= 0. The amount by which to change the hold level. Negative values
will be silently replaced by zero.

dev.interactive 661

Details

Devices which implement this maintain a stack of hold levels: calling dev.hold increases the level
and dev.flush decreases it. Calling dev.hold when the hold level is zero increases the hold level
and inhibits graphics display. When calling dev.flush clears all pending holds the screen display
is refreshed and normal operation is resumed.

This is implemented for the cairo-based X11 types with buffering. When the hold level is positive
the ‘watch’ cursor is set on the device’s window.

It is available on the quartz device on Mac OS X.

This is implemented for the windows device with buffering selected (the default). When the hold
level is positive the ‘busy’ cursor is set on the device’s window.

Value

The current level after the change, invisibly. This is 0 on devices where hold levels are not sup-
ported.

dev.interactive Is the Current Graphics Device Interactive?

Description

Test if the current graphics device (or that which would be opened) is interactive.

Usage

dev.interactive(orNone = FALSE)

deviceIsInteractive(name = NULL)

Arguments

orNone logical; if TRUE, the function also returns TRUE when
.Device == "null device" and getOption("device") is among the
known interactive devices.

name one or more device names as a character vector, or NULL to give the existing list.

Details

The X11 (Unix), windows (Windows) and quartz (Mac OS X, on-screen types only) are regarded as
interactive, together with JavaGD (from the package of the same name) and CairoWin and CairoX11
(from package Cairo). Packages can add their devices to the list by calling deviceIsInteractive.

Value

dev.interactive() returns a logical, TRUE if and only if an interactive (screen) device is in use.

deviceIsInteractive returns the updated list of known interactive devices, invisibly unless
name = NULL.

http://CRAN.R-project.org/package=Cairo

662 dev.size

See Also

Devices for the available devices on your platform.

Examples

dev.interactive()
print(deviceIsInteractive(NULL))

dev.size Find Size of Device Surface

Description

Find the dimensions of the device surface of the current device.

Usage

dev.size(units = c("in", "cm", "px"))

Arguments

units the units in which to return the value – inches, cm, or pixels (device units).

Value

A two-element numeric vector giving width and height of the current device; a new device is opened
if there is none, similarly to dev.new().

See Also

The size information in inches can be obtained by par("din"), but this provides a way to access it
independent of the graphics sub-system in use. Note that par("din") is only updated when a new
plot is started, whereas dev.size tracks the size as an on-screen device is resized.

Examples

dev.size("cm")

dev2 663

dev2 Copy Graphics Between Multiple Devices

Description

dev.copy copies the graphics contents of the current device to the device specified by which or to
a new device which has been created by the function specified by device (it is an error to specify
both which and device). (If recording is off on the current device, there are no contents to copy:
this will result in no plot or an empty plot.) The device copied to becomes the current device.

dev.print copies the graphics contents of the current device to a new device which has been
created by the function specified by device and then shuts the new device.

dev.copy2eps is similar to dev.print but produces an EPSF output file in portrait orientation
(horizontal = FALSE). dev.copy2pdf is the analogue for PDF output.

dev.control allows the user to control the recording of graphics operations in a device. If
displaylist is "inhibit" ("enable") then recording is turned off (on). It is only safe to change
this at the beginning of a plot (just before or just after a new page). Initially recording is on for
screen devices, and off for print devices.

Usage

dev.copy(device, ..., which = dev.next())
dev.print(device = postscript, ...)
dev.copy2eps(...)
dev.copy2pdf(..., out.type = "pdf")
dev.control(displaylist = c("inhibit", "enable"))

Arguments

device A device function (e.g., x11, postscript, . . .)

... Arguments to the device function above: for dev.copy2eps arguments to
postscript and for dev.copy2pdf, arguments to pdf. For dev.print, this
includes which and by default any postscript arguments.

which A device number specifying the device to copy to.

out.type The name of the output device: can be "pdf", or "quartz" (some Mac OS X
builds) or "cairo" (Windows and some Unix-alikes, see cairo_pdf).

displaylist A character string: the only valid values are "inhibit" and "enable".

Details

Note that these functions copy the device region and not a plot: the background colour of the device
surface is part of what is copied. Most screen devices default to a transparent background, which is
probably not what is needed when copying to a device such as png.

For dev.copy2eps and dev.copy2pdf, width and height are taken from the current device unless
otherwise specified. If just one of width and height is specified, the other is adjusted to preserve
the aspect ratio of the device being copied. The default file name is Rplot.eps or Rplot.pdf, and
can be overridden by specifying a file argument.

Copying to devices such as postscript and pdf which need font families pre-specified needs extra
care – R is unaware of which families were used in a plot and so they will need to manually specified

664 dev2

by the fonts argument passed as part of Similarly, if the device to be copied from was opened
with a family argument, a suitable family argument will need to be included in

The default for dev.print is to produce and print a postscript copy. This will not work unless
options("printcmd") is set suitably and you have a PostScript printing system: see postscript
for how to set this up. Windows users may prefer to use dev.print(win.print).

dev.print is most useful for producing a postscript print (its default) when the following applies.
Unless file is specified, the plot will be printed. Unless width, height and pointsize are spec-
ified the plot dimensions will be taken from the current device, shrunk if necessary to fit on the
paper. (pointsize is rescaled if the plot is shrunk.) If horizontal is not specified and the plot can
be printed at full size by switching its value this is done instead of shrinking the plot region.

If dev.print is used with a specified device (even postscript) it sets the width and height in the
same way as dev.copy2eps. This will not be appropriate unless the device specifies dimensions in
inches, in particular not for png, jpeg, tiff and bmp unless units="inches" is specified.

Value

dev.copy returns the name and number of the device which has been copied to.

dev.print, dev.copy2eps and dev.copy2pdf return the name and number of the device which
has been copied from.

Note

Most devices (including all screen devices) have a display list which records all of the graphics
operations that occur in the device. dev.copy copies graphics contents by copying the display list
from one device to another device. Also, automatic redrawing of graphics contents following the
resizing of a device depends on the contents of the display list.

After the command dev.control("inhibit"), graphics operations are not recorded in the display
list so that dev.copy and dev.print will not copy anything and the contents of a device will not
be redrawn automatically if the device is resized.

The recording of graphics operations is relatively expensive in terms of memory so the command
dev.control("inhibit") can be useful if memory usage is an issue.

See Also

dev.cur and other dev.xxx functions.

Examples

Not run:
x11() # on a Unix-alike
plot(rnorm(10), main="Plot 1")
dev.copy(device=x11)
mtext("Copy 1", 3)
dev.print(width=6, height=6, horizontal=FALSE) # prints it
dev.off(dev.prev())
dev.off()

End(Not run)

dev2bitmap 665

dev2bitmap Graphics Device for Bitmap Files via Ghostscript

Description

bitmap generates a graphics file. dev2bitmap copies the current graphics device to a file in a
graphics format.

Usage

bitmap(file, type = "png16m", height = 7, width = 7, res = 72,
units = "in", pointsize, taa = NA, gaa = NA, ...)

dev2bitmap(file, type = "png16m", height = 7, width = 7, res = 72,
units = "in", pointsize, ...,
method = c("postscript", "pdf"), taa = NA, gaa = NA)

Arguments

file The output file name, with an appropriate extension.

type The type of bitmap.

width, height Dimensions of the display region.

res Resolution, in dots per inch.

units The units in which height and width are given. Can be in (inches), px (pixels),
cm or mm.

pointsize The pointsize to be used for text: defaults to something reasonable given the
width and height

... Other parameters passed to postscript or pdf.

method Should the plot be done by postscript or pdf?

taa, gaa Number of bits of antialiasing for text and for graphics respectively. Usually 4
(for best effect) or 2. Not supported on all types.

Details

dev2bitmap works by copying the current device to a postscript or pdf device, and post-
processing the output file using ghostscript. bitmap works in the same way using a postscript
device and post-processing the output as ‘printing’.

You will need ghostscript: the full path to the executable can be set by the environment variable
R_GSCMD. If this is unset, a GhostScript executable will be looked for by name on your path: on
a Unix alike "gs" is used, and on Windows the setting of the environment variable GSC is used,
otherwise commands "gswi64c.exe" then "gswin32c.exe" are tried.

The types available will depend on the version of ghostscript, but are likely to include "pcxmono",
"pcxgray", "pcx16", "pcx256", "pcx24b", "pcxcmyk", "pbm", "pbmraw", "pgm", "pgmraw",
"pgnm", "pgnmraw", "pnm", "pnmraw", "ppm", "ppmraw", "pkm", "pkmraw", "tiffcrle",
"tiffg3", "tiffg32d", "tiffg4", "tifflzw", "tiffpack", "tiff12nc", "tiff24nc",
"tiff32nc" "psmono", "psgray", "psrgb", "bit", "bitrgb", "bitcmyk", "pngmono",
"pnggray", "pngalpha", "png16", "png256", "png16m", "png48", "jpeg", "jpeggray",
"pdfwrite".

666 dev2bitmap

The default type, "png16m", supports 24-bit colour and anti-aliasing. Versions of R prior to 2.7.0
defaulted to "png256", which uses a palette of 256 colours and could be a more compact represen-
tation. Monochrome graphs can use "pngmono", or "pnggray" if anti-aliasing is desired. Plots with
a transparent background and varying degrees of transparency should use "pngalpha".

Note that for a colour TIFF image you probably want "tiff24nc", which is 8-bit per channel RGB
(the most common TIFF format). None of the listed TIFF types support transparency. "tiff32nc"
uses 8-bit per channel CMYK, which printers might require.

For formats which contain a single image, a file specification like Rplots%03d.png can be used:
this is interpreted by Ghostscript.

For dev2bitmap if just one of width and height is specified, the other is chosen to preserve aspect
ratio of the device being copied. The main reason to prefer method = "pdf" over the default would
be to allow semi-transparent colours to be used.

For graphics parameters such as "cra" that need to work in pixels, the default resolution of 72dpi
is always used.

Paths for file and R_GSCMD which contain spaces are mapped to short names via shortPathName.

Value

None.

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”. These devices follow the underlying device, so when viewed at the stated res:

• The default device size is 7 inches square.

• Font sizes are in big points.

• The default font family is (for the standard Ghostscript setup) URW Nimbus Sans.

• Line widths are as a multiple of 1/96 inch, with no minimum.

• Circle of any radius are allowed.

• Colours are interpreted by the viewing/printing application.

Note

Use of bitmap will leave a temporary file (with file name starting Rbit).

Although using type = "pdfwrite" will work for simple plots, it is not recommended. Either
use pdf to produce PDF directly, or call ps2pdf -dAutoRotatePages=/None on the output of
postscript: that command is optimized to do the conversion to PDF in ways that these functions
are not.

See Also

savePlot, which for windows and X11(type = "cairo") provides a simple way to record a PNG
record of the current plot.

postscript, pdf, png, jpeg, tiff and bmp.

To display an array of data, see image.

devAskNewPage 667

devAskNewPage Prompt before New Page

Description

This function can be used to control (for the current device) whether the user is prompted before
starting a new page of output.

Usage

devAskNewPage(ask = NULL)

Arguments

ask NULL or a logical value. If TRUE, the user will in future be prompted before a
new page of output is started.

Details

If the current device is the null device, this will open a graphics device.

The default argument just returns the current setting and does not change it.

The default value when a device is opened is taken from the setting of
options("device.ask.default").

The precise circumstances when the user will be asked to confirm a new page depend on the graphics
subsystem. Obviously this needs to be an interactive session. In addition ‘recording’ needs to be in
operation, so only when the display list is enabled (see dev.control) which it usually is only on a
screen device.

Value

The current prompt setting before any new setting is applied.

See Also

plot.new, grid.newpage

Devices List of Graphical Devices

Description

The following graphics devices are currently available:

• windows The graphics device for Windows (on screen, to printer and to Windows metafile).

• pdf Write PDF graphics commands to a file

• postscript Writes PostScript graphics commands to a file

• xfig Device for XFIG graphics file format

• bitmap bitmap pseudo-device via Ghostscript (if available).

668 embedFonts

• pictex Writes TeX/PicTeX graphics commands to a file (of historical interest only)

The following devices will be functional if R was compiled to use them (they exist but will return
with a warning on other systems):

• cairo_pdf, cairo_ps PDF and PostScript devices based on cairo graphics.

• svg SVG device based on cairo graphics.

• png PNG bitmap device

• jpeg JPEG bitmap device

• bmp BMP bitmap device

• tiff TIFF bitmap device

Details

If no device is open, using a high-level graphics function will cause a device to be opened. Which
device is given by options("device") which is initially set as the most appropriate for each plat-
form: a screen device for most interactive use and pdf (or the setting of R_DEFAULT_DEVICE) oth-
erwise. The exception is interactive use under Unix if no screen device is known to be available,
when pdf() is used.

It is possible for an R package to provide further graphics devices and several packages on CRAN
do so. These include other devices outputting SVG and PGF/TiKZ (TeX-based graphics, see http:
//pgf.sourceforge.net/).

See Also

The individual help files for further information on any of the devices listed here;
windows.options, ps.options and pdf.options for how to customize devices.

dev.interactive, dev.cur, dev.print, graphics.off, image, dev2bitmap.

Examples

Not run:
open the default screen device on this platform if no device is
open
if(dev.cur() == 1) dev.new()

End(Not run)

embedFonts Embed Fonts in PostScript and PDF

Description

Runs Ghostscript to process a PDF or PostScript file and embed all fonts in the file.

Usage

embedFonts(file, format, outfile = file, fontpaths = "",
options = "")

http://pgf.sourceforge.net/
http://pgf.sourceforge.net/

extendrange 669

Arguments

file a character string giving the name of the original file.

format either "pswrite" or "pdfwrite". If not specified, it is guessed from the suffix
of file.

outfile the name of the new file (with fonts embedded).

fontpaths a character vector giving directories that Ghostscript will search for fonts.

options a character string containing further options to Ghostscript.

Details

This function is not necessary if you just use the standard default fonts for PostScript and PDF
output.

If you use a special font, this function is useful for embedding that font in your PostScript or PDF
document so that it can be shared with others without them having to install your special font
(provided the font licence allows this).

If the special font is not installed for Ghostscript, you will need to tell Ghostscript where the font
is, using something like options="-sFONTPATH=path/to/font".

You will need ghostscript: the full path to the executable can be set by the environment variable
R_GSCMD. If this is unset, a GhostScript executable will be looked for by name on your path: on
a Unix alike "gs" is used, and on Windows the setting of the environment variable GSC is used,
otherwise commands "gswi64c.exe" then "gswin32c.exe" are tried.

Note that Ghostscript may do font substitution, so the font embedded may differ from that specified
in the original file.

Some other options which can be useful (see your Ghostscript documentation) are
‘-dMaxSubsetPct=100’, ‘-dSubsetFonts=true’ and ‘-dEmbedAllFonts=true’.

Value

The shell command used to invoke Ghostscript is returned invisibly. This may be useful for debug-
ging purposes as you can run the command by hand in a shell to look for problems.

See Also

postscriptFonts, Devices.

Paul Murrell and Brian Ripley (2006) Non-standard fonts in PostScript and PDF graphics. R News,
6(2):41–47. http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf.

extendrange Extend a Numerical Range by a Small Percentage

Description

Extends a numerical range by a small percentage, i.e., fraction, on both sides.

Usage

extendrange(x, r = range(x, na.rm = TRUE), f = 0.05)

http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf

670 getGraphicsEvent

Arguments

x numeric vector; not used if r is specified.
r numeric vector of length 2; defaults to the range of x.
f number specifying the fraction by which the range should be extended.

Value

A numeric vector of length 2, r + c(-f,f) * diff(r).

See Also

range; pretty which can be considered a sophisticated extension of extendrange.

Examples

x <- 1:5
(r <- range(x)) # 1 5
extendrange(x) # 0.8 5.2
extendrange(x, f= 0.01) # 0.96 5.04
Use ’r’ if you have it already:
stopifnot(identical(extendrange(r=r),

extendrange(x)))

getGraphicsEvent Wait for a mouse or keyboard event from a graphics window

Description

This function waits for input from a graphics window in the form of a mouse or keyboard event.

Usage

getGraphicsEvent(prompt = "Waiting for input",
onMouseDown = NULL, onMouseMove = NULL,
onMouseUp = NULL, onKeybd = NULL,
consolePrompt = prompt)

setGraphicsEventHandlers(which = dev.cur(), ...)
getGraphicsEventEnv(which = dev.cur())
setGraphicsEventEnv(which = dev.cur(), env)

Arguments

prompt prompt to be displayed to the user in the graphics window
onMouseDown a function to respond to mouse clicks
onMouseMove a function to respond to mouse movement
onMouseUp a function to respond to mouse button releases
onKeybd a function to respond to key presses
consolePrompt prompt to be displayed to the user in the console
which which graphics device does the call apply to?
... items including handlers to be placed in the event environment
env an environment to be used as the event environment

getGraphicsEvent 671

Details

These functions allow user input from some graphics devices (currently only the windows() and
X11(type="Xlib") screen displays in base R). Event handlers may be installed to respond to events
involving the mouse or keyboard.

The functions are related as follows. If any of the first five arguments to getGraphicsEvent are
given, then it uses those in a call to setGraphicsEventHandlers to replace any existing handlers in
the current device. This is for compatibility with pre-2.12.0 R versions. The current normal way to
set up event handlers is to set them using setGraphicsEventHandlers or setGraphicsEventEnv
on one or more graphics devices, and then use getGraphicsEvent() with no arguments to retrieve
event data. getGraphicsEventEnv() may be used to save the event environment for use later.

The names of the arguments in getGraphicsEvent are special. When handling events, the graphics
system will look through the event environment for functions named onMouseDown, onMouseMove,
onMouseUp and onKeybd and use them as event handlers. It will use prompt for a label on the
graphics device. Two other special names are which, which will identify the graphics device,
and result, where the result of the last event handler will be stored before being returned by
getGraphicsEvent().

The mouse event handlers should be functions with header function(buttons, x, y). The coor-
dinates x and y will be passed to mouse event handlers in device independent coordinates (i.e. the
lower left corner of the window is (0,0), the upper right is (1,1)). The buttons argument will be
a vector listing the buttons that are pressed at the time of the event, with 0 for left, 1 for middle, and
2 for right.

The keyboard event handler should be a function with header function(key). A single element
character vector will be passed to this handler, corresponding to the key press. Shift and other
modifier keys will have been processed, so shift-a will be passed as "A". The following special
keys may also be passed to the handler:

• Control keys, passed as "Ctrl-A", etc.
• Navigation keys, passed as one of "Left", "Up", "Right", "Down", "PgUp", "PgDn", "End", "Home"

• Edit keys, passed as one of "Ins", "Del"

• Function keys, passed as one of "F1", "F2", ...

The event handlers are standard R functions, and will be executed as though called from the event
environment.

In an interactive session, events will be processed until

• one of the event handlers returns a non-NULL value which will be returned as the value of
getGraphicsEvent, or

• the user interrupts the function from the console.

Value

When run interactively, getGraphicsEvent returns a non-NULL value returned from one of the event
handlers. In a non-interactive session, getGraphicsEvent will return NULL immediately.

getGraphicsEventEnv returns the current event environment for the graphics device, or NULL if
none has been set.

setGraphicsEventEnv and setGraphicsEventHandlers return the previous event environment
for the graphics device.

Author(s)

Duncan Murdoch

672 getGraphicsEvent

Examples

savepar <- par(ask=FALSE)
dragplot <- function(..., xlim=NULL, ylim=NULL, xaxs="r", yaxs="r") {

plot(..., xlim=xlim, ylim=ylim, xaxs=xaxs, yaxs=yaxs)
startx <- NULL
starty <- NULL
usr <- NULL

devset <- function()
if (dev.cur() != eventEnv$which) dev.set(eventEnv$which)

dragmousedown <- function(buttons, x, y) {
startx <<- x
starty <<- y
devset()
usr <<- par("usr")
eventEnv$onMouseMove <- dragmousemove
NULL

}

dragmousemove <- function(buttons, x, y) {
devset()
deltax <- diff(grconvertX(c(startx,x), "ndc", "user"))
deltay <- diff(grconvertY(c(starty,y), "ndc", "user"))
plot(..., xlim=usr[1:2]-deltax, xaxs="i",

ylim=usr[3:4]-deltay, yaxs="i")
NULL

}

mouseup <- function(buttons, x, y) {
eventEnv$onMouseMove <- NULL
}

keydown <- function(key) {
if (key == "q") return(invisible(1))
eventEnv$onMouseMove <- NULL
NULL

}

setGraphicsEventHandlers(prompt="Click and drag, hit q to quit",
onMouseDown = dragmousedown,
onMouseUp = mouseup,
onKeybd = keydown)

eventEnv <- getGraphicsEventEnv()
}

dragplot(rnorm(1000), rnorm(1000))
This currently only works on the Windows
and X11(type = "Xlib") screen devices...
getGraphicsEvent()
par(savepar)

gray 673

gray Gray Level Specification

Description

Create a vector of colors from a vector of gray levels.

Usage

gray(level)
grey(level)

Arguments

level a vector of desired gray levels between 0 and 1; zero indicates "black" and one
indicates "white".

Details

The values returned by gray can be used with a col= specification in graphics functions or in par.

grey is an alias for gray.

Value

A vector of colors of the same length as level.

See Also

rainbow, hsv, hcl, rgb.

Examples

gray(0:8 / 8)

gray.colors Gray Color Palette

Description

Create a vector of n gamma-corrected gray colors.

Usage

gray.colors(n, start = 0.3, end = 0.9, gamma = 2.2)
grey.colors(n, start = 0.3, end = 0.9, gamma = 2.2)

674 hcl

Arguments

n the number of gray colors (≥ 1) to be in the palette.

start starting gray level in the palette (should be between 0 and 1 where zero indicates
"black" and one indicates "white").

end ending gray level in the palette.

gamma the gamma correction.

Details

The function gray.colors chooses a series of n gamma-corrected gray levels between start and
end: seq(start^gamma, end^gamma, length = n)^(1/gamma). The returned palette contains
the corresponding gray colors. This palette is used in barplot.default.

grey.colors is an alias for gray.colors.

Value

A vector of n gray colors.

See Also

gray, rainbow, palette.

Examples

require(graphics)

pie(rep(1,12), col = gray.colors(12))
barplot(1:12, col = gray.colors(12))

hcl HCL Color Specification

Description

Create a vector of colors from vectors specifying hue, chroma and luminance.

Usage

hcl(h = 0, c = 35, l = 85, alpha, fixup = TRUE)

Arguments

h The hue of the color specified as an angle in the range [0,360]. 0 yields red, 120
yields green 240 yields blue, etc.

c The chroma of the color. The upper bound for chroma depends on hue and
luminance.

l A value in the range [0,100] giving the luminance of the colour. For a given
combination of hue and chroma, only a subset of this range is possible.

alpha numeric vector of values in the range [0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

hcl 675

fixup a logical value which indicates whether the resulting RGB values should be
corrected to ensure that a real color results. if fixup is FALSE RGB components
lying outside the range [0,1] will result in an NA value.

Details

This function corresponds to polar coordinates in the CIE-LUV color space. Steps of equal size in
this space correspond to approximately equal perceptual changes in color. Thus, hcl can be thought
of as a perceptually based version of hsv.

The function is primarily intended as a way of computing colors for filling areas in plots where area
corresponds to a numerical value (pie charts, bar charts, mosaic plots, histograms, etc). Choosing
colors which have equal chroma and luminance provides a way of minimising the irradiation illusion
which would otherwise produce a misleading impression of how large the areas are.

The default values of chroma and luminance make it possible to generate a full range of hues and
have a relatively pleasant pastel appearance.

The RGB values produced by this function correspond to the sRGB color space used on most PC
computer displays. There are other packages which provide more general color space facilities.

Semi-transparent colors (0 < alpha < 1) are supported only on some devices: see rgb.

Value

A vector of character strings which can be used as color specifications by R graphics functions.

Note

At present there is no guarantee that the colours rendered by R graphics devices will correspond to
their sRGB description. It is planned to adopt sRGB as the standard R color description in future.

Author(s)

Ross Ihaka

References

Ihaka, R. (2003). Colour for Presentation Graphics, Proceedings of the 3rd International Work-
shop on Distributed Statistical Computing (DSC 2003), March 20-22, 2003, Technische Universität
Wien, Vienna, Austria. http://www.ci.tuwien.ac.at/Conferences/DSC-2003.

See Also

hsv, rgb.

Examples

require(graphics)

The Foley and Van Dam PhD Data.
csd <- matrix(c(4,2,4,6, 4,3,1,4, 4,7,7,1,

0,7,3,2, 4,5,3,2, 5,4,2,2,
3,1,3,0, 4,4,6,7, 1,10,8,7,
1,5,3,2, 1,5,2,1, 4,1,4,3,
0,3,0,6, 2,1,5,5), nrow=4)

csphd <- function(colors)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003

676 Hershey

barplot(csd, col = colors, ylim = c(0,30),
names = 72:85, xlab = "Year", ylab = "Students",
legend = c("Winter", "Spring", "Summer", "Fall"),
main = "Computer Science PhD Graduates", las = 1)

The Original (Metaphorical) Colors (Ouch!)
csphd(c("blue", "green", "yellow", "orange"))

A Color Tetrad (Maximal Color Differences)
csphd(hcl(h = c(30, 120, 210, 300)))

Same, but lighter and less colorful
Turn off automatic correction to make sure
that we have defined real colors.
csphd(hcl(h = c(30, 120, 210, 300),

c = 20, l = 90, fixup = FALSE))

Analogous Colors
Good for those with red/green color confusion
csphd(hcl(h = seq(60, 240, by = 60)))

Metaphorical Colors
csphd(hcl(h = seq(210, 60, length = 4)))

Cool Colors
csphd(hcl(h = seq(120, 0, length = 4) + 150))

Warm Colors
csphd(hcl(h = seq(120, 0, length = 4) - 30))

Single Color
hist(stats::rnorm(1000), col = hcl(240))

Hershey Hershey Vector Fonts in R

Description

If the family graphical parameter (see par) has been set to one of the Hershey fonts (see ‘Details’)
Hershey vector fonts are used to render text.

When using the text and contour functions Hershey fonts may be selected via the vfont argument,
which is a character vector of length 2 (see ‘Details’ for valid values). This allows Cyrillic to be
selected, which is not available via the font families.

Usage

Hershey

Details

The Hershey fonts have two advantages:

Hershey 677

1. vector fonts describe each character in terms of a set of points; R renders the character by join-
ing up the points with straight lines. This intimate knowledge of the outline of each character
means that R can arbitrarily transform the characters, which can mean that the vector fonts
look better for rotated text.

2. this implementation was adapted from the GNU libplot library which provides support for
non-ASCII and non-English fonts. This means that it is possible, for example, to produce
weird plotting symbols and Japanese characters.

Drawback:
You cannot use mathematical expressions (plotmath) with Hershey fonts.

The Hershey characters are organised into a set of fonts. A particular font is selected by specifying
one of the following font families via par(family) and specifying the desired font face (plain,
bold, italic, bold-italic) via par(font).

family faces available
"HersheySerif" plain, bold, italic, bold-italic
"HersheySans" plain, bold, italic, bold-italic
"HersheyScript" plain, bold
"HersheyGothicEnglish" plain
"HersheyGothicGerman" plain
"HersheyGothicItalian" plain
"HersheySymbol" plain, bold, italic, bold-italic
"HersheySansSymbol" plain, italic

In the vfont specification for the text and contour functions, the Hershey font is specified by a
typeface (e.g., serif or sans serif) and a fontindex or ‘style’ (e.g., plain or italic). The first
element of vfont specifies the typeface and the second element specifies the fontindex. The first
table produced by demo(Hershey) shows the character a produced by each of the different fonts.

The available typeface and fontindex values are available as list components of the variable
Hershey. The allowed pairs for (typeface, fontindex) are:

serif plain
serif italic
serif bold
serif bold italic
serif cyrillic
serif oblique cyrillic
serif EUC
sans serif plain
sans serif italic
sans serif bold
sans serif bold italic
script plain
script italic
script bold
gothic english plain
gothic german plain
gothic italian plain
serif symbol plain
serif symbol italic
serif symbol bold

678 Hershey

serif symbol bold italic
sans serif symbol plain
sans serif symbol italic

and the indices of these are available as Hershey$allowed.

Escape sequences: The string to be drawn can include escape sequences, which all begin with a
‘\’. When R encounters a ‘\’, rather than drawing the ‘\’, it treats the subsequent character(s)
as a coded description of what to draw.
One useful escape sequence (in the current context) is of the form: ‘\123’. The three digits
following the ‘\’ specify an octal code for a character. For example, the octal code for p is 160
so the strings "p" and "\160" are equivalent. This is useful for producing characters when
there is not an appropriate key on your keyboard.
The other useful escape sequences all begin with ‘\\’. These are described below. Remember
that backslashes have to be doubled in R character strings, so they need to be entered with
four backslashes.

Symbols: an entire string of Greek symbols can be produced by selecting the HersheySymbol or
HersheySansSymbol family or the Serif Symbol or Sans Serif Symbol typeface. To allow
Greek symbols to be embedded in a string which uses a non-symbol typeface, there are a set
of symbol escape sequences of the form ‘\\ab’. For example, the escape sequence ‘*a’
produces a Greek alpha. The second table in demo(Hershey) shows all of the symbol escape
sequences and the symbols that they produce.

ISO Latin-1: further escape sequences of the form ‘\\ab’ are provided for producing ISO Latin-1
characters. Another option is to use the appropriate octal code. The (non-ASCII) ISO Latin-1
characters are in the range 241. . . 377. For example, ‘\366’ produces the character o with an
umlaut. The third table in demo(Hershey) shows all of the ISO Latin-1 escape sequences.
These characters can be used directly. (Characters not in Latin-1 are replaced by a dot.)
Several characters are missing, c-cedilla has no cedilla and ‘sharp s’ (‘U+00DF’, also known as
‘esszett’) is rendered as ss.

Special Characters: a set of characters are provided which do not fall into any standard font.
These can only be accessed by escape sequence. For example, ‘\\LI’ produces the zodiac
sign for Libra, and ‘\\JU’ produces the astronomical sign for Jupiter. The fourth table in
demo(Hershey) shows all of the special character escape sequences.

Cyrillic Characters: cyrillic characters are implemented according to the K018-R encoding, and
can be used directly in such a locale using the Serif typeface and Cyrillic (or Oblique Cyril-
lic) fontindex. Alternatively they can be specified via an octal code in the range 300 to
337 for lower case characters or 340 to 377 for upper case characters. The fifth table in
demo(Hershey) shows the octal codes for the available Cyrillic characters.
Cyrillic has to be selected via a ("serif", fontindex) pair rather than via a font family.

Japanese Characters: 83 Hiragana, 86 Katakana, and 603 Kanji characters are implemented ac-
cording to the EUC-JP (Extended Unix Code) encoding. Each character is identified by
a unique hexadecimal code. The Hiragana characters are in the range 0x2421 to 0x2473,
Katakana are in the range 0x2521 to 0x2576, and Kanji are (scattered about) in the range
0x3021 to 0x6d55.
When using the Serif typeface and EUC fontindex, these characters can be produced by a pair
of octal codes. Given the hexadecimal code (e.g., 0x2421), take the first two digits and add
0x80 and do the same to the second two digits (e.g., 0x21 and 0x24 become 0xa4 and 0xa1),
then convert both to octal (e.g., 0xa4 and 0xa1 become 244 and 241). For example, the first
Hiragana character is produced by ‘\244\241’.

hsv 679

It is also possible to use the hexadecimal code directly. This works for all non-EUC fonts
by specifying an escape sequence of the form ‘\#J1234’. For example, the first Hiragana
character is produced by ‘\#J2421’.
The Kanji characters may be specified in a third way, using the so-called "Nelson Index", by
specifying an escape sequence of the form ‘\#N1234’. For example, the (obsolete) Kanji for
‘one’ is produced by ‘\#N0001’.
demo(Japanese) shows the available Japanese characters.

Raw Hershey Glyphs: all of the characters in the Hershey fonts are stored in a large array. Some
characters are not accessible in any of the Hershey fonts. These characters can only be ac-
cessed via an escape sequence of the form ‘\#H1234’. For example, the fleur-de-lys is pro-
duced by ‘\#H0746’. The sixth and seventh tables of demo(Hershey) shows all of the available
raw glyphs.

References

http://www.gnu.org/software/plotutils/plotutils.html.

See Also

demo(Hershey), par, text, contour.

Japanese for the Japanese characters in the Hershey fonts.

Examples

Hershey

for tables of examples, see demo(Hershey)

hsv HSV Color Specification

Description

Create a vector of colors from vectors specifying hue, saturation and value.

Usage

hsv(h = 1, s = 1, v = 1, alpha)

Arguments

h,s,v numeric vectors of values in the range [0, 1] for ‘hue’, ‘saturation’ and ‘value’
to be combined to form a vector of colors. Values in shorter arguments are
recycled.

alpha numeric vector of values in the range [0, 1] for alpha transparency channel (0
means transparent and 1 means opaque).

Details

Semi-transparent colors (0 < alpha < 1) are supported only on some devices: see rgb.

http://www.gnu.org/software/plotutils/plotutils.html

680 Japanese

Value

This function creates a vector of colors corresponding to the given values in HSV space. The values
returned by hsv can be used with a col= specification in graphics functions or in par.

See Also

hcl for a perceptually based version of hsv(), rgb and rgb2hsv for RGB to HSV conversion;
rainbow, gray.

Examples

require(graphics)

hsv(.5,.5,.5)

Red tones:
n <- 20; y <- -sin(3*pi*((1:n)-1/2)/n)
op <- par(mar=rep(1.5,4))
plot(y, axes = FALSE, frame.plot = TRUE,

xlab = "", ylab = "", pch = 21, cex = 30,
bg = rainbow(n, start=.85, end=.1),
main = "Red tones")

par(op)

Japanese Japanese characters in R

Description

The implementation of Hershey vector fonts provides a large number of Japanese characters (Hira-
gana, Katakana, and Kanji).

Details

Without keyboard support for typing Japanese characters, the only way to produce these characters
is to use special escape sequences: see Hershey.

For example, the Hiragana character for the sound "ka" is produced by ‘\#J242b’ and the Katakana
character for this sound is produced by ‘\#J252b’. The Kanji ideograph for "one" is produced by
‘\#J306c’ or ‘\#N0001’.

The output from demo(Japanese) shows tables of the escape sequences for the available Japanese
characters.

References

http://www.gnu.org/software/plotutils/plotutils.html

See Also

demo(Japanese), Hershey, text

http://www.gnu.org/software/plotutils/plotutils.html

make.rgb 681

Examples

require(graphics)

plot(1:9, type="n", axes=FALSE, frame=TRUE, ylab="",
main= "example(Japanese)", xlab= "using Hershey fonts")

par(cex=3)
Vf <- c("serif", "plain")

text(4, 2, "\#J2438\#J2421\#J2451\#J2473", vfont = Vf)
text(4, 4, "\#J2538\#J2521\#J2551\#J2573", vfont = Vf)
text(4, 6, "\#J467c\#J4b5c", vfont = Vf)
text(4, 8, "Japan", vfont = Vf)
par(cex=1)
text(8, 2, "Hiragana")
text(8, 4, "Katakana")
text(8, 6, "Kanji")
text(8, 8, "English")

make.rgb Create colour spaces

Description

These functions specify colour spaces for use in convertColor.

Usage

make.rgb(red, green, blue, name = NULL, white = "D65",
gamma = 2.2)

colorConverter(toXYZ, fromXYZ, name, white=NULL)

Arguments

red,green,blue Chromaticity (xy or xyY) of RGB primaries

name Name for the colour space

white Character string specifying the reference white (see ‘Details’.)

gamma Display gamma (nonlinearity). A positive number or the string "sRGB"

fromXYZ Function to convert from XYZ tristimulus coordinates to this space

toXYZ Function to convert from this space to XYZ tristimulus coordinates.

Details

An RGB colour space is defined by the chromaticities of the red, green and blue primaries. These
are given as vectors of length 2 or 3 in xyY coordinates (the Y component is not used and may be
omitted). The chromaticities are defined relative to a reference white, which must be one of the CIE
standard illuminants: "A", "B", "C", "D50", "D55", "D60", "E" (usually "D65").

The display gamma is most commonly 2.2, though 1.8 is used for Apple RGB. The sRGB standard
specifies a more complicated function that is close to a gamma of 2.2; gamma="sRGB" uses this
function.

682 msgWindow

Colour spaces other than RGB can be specified directly by giving conversions to and from XYZ
tristimulus coordinates. The functions should take two arguments. The first is a vector giving the
coordinates for one colour. The second argument is the reference white. If a specific reference
white is included in the definition of the colour space (as for the RGB spaces) this second argument
should be ignored and may be

Value

An object of class colorConverter

References

Conversion algorithms from http://www.brucelindbloom.com.

See Also

convertColor

Examples

(pal <- make.rgb(red= c(0.6400, 0.3300),
green=c(0.2900, 0.6000),
blue= c(0.1500, 0.0600),
name = "PAL/SECAM RGB"))

converter for sRGB in #rrggbb format
hexcolor <- colorConverter(toXYZ = function(hex,...) {

rgb <- t(col2rgb(hex))/255
colorspaces$sRGB$toXYZ(rgb, ...) },

fromXYZ = function(xyz,...) {
rgb <- colorspaces$sRGB$fromXYZ(xyz, ..)
rgb <- round(rgb,5)
if (min(rgb) < 0 || max(rgb) > 1)

as.character(NA)
else rgb(rgb[1], rgb[2], rgb[3])},

white = "D65", name = "#rrggbb")

(cols <- t(col2rgb(palette())))
zapsmall(luv <- convertColor(cols,from="sRGB", to="Luv", scale.in=255))
(hex <- convertColor(luv, from="Luv", to=hexcolor, scale.out=NULL))

must make hex a matrix before using it
(cc <- round(convertColor(as.matrix(hex), from= hexcolor, to= "sRGB",

scale.in=NULL, scale.out=255)))
stopifnot(cc == cols)

msgWindow Manipulate a Window

Description

msgWindow sends a message to manipulate the specified screen device’s window. With argument
which = -1 it applies to the GUI console (which only accepts the first three actions).

http://www.brucelindbloom.com

n2mfrow 683

Usage

msgWindow(type = c("minimize", "restore", "maximize",
"hide", "recordOn", "recordOff"),

which = dev.cur())

Arguments

type action to be taken.

which a device number, or -1.

See Also

bringToTop, windows

n2mfrow Compute Default mfrow From Number of Plots

Description

Easy setup for plotting multiple figures (in a rectangular layout) on one page. This computes a
sensible default for par(mfrow).

Usage

n2mfrow(nr.plots)

Arguments

nr.plots integer; the number of plot figures you’ll want to draw.

Value

A length two integer vector nr, nc giving the number of rows and columns, fulfilling
nr >= nc >= 1 and nr * nc >= nr.plots.

Author(s)

Martin Maechler

See Also

par, layout.

684 nclass

Examples

require(graphics)

n2mfrow(8) # 3 x 3

n <- 5 ; x <- seq(-2,2, len=51)
suppose now that ’n’ is not known {inside function}
op <- par(mfrow = n2mfrow(n))
for (j in 1:n)

plot(x, x^j, main = substitute(x^ exp, list(exp = j)), type = "l",
col = "blue")

sapply(1:10, n2mfrow)

nclass Compute the Number of Classes for a Histogram

Description

Compute the number of classes for a histogram.

Usage

nclass.Sturges(x)
nclass.scott(x)
nclass.FD(x)

Arguments

x A data vector.

Details

nclass.Sturges uses Sturges’ formula, implicitly basing bin sizes on the range of the data.

nclass.scott uses Scott’s choice for a normal distribution based on the estimate of the standard
error, unless that is zero where it returns 1.

nclass.FD uses the Freedman-Diaconis choice based on the inter-quartile range (IQR) unless that’s
zero where it reverts to mad(x, constant=2) and when that is 0 as well, returns 1.

Value

The suggested number of classes.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S-PLUS. Springer, page
112.

Freedman, D. and Diaconis, P. (1981) On the histogram as a density estimator: L2 theory. Zeitschrift
für Wahrscheinlichkeitstheorie und verwandte Gebiete 57, 453–476.

Scott, D. W. (1979) On optimal and data-based histograms. Biometrika 66, 605–610.

Scott, D. W. (1992) Multivariate Density Estimation. Theory, Practice, and Visualization. Wiley.

palette 685

Sturges, H. A. (1926) The choice of a class interval. Journal of the American Statistical Association
21, 65–66.

See Also

hist and truehist (package MASS); dpih (package KernSmooth) for a plugin bandwidth pro-
posed by Wand(1995).

Examples

set.seed(1)
x <- stats::rnorm(1111)
nclass.Sturges(x)

Compare them:
NC <- function(x) c(Sturges = nclass.Sturges(x),

Scott = nclass.scott(x), FD = nclass.FD(x))
NC(x)
onePt <- rep(1, 11)
NC(onePt) # no longer gives NaN

palette Set or View the Graphics Palette

Description

View or manipulate the color palette which is used when a col= has a numeric index.

Usage

palette(value)

Arguments

value an optional character vector.

Details

If value has length 1, it is taken to be the name of a built in color palette. If value has length
greater than 1 it is assumed to contain a description of the colors which are to make up the new
palette (either by name or by RGB levels).

If value is omitted or has length 0, no change is made the current palette.

Currently, the only built-in palette is "default".

Value

The palette which was in effect. This is invisible unless the argument is omitted.

http://CRAN.R-project.org/package=MASS
http://CRAN.R-project.org/package=KernSmooth

686 Palettes

See Also

colors for the vector of built-in named colors; hsv, gray, rainbow, terrain.colors,. . . to con-
struct colors.

adjustcolor, e.g., for tweaking existing palettes; colorRamp to interpolate colors, making custom
palettes; col2rgb for translating colors to RGB 3-vectors.

Examples

require(graphics)

palette() # obtain the current palette
palette(rainbow(6)) # six color rainbow

(palette(gray(seq(0,.9,len=25)))) # gray scales; print old palette
matplot(outer(1:100,1:30), type=’l’, lty=1,lwd=2, col=1:30,

main = "Gray Scales Palette",
sub = "palette(gray(seq(0,.9,len=25)))")

palette("default") # reset back to the default

on a device where alpha-transparency is supported,
use ’alpha = 0.3’ transparency with the default palette :
mycols <- adjustcolor(palette(), alpha.f = 0.3)
opal <- palette(mycols)
x <- rnorm(1000); xy <- cbind(x, 3*x + rnorm(1000))
plot (xy, lwd=2,

main = "Alpha-Transparency Palette\n alpha = 0.3")
xy[,1] <- -xy[,1]
points(xy, col=8, pch=16, cex = 1.5)
palette("default")

Palettes Color Palettes

Description

Create a vector of n contiguous colors.

Usage

rainbow(n, s = 1, v = 1, start = 0, end = max(1,n - 1)/n, alpha = 1)
heat.colors(n, alpha = 1)
terrain.colors(n, alpha = 1)
topo.colors(n, alpha = 1)
cm.colors(n, alpha = 1)

Arguments

n the number of colors (≥ 1) to be in the palette.

s,v the ‘saturation’ and ‘value’ to be used to complete the HSV color descriptions.

start the (corrected) hue in [0,1] at which the rainbow begins.

end the (corrected) hue in [0,1] at which the rainbow ends.

alpha the alpha transparency, a number in [0,1], see argument alpha in hsv.

pdf 687

Details

Conceptually, all of these functions actually use (parts of) a line cut out of the 3-dimensional color
space, parametrized by hsv(h,s,v), and hence, equispaced hues in RGB space tend to cluster at
the red, green and blue primaries.

Some applications such as contouring require a palette of colors which do not wrap around to give
a final color close to the starting one.

With rainbow, the parameters start and end can be used to specify particular subranges of hues.
The following values can be used when generating such a subrange: red=0, yellow= 1

6 , green= 2
6 ,

cyan= 3
6 , blue= 4

6 and magenta= 5
6 .

Value

A character vector, cv, of color names. This can be used either to create a user–defined color palette
for subsequent graphics by palette(cv), a col= specification in graphics functions or in par.

See Also

colors, palette, hsv, hcl, rgb, gray and col2rgb for translating to RGB numbers.

Examples

require(graphics)
A Color Wheel
pie(rep(1,12), col=rainbow(12))

##------ Some palettes ------------
demo.pal <-

function(n, border = if (n<32) "light gray" else NA,
main = paste("color palettes; n=",n),
ch.col = c("rainbow(n, start=.7, end=.1)", "heat.colors(n)",

"terrain.colors(n)", "topo.colors(n)",
"cm.colors(n)"))

{
nt <- length(ch.col)
i <- 1:n; j <- n / nt; d <- j/6; dy <- 2*d
plot(i,i+d, type="n", yaxt="n", ylab="", main=main)
for (k in 1:nt) {

rect(i-.5, (k-1)*j+ dy, i+.4, k*j,
col = eval(parse(text=ch.col[k])), border = border)

text(2*j, k * j +dy/4, ch.col[k])
}

}
n <- if(.Device == "postscript") 64 else 16

Since for screen, larger n may give color allocation problem
demo.pal(n)

pdf PDF Graphics Device

Description

pdf starts the graphics device driver for producing PDF graphics.

688 pdf

Usage

pdf(file = ifelse(onefile, "Rplots.pdf", "Rplot%03d.pdf"),
width, height, onefile, family, title, fonts, version,
paper, encoding, bg, fg, pointsize, pagecentre, colormodel,
useDingbats, useKerning, fillOddEven, maxRasters, compress)

Arguments

file a character string giving the name of the file. If it is of the form "|cmd", the
output is piped to the command given by cmd. If it is NULL, then no external file
is created (effectively, no drawing occurs), but the device may still be queried
(e.g., for size of text).
For use with onefile = FALSE give a C integer format such as
"Rplot%03d.pdf" (the default in that case). (See postscript for further de-
tails.)
Tilde expansion (see path.expand) is done.

width, height the width and height of the graphics region in inches. The default values are 7.

onefile logical: if true (the default) allow multiple figures in one file. If false, generate a
file with name containing the page number for each page. Defaults to TRUE, and
forced to true if file is a pipe.

family the font family to be used, see postscript. Defaults to "Helvetica".

title title string to embed as the ‘/Title’ field in the file. Defaults to
"R Graphics Output".

fonts a character vector specifying R graphics font family names for additional fonts
which will be included in the PDF file. Defaults to NULL.

version a string describing the PDF version that will be required to view the output. This
is a minimum, and will be increased (with a warning) if necessary. Defaults to
"1.4", but see ‘Details’.

paper the target paper size. The choices are "a4", "letter", "legal" (or "us")
and "executive" (and these can be capitalized), or "a4r" and "USr" for ro-
tated (‘landscape’). The default is "special", which means that the width and
height specify the paper size. A further choice is "default"; if this is selected,
the papersize is taken from the option "papersize" if that is set and as "a4" if
it is unset or empty. Defaults to "special".

encoding the name of an encoding file. See postscript for details. Defaults to
"default".

bg the initial background color to be used. Defaults to "transparent".

fg the initial foreground color to be used. Defaults to "black".

pointsize the default point size to be used. Strictly speaking, in bp, that is 1/72 of an inch,
but approximately in points. Defaults to 12.

pagecentre logical: should the device region be centred on the page? – is only relevant for
paper != "special". Defaults to TRUE.

colormodel a character string describing the color model: currently allowed values are
"srgb", "gray" (or "grey") and "cmyk". Defaults to "srgb". See section
‘Color models’.

useDingbats logical. Should small circles be rendered via the Dingbats font? Defaults to
TRUE, which produces smaller and better output. Setting this to FALSE can work

pdf 689

around font display problems in broken PDF viewers: although this font is one
of the 14 guaranteed to be available in all PDF viewers, that guarantee is not
always honoured.

useKerning logical. Should kerning corrections be included in setting text and calculating
string widths? Defaults to TRUE.

fillOddEven logical controlling the polygon fill mode: see polygon for details. Defaults to
FALSE.

maxRasters integer. Unused in R >= 2.14.0, previously the maximum number of raster im-
ages to be stored in this PDF document (default 64 in R < 2.13.2).

compress logical. Should PDF streams be generated with Flate compression? Defaults to
TRUE.

Details

All arguments except file default to values given by pdf.options(). The ultimate defaults are
quoted in the arguments section.

pdf() opens the file file and the PDF commands needed to plot any graphics requested are sent to
that file.

The file argument is interpreted as a C integer format as used by sprintf, with integer argument
the page number. The default gives files ‘Rplot001.pdf’, . . . , ‘Rplot999.pdf’, ‘Rplot1000.pdf’,
. . . .

The family argument can be used to specify a PDF-specific font family as the initial/default font for
the device. If additional font families are to be used they should be included in the fonts argument.

If a device-independent R graphics font family is specified (e.g., via par(family=) in the graphics
package), the PDF device makes use of the PostScript font mappings to convert the R graphics font
family to a PDF-specific font family description. (See the documentation for pdfFonts.)

This device does not embed fonts in the PDF file, so it is only straightforward to use mappings to
the font families that can be assumed to be available in any PDF viewer: "Times" (equivalently
"serif"), "Helvetica" (equivalently "sans") and "Courier" (equivalently "mono"). Other fami-
lies may be specified, but it is the user’s responsibility to ensure that these fonts are available on the
system and third-party software (e.g., Ghostscript) may be required to embed the fonts so that the
PDF can be included in other documents (e.g., LaTeX): see embedFonts. The URW-based families
described for postscript can be used with viewers such as GSView which utilise URW fonts.
Since embedFonts makes use of Ghostscript, it should be able to embed the URW-based families
for use with other viewers.

See postscript for details of encodings, as the internal code is shared between the drivers. The
native PDF encoding is given in file ‘PDFDoc.enc’.

The PDF produced is fairly simple, with each page being represented as a single stream (by de-
fault compressed and possibly with references to raster images). The R graphics model does not
distinguish graphics objects at the level of the driver interface.

The version argument declares the version of PDF that gets produced. The version must be at least
1.2 when compression is used, 1.4 for semi-transparent output to be understood, and at least 1.3
if CID fonts are to be used: if any of these features are used the version number will be increased
(with a warning). (PDF 1.4 was first supported by Acrobat 5 in 2001; it is very unlikely not to be
supported in a current viewer.)

Line widths as controlled by par(lwd=) are in multiples of 1/96 inch. Multiples less than 1 are
allowed. pch="." with cex = 1 corresponds to a square of side 1/72 inch, which is also the ‘pixel’
size assumed for graphics parameters such as "cra".

690 pdf

The paper argument sets the ‘/MediaBox’ entry in the file, which defaults to width by height. If it
is set to something other than "special", a device region of the specified size is (by default) centred
on the rectangle given by the paper size: if either width or height is less than 0.1 or too large to
give a total margin of 0.5 inch, it is reset to the corresponding paper dimension minus 0.5. Thus if
you want the default behaviour of postscript use pdf(paper="a4r", width=0, height=0) to
centre the device region on a landscape A4 page with 0.25 inch margins.

When the background colour is fully transparent (as is the initial default value), the PDF produced
does not paint the background. Most PDF viewers will use a white canvas so the visual effect is if
the background were white. This will not be the case when printing onto coloured paper, though.

Color models

The default color model ("srgb") is sRGB. Model "gray" (or "grey") maps sRGB colors to
greyscale using perceived luminosity (biased towards green). "cmyk" outputs in CMYK colorspace.
The simplest possible conversion from sRGB to CMYK is used (http://en.wikipedia.org/
wiki/CMYK_color_model#Mapping_RGB_to_CMYK), and raster images are output in RGB.

Also available for backwards compatibility is model "rgb" which uses uncalibrated RGB and cor-
responds to the model used with that name in R prior to 2.13.0. Some viewers may render some
plots in that colorspace faster than in sRGB, and the plot files will be smaller.

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”.

• The default device size is 7 inches square.

• Font sizes are in big points.

• The default font family is Helvetica.

• Line widths are as a multiple of 1/96 inch, with a minimum of 0.01 enforced.

• Circles of any radius are allowed. Unless useDingbats = FALSE, opaque circles of
less than 10 big points radius are rendered using char 108 in the Dingbats font: all semi-
transparent and larger circles using a Bézier curve for each quadrant.

• Colours are by default specified as sRGB.

At very small line widths, the line type may be forced to solid.

Printing

Except on Windows it is possible to print directly from pdf by something like (this is appropriate
for a CUPS printing system):

pdf("|lp -o landscape", paper = "a4r")

This forces onefile = TRUE.

Note

If you see problems with PDF output, do remember that the problem is much more likely to be in
your viewer than in R. Try another viewer if possible. Symptoms for which the viewer has been
at fault are apparent grids on image plots (turn off graphics anti-aliasing in your viewer if you can)
and missing or incorrect glyphs in text (viewers silently doing font substitution).

http://en.wikipedia.org/wiki/CMYK_color_model#Mapping_RGB_to_CMYK
http://en.wikipedia.org/wiki/CMYK_color_model#Mapping_RGB_to_CMYK

pdf 691

Unfortunately the default viewers on most Linux and Mac OS X systems have these problems, and
no obvious way to turn off graphics anti-aliasing.

Acrobat Reader does not use the fonts specified but rather emulates them from multiple-master
fonts. This can be seen in imprecise centering of characters, for example the multiply and divide
signs in Helvetica. This can be circumvented by embedding fonts where possible. Most other
viewers substitute fonts, e.g. URW fonts for the standard Helvetica and Times fonts, and these too
often have different font metrics from the true fonts.

Acrobat Reader can be extended by ‘font packs’, and these will be needed for the full use of encod-
ings other than Latin-1 (although they may be downloaded as needed). See http://www.adobe.
com/downloads/updates for Reader 9 and X, and http://www.adobe.com/products/acrobat/
acrrasianfontpack.html for Reader 6 to 8.

The TeXworks PDF viewer is one of those which has been seen to fail to display Dingbats correctly.
Whereas on other platforms the problems seen are incorrect output, on Windows points are silently
omitted. One workaround is to use the argument useDingbats = FALSE: another it to use a better
PDF viewer.

See Also

pdfFonts, pdf.options, embedFonts, Devices, postscript.

cairo_pdf and (on Mac OS X only) quartz for other devices that can produce PDF.

More details of font families and encodings and especially handling text in a non-Latin-1 encoding
and embedding fonts can be found in

Paul Murrell and Brian Ripley (2006) Non-standard fonts in PostScript and PDF graphics. R News,
6(2):41–47. http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf.

Examples

Not run:
Test function for encodings
TestChars <- function(encoding="ISOLatin1", ...)
{

pdf(encoding=encoding, ...)
par(pty="s")
plot(c(-1,16), c(-1,16), type="n", xlab="", ylab="",

xaxs="i", yaxs="i")
title(paste("Centred chars in encoding", encoding))

grid(17, 17, lty=1)
for(i in c(32:255)) {

x <- i %% 16
y <- i %/% 16
points(x, y, pch=i)

}
dev.off()

}
there will be many warnings.
TestChars("ISOLatin2")
this does not view properly in older viewers.
TestChars("ISOLatin2", family="URWHelvetica")
works well for viewing in gs-based viewers, and often in xpdf.

End(Not run)

http://www.adobe.com/downloads/updates
http://www.adobe.com/downloads/updates
http://www.adobe.com/products/acrobat/acrrasianfontpack.html
http://www.adobe.com/products/acrobat/acrrasianfontpack.html
http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf

692 pdf.options

pdf.options Auxiliary Function to Set/View Defaults for Arguments of pdf

Description

The auxiliary function pdf.options can be used to set or view (if called without arguments) the
default values for some of the arguments to pdf.

pdf.options needs to be called before calling pdf, and the default values it sets can be overridden
by supplying arguments to pdf.

Usage

pdf.options(..., reset = FALSE)

Arguments

... arguments width, height, onefile, family, title, fonts, paper, encoding,
pointsize, bg, fg, pagecentre, useDingbats, colormodel, fillOddEven
and compress can be supplied.

reset logical: should the defaults be reset to their ‘factory-fresh’ values?

Details

If both reset = TRUE and ... are supplied the defaults are first reset to the ‘factory-fresh’ values
and then the new values are applied.

Value

A named list of all the defaults. If any arguments are supplied the return values are the old values
and the result has the visibility flag turned off.

See Also

pdf, ps.options.

Examples

pdf.options(bg = "pink")
utils::str(pdf.options())
pdf.options(reset = TRUE) # back to factory-fresh

pictex 693

pictex A PicTeX Graphics Driver

Description

This function produces simple graphics suitable for inclusion in TeX and LaTeX documents. It
dates from the very early days of R and is for historical interest only.

Usage

pictex(file = "Rplots.tex", width = 5, height = 4, debug = FALSE,
bg = "white", fg = "black")

Arguments

file the file where output will appear.

width The width of the plot in inches.

height the height of the plot in inches.

debug should debugging information be printed.

bg the background color for the plot. Ignored.

fg the foreground color for the plot. Ignored.

Details

This driver is much more basic than the other graphics drivers included in R. It does not have any
font metric information, so the use of plotmath is not supported.

Line widths are ignored except when setting the spacing of line textures. pch="." corresponds to a
square of side 1pt.

This device does not support colour (nor does the PicTeX package), and all colour settings are
ignored.

Note that text is recorded in the file as-is, so annotations involving TeX special characters (such as
ampersand and underscore) need to be quoted as they would be when entering TeX.

Multiple plots will be placed as separate environments in the output file.

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”.

• The default device size is 5 inches by 4 inches.

• There is no pointsize argument: the default size is interpreted as 10 point.

• The only font family is cmss10.

• Line widths are only used when setting the spacing on line textures.

• Circle of any radius are allowed.

• Colour is not supported.

694 plotmath

Author(s)

This driver was provided around 1996–7 by Valerio Aimale of the Department of Internal Medicine,
University of Genoa, Italy.

References

Knuth, D. E. (1984) The TeXbook. Reading, MA: Addison-Wesley.

Lamport, L. (1994) LATEX: A Document Preparation System. Reading, MA: Addison-Wesley.

Goossens, M., Mittelbach, F. and Samarin, A. (1994) The LATEX Companion. Reading, MA:
Addison-Wesley.

See Also

postscript, pdf, Devices.

The tikzDevice in the CRAN package of that name for more modern TeX-based graphics
(http://pgf.sourceforge.net/, although including PDF figures via pdftex is most common
in (La)TeX documents).

Examples

require(graphics)

pictex()
plot(1:11,(-5:5)^2, type=’b’, main="Simple Example Plot")
dev.off()
##--------------------
Not run:
%% LaTeX Example
\documentclass{article}
\usepackage{pictex}
\usepackage{graphics} % for \rotatebox
\begin{document}
%...
\begin{figure}[h]

\centerline{\input{Rplots.tex}}
\caption{}

\end{figure}
%...
\end{document}

End(Not run)
##--------------------
unlink("Rplots.tex")

plotmath Mathematical Annotation in R

http://pgf.sourceforge.net/

plotmath 695

Description

If the text argument to one of the text-drawing functions (text, mtext, axis, legend) in R is
an expression, the argument is interpreted as a mathematical expression and the output will be
formatted according to TeX-like rules. Expressions can also be used for titles, subtitles and x- and
y-axis labels (but not for axis labels on persp plots).

In most cases other language objects (names and calls, including formulas) are coerced to expres-
sions and so can also be used.

Details

A mathematical expression must obey the normal rules of syntax for any R expression, but it is
interpreted according to very different rules than for normal R expressions.

It is possible to produce many different mathematical symbols, generate sub- or superscripts, pro-
duce fractions, etc.

The output from demo(plotmath) includes several tables which show the available features. In
these tables, the columns of grey text show sample R expressions, and the columns of black text
show the resulting output.

The available features are also described in the tables below:

Syntax Meaning
x + y x plus y
x - y x minus y
x*y juxtapose x and y
x/y x forwardslash y
x %+-% y x plus or minus y
x %/% y x divided by y
x %*% y x times y
x %.% y x cdot y
x[i] x subscript i
x^2 x superscript 2
paste(x, y, z) juxtapose x, y, and z
sqrt(x) square root of x
sqrt(x, y) yth root of x
x == y x equals y
x != y x is not equal to y
x < y x is less than y
x <= y x is less than or equal to y
x > y x is greater than y
x >= y x is greater than or equal to y
x %~~% y x is approximately equal to y
x %=~% y x and y are congruent
x %==% y x is defined as y
x %prop% y x is proportional to y
plain(x) draw x in normal font
bold(x) draw x in bold font
italic(x) draw x in italic font
bolditalic(x) draw x in bolditalic font
symbol(x) draw x in symbol font
list(x, y, z) comma-separated list
... ellipsis (height varies)
cdots ellipsis (vertically centred)

696 plotmath

ldots ellipsis (at baseline)
x %subset% y x is a proper subset of y
x %subseteq% y x is a subset of y
x %notsubset% y x is not a subset of y
x %supset% y x is a proper superset of y
x %supseteq% y x is a superset of y
x %in% y x is an element of y
x %notin% y x is not an element of y
hat(x) x with a circumflex
tilde(x) x with a tilde
dot(x) x with a dot
ring(x) x with a ring
bar(xy) xy with bar
widehat(xy) xy with a wide circumflex
widetilde(xy) xy with a wide tilde
x %<->% y x double-arrow y
x %->% y x right-arrow y
x %<-% y x left-arrow y
x %up% y x up-arrow y
x %down% y x down-arrow y
x %<=>% y x is equivalent to y
x %=>% y x implies y
x %<=% y y implies x
x %dblup% y x double-up-arrow y
x %dbldown% y x double-down-arrow y
alpha – omega Greek symbols
Alpha – Omega uppercase Greek symbols
theta1, phi1, sigma1, omega1 cursive Greek symbols
Upsilon1 capital upsilon with hook
aleph first letter of Hebrew alphabet
infinity infinity symbol
partialdiff partial differential symbol
nabla nabla, gradient symbol
32*degree 32 degrees
60*minute 60 minutes of angle
30*second 30 seconds of angle
displaystyle(x) draw x in normal size (extra spacing)
textstyle(x) draw x in normal size
scriptstyle(x) draw x in small size
scriptscriptstyle(x) draw x in very small size
underline(x) draw x underlined
x ~~ y put extra space between x and y
x + phantom(0) + y leave gap for "0", but don’t draw it
x + over(1, phantom(0)) leave vertical gap for "0" (don’t draw)
frac(x, y) x over y
over(x, y) x over y
atop(x, y) x over y (no horizontal bar)
sum(x[i], i==1, n) sum x[i] for i equals 1 to n
prod(plain(P)(X==x), x) product of P(X=x) for all values of x
integral(f(x)*dx, a, b) definite integral of f(x) wrt x
union(A[i], i==1, n) union of A[i] for i equals 1 to n
intersect(A[i], i==1, n) intersection of A[i]

plotmath 697

lim(f(x), x %->% 0) limit of f(x) as x tends to 0
min(g(x), x > 0) minimum of g(x) for x greater than 0
inf(S) infimum of S
sup(S) supremum of S
x^y + z normal operator precedence
x^(y + z) visible grouping of operands
x^{y + z} invisible grouping of operands
group("(",list(a, b),"]") specify left and right delimiters
bgroup("(",atop(x,y),")") use scalable delimiters
group(lceil, x, rceil) special delimiters

The symbol font uses Adobe Symbol encoding so, for example, a lower case mu can be obtained
either by the special symbol mu or by symbol("m"). This provides access to symbols that have no
special symbol name, for example, the universal, or forall, symbol is symbol("\042"). To see what
symbols are available in this way use TestChars(font=5) as given in the examples for points:
some are only available on some devices.

Note to TeX users: TeX’s ‘\Upsilon’ is Upsilon1, TeX’s ‘\varepsilon’ is close to epsilon, and
there is no equivalent of TeX’s ‘\epsilon’. TeX’s ‘\varpi’ is close to omega1. vartheta, varphi
and varsigma are allowed as synonyms for theta1, phi1 and sigma1.

sigma1 is also known as stigma, its Unicode name.

Control characters (e.g. ‘\n’) are not interpreted in character strings in plotmath, unlike normal
plotting.

The fonts used are taken from the current font family, and so can be set by par(family=) in base
graphics, and gpar(fontfamily=) in package grid.

Note that bold, italic and bolditalic do not apply to symbols, and hence not to the Greek
symbols such as mu which are displayed in the symbol font. They also do not apply to numeric
constants.

Other symbols

On many OSes and some graphics devices many other symbols are available as part of the standard
text font, and all of the symbols in the Adobe Symbol encoding are in principle available via chang-
ing the font face or (see ‘Details’) plotmath: see the examples section of points for a function to
display them. (‘In principle’ because some of the glyphs are missing from some implementations
of the symbol font.) Unfortunately, postscript and pdf have support for little more than European
(not Greek) and CJK characters and the Adobe Symbol encoding (and in a few fonts, also Cyrillic
characters).

Any Unicode character can be entered into a text string via a ‘\uxxxx’ escape, or used by number
in a call to points. The windows family of devices can display such characters if they are available
in the font in use. This can often be used to display Greek letters in bold or italic.

A good way to both find out which characters are available in a font and to determine the Unicode
number is to use the ‘Character Map’ accessory (usually on the ‘Start’ menu under ‘Accessories-
>System Tools’). You can also copy-and-paste characters from the ‘Character Map’ window to the
Rgui console (but not to Rterm).

References

Murrell, P. and Ihaka, R. (2000) An approach to providing mathematical annotation in plots. Journal
of Computational and Graphical Statistics, 9, 582–599.

698 plotmath

The symbol codes can be found in octal in the Adobe reference manuals, e.g. for Postscript
http://www.adobe.com/products/postscript/pdfs/PLRM.pdf or PDF http://www.adobe.
com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf and in decimal, octal and hex at http:
//www.stat.auckland.ac.nz/~paul/R/CM/AdobeSym.html.

See Also

demo(plotmath), axis, mtext, text, title, substitute quote, bquote

Examples

require(graphics)

x <- seq(-4, 4, len = 101)
y <- cbind(sin(x), cos(x))
matplot(x, y, type = "l", xaxt = "n",

main = expression(paste(plain(sin) * phi, " and ",
plain(cos) * phi)),

ylab = expression("sin" * phi, "cos" * phi), # only 1st is taken
xlab = expression(paste("Phase Angle ", phi)),
col.main = "blue")

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),
labels = expression(-pi, -pi/2, 0, pi/2, pi))

How to combine "math" and numeric variables :
plot(1:10, type="n", xlab="", ylab="", main = "plot math & numbers")
theta <- 1.23 ; mtext(bquote(hat(theta) == .(theta)), line= .25)
for(i in 2:9)

text(i,i+1, substitute(list(xi,eta) == group("(",list(x,y),")"),
list(x=i, y=i+1)))

note that both of these use calls rather than expressions.
##
text(1,10, "Derivatives:", adj=0)
text(1,9.6, expression(
" first: {f * minute}(x) " == {f * minute}(x)), adj=0)

text(1,9.0, expression(
" second: {f * second}(x) " == {f * second}(x)), adj=0)

plot(1:10, 1:10)
text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y))
text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)",

cex = .8)
text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n)))
text(4, 6.4, "expression(bar(x) == sum(frac(x[i], n), i==1, n))",

cex = .8)
text(8, 5, expression(paste(frac(1, sigma*sqrt(2*pi)), " ",

plain(e)^{frac(-(x-mu)^2, 2*sigma^2)})),
cex = 1.2)

some other useful symbols
plot.new(); plot.window(c(0,4), c(15,1))
text(1, 1, "universal", adj=0); text(2.5, 1, "\\042")
text(3, 1, expression(symbol("\042")))
text(1, 2, "existential", adj=0); text(2.5, 2, "\\044")
text(3, 2, expression(symbol("\044")))

http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://www.stat.auckland.ac.nz/~paul/R/CM/AdobeSym.html
http://www.stat.auckland.ac.nz/~paul/R/CM/AdobeSym.html

png 699

text(1, 3, "suchthat", adj=0); text(2.5, 3, "\\047")
text(3, 3, expression(symbol("\047")))
text(1, 4, "therefore", adj=0); text(2.5, 4, "\\134")
text(3, 4, expression(symbol("\134")))
text(1, 5, "perpendicular", adj=0); text(2.5, 5, "\\136")
text(3, 5, expression(symbol("\136")))
text(1, 6, "circlemultiply", adj=0); text(2.5, 6, "\\304")
text(3, 6, expression(symbol("\304")))
text(1, 7, "circleplus", adj=0); text(2.5, 7, "\\305")
text(3, 7, expression(symbol("\305")))
text(1, 8, "emptyset", adj=0); text(2.5, 8, "\\306")
text(3, 8, expression(symbol("\306")))
text(1, 9, "angle", adj=0); text(2.5, 9, "\\320")
text(3, 9, expression(symbol("\320")))
text(1, 10, "leftangle", adj=0); text(2.5, 10, "\\341")
text(3, 10, expression(symbol("\341")))
text(1, 11, "rightangle", adj=0); text(2.5, 11, "\\361")
text(3, 11, expression(symbol("\361")))

png BMP, JPEG, PNG and TIFF graphics devices

Description

Graphics devices for BMP, JPEG, PNG and TIFF format bitmap files.

Usage

bmp(filename = "Rplot%03d.bmp",
width = 480, height = 480, units = "px", pointsize = 12,
bg = "white", res = NA, family = "", restoreConsole = TRUE,
type = c("windows", "cairo"), antialias)

jpeg(filename = "Rplot%03d.jpg",
width = 480, height = 480, units = "px", pointsize = 12,
quality = 75,
bg = "white", res = NA, family = "", restoreConsole = TRUE,
type = c("windows", "cairo"), antialias)

png(filename = "Rplot%03d.png",
width = 480, height = 480, units = "px", pointsize = 12,
bg = "white", res = NA, family = "", restoreConsole = TRUE,
type = c("windows", "cairo", "cairo-png"), antialias)

tiff(filename = "Rplot%03d.tif",
width = 480, height = 480, units = "px", pointsize = 12,
compression = c("none", "rle", "lzw", "jpeg", "zip"),
bg = "white", res = NA, family = "", restoreConsole = TRUE,
type = c("windows", "cairo"), antialias)

700 png

Arguments

filename the name of the output file, up to 511 characters. The page number is substituted
if a C integer format is included in the character string, as in the default, and
tilde-expansion is performed (see path.expand). (The result must be less than
600 characters long. See postscript for further details.)

width the width of the device.

height the height of the device.

units The units in which height and width are given. Can be px (pixels, the default),
in (inches), cm or mm.

pointsize the default pointsize of plotted text, interpreted as big points (1/72 inch) at res
ppi.

bg the initial background colour: can be overridden by setting par("bg").

quality the ‘quality’ of the JPEG image, as a percentage. Smaller values will give more
compression but also more degradation of the image.

compression the type of compression to be used.

res The nominal resolution in ppi which will be recorded in the bitmap file, if a
positive integer. Also used for units other than the default. If not specified,
taken as 72 ppi to set the size of text and line widths.

family A length-one character vector specifying the default font family. The default
means to use the font numbers on the Windows GDI versions and "sans" on the
cairographics versions.

restoreConsole See the ‘Details’ section of windows. For type == "windows" only.

type Should be plotting be done using Windows GDI or cairographics?

antialias Length-one character vector.
For allowed values and their effect on fonts with type = "windows"
see windows: for that type if the argument is missing the default is taken from
windows.options()$bitmap.aa.win.
For allowed values and their effect (on fonts and lines) with type = "cairo"
see svg.

Details

Plots in PNG and JPEG format can easily be converted to many other bitmap formats, and both can
be displayed in modern web browsers. The PNG format is lossless and is best for line diagrams and
blocks of colour. The JPEG format is lossy, but may be useful for image plots, for example. The
BMP format is standard on Windows, and supported by most viewers elsewhere. TIFF is a meta-
format: the default format written by tiff is lossless and stores RGB values uncompressed—such
files are widely accepted, which is their main virtue over PNG.

Windows GDI imposes limits on the size of bitmaps: these are not documented in the SDK and may
depend on the version of Windows. It seems that width and height are each limited to 215 − 1. In
addition, there are limits on the total number of pixels which depend on the graphics hardware.

By default no resolution is recorded in the file. Viewers will often assume a nominal resolution of
72 ppi when none is recorded. As resolutions in PNG files are recorded in pixels/metre, the reported
ppi value will be changed slightly.

For graphics parameters that make use of dimensions in inches, res ppi (default 72) is assumed.

Both bmp and png will use a palette if there are fewer than 256 colours on the page, and record a
24-bit RGB file otherwise. For the png device, type = "cairo" does the PNG output in the driver

png 701

and so is compatible with the "windows" type. type = "cairo-png" uses cairographics’ PNG
backend which will never use a palette and normally creates a larger 32-bit ARGB file—this may
work better for specialist uses with semi-transparent colours.

png(type = "windows") supports transparent backgrounds on 16-bit (‘High Color’) or better
screens: use bg = "transparent". There is also support for semi-transparent colours of lines,
fills and text. However, as there is only partial support for transparency in the graphics toolkit used:
if there is a transparent background semi-transparent colours are painted onto a slightly off-white
background and hence the pixels are opaque.

Not all PNG viewers render files with transparency correctly.

Value

A plot device is opened: nothing is returned to the R interpreter.

Warnings

Note that by default the width and height values are in pixels not inches. A warning will be issued
if both are less than 20.

If you plot more than one page on one of these devices and do not include something like %d for the
sequence number in file, the file will contain the last page plotted.

Differences between OSes

These functions are interfaces to three or more different underlying devices.

• On Windows, devices based on plotting to a hidden screen using Windows’ GDI calls.

• On platforms with support for X11, plotting to a hidden X11 display.

• On Mac OS X when working at the console and when R is compiled with suitable support,
using Apple’s Quartz plotting system.

• Where support has been compiled in for cairographics, plotting on cairo surfaces. This may
use the native platform support for fonts, or it may use fontconfig to support a wide range
of font formats. (This was first available on Windows in R 2.14.0.)

Inevitably there will be differences between the options supported and output produced. Perhaps
the most important are support for antialiased fonts and semi-transparent colours: the best results
are likely to be obtained with the cairo- or Quartz-based devices where available.

The default extensions are ‘.jpg’ and ‘.tif’ on Windows, and ‘.jpeg’ and ‘.tiff’ elsewhere.

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”.

• The default device size is in pixels.

• Font sizes are in big points interpreted at res ppi.

• The default font family is Arial.

• Line widths are a multiple of 1/96 inch (interpreted at res ppi), with a minimum of one pixel
(type = "windows") or 0.01 (type = "cairo").

• The minimum radius of a circle is 1 pixel for type = "windows".

• Colours are interpreted by the viewing application.

702 postscript

Note

The type = "windows" versions of these devices effectively plot on a hidden screen and then copy
the image to the required format. This means that they have the same colour handling as the actual
screen device, and work best if that is set to a 24-bit or 32-bit colour mode.

For high-quality plots you will probably want antialias = "cleartype" if this is not the
default on your Windows system. On the other hand, png(antialias = "none") will give the
most compact files

See Also

Devices, dev.print

bitmap provides an alternative way to generate plots in many bitmap formats if GhostScript is
available.

Examples

copy current plot to a (large) PNG file
Not run: dev.print(png, file = "myplot.png", width = 1024, height = 768)

png(file = "myplot.png", bg = "transparent")
plot(1:10)
rect(1, 5, 3, 7, col = "white")
dev.off()

jpeg(file = "myplot.jpeg")
example(rect)
dev.off()

End(Not run)

postscript PostScript Graphics

Description

postscript starts the graphics device driver for producing PostScript graphics.

Usage

postscript(file = ifelse(onefile, "Rplots.ps", "Rplot%03d.ps"),
onefile, family, title, fonts, encoding, bg, fg,
width, height, horizontal, pointsize,
paper, pagecentre, print.it, command,
colormodel, useKerning, fillOddEven)

Arguments

file a character string giving the name of the file. If it is "", the output is piped to
the command given by the argument command. If it is of the form "|cmd", the
output is piped to the command given by cmd.

postscript 703

For use with onefile = FALSE give a printf format such as "Rplot%03d.ps"
(the default in that case). The string should not otherwise contain a %: if it is re-
ally necessary, use %% in the string for % in the file name. A single integer format
matching the regular expression "%[#0 +=-]*[0-9.]*[diouxX]" is allowed.
Tilde expansion (see path.expand) is done.

onefile logical: if true (the default) allow multiple figures in one file. If false, generate
a file name containing the page number for each page and use an EPSF header
and no DocumentMedia comment. Defaults to the TRUE.

family the initial font family to be used, normally as a character string. See the section
‘Families’. Defaults to "Helvetica".

title title string to embed as the Title comment in the file. Defaults to
"R Graphics Output".

fonts a character vector specifying additional R graphics font family names for font
families whose declarations will be included in the PostScript file and are avail-
able for use with the device. See ‘Families’ below. Defaults to NULL.

encoding the name of an encoding file. Defaults to "default". The latter is interpreted as
‘"CP1250.enc"’ (Central European), "CP1251.enc" (Cyrillic), "CP1253.enc"
(Greek) or "CP1257.enc" (Baltic) if one of those codepages is in use, otherwise
‘"WinAnsi.enc"’ (codepage 1252). The file is looked for in the ‘enc’ directory
of package grDevices if the path does not contain a path separator. An extension
".enc" can be omitted.

bg the initial background color to be used. If "transparent" (or any other non-
opaque colour), no background is painted. Defaults to "transparent".

fg the initial foreground color to be used. Defaults to "black".
width, height the width and height of the graphics region in inches. Default to 0.

If paper != "special" and width or height is less than 0.1 or too large to
give a total margin of 0.5 inch, the graphics region is reset to the corresponding
paper dimension minus 0.5.

horizontal the orientation of the printed image, a logical. Defaults to true, that is landscape
orientation on paper sizes with width less than height.

pointsize the default point size to be used. Strictly speaking, in bp, that is 1/72 of an inch,
but approximately in points. Defaults to 12.

paper the size of paper in the printer. The choices are "a4", "letter" (or "us"),
"legal" and "executive" (and these can be capitalized). Also, "special" can
be used, when arguments width and height specify the paper size. A further
choice is "default" (the default): If this is selected, the papersize is taken from
the option "papersize" if that is set and to "a4" if it is unset or empty.

pagecentre logical: should the device region be centred on the page? Defaults to true.
print.it logical: should the file be printed when the device is closed? (This only applies

if file is a real file name.) Defaults to false.
command the command to be used for ‘printing’. Defaults to "default", the value of

option "printcmd". The length limit is 2*PATH_MAX, 520 bytes.
colormodel a character string describing the color model: currently allowed values

as "srgb", "srgb+gray", "rgb", "rgb-nogray", "gray" (or "grey") and
"cmyk". Defaults to "srgb". See section ‘Color models’.

useKerning logical. Should kerning corrections be included in setting text and calculating
string widths? Defaults to TRUE.

fillOddEven logical controlling the polygon fill mode: see polygon for details. Default
FALSE.

704 postscript

Details

All arguments except file default to values given by ps.options(). The ultimate defaults are
quoted in the arguments section.

postscript opens the file file and the PostScript commands needed to plot any graphics requested
are written to that file. This file can then be printed on a suitable device to obtain hard copy.

The file argument is interpreted as a C integer format as used by sprintf, with integer argument
the page number. The default gives files ‘Rplot001.ps’, . . . , ‘Rplot999.ps’, ‘Rplot1000.ps’,

The postscript produced for a single R plot is EPS (Encapsulated PostScript) compatible, and
can be included into other documents, e.g., into LaTeX, using \includegraphics{<filename>}.
For use in this way you will probably want to use setEPS() to set the defaults as
horizontal = FALSE, onefile = FALSE, paper = "special". Note that the bounding
box is for the device region: if you find the white space around the plot region excessive, reduce the
margins of the figure region via par(mar=).

Most of the PostScript prologue used is taken from the R character vector .ps.prolog. This is
marked in the output, and can be changed by changing that vector. (This is only advisable for
PostScript experts: the standard version is in namespace:grDevices.)

A PostScript device has a default family, which can be set by the user via family. If other font
families are to be used when drawing to the PostScript device, these must be declared when the
device is created via fonts; the font family names for this argument are R graphics font family
names (see the documentation for postscriptFonts).

Line widths as controlled by par(lwd=) are in multiples of 1/96 inch: multiples less than 1 are
allowed. pch="." with cex = 1 corresponds to a square of side 1/72 inch, which is also the ‘pixel’
size assumed for graphics parameters such as "cra".

When the background colour is fully transparent (as is the initial default value), the PostScript
produced does not paint the background. Almost all PostScript viewers will use a white canvas
so the visual effect is if the background were white. This will not be the case when printing onto
coloured paper, though.

Families

Font families are collections of fonts covering the five font faces, (conventionally plain, bold,
italic, bold-italic and symbol) selected by the graphics parameter par(font=) or the grid param-
eter gpar(fontface=). Font families can be specified either as an an initial/default font family
for the device via the family argument or after the device is opened by the graphics parameter
par(family=) or the grid parameter gpar(fontfamily=). Families which will be used in addition
to the initial family must be specified in the fonts argument when the device is opened.

Font families are declared via a call to postscriptFonts.

The argument family specifies the initial/default font family to be used. In normal use
it is one of "AvantGarde", "Bookman", "Courier", "Helvetica", "Helvetica-Narrow",
"NewCenturySchoolbook", "Palatino" or "Times", and refers to the standard Adobe PostScript
fonts families of those names which are included (or cloned) in all common PostScript devices.

Many PostScript emulators (including those based on ghostscript) use the URW equiva-
lents of these fonts, which are "URWGothic", "URWBookman", "NimbusMon", "NimbusSan",
"NimbusSanCond", "CenturySch", "URWPalladio" and "NimbusRom" respectively. If your
PostScript device is using URW fonts, you will obtain access to more characters and
more appropriate metrics by using these names. To make these easier to remember,
"URWHelvetica" == "NimbusSan" and "URWTimes" == "NimbusRom" are also supported.

Another type of family makes use of CID-keyed fonts for East Asian languages – see
postscriptFonts.

postscript 705

The family argument is normally a character string naming a font family, but family objects gen-
erated by Type1Font and CIDFont are also accepted. For compatibility with earlier versions of R,
the initial family can also be specified as a vector of four or five afm files.

Note that R does not embed the font(s) used in the PostScript output: see embedFonts for a utility
to help do so.

Viewers and embedding applications frequently substitute fonts for those specified in the family,
and the substitute will often have slightly different font metrics. useKerning=TRUE spaces the
letters in the string using kerning corrections for the intended family: this may look uglier than
useKerning=FALSE.

Encodings

Encodings describe which glyphs are used to display the character codes (in the range 0–255). Most
commonly R uses ISOLatin1 encoding, and the examples for text are in that encoding. However,
the encoding used on machines running R may well be different, and by using the encoding ar-
gument the glyphs can be matched to encoding in use. This suffices for European and Cyrillic
languages, but not for CJK languages. For the latter, composite CID fonts are used. These fonts are
useful for other languages: for example they may contain Greek glyphs. (The rest of this section
applies only when CID fonts are not used.)

None of this will matter if only ASCII characters (codes 32–126) are used as all the encod-
ings (except "TeXtext") agree over that range. Some encodings are supersets of ISOLatin1,
too. However, if accented and special characters do not come out as you expect, you may
need to change the encoding. Some other encodings are supplied with R: "WinAnsi.enc" and
"MacRoman.enc" correspond to the encodings normally used on Windows and Classic Mac OS (at
least by Adobe), and "PDFDoc.enc" is the first 256 characters of the Unicode encoding, the standard
for PDF. There are also encodings "ISOLatin2.enc", "CP1250.enc", "ISOLatin7.enc" (ISO
8859-13), "CP1257.enc", and "ISOLatin9.enc" (ISO 8859-15), "Cyrillic.enc" (ISO 8859-5),
"KOI8-R.enc", "KOI8-U.enc", "CP1251.enc", "Greek.enc" (ISO 8859-7) and "CP1253.enc".
Note that many glyphs in these encodings are not in the fonts corresponding to the standard fam-
ilies. (The Adobe ones for all but Courier, Helvetica and Times cover little more than Latin-1,
whereas the URW ones also cover Latin-2, Latin-7, Latin-9 and Cyrillic but no Greek. The Adobe
exceptions cover the Latin character sets, but not the Euro.)

If you specify the encoding, it is your responsibility to ensure that the PostScript font contains the
glyphs used. One issue here is the Euro symbol which is in the WinAnsi and MacRoman encodings
but may well not be in the PostScript fonts. (It is in the URW variants; it is not in the supplied
Adobe Font Metric files.)

There is an exception. Character 45 ("-") is always set as minus (its value in Adobe ISOLatin1)
even though it is hyphen in the other encodings. Hyphen is available as character 173 (octal 0255)
in all the Latin encodings, Cyrillic and Greek. (This can be entered as "\uad" in a UTF-8 locale.)
There are some discrepancies in accounts of glyphs 39 and 96: the supplied encodings (except
CP1250 and CP1251) treat these as ‘quoteright’ and ‘quoteleft’ (rather than ‘quotesingle’/‘acute’
and ‘grave’ respectively), as they are in the Adobe documentation.

TeX fonts

TeX has traditionally made use of fonts such as Computer Modern which are encoded rather differ-
ently, in a 7-bit encoding. This encoding can be specified by encoding = "TeXtext.enc", taking
care that the ASCII characters < > \ _ { } are not available in those fonts.

There are supplied families "ComputerModern" and "ComputerModernItalic" which use this en-
coding, and which are only supported for postscript (and not pdf). They are intended to use with
the Type 1 versions of the TeX CM fonts. It will normally be possible to include such output in

706 postscript

TeX or LaTeX provided it is processed with dvips -Ppfb -j0 or the equivalent on your system.
(-j0 turns off font subsetting.) When family = "ComputerModern" is used, the italic/bold-
italic fonts used are slanted fonts (cmsl10 and cmbxsl10). To use text italic fonts instead, set
family = "ComputerModernItalic".

These families use the TeX math italic and symbol fonts for a comprehensive but incomplete cover-
age of the glyphs covered by the Adobe symbol font in other families. This is achieved by special-
casing the postscript code generated from the supplied ‘CM_symbol_10.afm’.

Color models

The default color model ("srgb") is sRGB.

The alternative "srgb+gray" uses sRGB for colors, but with pure gray colors (including black and
white) expressed as greyscales (which results in smaller files and can be advantageous with some
printer drivers). Conversely, its files can be rendered much slower on some viewers, and there can
be a noticeable discontinuity in color gradients involving gray or white.

Other possibilities are "gray" (or "grey") which used only greyscales (and converts other colours
to a luminance), and "cmyk". The simplest possible conversion from sRGB to CMYK is used
(http://en.wikipedia.org/wiki/CMYK_color_model#Mapping_RGB_to_CMYK), and raster im-
ages are output in RGB.

Color models provided for backwards compatibility are "rgb") (which is RGB+gray) and
"rgb-nogray" which use uncalibrated RGB (as used in R prior to 2.13.0). These result in slightly
smaller files which may render faster, but do rely on the viewer being properly calibrated.

Printing

A postscript plot can be printed via postscript in two ways.

1. Setting print.it = TRUE causes the command given in argument command to be called with
argument "file" when the device is closed. Note that the plot file is not deleted unless
command arranges to delete it.

2. file="" or file="|cmd" can be used to print using a pipe. Failure to open the command will
probably be reported to the terminal but not to R, in which case close the device by dev.off
immediately.

On Windows the default "printcmd" is empty and will give an error if print.it=TRUE is used.
Suitable commands to spool a PostScript file to a printer can be found in ‘RedMon’ suite avail-
able from http://www.cs.wisc.edu/~ghost/index.html. The command will be run in a min-
imized window. GSView 4.x provides ‘gsprint.exe’ which may be more convenient (it requires
Ghostscript version 6.50 or later).

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”.

• The default device size is 7 inches square.

• Font sizes are in big points.

• The default font family is Helvetica.

• Line widths are as a multiple of 1/96 inch, with a minimum of 0.01 enforced.

• Circle of any radius are allowed.

• Colours are by default specified as sRGB.

http://en.wikipedia.org/wiki/CMYK_color_model#Mapping_RGB_to_CMYK
http://www.cs.wisc.edu/~ghost/index.html

postscript 707

At very small line widths, the line type may be forced to solid.

Raster images are currently limited to opaque colours.

Note

If you see problems with postscript output, do remember that the problem is much more likely to be
in your viewer than in R. Try another viewer if possible. Symptoms for which the viewer has been
at fault are apparent grids on image plots (turn off graphics anti-aliasing in your viewer if you can)
and missing or incorrect glyphs in text (viewers silently doing font substitution).

Unfortunately the default viewers on most Linux and Mac OS X systems have these problems, and
no obvious way to turn off graphics anti-aliasing.

Author(s)

Support for Computer Modern fonts is based on a contribution by Brian D’Urso
<durso@hussle.harvard.edu>.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

postscriptFonts, Devices, and check.options which is called from both ps.options and
postscript.

cairo_ps for another device that can produce PostScript.

More details of font families and encodings and especially handling text in a non-Latin-1 encoding
and embedding fonts can be found in

Paul Murrell and Brian Ripley (2006) Non-standard fonts in PostScript and PDF graphics. R News,
6(2):41–47. http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf.

Examples

require(graphics)
Not run:
open the file "foo.ps" for graphics output
postscript("foo.ps")
produce the desired graph(s)
dev.off() # turn off the postscript device
options(printcmd=’redpr -P"\\printhost\lw"’)
postscript(file=tempfile("Rps."), print.it=TRUE)
produce the desired graph(s)
dev.off() # send plot file to the printer
alternative using GSView 4.x
options(printcmd=’/GhostGum/gsview/gsprint -query’)

for URW PostScript devices
postscript("foo.ps", family = "NimbusSan")

for inclusion in Computer Modern TeX documents, perhaps
postscript("cm_test.eps", width = 4.0, height = 3.0,

horizontal = FALSE, onefile = FALSE, paper = "special",
family = "ComputerModern", encoding = "TeXtext.enc")

http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf

708 postscriptFonts

The resultant postscript file can be used by dvips -Ppfb -j0.

To test out encodings, you can use
TestChars <- function(encoding="ISOLatin1", family="URWHelvetica")
{

postscript(encoding=encoding, family=family)
par(pty="s")
plot(c(-1,16), c(-1,16), type="n", xlab="", ylab="",

xaxs="i", yaxs="i")
title(paste("Centred chars in encoding", encoding))
grid(17, 17, lty=1)
for(i in c(32:255)) {

x <- i %% 16
y <- i %/% 16
points(x, y, pch=i)

}
dev.off()

}
there will be many warnings. We use URW to get a complete enough
set of font metrics.
TestChars()
TestChars("ISOLatin2")
TestChars("WinAnsi")

End(Not run)

postscriptFonts PostScript and PDF Font Families

Description

These functions handle the translation of a R graphics font family name to a PostScript or PDF font
description, used by the postscript or pdf graphics devices.

Usage

postscriptFonts(...)
pdfFonts(...)

Arguments

... either character strings naming mappings to display, or named arguments speci-
fying mappings to add or change.

Details

If these functions are called with no argument they list all the existing mappings, whereas if they
are called with named arguments they add (or change) mappings.

A PostScript or PDF device is created with a default font family (see the documentation for
postscript), but it is also possible to specify a font family when drawing to the device (for ex-
ample, see the documentation for "family" in par and for "fontfamily" in gpar in the grid
package).

postscriptFonts 709

The font family sent to the device is a simple string name, which must be mapped to a set of
PostScript fonts. Separate lists of mappings for postscript and pdf devices are maintained for the
current R session and can be added to by the user.

The postscriptFonts and pdfFonts functions can be used to list existing mappings and to define
new mappings. The Type1Font and CIDFont functions can be used to create new mappings, when
the xxxFonts function is used to add them to the database. See the examples.

Default mappings are provided for three device-independent family names: "sans" for a sans-serif
font (to "Helvetica"), "serif" for a serif font (to "Times") and "mono" for a monospaced font
(to "Courier").

Mappings for a number of standard Adobe fonts (and URW equivalents) are also pro-
vided: "AvantGarde", "Bookman", "Courier", "Helvetica", "Helvetica-Narrow",
"NewCenturySchoolbook", "Palatino" and "Times"; "URWGothic", "URWBookman",
"NimbusMon", "NimbusSan" (synonym "URWHelvetica"), "NimbusSanCond", "CenturySch",
"URWPalladio" and "NimbusRom" (synonym "URWTimes").

There are also mappings for "ComputerModern" and "ComputerModernItalic".

Finally, there are some default mappings for East Asian locales described in a separate section.

The specification of font metrics and encodings is described in the help for the postscript func-
tion.

The fonts are not embedded in the resulting PostScript or PDF file, so software including the
PostScript or PDF plot file should either embed the font outlines (usually from ‘.pfb’ or ‘.pfa’
files) or use DSC comments to instruct the print spooler or including application to do so (see also
embedFonts).

A font family has both an R-level name, the argument name used when postscriptFonts was
called, and an internal name, the family component. These two names are the same for all the
pre-defined font families.

Once a font family is in use it cannot be changed. ‘In use’ means that it has been specified via a
family or fonts argument to an invocation of the same graphics device already in the R session.
(For these purposes xfig counts the same as postscript but only uses some of the predefined
mappings.)

Value

A list of one or more font mappings.

East Asian fonts

There are some default mappings for East Asian locales:
"Japan1", "Japan1HeiMin", "Japan1GothicBBB", and "Japan1Ryumin" for Japanese; "Korea1"
and "Korea1deb" for Korean; "GB1" (Simplified Chinese) for mainland China and Singapore;
"CNS1" (Traditional Chinese) for Hong Kong and Taiwan.

These refer to the following fonts

Japan1 (PS) HeiseiKakuGo-W5
Linotype Japanese printer font

Japan1 (PDF) KozMinPro-Regular-Acro
from Adobe Reader 7.0 Japanese Font Pack

Japan1HeiMin (PS) HeiseiMin-W3
Linotype Japanese printer font

Japan1HeiMin (PDF) HeiseiMin-W3-Acro
from Adobe Reader 7.0 Japanese Font Pack

710 postscriptFonts

Japan1GothicBBB GothicBBB-Medium
Japanese-market PostScript printer font

Japan1Ryumin Ryumin-Light
Japanese-market PostScript printer font

Korea1 (PS) Baekmuk-Batang
TrueType font found on some Linux systems

Korea1 (PDF) HYSMyeongJoStd-Medium-Acro
from Adobe Reader 7.0 Korean Font Pack

Korea1deb (PS) Batang-Regular
another name for Baekmuk-Batang

Korea1deb (PDF) HYGothic-Medium-Acro
from Adobe Reader 4.0 Korean Font Pack

GB1 (PS) BousungEG-Light-GB
TrueType font found on some Linux systems

GB1 (PDF) STSong-Light-Acro
from Adobe Reader 7.0 Simplified Chinese Font Pack

CNS1 (PS) MOESung-Regular
Ken Lunde’s CJKV resources

CNS1 (PDF) MSungStd-Light-Acro
from Adobe Reader 7.0 Traditional Chinese Font Pack

Baekmuk-Batang can be found at ftp://ftp.mizi.com/pub/baekmuk/. BousungEG-Light-GB
can be found at ftp://ftp.gnu.org/pub/non-gnu/chinese-fonts-truetype/. Ken
Lunde’s CJKV resources are at ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/
adobe/samples/. These will need to be installed or otherwise made available to the postscript/PDF
interpreter such as ghostscript (and not all interpreters can handle TrueType fonts).

You may well find that your postscript/PDF interpreters has been set up to provide aliases for many
of these fonts. For example, ghostscript on Windows can optionally be installed to map common
CJK fonts names to Windows TrueType fonts. (You may want to add the -Acro versions as well.)

Adding a mapping for a CID-keyed font is for gurus only.

Author(s)

Support for Computer Modern fonts is based on a contribution by Brian D’Urso
<durso@hussle.harvard.edu>.

See Also

postscript and pdf; Type1Font and CIDFont for specifying new font mappings.

Examples

postscriptFonts()
This duplicates "ComputerModernItalic".
CMitalic <- Type1Font("ComputerModern2",

c("CM_regular_10.afm", "CM_boldx_10.afm",
"cmti10.afm", "cmbxti10.afm",
"CM_symbol_10.afm"),

encoding = "TeXtext.enc")
postscriptFonts(CMitalic = CMitalic)

A CID font for Japanese using a different CMap and

ftp://ftp.mizi.com/pub/baekmuk/
ftp://ftp.gnu.org/pub/non-gnu/chinese-fonts-truetype/
ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/adobe/samples/
ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/adobe/samples/

pretty.Date 711

corresponding cmapEncoding.
‘Jp_UCS-2‘ <- CIDFont("TestUCS2",

c("Adobe-Japan1-UniJIS-UCS2-H.afm",
"Adobe-Japan1-UniJIS-UCS2-H.afm",
"Adobe-Japan1-UniJIS-UCS2-H.afm",
"Adobe-Japan1-UniJIS-UCS2-H.afm"),

"UniJIS-UCS2-H", "UCS-2")
pdfFonts(‘Jp_UCS-2‘ = ‘Jp_UCS-2‘)
names(pdfFonts())

pretty.Date Pretty Breakpoints for Date-Time Classes

Description

Compute a sequence of about n+1 equally spaced ‘nice’ values which cover the range of the values
in x.

Usage

S3 method for class ’Date’
pretty(x, n = 5, min.n = n %/% 2, sep = " ", ...)
S3 method for class ’POSIXt’
pretty(x, n = 5, min.n = n %/% 2, sep = " ", ...)

Arguments

x an object of class "Date" or "POSIXt" (i.e., "POSIXct" or "POSIXlt").

n integer giving the desired number of intervals.

min.n nonnegative integer giving the minimal number of intervals.

sep character string, serving as a separator for certain formats (e.g., between month
and year).

... further arguments for compatibility with the generic, ignored.

Value

A vector (of the suitable class) of locations, with attribute "labels" giving corresponding formatted
character labels.

See Also

pretty for the default method.

Examples

steps <-
list("10 secs", "1 min", "5 mins", "30 mins", "6 hours", "12 hours",

"1 DSTday", "2 weeks", "1 month", "6 months", "1 year",
"10 years", "50 years", "1000 years")

names(steps) <- paste("span =", unlist(steps))

712 ps.options

x <- as.POSIXct("2002-02-02 02:02")
lapply(steps,

function(s) {
at <- pretty(seq(x, by = s, length = 2), n = 5)
attr(at, "labels")

})

ps.options Auxiliary Function to Set/View Defaults for Arguments of postscript

Description

The auxiliary function ps.options can be used to set or view (if called without arguments) the
default values for some of the arguments to postscript.

ps.options needs to be called before calling postscript, and the default values it sets can be
overridden by supplying arguments to postscript.

Usage

ps.options(..., reset = FALSE, override.check = FALSE)

setEPS(...)
setPS(...)

Arguments

... arguments onefile, family, title, fonts, encoding, bg, fg, width,
height, horizontal, pointsize, paper, pagecentre, print.it, command,
colormodel and fillOddEven can be supplied. onefile, horizontal and
paper are ignored for setEPS and setPS.

reset logical: should the defaults be reset to their ‘factory-fresh’ values?

override.check logical argument passed to check.options. See the Examples.

Details

If both reset = TRUE and ... are supplied the defaults are first reset to the ‘factory-fresh’ values
and then the new values are applied.

For backwards compatibility argument append is accepted but ignored with a warning.

setEPS and setPS are wrappers to set defaults appropriate for figures for inclusion in documents
(the default size is 7 inches square unless width or height is supplied) and for spooling to a
PostScript printer respectively. For historical reasons the latter is the ultimate default.

Value

A named list of all the previous defaults. If ... or reset = TRUE is supplied the result has the
visibility flag turned off.

recordGraphics 713

See Also

postscript, pdf.options

Examples

ps.options(bg = "pink")
utils::str(ps.options())

---- error checking of arguments: ----
ps.options(width=0:12, onefile=0, bg=pi)
override the check for ’width’, but not ’bg’:
ps.options(width=0:12, bg=pi, override.check = c(TRUE,FALSE))
utils::str(ps.options())
ps.options(reset = TRUE) # back to factory-fresh

recordGraphics Record Graphics Operations

Description

Records arbitrary code on the graphics engine display list. Useful for encapsulating calculations
with graphical output that depends on the calculations. Intended only for expert use.

Usage

recordGraphics(expr, list, env)

Arguments

expr object of mode expression or call or an unevaluated expression.
list a list defining the environment in which expr is to be evaluated.
env An environment specifying where R looks for objects not found in envir.

Details

The code in expr is evaluated in an environment constructed from list, with env as the parent of
that environment.
All three arguments are saved on the graphics engine display list so that on a device resize or
copying between devices, the original evaluation environment can be recreated and the code can be
re-evaluated to reproduce the graphical output.

Value

The value from evaluating expr.

Warning

This function is not intended for general use. Incorrect or improper use of this function could lead
to unintended and/or undesirable results.
An example of acceptable use is querying the current state of a graphics device or graphics system
setting and then calling a graphics function.
An example of improper use would be calling the assign function to performing assignments in
the global environment.

714 recordPlot

See Also

eval

Examples

require(graphics)

plot(1:10)
This rectangle remains 1inch wide when the device is resized
recordGraphics(

{
rect(4, 2,

4 + diff(par("usr")[1:2])/par("pin")[1], 3)
},
list(),
getNamespace("graphics"))

recordPlot Record and Replay Plots

Description

Functions to save the current plot in an R variable, and to replay it.

Usage

recordPlot()
replayPlot(x)

Arguments

x A saved plot.

Details

These functions record and replay the displaylist of the current graphics device. The returned object
is of class "recordedplot", and replayPlot acts as a print method for that class.

The returned object is stored as a pairlist, but the usual methods for examining R objects such as
deparse and str are liable to mislead.

Value

recordPlot returns an object of class "recordedplot".

replayPlot has no return value.

Warning

The format of recorded plots may change between R versions. Recorded plots should not be used
as a permanent storage format for R plots.

R will always attempt to replay a recorded plot, but if the plot was recorded with a different R
version then bad things may happen.

rgb 715

rgb RGB Color Specification

Description

This function creates colors corresponding to the given intensities (between 0 and max) of the red,
green and blue primaries. The colour specification refers to the standard sRGB colorspace (IEC
standard 61966).

An alpha transparency value can also be specified (as an opacity, so 0 means fully transparent and
max means opaque). If alpha is not specified, an opaque colour is generated.

The names argument may be used to provide names for the colors.

The values returned by these functions can be used with a col= specification in graphics functions
or in par.

Usage

rgb(red, green, blue, alpha, names = NULL, maxColorValue = 1)

Arguments

red, blue, green, alpha

numeric vectors with values in [0,M] where M is maxColorValue. When this
is 255, the red, blue, green, and alpha values are coerced to integers in 0:255
and the result is computed most efficiently.

names character. The names for the resulting vector.
maxColorValue number giving the maximum of the color values range, see above.

Details

The colors may be specified by passing a matrix or dataframe as argument red, and leaving blue
and green missing. In this case the first three columns of red are taken to be the red, green and
blue values.

Semi-transparent colors (0 < alpha < 1) are supported only on some devices: at the time of writ-
ing on the pdf, windows, quartz and X11(type="cairo") devices and associated bitmap devices
(jpeg, png, bmp, tiff and bitmap). They are supported by several third-party devices such as those
in packages Cairo, cairoDevice and JavaGD. Only some of these devices support semi-transparent
backgrounds.

Most other graphics devices plot semi-transparent colors as fully transparent, usually with a warning
when first encountered.

Value

A character vector with elements of 7 or 9 characters, "#" followed by the red, blue, green and
optionally alpha values in hexadecimal (after rescaling to 0 ... 255). The optional alpha values
range from 0 (fully transparent) to 255 (opaque).

R does not use ‘premultiplied alpha’.

See Also

col2rgb for translating R colors to RGB vectors; rainbow, hsv, hcl, gray.

http://CRAN.R-project.org/package=Cairo
http://CRAN.R-project.org/package=cairoDevice
http://CRAN.R-project.org/package=JavaGD

716 rgb2hsv

Examples

rgb(0,1,0)

rgb((0:15)/15, green=0, blue=0, names=paste("red",0:15,sep="."))

rgb(0, 0:12, 0, max = 255)# integer input

ramp <- colorRamp(c("red", "white"))
rgb(ramp(seq(0, 1, length = 5)), max = 255)

rgb2hsv RGB to HSV Conversion

Description

rgb2hsv transforms colors from RGB space (red/green/blue) into HSV space
(hue/saturation/value).

Usage

rgb2hsv(r, g = NULL, b = NULL, maxColorValue = 255)

Arguments

r vector of ‘red’ values in [0,M], (M =maxColorValue) or 3-row rgb matrix.

g vector of ‘green’ values, or NULL when r is a matrix.

b vector of ‘blue’ values, or NULL when r is a matrix.

maxColorValue number giving the maximum of the RGB color values range. The default 255
corresponds to the typical 0:255 RGB coding as in col2rgb().

Details

Value (brightness) gives the amount of light in the color.
Hue describes the dominant wavelength.
Saturation is the amount of Hue mixed into the color.

An HSV colorspace is relative to an RGB colorspace, which in R is sRGB, which has an implicit
gamma correction.

Value

A matrix with a column for each color. The three rows of the matrix indicate hue, saturation and
value and are named "h", "s", and "v" accordingly.

Author(s)

R interface by Wolfram Fischer <wolfram@fischer-zim.ch>;
C code mainly by Nicholas Lewin-Koh <nikko@hailmail.net>.

See Also

hsv, col2rgb, rgb.

rgb2hsv 717

Examples

These (saturated, bright ones) only differ by hue
(rc <- col2rgb(c("red", "yellow","green","cyan", "blue", "magenta")))
(hc <- rgb2hsv(rc))
6 * hc["h",] # the hues are equispaced

(rgb3 <- floor(256 * matrix(stats::runif(3*12), 3,12)))
(hsv3 <- rgb2hsv(rgb3))
Consistency :
stopifnot(rgb3 == col2rgb(hsv(h=hsv3[1,], s=hsv3[2,], v=hsv3[3,])),

all.equal(hsv3, rgb2hsv(rgb3/255, maxColorValue = 1)))

A (simplified) pure R version -- originally by Wolfram Fischer --
showing the exact algorithm:
rgb2hsvR <- function(rgb, gamma = 1, maxColorValue = 255)
{

if(!is.numeric(rgb)) stop("rgb matrix must be numeric")
d <- dim(rgb)
if(d[1] != 3) stop("rgb matrix must have 3 rows")
n <- d[2]
if(n == 0) return(cbind(c(h=1,s=1,v=1))[,0])
rgb <- rgb/maxColorValue
if(gamma != 1) rgb <- rgb ^ (1/gamma)

get the max and min
v <- apply(rgb, 2, max)
s <- apply(rgb, 2, min)
D <- v - s # range

set hue to zero for undefined values (gray has no hue)
h <- numeric(n)
notgray <- (s != v)

blue hue
idx <- (v == rgb[3,] & notgray)
if (any (idx))

h[idx] <- 2/3 + 1/6 * (rgb[1,idx] - rgb[2,idx]) / D[idx]
green hue
idx <- (v == rgb[2,] & notgray)
if (any (idx))

h[idx] <- 1/3 + 1/6 * (rgb[3,idx] - rgb[1,idx]) / D[idx]
red hue
idx <- (v == rgb[1,] & notgray)
if (any (idx))

h[idx] <- 1/6 * (rgb[2,idx] - rgb[3,idx]) / D[idx]

correct for negative red
idx <- (h < 0)
h[idx] <- 1+h[idx]

set the saturation
s[! notgray] <- 0;
s[notgray] <- 1 - s[notgray] / v[notgray]

rbind(h=h, s=s, v=v)

718 savePlot

}

confirm the equivalence:
all.equal(rgb2hsv (rgb3),

rgb2hsvR(rgb3), tol=1e-14) # TRUE

savePlot Save Windows Plot to a File

Description

Saves the current plot on a windows device to a file.

Usage

savePlot(filename = "Rplot",
type = c("wmf", "emf", "png", "jpg", "jpeg", "bmp",

"tif", "tiff", "ps", "eps", "pdf"),
device = dev.cur(),
restoreConsole = TRUE)

Arguments

filename The filename under which to save the plot. Tilde-expansion (see path.expand
is supported.

type The type of plot, Windows metafile, PNG, JPEG, BMP (Windows bitmap for-
mat), TIFF, PostScript or PDF.

device A device number of a windows device, by default the current device.

restoreConsole See the ‘Details’ section of windows.

Details

This is equivalent to selecting the ‘Save as’ menu item on the ‘File’ menu of a windows device.

If filename does not include a dot (‘.’), savePlot will add the file type as an extension; that is, the
filename will be set to paste(filename,type,"."). If a dot is present in filename, the filename
is assumed to include an extension and is used without change.

Using filename as "clipboard" or "" with type = "wmf" will copy to the clipboard.

Types "eps" and "ps" are the same thing apart from the extension for the default filename. Simi-
larly "wmf"/"emf", "jpeg"/"jpg" and "tiff"/"tif".

JPEG quality is 75%, and TIFF is saved without compression.

Value

None, but a plot file will be created.

Note

There is a similar function of the same name but fewer types for cairo-based X11 devices on Unix-
alikes

trans3d 719

See Also

png, dev.print

trans3d 3D to 2D Transformation for Perspective Plots

Description

Projection of 3-dimensional to 2-dimensional points using a 4x4 viewing transformation matrix.
Mainly for adding to perspective plots such as persp.

Usage

trans3d(x,y,z, pmat)

Arguments

x, y, z numeric vectors of equal length, specifying points in 3D space.

pmat a 4×4 viewing transformation matrix, suitable for projecting the 3D coordinates
(x, y, z) into the 2D plane using homogeneous 4D coordinates (x, y, z, t); such
matrices are returned by persp().

Value

a list with two components

x,y the projected 2d coordinates of the 3d input (x,y,z).

See Also

persp

Examples

See help(persp) {after attaching the ’graphics’ package}

720 Type1Font

Type1Font Type 1 and CID Fonts

Description

These functions are used to define the translation of a R graphics font family name to a Type 1 or
CID font descriptions, used by both the postscript and pdf graphics devices.

Usage

Type1Font(family, metrics, encoding = "default")

CIDFont(family, cmap, cmapEncoding, pdfresource = "")

Arguments

family a character string giving the name to be used internally for a Type 1 or CID-
keyed font family. This needs to uniquely identify each family, so if you modify
a family which is in use (see postscriptFonts) you need to change the family
name.

metrics a character vector of four or five strings giving paths to the afm (Adobe Font
Metric) files for the font.

cmap the name of a CMap file for a CID-keyed font.

encoding for Type1Font, the name of an encoding file. Defaults to "default", which
maps on Unix-alikes to "ISOLatin1.enc" and on Windows to "WinAnsi.enc".
Otherwise, a file name in the ‘enc’ directory of the grDevices package, which
is used if the path does not contain a path separator. An extension ".enc" can
be omitted.

cmapEncoding The name of a character encoding to be used with the named CMap file: strings
will be translated to this encoding when written to the file.

pdfresource A chunk of PDF code; only required for using a CID-keyed font on pdf; users
should not be expected to provide this.

Details

For Type1Fonts, if four ‘.afm’ files are supplied the fifth is taken to be "Symbol.afm". Relative
paths are taken relative to the directory ‘R_HOME/library/grDevices/afm’. The fifth (symbol)
font must be in AdobeSym encoding. However, the glyphs in the first four fonts are referenced by
name and any encoding given within the ‘.afm’ files is not used.

As from R 2.14.0 the ‘.afm’ files may be compressed with (or without) final extension ‘.gz’: the
files which ship with R are installed as compressed files with this extension.

Glyphs in CID-keyed fonts are accessed by ID (number) and not by name. The CMap file maps
encoded strings (usually in a MBCS) to IDs, so cmap and cmapEncoding specifications must match.
There are no real bold or italic versions of CID fonts (bold/italic were very rarely used in traditional
CJK topography), and for the pdf device all four font faces will be identical. However, for the
postscript device, bold and italic (and bold italic) are emulated.

CID-keyed fonts are intended only for use for the glyphs of CJK languages, which are all
monospaced and are all treated as filling the same bounding box. (Thus plotmath will work with
such characters, but the spacing will be less carefully controlled than with Western glyphs.) The

windows 721

CID-keyed fonts do contain other characters, including a Latin alphabet: non-CJK glyphs are re-
garded as monospaced with half the width of CJK glyphs. This is often the case, but sometimes
Latin glyphs designed for proportional spacing are used (and may look odd). We strongly recom-
mend that CID-keyed fonts are only used for CJK glyphs.

Value

A list of class "Type1Font" or "CIDFont".

See Also

postscript, pdf, postscriptFonts, and pdfFonts.

Examples

This duplicates "ComputerModernItalic".
CMitalic <- Type1Font("ComputerModern2",

c("CM_regular_10.afm", "CM_boldx_10.afm",
"cmti10.afm", "cmbxti10.afm",
"CM_symbol_10.afm"),

encoding = "TeXtext.enc")

Not run:
This could be used by
postscript(family = CMitalic)
or
postscriptFonts(CMitalic = CMitalic) # once in a session
postscript(family = "CMitalic", encoding = "TeXtext.enc")

End(Not run)

windows Windows Graphics Devices

Description

A graphics device is opened. For windows, win.graph, x11 and X11 this is a window on the current
Windows display: the multiple names are for compatibility with other systems. win.metafile
prints to a file and win.print to the Windows print system.

Usage

windows(width, height, pointsize, record, rescale, xpinch, ypinch,
bg, canvas, gamma, xpos, ypos, buffered, title,
restoreConsole, clickToConfirm, fillOddEven,
family, antialias)

win.graph(width, height, pointsize)
x11(width, height, pointsize, bg, gamma, xpos, ypos, title)
X11(width, height, pointsize, bg, gamma, xpos, ypos, title)

win.metafile(filename = "", width = 7, height = 7, pointsize = 12,
family, restoreConsole = TRUE)

722 windows

win.print(width = 7, height = 7, pointsize = 12, printer = "",
family, antialias, restoreConsole = TRUE)

Arguments

width, height the (nominal) width and height of the canvas of the plotting window in inches.
Default 7.

pointsize the default pointsize of plotted text, interpreted as big points (1/72 inch). Values
are rounded to the nearest integer: values less than or equal to zero are reset to
12, the default.

record logical: sets the initial state of the flag for recording plots. Default FALSE.
rescale character, one of c("R", "fit", "fixed"). Controls the action for resizing of

the device. Default "R". See the ‘Resizing options’ section.
xpinch, ypinch double. Pixels per inch, horizontally and vertically. Default NA_real_, which

means to take the value from Windows.
bg color. The initial background color. Default "transparent".
canvas color. The color of the canvas which is visible when the background color is

transparent. Should be a solid color (and any alpha value will be ignored). De-
fault "white".

gamma gamma correction fudge factor. Colours in R are sRGB; if your monitor does
not conform to sRGB, you might be able to improve things by tweaking this pa-
rameter to apply additional gamma correction to the RGB channels. By default
1 (no additional gamma correction).

xpos, ypos integer. Position of the top left of the window, in pixels. Negative values
are taken from the opposite edge of the monitor. Missing values (the de-
fault) mean take the default from the ‘Rconsole’ file, which in turn defaults
to xpos=-25, ypos=0: this puts the right edge of the window 25 pixels from
the right edge of the monitor.

buffered logical. Should the screen output be double-buffered? Default TRUE.
title character string, up to 100 bytes. With the default "", a suitable title is created

internally. A C-style format for an integer will be substituted by the device
number.

filename the name of the output file: it will be an enhanced Windows metafile, usually
given extension ‘.emf’ or ‘.wmf’. Up to 511 characters are allowed. The page
number is substituted if an integer format is included in the character string
(see postscript for further details) and tilde-expansion (see path.expand) is
performed. (The result must be less than 600 characters long.) The default, "",
means the clipboard.

printer The name of a printer as known to Windows. The default causes a dialog box to
come up for the user to choose a printer.

restoreConsole logical: see the ‘Details’ below. Defaults to FALSE for screen devices.
clickToConfirm logical: if true confirmation of a new frame will be by clicking on the device

rather than answering a problem in the console. Default TRUE.
fillOddEven logical controlling the polygon fill mode: see polygon for details. Default TRUE.
family A length-one character vector specifying the default font family. See section

‘Fonts’.
antialias A length-one character vector, requesting control over font antialiasing. This

is partially matched to "default", "none", "cleartype" or "gray". See the
‘Fonts’ section.

windows 723

Details

All these devices are implemented as variants of the same device.

All arguments of windows have defaults set by windows.options: the defaults given in the argu-
ments section are the defaults for the defaults. These defaults also apply to the internal values of
gamma, xpinch, ypinch, buffered, restoreConsole and antialias for win.graph, x11 and X11.

The size of a window is computed from information provided about the display: it depends on the
system being configured accurately. By default a screen device asks Windows for the number of
pixels per inch. This can be overridden (it is often wrong) by specifying xpinch and ypinch, most
conveniently via windows.options. For example, a 13.3 inch 1280x800 screen (a typical laptop
display) was reported as 96 dpi even though it is physically about 114 dpi.

The different colours need to be distinguished carefully. Areas outside the device region are
coloured in the Windows application background colour. The device region is coloured in the
canvas colour. This is over-painted by the background colour of a plot when a new page is called
for, but that background colour can be transparent (and is by default). One difference between set-
ting the canvas colour and the background colour is that when a plot is saved the background colour
is copied but the canvas colour is not. The argument bg sets the initial value of par("bg") in base
graphics and gpar("fill") in grid graphics

Recorded plot histories are of class "SavedPlots". They have a print method, and a subset
method. As the individual plots are of class "recordedplot" they can be replayed by printing
them: see recordPlot. The active plot history is stored in variable .SavedPlots in the workspace.

When a screen device is double-buffered (the default) the screen is updated 100ms after last
plotting call or every 500ms during continuous plotting. These times can be altered by setting
options("windowsTimeout") to a vector of two integers before opening the device.

Line widths as controlled by par(lwd=) are in multiples of 1/96inch. Multiples less than 1 are
allowed, down to one pixel width.

For win.metafile only one plot is allowed per file, and Windows seems to disallow reusing the
file. So the only way to allow multiple plots is to use a parametrized filename as in the example. If
the filename is omitted (or specified as ""), the output is copied to the clipboard when the device
is closed.

The restoreConsole argument is a temporary fix for a problem in the current implementation of
several Windows graphics devices, and is likely to be removed in an upcoming release. If set to
FALSE, the console will not receive the focus after the new device is opened.

There is support for semi-transparent colours of lines, fills and text on the screen devices. These
work for saving (from the ‘File’ menu) to PDF, PNG, BMP, JPEG and TIFF, but will be ignored if
saving to Metafile and PostScript.

Value

A plot device is opened: nothing is returned to the R interpreter.

Resizing options

If a screen device is re-sized, the default behaviour ("R") is to redraw the plot(s) as if the new size
had been specified originally. Using "fit" will rescale the existing plot(s) to fit the new device
region, preserving the aspect ratio. Using "fixed" will leave the plot size unchanged, adding
scrollbars if part of the plot is obscured.

A graphics window will never be created at more than 85% of the screen width or height, but
can be resized to a larger size. For the first two rescale options the width and height are
rescaled proportionally if necessary, and if rescale = "fit" the plot(s) are rescaled accordingly.

724 windows

If rescale = "fixed" the initially displayed portion is selected within these constraints, separately
for width and height. In MDI mode, the limit is 85% of the MDI client region.

Using strwidth or strheight after a window has been rescaled (when using "fit") gives di-
mensions in the original units, but only approximately as they are derived from the metrics of the
rescaled fonts (which are in integer sizes)

The displayed region may be bigger than the ‘paper’ size, and area(s) outside the ‘paper’ are
coloured in the Windows application background colour. Graphics parameters such as "din" refer
to the scaled plot if rescaling is in effect.

Fonts

The fonts used for text drawn in a Windows device may be controlled in two ways. The
file R_HOME\etc\Rdevga can be used to specify mappings for par(font=) (or the grid equiva-
lent). Alternatively, a font family can be specified by a non-empty family argument (or by e.g.
par(family=) in the graphics package) and this will be used for fonts 1:4 via the Windows font
database (see windowsFonts).

How the fonts look depends on the antialiasing settings, both through the antialias argument and
the machine settings. These are hints to Windows GDI that may not be able to be followed, but
antialias = "none" should ensure that no antialiasing is used. For a screen device the default
depends on the machine settings: it will be "cleartype" if that has been enabled. Note that the
greyscale antialiasing that is used only for small fonts (below about 9 pixels, around 7 points on a
typical display).

When accessing a system through Remote Desktop, both the Remote Desktop settings and the
user’s local account settings are relevant to whether antialiasing is used.

Some fonts are intended only to be used with ClearType antialiasing, for example the Meiryo
Japanese font.

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”.

• The default device size is 7 inches square, although this is often incorrectly implemented by
Windows: see ‘Details’.

• Font sizes are in big points.

• The default font family is Arial.

• Line widths are as a multiple of 1/96 inch, with a minimum of one pixel.

• The minimum radius of a circle is 1 pixel.

• pch="." with cex = 1 corresponds to a rectangle of sides the larger of one pixel and 0.01
inch.

• Colours are interpreted via the unprofiled colour mapping of the graphics card – this is as-
sumed to conform to sRGB.

See Also

windowsFonts, savePlot, bringToTop, Devices, postscript

windows.options 725

Examples

Not run: ## A series of plots written to a sequence of metafiles
win.metafile("Rplot%02d.wmf", pointsize = 10)

End(Not run)

windows.options Auxiliary Function to Set/View Defaults for Arguments of windows()

Description

The auxiliary function windows.options can be used to set or view (if called without arguments)
the default values for the arguments of windows.

windows.options needs to be called before calling windows, and the default values it sets can be
overridden by supplying arguments to windows.

Usage

windows.options(..., reset = FALSE)

Arguments

... arguments width, height, pointsize, record, rescale, xpinch, ypinch, bg,
canvas, gamma, xpos, ypos, buffered, restoreConsole, clickToConfirm,
title, fillOddEven and antialias can be supplied.

reset logical: should the defaults be reset to their ‘factory-fresh’ values?

Details

If both reset = TRUE and ... are supplied the defaults are first reset to the ‘factory-fresh’ values
and then the new values are applied.

Option antialias applies to screen devices (windows, win.graph, X11 and x11)). There is a
separate option, bitmap.aa.win, for bitmap devices with type = "windows".

Value

A named list of all the defaults. If any arguments are supplied the returned values are the old values
and the result has the visibility flag turned off.

See Also

windows, ps.options.

726 windowsFonts

Examples

Not run:
put something like this is your .Rprofile to customize the defaults
setHook(packageEvent("grDevices", "onLoad"),

function(...)
grDevices::windows.options(width=8, height=6,

xpos=0, pointsize=10,
bitmap.aa.win="cleartype"))

End(Not run)

windowsFonts Windows Fonts

Description

These functions handle the translation of a device-independent R graphics font family name to a
windows font description.

Usage

windowsFont(family)

windowsFonts(...)

Arguments

family a character vector containing the font family name ("TT" as the first two charac-
ters indicates a TrueType font).

... either character strings naming mappings to display, or new (named) mappings
to define.

Details

A windows device is created with a default font (see the documentation for windows), but it is also
possible to specify a font family when drawing to the device (for example, see the documentation
for "family" in par and for "fontfamily" in gpar in the grid package).

The font family sent to the device is a simple string name, which must be mapped to something
more specific to windows fonts. A list of mappings is maintained and can be modified by the user.

The windowsFonts function can be used to list existing mappings and to define new mappings. The
windowsFont function can be used to create a new mapping.

Default mappings are provided for three device-independent font family names: "sans" for a sans-
serif font, "serif" for a serif font and "mono" for a monospaced font.

These mappings will only be used if the current font face is 1 (plain), 2 (bold), 3 (italic), or 4
(bolditalic).

See Also

windows

xfig 727

Examples

windowsFonts()
windowsFonts("mono")

Not run: ## set up for Japanese: needs the fonts installed
windows() # make sure we have the right device type
Sys.setlocale("LC_ALL", "ja")
windowsFonts(JP1 = windowsFont("MS Mincho"),

JP2 = windowsFont("MS Gothic"),
JP3 = windowsFont("Arial Unicode MS"))

plot(1:10)
text(5, 2, "\u{4E10}\u{4E00}\u{4E01}", family = "JP1")
text(7, 2, "\u{4E10}\u{4E00}\u{4E01}", family = "JP1", font=2)
text(5, 1.5, "\u{4E10}\u{4E00}\u{4E01}", family = "JP2")
text(9, 2, "\u{5100}", family = "JP3")

End(Not run)

xfig XFig Graphics Device

Description

xfig starts the graphics device driver for producing XFig (version 3.2) graphics.

The auxiliary function ps.options can be used to set and view (if called without arguments) default
values for the arguments to xfig and postscript.

Usage

xfig(file = ifelse(onefile, "Rplots.fig", "Rplot%03d.fig"),
onefile = FALSE, encoding = "none",
paper = "default", horizontal = TRUE,
width = 0, height = 0, family = "Helvetica",
pointsize = 12, bg = "transparent", fg = "black",
pagecentre = TRUE, defaultfont = FALSE, textspecial = FALSE)

Arguments

file a character string giving the name of the file. For use with onefile = FALSE
give a C integer format such as "Rplot%03d.fig" (the default in that case). (See
postscript for further details.)

onefile logical: if true allow multiple figures in one file. If false, assume only one page
per file and generate a file number containing the page number.

encoding The encoding in which to write text strings. The default is not to re-encode.
This can be any encoding recognized by iconv: in a Western UTF-8 locale you
probably want to select an 8-bit encoding such as latin1, and in an East Asian
locale an EUC encoding. If re-encoding fails, the text strings will be written in
the current encoding with a warning.

paper the size of paper region. The choices are "A4", "Letter" and "Legal" (and
these can be lowercase). A further choice is "default", which is the default. If
this is selected, the papersize is taken from the option "papersize" if that is set
to a non-empty value, otherwise "A4".

728 xfig

horizontal the orientation of the printed image, a logical. Defaults to true, that is landscape
orientation.

width, height the width and height of the graphics region in inches. The default is to use the
entire page less a 0.5 inch overall margin in each direction. (See postscript
for further details.)

family the font family to be used. This must be one of "AvantGarde",
"Bookman", "Courier", "Helvetica" (the default), "Helvetica-Narrow",
"NewCenturySchoolbook", "Palatino" or "Times". Any other value is re-
placed by "Helvetica", with a warning.

pointsize the default point size to be used.

bg the initial background color to be used.

fg the initial foreground color to be used.

pagecentre logical: should the device region be centred on the page?

defaultfont logical: should the device use xfig’s default font?

textspecial logical: should the device set the textspecial flag for all text elements. This is
useful when generating pstex from xfig figures.

Details

Although xfig can produce multiple plots in one file, the XFig format does not say how to separate
or view them. So onefile = FALSE is the default.

The file argument is interpreted as a C integer format as used by sprintf, with integer argument
the page number. The default gives files ‘Rplot001.fig’, . . . , ‘Rplot999.fig’, ‘Rplot1000.fig’,
. . . .

Line widths as controlled by par(lwd=) are in multiples of 5/6*1/72 inch. Multiples less than 1 are
allowed. pch="." with cex = 1 corresponds to a square of side 1/72 inch.

Windows users can make use of WinFIG (http://www.schmidt-web-berlin.de/WinFIG.htm,
shareware), or XFig under Cygwin.

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”.

• The default device size is the paper size with a 0.25 inch border on all sides.

• Font sizes are in big points.

• The default font family is Helvetica.

• Line widths are integers, multiples of 5/432 inch.

• Circle radii are multiples of 1/1200 inch.

• Colours are interpreted by the viewing/printing application.

Note

Only some line textures (0 <= lty < 4) are used. Eventually this may be partially remedied, but
the XFig file format does not allow as general line textures as the R model. Unimplemented line
textures are displayed as dash-double-dotted.

There is a limit of 512 colours (plus white and black) per file.

http://www.schmidt-web-berlin.de/WinFIG.htm

xy.coords 729

Author(s)

Brian Ripley. Support for defaultFont and textSpecial contributed by Sebastian Fischmeister.

See Also

Devices, postscript, ps.options.

xy.coords Extracting Plotting Structures

Description

xy.coords is used by many functions to obtain x and y coordinates for plotting. The use of this
common mechanism across all relevant R functions produces a measure of consistency.

Usage

xy.coords(x, y = NULL, xlab = NULL, ylab = NULL, log = NULL,
recycle = FALSE)

Arguments

x, y the x and y coordinates of a set of points. Alternatively, a single argument x can
be provided.

xlab,ylab names for the x and y variables to be extracted.

log character, "x", "y" or both, as for plot. Sets negative values to NA and gives a
warning.

recycle logical; if TRUE, recycle (rep) the shorter of x or y if their lengths differ.

Details

An attempt is made to interpret the arguments x and y in a way suitable for bivariate plotting (or
other bivariate procedures).

If y is NULL and x is a

formula: of the form yvar ~ xvar. xvar and yvar are used as x and y variables.

list: containing components x and y, these are used to define plotting coordinates.

time series: the x values are taken to be time(x) and the y values to be the time series.

matrix or data.frame with two or more columns: the first is assumed to contain the x values
and the second the y values. Note that is also true if x has columns named "x" and "y"; these
names will be irrelevant here.

In any other case, the x argument is coerced to a vector and returned as y component where the
resulting x is just the index vector 1:n. In this case, the resulting xlab component is set to "Index".

If x (after transformation as above) inherits from class "POSIXt" it is coerced to class "POSIXct".

730 xyTable

Value

A list with the components

x numeric (i.e., "double") vector of abscissa values.

y numeric vector of the same length as x.

xlab character(1) or NULL, the ‘label’ of x.

ylab character(1) or NULL, the ‘label’ of y.

See Also

plot.default, lines, points and lowess are examples of functions which use this mechanism.

Examples

xy.coords(stats::fft(c(1:9)), NULL)

with(cars, xy.coords(dist ~ speed, NULL)$xlab) # = "speed"

xy.coords(1:3, 1:2, recycle=TRUE)
xy.coords(-2:10,NULL, log="y")
##> warning: 3 y values <=0 omitted ..

xyTable Multiplicities of (x,y) Points, e.g., for a Sunflower Plot

Description

Given (x,y) points, determine their multiplicity – checking for equality only up to some (crude kind
of) noise. Note that this is special kind of 2D binning.

Usage

xyTable(x, y = NULL, digits)

Arguments

x,y numeric vectors of the same length; alternatively other (x,y) argument combina-
tions as allowed by xy.coords(x,y).

digits integer specifying the significant digits to be used for determining equality of
coordinates. These are compared after rounding them via signif(*,digits).

Value

A list with three components of same length,

x x coordinates, rounded and sorted.

y y coordinates, rounded (and sorted within x).

number multiplicities (positive integers); i.e., number[i] is the multiplicity of
(x[i],y[i]).

xyz.coords 731

See Also

sunflowerplot which typically uses xyTable(); signif.

Examples

xyTable(iris[,3:4], digits = 6)

Discretized uncorrelated Gaussian:

require(stats)
xy <- data.frame(x = round(sort(rnorm(100))), y = rnorm(100))
xyTable(xy, digits = 1)

xyz.coords Extracting Plotting Structures

Description

Utility for obtaining consistent x, y and z coordinates and labels for three dimensional (3D) plots.

Usage

xyz.coords(x, y = NULL, z = NULL,
xlab = NULL, ylab = NULL, zlab = NULL,
log = NULL, recycle = FALSE)

Arguments

x, y, z the x, y and z coordinates of a set of points. Both y and z can be left at NULL. In
this case, an attempt is made to interpret x in a way suitable for plotting.

If the argument is a formula zvar ~ xvar + yvar, xvar, yvar and zvar are
used as x, y and z variables; if the argument is a list containing components
x, y and z, these are assumed to define plotting coordinates; if the argument
is a matrix or data.frame with three or more columns, the first is assumed to
contain the x values, the 2nd the y ones, and the 3rd the z ones – independently
of any column names that x may have.

Alternatively two arguments x and y can be provided (leaving z = NULL). One
may be real, the other complex; in any other case, the arguments are coerced to
vectors and the values plotted against their indices.

xlab, ylab, zlab

names for the x, y and z variables to be extracted.

log character, "x", "y", "z" or combinations. Sets negative values to NA and gives a
warning.

recycle logical; if TRUE, recycle (rep) the shorter ones of x, y or z if their lengths differ.

732 xyz.coords

Value

A list with the components

x numeric (i.e., double) vector of abscissa values.

y numeric vector of the same length as x.

z numeric vector of the same length as x.

xlab character(1) or NULL, the axis label of x.

ylab character(1) or NULL, the axis label of y.

zlab character(1) or NULL, the axis label of z.

Author(s)

Uwe Ligges and Martin Maechler

See Also

xy.coords for 2D.

Examples

xyz.coords(data.frame(10*1:9, -4), y = NULL, z = NULL)

xyz.coords(1:5, stats::fft(1:5), z = NULL, xlab = "X", ylab = "Y")

y <- 2 * (x2 <- 10 + (x1 <- 1:10))
xyz.coords(y ~ x1 + x2, y = NULL, z = NULL)

xyz.coords(data.frame(x = -1:9, y = 2:12, z = 3:13), y = NULL, z = NULL,
log = "xy")

##> Warning message: 2 x values <= 0 omitted ...

Chapter 4

The graphics package

graphics-package The R Graphics Package

Description

R functions for base graphics

Details

This package contains functions for ‘base’ graphics. Base graphics are traditional S-like graphics,
as opposed to the more recent grid graphics.

For a complete list of functions with individual help pages, use library(help="graphics").

Author(s)

R Core Team and contributors worldwide

Maintainer: R Core Team <R-core@r-project.org>

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

abline Add Straight Lines to a Plot

Description

This function adds one or more straight lines through the current plot.

Usage

abline(a = NULL, b = NULL, h = NULL, v = NULL, reg = NULL,
coef = NULL, untf = FALSE, ...)

733

734 abline

Arguments

a, b the intercept and slope, single values.

untf logical asking whether to untransform. See ‘Details’.

h the y-value(s) for horizontal line(s).

v the x-value(s) for vertical line(s).

coef a vector of length two giving the intercept and slope.

reg an object with a coef method. See ‘Details’.

... graphical parameters such as col, lty and lwd (possibly as vectors: see ‘De-
tails’) and xpd and the line characteristics lend, ljoin and lmitre.

Details

Typical usages are

abline(a, b, untf = FALSE, ...)
abline(h=, untf = FALSE, ...)
abline(v=, untf = FALSE, ...)
abline(coef=, untf = FALSE, ...)
abline(reg=, untf = FALSE, ...)

The first form specifies the line in intercept/slope form (alternatively a can be specified on its own
and is taken to contain the slope and intercept in vector form).

The h= and v= forms draw horizontal and vertical lines at the specified coordinates.

The coef form specifies the line by a vector containing the slope and intercept.

reg is a regression object with a coef method. If this returns a vector of length 1 then the value is
taken to be the slope of a line through the origin, otherwise, the first 2 values are taken to be the
intercept and slope.

If untf is true, and one or both axes are log-transformed, then a curve is drawn corresponding to a
line in original coordinates, otherwise a line is drawn in the transformed coordinate system. The h
and v parameters always refer to original coordinates.

The graphical parameters col, lty and lwd can be specified; see par for details. For the h= and v=
usages they can be vectors of length greater than one, recycled as necessary.

Specifying an xpd argument for clipping overrides the global par("xpd") setting used otherwise.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

lines and segments for connected and arbitrary lines given by their endpoints. par.

arrows 735

Examples

Setup up coordinate system (with x==y aspect ratio):
plot(c(-2,3), c(-1,5), type = "n", xlab="x", ylab="y", asp = 1)
the x- and y-axis, and an integer grid
abline(h=0, v=0, col = "gray60")
text(1,0, "abline(h = 0)", col = "gray60", adj = c(0, -.1))
abline(h = -1:5, v = -2:3, col = "lightgray", lty=3)
abline(a=1, b=2, col = 2)
text(1,3, "abline(1, 2)", col=2, adj=c(-.1,-.1))

Simple Regression Lines:
require(stats)
sale5 <- c(6, 4, 9, 7, 6, 12, 8, 10, 9, 13)
plot(sale5)
abline(lsfit(1:10,sale5))
abline(lsfit(1:10,sale5, intercept = FALSE), col= 4) # less fitting

z <- lm(dist ~ speed, data = cars)
plot(cars)
abline(z) # equivalent to abline(reg = z) or
abline(coef = coef(z))

trivial intercept model
abline(mC <- lm(dist ~ 1, data = cars)) ## the same as
abline(a = coef(mC), b = 0, col = "blue")

arrows Add Arrows to a Plot

Description

Draw arrows between pairs of points.

Usage

arrows(x0, y0, x1 = x0, y1 = y0, length = 0.25, angle = 30,
code = 2, col = par("fg"), lty = par("lty"),
lwd = par("lwd"), ...)

Arguments

x0, y0 coordinates of points from which to draw.

x1, y1 coordinates of points to which to draw. At least one must the supplied

length length of the edges of the arrow head (in inches).

angle angle from the shaft of the arrow to the edge of the arrow head.

code integer code, determining kind of arrows to be drawn.

col, lty, lwd graphical parameters, possible vectors. NA values in col cause the arrow to be
omitted.

... graphical parameters such as xpd and the line characteristics lend, ljoin and
lmitre: see par.

736 assocplot

Details

For each i, an arrow is drawn between the point (x0[i], y0[i]) and the point
(x1[i],y1[i]). The coordinate vectors will be recycled to the length of the longest.

If code=1 an arrowhead is drawn at (x0[i],y0[i]) and if code=2 an arrowhead is drawn at
(x1[i],y1[i]). If code=3 a head is drawn at both ends of the arrow. Unless length = 0, when
no head is drawn.

The graphical parameters col, lty and lwd can be vectors of length greater than one and will be
recycled if necessary.

The direction of a zero-length arrow is indeterminate, and hence so is the direction of the arrow-
heads. To allow for rounding error, arrowheads are omitted (with a warning) on any arrow of length
less than 1/1000 inch.

Note

The first four arguments in the comparable S function are named x1,y1,x2,y2.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

segments to draw segments.

Examples

x <- stats::runif(12); y <- stats::rnorm(12)
i <- order(x,y); x <- x[i]; y <- y[i]
plot(x,y, main="arrows(.) and segments(.)")
draw arrows from point to point :
s <- seq(length(x)-1)# one shorter than data
arrows(x[s], y[s], x[s+1], y[s+1], col= 1:3)
s <- s[-length(s)]
segments(x[s], y[s], x[s+2], y[s+2], col= ’pink’)

assocplot Association Plots

Description

Produce a Cohen-Friendly association plot indicating deviations from independence of rows and
columns in a 2-dimensional contingency table.

Usage

assocplot(x, col = c("black", "red"), space = 0.3,
main = NULL, xlab = NULL, ylab = NULL)

assocplot 737

Arguments

x a two-dimensional contingency table in matrix form.

col a character vector of length two giving the colors used for drawing positive and
negative Pearson residuals, respectively.

space the amount of space (as a fraction of the average rectangle width and height) left
between each rectangle.

main overall title for the plot.

xlab a label for the x axis. Defaults to the name (if any) of the row dimension in x.

ylab a label for the y axis. Defaults to the name (if any) of the column dimension in
x.

Details

For a two-way contingency table, the signed contribution to Pearson’s χ2 for cell i, j is dij =
(fij − eij)/

√
eij , where fij and eij are the observed and expected counts corresponding to the

cell. In the Cohen-Friendly association plot, each cell is represented by a rectangle that has (signed)
height proportional to dij and width proportional to√eij , so that the area of the box is proportional
to the difference in observed and expected frequencies. The rectangles in each row are positioned
relative to a baseline indicating independence (dij = 0). If the observed frequency of a cell is
greater than the expected one, the box rises above the baseline and is shaded in the color specified
by the first element of col, which defaults to black; otherwise, the box falls below the baseline and
is shaded in the color specified by the second element of col, which defaults to red.

A more flexible and extensible implementation of association plots written in the grid graphics
system is provided in the function assoc in the contributed package vcd (Meyer, Zeileis and Hornik,
2005).

References

Cohen, A. (1980), On the graphical display of the significant components in a two-way contingency
table. Communications in Statistics—Theory and Methods, A9, 1025–1041.

Friendly, M. (1992), Graphical methods for categorical data. SAS User Group International Confer-
ence Proceedings, 17, 190–200. http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html

Meyer, D., Zeileis, A., and Hornik, K. (2005) The strucplot framework: Visualizing multi-way con-
tingency tables with vcd. Report 22, Department of Statistics and Mathematics, Wirtschaftsuni-
versität Wien, Research Report Series. http://epub.wu.ac.at/dyn/openURL?id=oai:epub.
wu-wien.ac.at:epub-wu-01_8a1

See Also

mosaicplot, chisq.test.

Examples

Aggregate over sex:
x <- margin.table(HairEyeColor, c(1, 2))
x
assocplot(x, main = "Relation between hair and eye color")

http://CRAN.R-project.org/package=vcd
http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://epub.wu.ac.at/dyn/openURL?id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1
http://epub.wu.ac.at/dyn/openURL?id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1

738 Axis

Axis Generic Function to Add an Axis to a Plot

Description

Generic function to add a suitable axis to the current plot.

Usage

Axis(x = NULL, at = NULL, ..., side, labels = NULL)

Arguments

x an object which indicates the range over which an axis should be drawn

at the points at which tick-marks are to be drawn.

side an integer specifying which side of the plot the axis is to be drawn on. The axis
is placed as follows: 1=below, 2=left, 3=above and 4=right.

labels this can either be a logical value specifying whether (numerical) annotations are
to be made at the tickmarks, or a character or expression vector of labels to be
placed at the tickpoints. If this is specified as a character or expression vector,
at should be supplied and they should be the same length.

... Arguments to be passed to methods and perhaps then to axis.

Details

This is a generic function. It works in a slightly non-standard way: if x is supplied and non-NULL
it dispatches on x, otherwise if at is supplied and non-NULL it dispatches on at, and the default
action is to call axis, omitting argument x.

The idea is that for plots for which either or both of the axes are numerical but with a special inter-
pretation, the standard plotting functions (including boxplot, contour, coplot, filled.contour,
pairs, plot.default, rug and stripchart) will set up user coordinates and Axis will be called
to label them appropriately.

There are "Date" and "POSIXt" methods which can pass an argument format on to the appropriate
axis method (see axis.POSIXct).

Value

The numeric locations on the axis scale at which tick marks were drawn when the plot was first
drawn (see ‘Details’).

This function is usually invoked for its side effect, which is to add an axis to an already existing
plot.

See Also

axis.

axis 739

axis Add an Axis to a Plot

Description

Adds an axis to the current plot, allowing the specification of the side, position, labels, and other
options.

Usage

axis(side, at = NULL, labels = TRUE, tick = TRUE, line = NA,
pos = NA, outer = FALSE, font = NA, lty = "solid",
lwd = 1, lwd.ticks = lwd, col = NULL, col.ticks = NULL,
hadj = NA, padj = NA, ...)

Arguments

side an integer specifying which side of the plot the axis is to be drawn on. The axis
is placed as follows: 1=below, 2=left, 3=above and 4=right.

at the points at which tick-marks are to be drawn. Non-finite (infinite, NaN or NA)
values are omitted. By default (when NULL) tickmark locations are computed,
see ‘Details’ below.

labels this can either be a logical value specifying whether (numerical) annotations are
to be made at the tickmarks, or a character or expression vector of labels to be
placed at the tickpoints. (Other objects are coerced by as.graphicsAnnot.) If
this is not logical, at should also be supplied and of the same length. If labels
is of length zero after coercion, it has the same effect as supplying TRUE.

tick a logical value specifying whether tickmarks and an axis line should be drawn.

line the number of lines into the margin at which the axis line will be drawn, if not
NA.

pos the coordinate at which the axis line is to be drawn: if not NA this overrides the
value of line.

outer a logical value indicating whether the axis should be drawn in the outer plot
margin, rather than the standard plot margin.

font font for text. Defaults to par("font").

lty line type for both the axis line and the tick marks.

lwd, lwd.ticks line widths for the axis line and the tick marks. Zero or negative values will
suppress the line or ticks.

col, col.ticks colors for the axis line and the tick marks respectively. col = NULL means to
use par("fg"), possibly specified inline, and col.ticks = NULL means to use
whatever color col resolved to.

hadj adjustment (see par("adj")) for all labels parallel (‘horizontal’) to the reading
direction. If this is not a finite value, the default is used (centring for strings
parallel to the axis, justification of the end nearest the axis otherwise).

padj adjustment for each tick label perpendicular to the reading direction. For labels
parallel to the axes, padj=0 means right or top alignment, and padj=1 means
left or bottom alignment. This can be a vector given a value for each string, and
will be recycled as necessary.

740 axis

If padj is not a finite value (the default), the value of par("las") determines
the adjustment. For strings plotted perpendicular to the axis the default is to
centre the string.

... other graphical parameters may also be passed as arguments to this function,
particularly, cex.axis, col.axis and font.axis for axis annotation, mgp and
xaxp or yaxp for positioning, tck or tcl for tick mark length and direction,
las for vertical/horizontal label orientation, or fg instead of col, and xpd for
clipping. See par on these.
Parameters xaxt (sides 1 and 3) and yaxt (sides 2 and 4) control if the axis is
plotted at all.
Note that lab will partial match to argument labels unless the latter is also
supplied. (Since the default axes have already been set up by plot.window, lab
will not be acted on by axis.)

Details

The axis line is drawn from the lowest to the highest value of at, but will be clipped at the plot
region. By default, only ticks which are drawn from points within the plot region (up to a tolerance
for rounding error) are plotted, but the ticks and their labels may well extend outside the plot region.
Use xpd=TRUE or xpd=NA to allow axes to extend further.

When at = NULL, pretty tick mark locations are computed internally (the same way
axTicks(side) would) from par("xaxp") or "yaxp" and par("xlog") (or "ylog"). Note that
these locations may change if an on-screen plot is resized (for example, if the plot argument asp
(see plot.window) is set.)

If labels is not specified, the numeric values supplied or calculated for at are converted to character
strings as if they were a numeric vector printed by print.default(digits=7).

The code tries hard not to draw overlapping tick labels, and so will omit labels where they would
abut or overlap previously drawn labels. This can result in, for example, every other tick being
labelled. (The ticks are drawn left to right or bottom to top, and space at least the size of an ‘m’ is
left between labels.)

If either line or pos is set, they (rather than par("mgp")[3]) determine the position of the axis
line and tick marks, and the tick labels are placed par("mgp")[2] further lines into (or towards for
pos) the margin.

Several of the graphics parameters affect the way axes are drawn. The vertical (for sides 1 and 3)
positions of the axis and the tick labels are controlled by mgp[2:3] and mex, the size and direction of
the ticks is controlled by tck and tcl and the appearance of the tick labels by cex.axis, col.axis
and font.axis with orientation controlled by las (but not srt, unlike S which uses srt if at is
supplied and las if it is not). Note that adj is not supported and labels are always centered. See
par for details.

Value

The numeric locations on the axis scale at which tick marks were drawn when the plot was first
drawn (see ‘Details’).

This function is usually invoked for its side effect, which is to add an axis to an already existing
plot.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

axis.POSIXct 741

See Also

Axis for a generic interface.

axTicks returns the axis tick locations corresponding to at=NULL; pretty is more flexible for
computing pretty tick coordinates and does not depend on (nor adapt to) the coordinate system in
use.

Several graphics parameters affecting the appearance are documented in par.

Examples

require(stats) # for rnorm
plot(1:4, rnorm(4), axes = FALSE)
axis(1, 1:4, LETTERS[1:4])
axis(2)
box() #- to make it look "as usual"

plot(1:7, rnorm(7), main = "axis() examples",
type = "s", xaxt = "n", frame = FALSE, col = "red")

axis(1, 1:7, LETTERS[1:7], col.axis = "blue")
unusual options:
axis(4, col = "violet", col.axis="dark violet", lwd = 2)
axis(3, col = "gold", lty = 2, lwd = 0.5)

one way to have a custom x axis
plot(1:10, xaxt = "n")
axis(1, xaxp=c(2, 9, 7))

axis.POSIXct Date and Date-time Plotting Functions

Description

Functions to plot objects of classes "POSIXlt", "POSIXct" and "Date" representing calendar dates
and times.

Usage

axis.POSIXct(side, x, at, format, labels = TRUE, ...)
axis.Date(side, x, at, format, labels = TRUE, ...)

Arguments

x, at A date-time or date object.

side See axis.

format See strptime.

labels Either a logical value specifying whether annotations are to be made at the tick-
marks, or a vector of character strings to be placed at the tickpoints.

... Further arguments to be passed from or to other methods, typically graphical
parameters.

742 axis.POSIXct

Details

axis.POSIXct and axis.Date work quite hard to choose suitable time units (years, months, days,
hours, minutes or seconds) and a sensible output format, but this can be overridden by supplying a
format specification.

If at is supplied it specifies the locations of the ticks and labels whereas if x is specified a suitable
grid of labels is chosen. Printing of tick labels can be suppressed by using labels = FALSE.

The date-times for a "POSIXct" input are interpreted in the timezone give by the "tzone" attribute
if there is one, otherwise the current timezone.

The way the date-times are rendered (especially month names) is controlled by the locale setting of
category "LC_TIME" (see Sys.setlocale.

Value

The locations on the axis scale at which tick marks were drawn.

Note

These functions are the workhorse for methods for Axis. Prior to R 2.12.0 there were also plot
methods for the date-time classes, but the default method has also handled those for a long time.

See Also

DateTimeClasses, Dates for details of the classes.

Axis.

Examples

with(beaver1, {
time <- strptime(paste(1990, day, time %/% 100, time %% 100),

"%Y %j %H %M")
plot(time, temp, type="l") # axis at 4-hour intervals.
now label every hour on the time axis
plot(time, temp, type="l", xaxt="n")
r <- as.POSIXct(round(range(time), "hours"))
axis.POSIXct(1, at=seq(r[1], r[2], by="hour"), format="%H")
})

plot(.leap.seconds, seq_along(.leap.seconds), type="n", yaxt="n",
xlab="leap seconds", ylab="", bty="n")

rug(.leap.seconds)
or as dates
lps <- as.Date(.leap.seconds)
plot(lps, seq_along(.leap.seconds),

type = "n", yaxt = "n", xlab = "leap seconds",
ylab = "", bty = "n")

rug(lps)

100 random dates in a 10-week period
random.dates <- as.Date("2001/1/1") + 70*sort(stats::runif(100))
plot(random.dates, 1:100)
or for a better axis labelling
plot(random.dates, 1:100, xaxt="n")
axis.Date(1, at=seq(as.Date("2001/1/1"), max(random.dates)+6, "weeks"))
axis.Date(1, at=seq(as.Date("2001/1/1"), max(random.dates)+6, "days"),

axTicks 743

labels = FALSE, tcl = -0.2)

axTicks Compute Axis Tickmark Locations

Description

Compute pretty tickmark locations, the same way as R does internally. This is only non-trivial
when log coordinates are active. By default, gives the at values which axis(side) would use.

Usage

axTicks(side, axp = NULL, usr = NULL, log = NULL, nintLog = NULL)

Arguments

side integer in 1:4, as for axis.

axp numeric vector of length three, defaulting to par("xaxp") or par("yaxp") de-
pending on the side argument (par("xaxp") if side is 1 or 3, par("yaxp") if
side is 2 or 4).

usr numeric vector of length two giving user coordinate limits, defaulting to the
relevant portion of par("usr") (par("usr")[1:2] or par("usr")[3:4] for
side in (1,3) or (2,4) respectively).

log logical indicating if log coordinates are active; defaults to par("xlog") or
par("ylog") depending on side.

nintLog (only used when log is true): approximate (lower bound for the) number of tick
intervals; defaults to par("lab")[j] where j is 1 or 2 depending on side. Set
this to Inf if you want the same behavior as in earlier R versions (than 2.14.x).

Details

The axp, usr, and log arguments must be consistent as their default values (the par(..) results)
are. If you specify all three (as non-NULL), the graphics environment is not used at all. Note that
the meaning of axp differs significantly when log is TRUE; see the documentation on par(xaxp=.).

axTicks() can be used an R interface to the C function CreateAtVector() in
‘..../src/main/plot.c’ which is called by axis(side,*) when no argument at is speci-
fied. The delicate case, log = TRUE, now makes use of axisTicks (in package grDevices) unless
nintLog = Inf which exists for back compatibility.

Value

numeric vector of coordinate values at which axis tickmarks can be drawn. By default, when only
the first argument is specified, these values should be identical to those that axis(side) would use
or has used. Note that the values are decreasing when usr is (“reverse axis” case).

See Also

axis, par. pretty uses the same algorithm (but independently of the graphics environment) and
has more options. However it is not available for log = TRUE.

axisTicks() (package grDevices).

744 barplot

Examples

plot(1:7, 10*21:27)
axTicks(1)
axTicks(2)
stopifnot(identical(axTicks(1), axTicks(3)),

identical(axTicks(2), axTicks(4)))

Show how axTicks() and axis() correspond :
op <- par(mfrow = c(3,1))
for(x in 9999*c(1,2,8)) {

plot(x,9, log = "x")
cat(formatC(par("xaxp"), width=5),";", T <- axTicks(1),"\n")
rug(T, col= adjustcolor("red", 0.5), lwd = 4)

}
par(op)

x <- 9.9*10^(-3:10)
plot(x, 1:14, log = "x")
axTicks(1) # now length 5, in R <= 2.13.x gave the following
axTicks(1, nintLog=Inf) # rather too many

An example using axTicks() without reference to an existing plot
(copying R’s internal procedures for setting axis ranges etc.),
You do need to supply _all_ of axp, usr, log, nintLog
standard logarithmic y axis labels
ylims <- c(0.2, 88)
get_axp <- function(x) 10^c(ceiling(x[1]), floor(x[2]))
mimic par("yaxs")=="i"
usr.i <- log10(ylims)
(aT.i <- axTicks(side=2, usr=usr.i,

axp=c(get_axp(usr.i), n=3), log=TRUE, nintLog=5))
mimic (default) par("yaxs")=="r"
usr.r <- extendrange(r = log10(ylims), f = 0.04)
(aT.r <- axTicks(side=2, usr=usr.r,

axp=c(get_axp(usr.r),3), log=TRUE, nintLog=5))

Prove that we got it right :
plot(0:1,ylims,log="y",yaxs="i")
stopifnot(all.equal(aT.i, axTicks(side=2)))

plot(0:1,ylims,log="y",yaxs="r")
stopifnot(all.equal(aT.r, axTicks(side=2)))

barplot Bar Plots

Description

Creates a bar plot with vertical or horizontal bars.

Usage

barplot(height, ...)

barplot 745

Default S3 method:
barplot(height, width = 1, space = NULL,

names.arg = NULL, legend.text = NULL, beside = FALSE,
horiz = FALSE, density = NULL, angle = 45,
col = NULL, border = par("fg"),
main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL, xpd = TRUE, log = "",
axes = TRUE, axisnames = TRUE,
cex.axis = par("cex.axis"), cex.names = par("cex.axis"),
inside = TRUE, plot = TRUE, axis.lty = 0, offset = 0,
add = FALSE, args.legend = NULL, ...)

Arguments

height either a vector or matrix of values describing the bars which make up the plot.
If height is a vector, the plot consists of a sequence of rectangular bars with
heights given by the values in the vector. If height is a matrix and beside is
FALSE then each bar of the plot corresponds to a column of height, with the
values in the column giving the heights of stacked sub-bars making up the bar.
If height is a matrix and beside is TRUE, then the values in each column are
juxtaposed rather than stacked.

width optional vector of bar widths. Re-cycled to length the number of bars drawn.
Specifying a single value will have no visible effect unless xlim is specified.

space the amount of space (as a fraction of the average bar width) left before each bar.
May be given as a single number or one number per bar. If height is a matrix
and beside is TRUE, space may be specified by two numbers, where the first is
the space between bars in the same group, and the second the space between the
groups. If not given explicitly, it defaults to c(0,1) if height is a matrix and
beside is TRUE, and to 0.2 otherwise.

names.arg a vector of names to be plotted below each bar or group of bars. If this argument
is omitted, then the names are taken from the names attribute of height if this
is a vector, or the column names if it is a matrix.

legend.text a vector of text used to construct a legend for the plot, or a logical indicating
whether a legend should be included. This is only useful when height is a
matrix. In that case given legend labels should correspond to the rows of height;
if legend.text is true, the row names of height will be used as labels if they
are non-null.

beside a logical value. If FALSE, the columns of height are portrayed as stacked bars,
and if TRUE the columns are portrayed as juxtaposed bars.

horiz a logical value. If FALSE, the bars are drawn vertically with the first bar to the
left. If TRUE, the bars are drawn horizontally with the first at the bottom.

density a vector giving the density of shading lines, in lines per inch, for the bars or bar
components. The default value of NULL means that no shading lines are drawn.
Non-positive values of density also inhibit the drawing of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-clockwise), for
the bars or bar components.

col a vector of colors for the bars or bar components. By default, grey is used if
height is a vector, and a gamma-corrected grey palette if height is a matrix.

border the color to be used for the border of the bars. Use border = NA to omit borders.
If there are shading lines, border = TRUE means use the same colour for the
border as for the shading lines.

746 barplot

main,sub overall and sub title for the plot.

xlab a label for the x axis.

ylab a label for the y axis.

xlim limits for the x axis.

ylim limits for the y axis.

xpd logical. Should bars be allowed to go outside region?

log string specifying if axis scales should be logarithmic; see plot.default.

axes logical. If TRUE, a vertical (or horizontal, if horiz is true) axis is drawn.

axisnames logical. If TRUE, and if there are names.arg (see above), the other axis is drawn
(with lty=0) and labeled.

cex.axis expansion factor for numeric axis labels.

cex.names expansion factor for axis names (bar labels).

inside logical. If TRUE, the lines which divide adjacent (non-stacked!) bars
will be drawn. Only applies when space = 0 (which it partly is when
beside = TRUE).

plot logical. If FALSE, nothing is plotted.

axis.lty the graphics parameter lty applied to the axis and tick marks of the categorical
(default horizontal) axis. Note that by default the axis is suppressed.

offset a vector indicating how much the bars should be shifted relative to the x axis.

add logical specifying if bars should be added to an already existing plot; defaults to
FALSE.

args.legend list of additional arguments to pass to legend(); names of the list are used as
argument names. Only used if legend.text is supplied.

... arguments to be passed to/from other methods. For the default method these can
include further arguments (such as axes, asp and main) and graphical parame-
ters (see par) which are passed to plot.window(), title() and axis.

Details

This is a generic function, it currently only has a default method. A formula interface may be added
eventually.

Value

A numeric vector (or matrix, when beside = TRUE), say mp, giving the coordinates of all the bar
midpoints drawn, useful for adding to the graph.

If beside is true, use colMeans(mp) for the midpoints of each group of bars, see example.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

plot(..., type="h"), dotchart, hist.

barplot 747

Examples

require(grDevices) # for colours
tN <- table(Ni <- stats::rpois(100, lambda=5))
r <- barplot(tN, col=rainbow(20))
#- type = "h" plotting *is* ’bar’plot
lines(r, tN, type=’h’, col=’red’, lwd=2)

barplot(tN, space = 1.5, axisnames=FALSE,
sub = "barplot(..., space= 1.5, axisnames = FALSE)")

barplot(VADeaths, plot = FALSE)
barplot(VADeaths, plot = FALSE, beside = TRUE)

mp <- barplot(VADeaths) # default
tot <- colMeans(VADeaths)
text(mp, tot + 3, format(tot), xpd = TRUE, col = "blue")
barplot(VADeaths, beside = TRUE,

col = c("lightblue", "mistyrose", "lightcyan",
"lavender", "cornsilk"),

legend = rownames(VADeaths), ylim = c(0, 100))
title(main = "Death Rates in Virginia", font.main = 4)

hh <- t(VADeaths)[, 5:1]
mybarcol <- "gray20"
mp <- barplot(hh, beside = TRUE,

col = c("lightblue", "mistyrose",
"lightcyan", "lavender"),

legend = colnames(VADeaths), ylim= c(0,100),
main = "Death Rates in Virginia", font.main = 4,
sub = "Faked upper 2*sigma error bars", col.sub = mybarcol,
cex.names = 1.5)

segments(mp, hh, mp, hh + 2*sqrt(1000*hh/100), col = mybarcol, lwd = 1.5)
stopifnot(dim(mp) == dim(hh))# corresponding matrices
mtext(side = 1, at = colMeans(mp), line = -2,

text = paste("Mean", formatC(colMeans(hh))), col = "red")

Bar shading example
barplot(VADeaths, angle = 15+10*1:5, density = 20, col = "black",

legend = rownames(VADeaths))
title(main = list("Death Rates in Virginia", font = 4))

border :
barplot(VADeaths, border = "dark blue")

log scales (not much sense here):
barplot(tN, col=heat.colors(12), log = "y")
barplot(tN, col=gray.colors(20), log = "xy")

args.legend
barplot(height = cbind(x = c(465, 91) / 465 * 100,

y = c(840, 200) / 840 * 100,
z = c(37, 17) / 37 * 100),

beside = FALSE,
width = c(465, 840, 37),
col = c(1, 2),

748 box

legend.text = c("A", "B"),
args.legend = list(x = "topleft"))

box Draw a Box around a Plot

Description

This function draws a box around the current plot in the given color and linetype. The bty parameter
determines the type of box drawn. See par for details.

Usage

box(which = "plot", lty = "solid", ...)

Arguments

which character, one of "plot", "figure", "inner" and "outer".

lty line type of the box.

... further graphical parameters, such as bty, col, or lwd, see par. Note that xpd
is not accepted as clipping is always to the device region.

Details

The choice of colour is complicated. If col was supplied and is not NA, it is used. Otherwise, if fg
was supplied and is not NA, it is used. The final default is par("col").

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

rect for drawing of arbitrary rectangles.

Examples

plot(1:7, abs(stats::rnorm(7)), type = ’h’, axes = FALSE)
axis(1, at = 1:7, labels = letters[1:7])
box(lty = ’1373’, col = ’red’)

boxplot 749

boxplot Box Plots

Description

Produce box-and-whisker plot(s) of the given (grouped) values.

Usage

boxplot(x, ...)

S3 method for class ’formula’
boxplot(formula, data = NULL, ..., subset, na.action = NULL)

Default S3 method:
boxplot(x, ..., range = 1.5, width = NULL, varwidth = FALSE,

notch = FALSE, outline = TRUE, names, plot = TRUE,
border = par("fg"), col = NULL, log = "",
pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5),
horizontal = FALSE, add = FALSE, at = NULL)

Arguments

formula a formula, such as y ~ grp, where y is a numeric vector of data values to be
split into groups according to the grouping variable grp (usually a factor).

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used for plotting.

na.action a function which indicates what should happen when the data contain NAs. The
default is to ignore missing values in either the response or the group.

x for specifying data from which the boxplots are to be produced. Either a numeric
vector, or a single list containing such vectors. Additional unnamed arguments
specify further data as separate vectors (each corresponding to a component
boxplot). NAs are allowed in the data.

... For the formula method, named arguments to be passed to the default method.
For the default method, unnamed arguments are additional data vectors (unless x
is a list when they are ignored), and named arguments are arguments and graph-
ical parameters to be passed to bxp in addition to the ones given by argument
pars (and override those in pars). Note that bxp may or may not make use of
graphical parameters it is passed: see its documentation.

range this determines how far the plot whiskers extend out from the box. If range is
positive, the whiskers extend to the most extreme data point which is no more
than range times the interquartile range from the box. A value of zero causes
the whiskers to extend to the data extremes.

width a vector giving the relative widths of the boxes making up the plot.

varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the square-
roots of the number of observations in the groups.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches of
two plots do not overlap this is ‘strong evidence’ that the two medians differ
(Chambers et al., 1983, p. 62). See boxplot.stats for the calculations used.

750 boxplot

outline if outline is not true, the outliers are not drawn (as points whereas S+ uses
lines).

names group labels which will be printed under each boxplot. Can be a character vector
or an expression (see plotmath).

boxwex a scale factor to be applied to all boxes. When there are only a few groups, the
appearance of the plot can be improved by making the boxes narrower.

staplewex staple line width expansion, proportional to box width.

outwex outlier line width expansion, proportional to box width.

plot if TRUE (the default) then a boxplot is produced. If not, the summaries which the
boxplots are based on are returned.

border an optional vector of colors for the outlines of the boxplots. The values in
border are recycled if the length of border is less than the number of plots.

col if col is non-null it is assumed to contain colors to be used to colour the bodies
of the box plots. By default they are in the background colour.

log character indicating if x or y or both coordinates should be plotted in log scale.

pars a list of (potentially many) more graphical parameters, e.g., boxwex or outpch;
these are passed to bxp (if plot is true); for details, see there.

horizontal logical indicating if the boxplots should be horizontal; default FALSE means
vertical boxes.

add logical, if true add boxplot to current plot.

at numeric vector giving the locations where the boxplots should be drawn, partic-
ularly when add = TRUE; defaults to 1:n where n is the number of boxes.

Details

The generic function boxplot currently has a default method (boxplot.default) and a formula
interface (boxplot.formula).

If multiple groups are supplied either as multiple arguments or via a formula, parallel boxplots will
be plotted, in the order of the arguments or the order of the levels of the factor (see factor).

Missing values are ignored when forming boxplots.

Value

List with the following components:

stats a matrix, each column contains the extreme of the lower whisker, the lower
hinge, the median, the upper hinge and the extreme of the upper whisker for one
group/plot. If all the inputs have the same class attribute, so will this component.

n a vector with the number of observations in each group.

conf a matrix where each column contains the lower and upper extremes of the notch.

out the values of any data points which lie beyond the extremes of the whiskers.

group a vector of the same length as out whose elements indicate to which group the
outlier belongs.

names a vector of names for the groups.

boxplot 751

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data
Analysis. Wadsworth & Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See also boxplot.stats.

See Also

boxplot.stats which does the computation, bxp for the plotting and more examples; and
stripchart for an alternative (with small data sets).

Examples

boxplot on a formula:
boxplot(count ~ spray, data = InsectSprays, col = "lightgray")
add notches (somewhat funny here):
boxplot(count ~ spray, data = InsectSprays,

notch = TRUE, add = TRUE, col = "blue")

boxplot(decrease ~ treatment, data = OrchardSprays,
log = "y", col = "bisque")

rb <- boxplot(decrease ~ treatment, data = OrchardSprays, col="bisque")
title("Comparing boxplot()s and non-robust mean +/- SD")

mn.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, mean)
sd.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, sd)
xi <- 0.3 + seq(rb$n)
points(xi, mn.t, col = "orange", pch = 18)
arrows(xi, mn.t - sd.t, xi, mn.t + sd.t,

code = 3, col = "pink", angle = 75, length = .1)

boxplot on a matrix:
mat <- cbind(Uni05 = (1:100)/21, Norm = rnorm(100),

‘5T‘ = rt(100, df = 5), Gam2 = rgamma(100, shape = 2))
boxplot(as.data.frame(mat),

main = "boxplot(as.data.frame(mat), main = ...)")
par(las=1)# all axis labels horizontal
boxplot(as.data.frame(mat), main = "boxplot(*, horizontal = TRUE)",

horizontal = TRUE)

Using ’at = ’ and adding boxplots -- example idea by Roger Bivand :

boxplot(len ~ dose, data = ToothGrowth,
boxwex = 0.25, at = 1:3 - 0.2,
subset = supp == "VC", col = "yellow",
main = "Guinea Pigs’ Tooth Growth",
xlab = "Vitamin C dose mg",
ylab = "tooth length",
xlim = c(0.5, 3.5), ylim = c(0, 35), yaxs = "i")

boxplot(len ~ dose, data = ToothGrowth, add = TRUE,
boxwex = 0.25, at = 1:3 + 0.2,
subset = supp == "OJ", col = "orange")

752 boxplot.matrix

legend(2, 9, c("Ascorbic acid", "Orange juice"),
fill = c("yellow", "orange"))

more examples in help(bxp)

boxplot.matrix Draw a Boxplot for each Column (Row) of a Matrix

Description

Interpreting the columns (or rows) of a matrix as different groups, draw a boxplot for each.

Usage

S3 method for class ’matrix’
boxplot(x, use.cols = TRUE, ...)

Arguments

x a numeric matrix.

use.cols logical indicating if columns (by default) or rows (use.cols=FALSE) should be
plotted.

... Further arguments to boxplot.

Value

A list as for boxplot.

Author(s)

Martin Maechler, 1995, for S+, then R package sfsmisc.

See Also

boxplot.default which already works nowadays with data.frames; boxplot.formula,
plot.factor which work with (the more general concept) of a grouping factor.

Examples

Very similar to the example in ?boxplot
mat <- cbind(Uni05 = (1:100)/21, Norm = rnorm(100),

T5 = rt(100, df = 5), Gam2 = rgamma(100, shape = 2))
boxplot(mat, main = "boxplot.matrix(...., main = ...)",

notch = TRUE, col = 1:4)

http://CRAN.R-project.org/package=sfsmisc

bxp 753

bxp Draw Box Plots from Summaries

Description

bxp draws box plots based on the given summaries in z. It is usually called from within boxplot,
but can be invoked directly.

Usage

bxp(z, notch = FALSE, width = NULL, varwidth = FALSE,
outline = TRUE, notch.frac = 0.5, log = "",
border = par("fg"), pars = NULL, frame.plot = axes,
horizontal = FALSE, add = FALSE, at = NULL, show.names = NULL,
...)

Arguments

z a list containing data summaries to be used in constructing the plots. These are
usually the result of a call to boxplot, but can be generated in any fashion.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches of two
plots do not overlap then the medians are significantly different at the 5 percent
level.

width a vector giving the relative widths of the boxes making up the plot.

varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the square-
roots of the number of observations in the groups.

outline if outline is not true, the outliers are not drawn.

notch.frac numeric in (0,1). When notch=TRUE, the fraction of the box width that the
notches should use.

border character or numeric (vector), the color of the box borders. Is recycled for mul-
tiple boxes. Is used as default for the boxcol, medcol, whiskcol, staplecol,
and outcol options (see below).

log character, indicating if any axis should be drawn in logarithmic scale, as in
plot.default.

frame.plot logical, indicating if a ‘frame’ (box) should be drawn; defaults to TRUE, unless
axes = FALSE is specified.

horizontal logical indicating if the boxplots should be horizontal; default FALSE means
vertical boxes.

add logical, if true add boxplot to current plot.

at numeric vector giving the locations where the boxplots should be drawn, partic-
ularly when add = TRUE; defaults to 1:n where n is the number of boxes.

show.names Set to TRUE or FALSE to override the defaults on whether an x-axis label is printed
for each group.

pars,... graphical parameters (etc) can be passed as arguments to this function, either as
a list (pars) or normally(...), see the following. (Those in ... take precedence
over those in pars.)

754 bxp

Currently, yaxs and ylim are used ‘along the boxplot’, i.e., vertically, when
horizontal is false, and xlim horizontally. xaxt, yaxt, las, cex.axis, and
col.axis are passed to axis, and main, cex.main, col.main, sub, cex.sub,
col.sub, xlab, ylab, cex.lab, and col.lab are passed to title.

In addition, axes is accepted (see plot.window), with default TRUE.

The following arguments (or pars components) allow further customization of
the boxplot graphics. Their defaults are typically determined from the non-
prefixed version (e.g., boxlty from lty), either from the specified argument or
pars component or the corresponding par one.

boxwex: a scale factor to be applied to all boxes. When there are only a few
groups, the appearance of the plot can be improved by making the boxes
narrower. The default depends on at and typically is 0.8.

staplewex, outwex: staple and outlier line width expansion, proportional to box
width; both default to 0.5.

boxlty, boxlwd, boxcol, boxfill: box outline type, width, color, and fill color
(which currently defaults to col and will in future default to par("bg")).

medlty, medlwd, medpch, medcex, medcol, medbg: median line type, line
width, point character, point size expansion, color, and background color.
The default medpch= NA suppresses the point, and medlty="blank" does
so for the line. Note thatmedlwd defaults to 3× the default lwd.

whisklty, whisklwd, whiskcol: whisker line type (default: "dashed"), width,
and color.

staplelty, staplelwd, staplecol: staple (= end of whisker) line type, width, and
color.

outlty, outlwd, outpch, outcex, outcol, outbg: outlier line type, line width,
point character, point size expansion, color, and background color. The
default outlty= "blank" suppresses the lines and outpch=NA suppresses
points.

Value

An invisible vector, actually identical to the at argument, with the coordinates ("x" if horizontal is
false, "y" otherwise) of box centers, useful for adding to the plot.

Note

When add = FALSE, xlim now defaults to xlim = range(at, *) + c(-0.5, 0.5). It will
usually be a good idea to specify xlim if the "x" axis has a log scale or width is far from uniform.

Author(s)

The R Core development team and Arni Magnusson (then at U Washington) who has provided most
changes for the box*, med*, whisk*, staple*, and out* arguments.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

cdplot 755

Examples

require(stats)
set.seed(753)
(bx.p <- boxplot(split(rt(100, 4), gl(5,20))))
op <- par(mfrow= c(2,2))
bxp(bx.p, xaxt = "n")
bxp(bx.p, notch = TRUE, axes = FALSE, pch = 4, boxfill=1:5)
bxp(bx.p, notch = TRUE, boxfill= "lightblue", frame= FALSE,

outl= FALSE, main = "bxp(*, frame= FALSE, outl= FALSE)")
bxp(bx.p, notch = TRUE, boxfill= "lightblue", border= 2:6,

ylim = c(-4,4), pch = 22, bg = "green", log = "x",
main = "... log=’x’, ylim=*")

par(op)
op <- par(mfrow= c(1,2))

single group -- no label
boxplot (weight ~ group, data = PlantGrowth, subset = group=="ctrl")
with label
bx <- boxplot(weight ~ group, data = PlantGrowth,

subset = group=="ctrl", plot = FALSE)
bxp(bx,show.names=TRUE)
par(op)

z <- split(rnorm(1000), rpois(1000,2.2))
boxplot(z, whisklty=3, main="boxplot(z, whisklty = 3)")

Colour support similar to plot.default:
op <- par(mfrow=1:2, bg="light gray", fg="midnight blue")
boxplot(z, col.axis="skyblue3", main="boxplot(*, col.axis=..,main=..)")
plot(z[[1]], col.axis="skyblue3", main= "plot(*, col.axis=..,main=..)")
mtext("par(bg=\"light gray\", fg=\"midnight blue\")",

outer = TRUE, line = -1.2)
par(op)

Mimic S-Plus:
splus <- list(boxwex=0.4, staplewex=1, outwex=1, boxfill="grey40",

medlwd=3, medcol="white", whisklty=3, outlty=1, outpch=NA)
boxplot(z, pars=splus)
Recycled and "sweeping" parameters
op <- par(mfrow=c(1,2))
boxplot(z, border=1:5, lty = 3, medlty = 1, medlwd = 2.5)
boxplot(z, boxfill=1:3, pch=1:5, lwd = 1.5, medcol="white")

par(op)
too many possibilities
boxplot(z, boxfill= "light gray", outpch = 21:25, outlty = 2,

bg = "pink", lwd = 2,
medcol = "dark blue", medcex = 2, medpch = 20)

cdplot Conditional Density Plots

756 cdplot

Description

Computes and plots conditional densities describing how the conditional distribution of a categori-
cal variable y changes over a numerical variable x.

Usage

cdplot(x, ...)

Default S3 method:
cdplot(x, y,
plot = TRUE, tol.ylab = 0.05, ylevels = NULL,
bw = "nrd0", n = 512, from = NULL, to = NULL,
col = NULL, border = 1, main = "", xlab = NULL, ylab = NULL,
yaxlabels = NULL, xlim = NULL, ylim = c(0, 1), ...)

S3 method for class ’formula’
cdplot(formula, data = list(),
plot = TRUE, tol.ylab = 0.05, ylevels = NULL,
bw = "nrd0", n = 512, from = NULL, to = NULL,
col = NULL, border = 1, main = "", xlab = NULL, ylab = NULL,
yaxlabels = NULL, xlim = NULL, ylim = c(0, 1), ...,
subset = NULL)

Arguments

x an object, the default method expects a single numerical variable (or an object
coercible to this).

y a "factor" interpreted to be the dependent variable

formula a "formula" of type y ~ x with a single dependent "factor" and a single
numerical explanatory variable.

data an optional data frame.

plot logical. Should the computed conditional densities be plotted?

tol.ylab convenience tolerance parameter for y-axis annotation. If the distance between
two labels drops under this threshold, they are plotted equidistantly.

ylevels a character or numeric vector specifying in which order the levels of the depen-
dent variable should be plotted.

bw, n, from, to, ...

arguments passed to density

col a vector of fill colors of the same length as levels(y). The default is to call
gray.colors.

border border color of shaded polygons.

main, xlab, ylab

character strings for annotation

yaxlabels character vector for annotation of y axis, defaults to levels(y).

xlim, ylim the range of x and y values with sensible defaults.

subset an optional vector specifying a subset of observations to be used for plotting.

cdplot 757

Details

cdplot computes the conditional densities of x given the levels of y weighted by the marginal
distribution of y. The densities are derived cumulatively over the levels of y.

This visualization technique is similar to spinograms (see spineplot) and plots P (y|x) against x.
The conditional probabilities are not derived by discretization (as in the spinogram), but using a
smoothing approach via density.

Note, that the estimates of the conditional densities are more reliable for high-density regions of x.
Conversely, the are less reliable in regions with only few x observations.

Value

The conditional density functions (cumulative over the levels of y) are returned invisibly.

Author(s)

Achim Zeileis <Achim.Zeileis@R-project.org>

References

Hofmann, H., Theus, M. (2005), Interactive graphics for visualizing conditional distributions, Un-
published Manuscript.

See Also

spineplot, density

Examples

NASA space shuttle o-ring failures
fail <- factor(c(2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1,

1, 2, 1, 1, 1, 1, 1),
levels = 1:2, labels = c("no", "yes"))

temperature <- c(53, 57, 58, 63, 66, 67, 67, 67, 68, 69, 70, 70,
70, 70, 72, 73, 75, 75, 76, 76, 78, 79, 81)

CD plot
cdplot(fail ~ temperature)
cdplot(fail ~ temperature, bw = 2)
cdplot(fail ~ temperature, bw = "SJ")

compare with spinogram
(spineplot(fail ~ temperature, breaks = 3))

highlighting for failures
cdplot(fail ~ temperature, ylevels = 2:1)

scatter plot with conditional density
cdens <- cdplot(fail ~ temperature, plot = FALSE)
plot(I(as.numeric(fail) - 1) ~ jitter(temperature, factor = 2),

xlab = "Temperature", ylab = "Conditional failure probability")
lines(53:81, 1 - cdens[[1]](53:81), col = 2)

758 clip

clip Set Clipping Region

Description

Set clipping region in user coordinates

Usage

clip(x1, x2, y1, y2)

Arguments

x1, x2, y1, y2 user coordinates of clipping rectangle

Details

How the clipping rectangle is set depends on the setting of par("xpd"): this function changes the
current setting until the next high-level plotting command resets it.

Clipping of lines, rectangles and polygons is done in the graphics engine, but clipping of text is if
possible done in the device, so the effect of clipping text is device-dependent (and may result in text
not wholly within the clipping region being omitted entirely).

Exactly when the clipping region will be reset can be hard to predict. plot.new always resets
it. Functions such as lines and text only reset it if par("xpd") has been changed. However,
functions such as box, mtext, title and plot.dendrogram can manipulate the xpd setting.

See Also

par

Examples

x <- rnorm(1000)
hist(x, xlim=c(-4,4))
usr <- par("usr")
clip(usr[1], -2, usr[3], usr[4])
hist(x, col = ’red’, add = TRUE)
clip(2, usr[2], usr[3], usr[4])
hist(x, col = ’blue’, add = TRUE)
do.call("clip", as.list(usr)) # reset to plot region

contour 759

contour Display Contours

Description

Create a contour plot, or add contour lines to an existing plot.

Usage

contour(x, ...)

Default S3 method:
contour(x = seq(0, 1, length.out = nrow(z)),

y = seq(0, 1, length.out = ncol(z)),
z,
nlevels = 10, levels = pretty(zlim, nlevels),
labels = NULL,
xlim = range(x, finite = TRUE),
ylim = range(y, finite = TRUE),
zlim = range(z, finite = TRUE),
labcex = 0.6, drawlabels = TRUE, method = "flattest",
vfont, axes = TRUE, frame.plot = axes,
col = par("fg"), lty = par("lty"), lwd = par("lwd"),
add = FALSE, ...)

Arguments

x,y locations of grid lines at which the values in z are measured. These must be in
ascending order. By default, equally spaced values from 0 to 1 are used. If x is
a list, its components x$x and x$y are used for x and y, respectively. If the list
has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that x can
be used instead of z for convenience.

nlevels number of contour levels desired iff levels is not supplied.

levels numeric vector of levels at which to draw contour lines.

labels a vector giving the labels for the contour lines. If NULL then the levels are used
as labels, otherwise this is coerced by as.character.

labcex cex for contour labelling. This is an absolute size, not a multiple of par("cex").

drawlabels logical. Contours are labelled if TRUE.

method character string specifying where the labels will be located. Possible values are
"simple", "edge" and "flattest" (the default). See the ‘Details’ section.

vfont if NULL, the current font family and face are used for the contour labels. If a char-
acter vector of length 2 then Hershey vector fonts are used for the contour labels.
The first element of the vector selects a typeface and the second element selects
a fontindex (see text for more information). The default is NULL on graph-
ics devices with high-quality rotation of text and c("sans serif", "plain")
otherwise.

xlim, ylim, zlim

x-, y- and z-limits for the plot.

760 contour

axes, frame.plot

logical indicating whether axes or a box should be drawn, see plot.default.

col color for the lines drawn.

lty line type for the lines drawn.

lwd line width for the lines drawn.

add logical. If TRUE, add to a current plot.

... additional arguments to plot.window, title, Axis and box, typically graphical
parameters such as cex.axis.

Details

contour is a generic function with only a default method in base R.

The methods for positioning the labels on contours are "simple" (draw at the edge of the plot,
overlaying the contour line), "edge" (draw at the edge of the plot, embedded in the contour line,
with no labels overlapping) and "flattest" (draw on the flattest section of the contour, embedded
in the contour line, with no labels overlapping). The second and third may not draw a label on every
contour line.

For information about vector fonts, see the help for text and Hershey.

Notice that contour interprets the z matrix as a table of f(x[i], y[j]) values, so that the x axis
corresponds to row number and the y axis to column number, with column 1 at the bottom, i.e. a 90
degree counter-clockwise rotation of the conventional textual layout.

Alternatively, use contourplot from the lattice package where the formula notation allows to use
vectors x,y,z of the same length.

There is limited control over the axes and frame as arguments col, lwd and lty refer to the contour
lines (rather than being general graphical parameters). For more control, add contours to a plot, or
add axes and frame to a contour plot.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

options("max.contour.segments") for the maximal complexity of a single contour line.

contourLines, filled.contour for color-filled contours, contourplot (and levelplot) from
package lattice. Further, image and the graphics demo which can be invoked as demo(graphics).

Examples

require(grDevices) # for colours
x <- -6:16
op <- par(mfrow = c(2, 2))
contour(outer(x, x), method = "edge", vfont = c("sans serif", "plain"))
z <- outer(x, sqrt(abs(x)), FUN = "/")
image(x, x, z)
contour(x, x, z, col = "pink", add = TRUE, method = "edge",

vfont = c("sans serif", "plain"))
contour(x, x, z, ylim = c(1, 6), method = "simple", labcex = 1)
contour(x, x, z, ylim = c(-6, 6), nlev = 20, lty = 2, method = "simple")
par(op)

http://CRAN.R-project.org/package=lattice
http://CRAN.R-project.org/package=lattice

convertXY 761

Persian Rug Art:
x <- y <- seq(-4*pi, 4*pi, len = 27)
r <- sqrt(outer(x^2, y^2, "+"))
opar <- par(mfrow = c(2, 2), mar = rep(0, 4))
for(f in pi^(0:3))

contour(cos(r^2)*exp(-r/f),
drawlabels = FALSE, axes = FALSE, frame = TRUE)

rx <- range(x <- 10*1:nrow(volcano))
ry <- range(y <- 10*1:ncol(volcano))
ry <- ry + c(-1,1) * (diff(rx) - diff(ry))/2
tcol <- terrain.colors(12)
par(opar); opar <- par(pty = "s", bg = "lightcyan")
plot(x = 0, y = 0,type = "n", xlim = rx, ylim = ry, xlab = "", ylab = "")
u <- par("usr")
rect(u[1], u[3], u[2], u[4], col = tcol[8], border = "red")
contour(x, y, volcano, col = tcol[2], lty = "solid", add = TRUE,

vfont = c("sans serif", "plain"))
title("A Topographic Map of Maunga Whau", font = 4)
abline(h = 200*0:4, v = 200*0:4, col = "lightgray", lty = 2, lwd = 0.1)

contourLines produces the same contour lines as contour
line.list <- contourLines(x, y, volcano)
plot(x = 0, y = 0,type = "n", xlim = rx, ylim = ry, xlab = "", ylab = "")
u <- par("usr")
rect(u[1], u[3], u[2], u[4], col = tcol[8], border = "red")
contour(x, y, volcano, col = tcol[2], lty = "solid", add = TRUE,

vfont = c("sans serif", "plain"))
templines <- function(clines) {

lines(clines[[2]], clines[[3]])
}
invisible(lapply(line.list, templines))
par(opar)

convertXY Convert between Graphics Coordinate Systems

Description

Convert between graphics coordinate systems.

Usage

grconvertX(x, from = "user", to = "user")
grconvertY(y, from = "user", to = "user")

Arguments

x, y numeric vector of coordinates.

from, to character strings giving the coordinate systems to convert between.

762 coplot

Details

The coordinate systems are

"user" user coordinates.

"inches" inches.

"device" the device coordinate system.

"ndc" normalized device coordinates.

"nfc" normalized figure coordinates.

"npc" normalized plot coordinates.

"nic" normalized inner region coordinates. (The ‘inner region’ is that inside the outer margins.)

(These names can be partially matched.) For the ‘normalized’ coordinate systems the lower left has
value 0 and the top right value 1.

Device coordinates are those in which the device works: they are usually in pixels where that makes
sense and in big points (1/72 inch) otherwise (e.g. pdf and postscript).

Value

A numeric vector of the same length as the input.

Examples

op <- par(omd=c(0.1, 0.9, 0.1, 0.9), mfrow = c(1, 2))
plot(1:4)
for(tp in c("in", "dev", "ndc", "nfc", "npc", "nic"))

print(grconvertX(c(1.0, 4.0), "user", tp))
par(op)

coplot Conditioning Plots

Description

This function produces two variants of the conditioning plots discussed in the reference below.

Usage

coplot(formula, data, given.values, panel = points, rows, columns,
show.given = TRUE, col = par("fg"), pch = par("pch"),
bar.bg = c(num = gray(0.8), fac = gray(0.95)),
xlab = c(x.name, paste("Given :", a.name)),
ylab = c(y.name, paste("Given :", b.name)),
subscripts = FALSE,
axlabels = function(f) abbreviate(levels(f)),
number = 6, overlap = 0.5, xlim, ylim, ...)

co.intervals(x, number = 6, overlap = 0.5)

coplot 763

Arguments

formula a formula describing the form of conditioning plot. A formula of the form
y ~ x | a indicates that plots of y versus x should be produced conditional
on the variable a. A formula of the form y ~ x| a * b indicates that plots of y
versus x should be produced conditional on the two variables a and b.
All three or four variables may be either numeric or factors. When x or y are
factors, the result is almost as if as.numeric() was applied, whereas for factor
a or b, the conditioning (and its graphics if show.given is true) are adapted.

data a data frame containing values for any variables in the formula. By default the
environment where coplot was called from is used.

given.values a value or list of two values which determine how the conditioning on a and b is
to take place.
When there is no b (i.e., conditioning only on a), usually this is a matrix with
two columns each row of which gives an interval, to be conditioned on, but is
can also be a single vector of numbers or a set of factor levels (if the variable
being conditioned on is a factor). In this case (no b), the result of co.intervals
can be used directly as given.values argument.

panel a function(x, y, col, pch, ...) which gives the action to be carried out
in each panel of the display. The default is points.

rows the panels of the plot are laid out in a rows by columns array. rows gives the
number of rows in the array.

columns the number of columns in the panel layout array.

show.given logical (possibly of length 2 for 2 conditioning variables): should conditioning
plots be shown for the corresponding conditioning variables (default TRUE).

col a vector of colors to be used to plot the points. If too short, the values are
recycled.

pch a vector of plotting symbols or characters. If too short, the values are recycled.

bar.bg a named vector with components "num" and "fac" giving the background col-
ors for the (shingle) bars, for numeric and factor conditioning variables respec-
tively.

xlab character; labels to use for the x axis and the first conditioning variable. If only
one label is given, it is used for the x axis and the default label is used for the
conditioning variable.

ylab character; labels to use for the y axis and any second conditioning variable.

subscripts logical: if true the panel function is given an additional (third) argument
subscripts giving the subscripts of the data passed to that panel.

axlabels function for creating axis (tick) labels when x or y are factors.

number integer; the number of conditioning intervals, for a and b, possibly of length 2.
It is only used if the corresponding conditioning variable is not a factor.

overlap numeric < 1; the fraction of overlap of the conditioning variables, possibly of
length 2 for x and y direction. When overlap < 0, there will be gaps between the
data slices.

xlim the range for the x axis.

ylim the range for the y axis.

... additional arguments to the panel function.

x a numeric vector.

764 coplot

Details

In the case of a single conditioning variable a, when both rows and columns are unspecified, a
‘close to square’ layout is chosen with columns >= rows.

In the case of multiple rows, the order of the panel plots is from the bottom and from the left
(corresponding to increasing a, typically).

A panel function should not attempt to start a new plot, but just plot within a given coordinate
system: thus plot and boxplot are not panel functions.

The rendering of arguments xlab and ylab is not controlled by par arguments cex.lab and
font.lab even though they are plotted by mtext rather than title.

Value

co.intervals(., number, .) returns a (number× 2) matrix, say ci, where ci[k,] is the range
of x values for the k-th interval.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

See Also

pairs, panel.smooth, points.

Examples

Tonga Trench Earthquakes
coplot(lat ~ long | depth, data = quakes)
given.depth <- co.intervals(quakes$depth, number=4, overlap=.1)
coplot(lat ~ long | depth, data = quakes, given.v=given.depth, rows=1)

Conditioning on 2 variables:
ll.dm <- lat ~ long | depth * mag
coplot(ll.dm, data = quakes)
coplot(ll.dm, data = quakes, number=c(4,7), show.given=c(TRUE,FALSE))
coplot(ll.dm, data = quakes, number=c(3,7),

overlap=c(-.5,.1)) # negative overlap DROPS values

given two factors
Index <- seq(length=nrow(warpbreaks)) # to get nicer default labels
coplot(breaks ~ Index | wool * tension, data = warpbreaks,

show.given = 0:1)
coplot(breaks ~ Index | wool * tension, data = warpbreaks,

col = "red", bg = "pink", pch = 21,
bar.bg = c(fac = "light blue"))

Example with empty panels:
with(data.frame(state.x77), {
coplot(Life.Exp ~ Income | Illiteracy * state.region, number = 3,

panel = function(x, y, ...) panel.smooth(x, y, span = .8, ...))
y ~ factor -- not really sensible, but ’show off’:
coplot(Life.Exp ~ state.region | Income * state.division,

panel = panel.smooth)

curve 765

})

curve Draw Function Plots

Description

Draws a curve corresponding to a function over the interval [from, to]. curve can plot also an
expression in the variable xname, default ‘x’.

Usage

curve(expr, from = NULL, to = NULL, n = 101, add = FALSE,
type = "l", xname = "x", xlab = xname, ylab = NULL,
log = NULL, xlim = NULL, ...)

S3 method for class ’function’
plot(x, y = 0, to = 1, from = y, xlim = NULL, ylab = NULL, ...)

Arguments

expr The name of a function, or a call or an expression written as a function of x
which will evaluate to an object of the same length as x.

x a ‘vectorizing’ numeric R function.

y alias for from for compatibility with plot

from, to the range over which the function will be plotted.

n integer; the number of x values at which to evaluate.

add logical; if TRUE add to an already existing plot; if NA start a new plot taking the
defaults for the limits and log-scaling of the x-axis from the previous plot. Taken
as FALSE (with a warning if a different value is supplied) if no graphics device
is open.

xlim NULL or a numeric vector of length 2; if non-NULL it provides the defaults for
c(from, to) and, unless add = TRUE, selects the x-limits of the plot – see
plot.window.

type plot type: see plot.default.

xname character string giving the name to be used for the x axis.

xlab, ylab, log, ...

labels and graphical parameters can also be specified as arguments. See ‘Details’
for the interpretation of the default for log.

For the "function" method of plot, ... can include any of the other arguments
of curve, except expr.

766 curve

Details

The function or expression expr (for curve) or function x (for plot) is evaluated at n points equally
spaced over the range [from, to]. The points determined in this way are then plotted.

If either from or to is NULL, it defaults to the corresponding element of xlim if that is not NULL.

What happens when neither from/to nor xlim specifies both x-limits is a complex story. For
plot(<function>) and for curve(add = FALSE) the defaults are (0, 1). For curve(add = NA)
and curve(add = TRUE) the defaults are taken from the x-limits used for the previous plot. (This
differs from versions of R prior to 2.14.0.)

The value of log is used both to specify the plot axes (unless add = TRUE) and how ‘equally spaced’
is interpreted: if the x component indicates log-scaling, the points at which the expression or func-
tion is plotted are equally spaced on log scale.

The default value of log is taken from the current plot when add = TRUE, whereas if add = NA the
x component is taken from the existing plot (if any) and the y component defaults to linear. For
add = FALSE the default is ""

This used to be a quick hack which now seems to serve a useful purpose, but can give bad results
for functions which are not smooth.

For expensive-to-compute expressions, you should use smarter tools.

The way curve handles expr has caused confusion. It first looks to see if expr is a name (also
known as a symbol), in which case it is taken to be the name of a function, and expr is replaced by
a call to expr with a single argument with name given by xname. Otherwise it checks that expr is
either a call or an expression, and that it contains a reference to the variable given by xname (using
all.vars): anything else is an error. Then expr is evaluated in an environment which supplies a
vector of name given by xname of length n, and should evaluate to an object of length n. Note that
this means that curve(x, ...) is taken as a request to plot a function named x (and it is used as
such in the function method for plot).

As from R 2.14.0 the plot method can be called directly as plot.function.

Value

A list with components x and y of the points that were drawn is returned invisibly.

Warning

For historical reasons, add is allowed as an argument to the "function" method of plot, but its
behaviour may surprise you. It is recommended to use add only with curve.

See Also

splinefun for spline interpolation, lines.

Examples

plot(qnorm) # default range c(0, 1) is appropriate here,
but end values are -/+Inf and so are omitted.

plot(qlogis, main = "The Inverse Logit : qlogis()")
abline(h = 0, v = 0:2/2, lty = 3, col = "gray")

curve(sin, -2*pi, 2*pi, xname = "t")
curve(tan, xname = "t", add = NA,

main = "curve(tan) --> same x-scale as previous plot")

dotchart 767

op <- par(mfrow = c(2, 2))
curve(x^3 - 3*x, -2, 2)
curve(x^2 - 2, add = TRUE, col = "violet")

simple and advanced versions, quite similar:
plot(cos, -pi, 3*pi)
curve(cos, xlim = c(-pi, 3*pi), n = 1001, col = "blue", add = TRUE)

chippy <- function(x) sin(cos(x)*exp(-x/2))
curve(chippy, -8, 7, n = 2001)
plot (chippy, -8, -5)

for(ll in c("", "x", "y", "xy"))
curve(log(1+x), 1, 100, log = ll,

sub = paste("log= ’", ll, "’", sep = ""))
par(op)

dotchart Cleveland’s Dot Plots

Description

Draw a Cleveland dot plot.

Usage

dotchart(x, labels = NULL, groups = NULL, gdata = NULL,
cex = par("cex"), pch = 21, gpch = 21, bg = par("bg"),
color = par("fg"), gcolor = par("fg"), lcolor = "gray",
xlim = range(x[is.finite(x)]),
main = NULL, xlab = NULL, ylab = NULL, ...)

Arguments

x either a vector or matrix of numeric values (NAs are allowed). If x is a matrix
the overall plot consists of juxtaposed dotplots for each row. Inputs which sat-
isfy is.numeric(x) but not is.vector(x) || is.matrix(x) are coerced by
as.numeric, with a warning.

labels a vector of labels for each point. For vectors the default is to use names(x) and
for matrices the row labels dimnames(x)[[1]].

groups an optional factor indicating how the elements of x are grouped. If x is a matrix,
groups will default to the columns of x.

gdata data values for the groups. This is typically a summary such as the median or
mean of each group.

cex the character size to be used. Setting cex to a value smaller than one can be a
useful way of avoiding label overlap. Unlike many other graphics functions, this
sets the actual size, not a multiple of par("cex").

pch the plotting character or symbol to be used.

gpch the plotting character or symbol to be used for group values.

bg the background color of plotting characters or symbols to be used; use
par(bg= *) to set the background color of the whole plot.

768 filled.contour

color the color(s) to be used for points and labels.

gcolor the single color to be used for group labels and values.

lcolor the color(s) to be used for the horizontal lines.

xlim horizontal range for the plot, see plot.window, e.g.

main overall title for the plot, see title.

xlab, ylab axis annotations as in title.

... graphical parameters can also be specified as arguments.

Value

This function is invoked for its side effect, which is to produce two variants of dotplots as described
in Cleveland (1985).

Dot plots are a reasonable substitute for bar plots.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Cleveland, W. S. (1985) The Elements of Graphing Data. Monterey, CA: Wadsworth.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

Examples

dotchart(VADeaths, main = "Death Rates in Virginia - 1940")
op <- par(xaxs="i")# 0 -- 100%
dotchart(t(VADeaths), xlim = c(0,100),

main = "Death Rates in Virginia - 1940")
par(op)

filled.contour Level (Contour) Plots

Description

This function produces a contour plot with the areas between the contours filled in solid color
(Cleveland calls this a level plot). A key showing how the colors map to z values is shown to the
right of the plot.

Usage

filled.contour(x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)),
z,
xlim = range(x, finite=TRUE),
ylim = range(y, finite=TRUE),
zlim = range(z, finite=TRUE),
levels = pretty(zlim, nlevels), nlevels = 20,
color.palette = cm.colors,
col = color.palette(length(levels) - 1),

filled.contour 769

plot.title, plot.axes, key.title, key.axes,
asp = NA, xaxs = "i", yaxs = "i", las = 1,
axes = TRUE, frame.plot = axes, ...)

.filled.contour(x, y, z, levels, col)

Arguments

x, y locations of grid lines at which the values in z are measured. These must
be in ascending order. (The rest of this description does not apply to
.filled.contour.) By default, equally spaced values from 0 to 1 are used.
If x is a list, its components x$x and x$y are used for x and y, respectively. If
the list has component z this is used for z.

z a numeric matrix containing the values to be plotted.. Note that x can be used
instead of z for convenience.

xlim x limits for the plot.

ylim y limits for the plot.

zlim z limits for the plot.

levels a set of levels which are used to partition the range of z. Must be strictly in-
creasing (and finite). Areas with z values between consecutive levels are painted
with the same color.

nlevels if levels is not specified, the range of z, values is divided into approximately
this many levels.

color.palette a color palette function to be used to assign colors in the plot.

col an explicit set of colors to be used in the plot. This argument overrides any
palette function specification. There should be one less color than levels

plot.title statements which add titles to the main plot.

plot.axes statements which draw axes (and a box) on the main plot. This overrides the
default axes.

key.title statements which add titles for the plot key.

key.axes statements which draw axes on the plot key. This overrides the default axis.

asp the y/x aspect ratio, see plot.window.

xaxs the x axis style. The default is to use internal labeling.

yaxs the y axis style. The default is to use internal labeling.

las the style of labeling to be used. The default is to use horizontal labeling.
axes, frame.plot

logicals indicating if axes and a box should be drawn, as in plot.default.

... additional graphical parameters, currently only passed to title().

Details

The values to be plotted can contain NAs. Rectangles with two or more corner values are NA are
omitted entirely: where there is a single NA value the triangle opposite the NA is omitted.

As from R 2.14.1 values to be plotted can be infinite: the effect is similar to that described for NA
values.

.filled.contour is a ‘bare bones’ interface to add just the contour plot to an already-set-up plot
region. It is is intended for programmatic use, and the programmer is responsible for checking the
conditions on the arguments.

770 filled.contour

Note

filled.contour uses the layout function and so is restricted to a full page display.

The output produced by filled.contour is actually a combination of two plots; one is the filled
contour and one is the legend. Two separate coordinate systems are set up for these two plots, but
they are only used internally – once the function has returned these coordinate systems are lost. If
you want to annotate the main contour plot, for example to add points, you can specify graphics
commands in the plot.axes argument. See the examples.

Author(s)

Ross Ihaka and R-core.

References

Cleveland, W. S. (1993) Visualizing Data. Summit, New Jersey: Hobart.

See Also

contour, image, palette; contourplot and levelplot from package lattice.

Examples

require(grDevices) # for colours
filled.contour(volcano, color = terrain.colors, asp = 1)# simple

x <- 10*1:nrow(volcano)
y <- 10*1:ncol(volcano)
filled.contour(x, y, volcano, color = terrain.colors,

plot.title = title(main = "The Topography of Maunga Whau",
xlab = "Meters North", ylab = "Meters West"),
plot.axes = { axis(1, seq(100, 800, by = 100))

axis(2, seq(100, 600, by = 100)) },
key.title = title(main="Height\n(meters)"),
key.axes = axis(4, seq(90, 190, by = 10)))# maybe also asp=1

mtext(paste("filled.contour(.) from", R.version.string),
side = 1, line = 4, adj = 1, cex = .66)

Annotating a filled contour plot
a <- expand.grid(1:20, 1:20)
b <- matrix(a[,1] + a[,2], 20)
filled.contour(x = 1:20, y = 1:20, z = b,

plot.axes={ axis(1); axis(2); points(10,10) })

Persian Rug Art:
x <- y <- seq(-4*pi, 4*pi, len = 27)
r <- sqrt(outer(x^2, y^2, "+"))
filled.contour(cos(r^2)*exp(-r/(2*pi)), axes = FALSE)
rather, the key *should* be labeled:
filled.contour(cos(r^2)*exp(-r/(2*pi)), frame.plot = FALSE,

plot.axes = {})

http://CRAN.R-project.org/package=lattice

fourfoldplot 771

fourfoldplot Fourfold Plots

Description

Creates a fourfold display of a 2 by 2 by k contingency table on the current graphics device, allowing
for the visual inspection of the association between two dichotomous variables in one or several
populations (strata).

Usage

fourfoldplot(x, color = c("#99CCFF", "#6699CC"),
conf.level = 0.95,
std = c("margins", "ind.max", "all.max"),
margin = c(1, 2), space = 0.2, main = NULL,
mfrow = NULL, mfcol = NULL)

Arguments

x a 2 by 2 by k contingency table in array form, or as a 2 by 2 matrix if k is 1.

color a vector of length 2 specifying the colors to use for the smaller and larger diag-
onals of each 2 by 2 table.

conf.level confidence level used for the confidence rings on the odds ratios. Must be a sin-
gle nonnegative number less than 1; if set to 0, confidence rings are suppressed.

std a character string specifying how to standardize the table. Must be one of
"margins", "ind.max", or "all.max", and can be abbreviated by the initial
letter. If set to "margins", each 2 by 2 table is standardized to equate the
margins specified by margin while preserving the odds ratio. If "ind.max"
or "all.max", the tables are either individually or simultaneously standardized
to a maximal cell frequency of 1.

margin a numeric vector with the margins to equate. Must be one of 1, 2, or c(1, 2)
(the default), which corresponds to standardizing the row, column, or both mar-
gins in each 2 by 2 table. Only used if std equals "margins".

space the amount of space (as a fraction of the maximal radius of the quarter circles)
used for the row and column labels.

main character string for the fourfold title.

mfrow a numeric vector of the form c(nr, nc), indicating that the displays for the 2
by 2 tables should be arranged in an nr by nc layout, filled by rows.

mfcol a numeric vector of the form c(nr, nc), indicating that the displays for the 2
by 2 tables should be arranged in an nr by nc layout, filled by columns.

Details

The fourfold display is designed for the display of 2 by 2 by k tables.

Following suitable standardization, the cell frequencies fij of each 2 by 2 table are shown as a
quarter circle whose radius is proportional to

√
fij so that its area is proportional to the cell fre-

quency. An association (odds ratio different from 1) between the binary row and column variables
is indicated by the tendency of diagonally opposite cells in one direction to differ in size from those

772 frame

in the other direction; color is used to show this direction. Confidence rings for the odds ratio allow
a visual test of the null of no association; the rings for adjacent quadrants overlap if and only if the
observed counts are consistent with the null hypothesis.

Typically, the number k corresponds to the number of levels of a stratifying variable, and it is of
interest to see whether the association is homogeneous across strata. The fourfold display visualizes
the pattern of association. Note that the confidence rings for the individual odds ratios are not
adjusted for multiple testing.

References

Friendly, M. (1994). A fourfold display for 2 by 2 by k tables. Technical Report 217, York Univer-
sity, Psychology Department. http://www.math.yorku.ca/SCS/Papers/4fold/4fold.ps.gz

See Also

mosaicplot

Examples

Use the Berkeley admission data as in Friendly (1995).
x <- aperm(UCBAdmissions, c(2, 1, 3))
dimnames(x)[[2]] <- c("Yes", "No")
names(dimnames(x)) <- c("Sex", "Admit?", "Department")
stats::ftable(x)

Fourfold display of data aggregated over departments, with
frequencies standardized to equate the margins for admission
and sex.
Figure 1 in Friendly (1994).
fourfoldplot(margin.table(x, c(1, 2)))

Fourfold display of x, with frequencies in each table
standardized to equate the margins for admission and sex.
Figure 2 in Friendly (1994).
fourfoldplot(x)

Fourfold display of x, with frequencies in each table
standardized to equate the margins for admission. but not
for sex.
Figure 3 in Friendly (1994).
fourfoldplot(x, margin = 2)

frame Create / Start a New Plot Frame

Description

This function (frame is an alias for plot.new) causes the completion of plotting in the current plot
(if there is one) and an advance to a new graphics frame. This is used in all high-level plotting
functions and also useful for skipping plots when a multi-figure region is in use.

http://www.math.yorku.ca/SCS/Papers/4fold/4fold.ps.gz

grid 773

Usage

plot.new()
frame()

Details

The new page is painted with the background colour (par("bg")), which is often transparent. For
devices with a canvas colour (the on-screen devices X11, windows and quartz), the window is first
painted with the canvas colour and then the background colour.

There are two hooks called "before.plot.new" and "plot.new" (see setHook) called immedi-
ately before and after advancing the frame. The latter is used in the testing code to annotate the new
page. The hook function(s) are called with no argument. (If the value is a character string, get is
called on it from within the graphics namespace.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (frame.)

See Also

plot.window, plot.default.

grid Add Grid to a Plot

Description

grid adds an nx by ny rectangular grid to an existing plot.

Usage

grid(nx = NULL, ny = nx, col = "lightgray", lty = "dotted",
lwd = par("lwd"), equilogs = TRUE)

Arguments

nx,ny number of cells of the grid in x and y direction. When NULL, as per default, the
grid aligns with the tick marks on the corresponding default axis (i.e., tickmarks
as computed by axTicks). When NA, no grid lines are drawn in the correspond-
ing direction.

col character or (integer) numeric; color of the grid lines.

lty character or (integer) numeric; line type of the grid lines.

lwd non-negative numeric giving line width of the grid lines.

equilogs logical, only used when log coordinates and alignment with the axis tick marks
are active. Setting equilogs = FALSE in that case gives non equidistant
tick aligned grid lines.

774 hist

Note

If more fine tuning is required, use abline(h = ., v = .) directly.

References

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

plot, abline, lines, points.

Examples

plot(1:3)
grid(NA, 5, lwd = 2) # grid only in y-direction

maybe change the desired number of tick marks: par(lab=c(mx,my,7))
op <- par(mfcol = 1:2)
with(iris,

{
plot(Sepal.Length, Sepal.Width, col = as.integer(Species),

xlim = c(4, 8), ylim = c(2, 4.5), panel.first = grid(),
main = "with(iris, plot(...., panel.first = grid(), ..))")

plot(Sepal.Length, Sepal.Width, col = as.integer(Species),
panel.first = grid(3, lty=1,lwd=2),
main = "... panel.first = grid(3, lty=1,lwd=2), ..")

}
)

par(op)

hist Histograms

Description

The generic function hist computes a histogram of the given data values. If plot=TRUE, the result-
ing object of class "histogram" is plotted by plot.histogram, before it is returned.

Usage

hist(x, ...)

Default S3 method:
hist(x, breaks = "Sturges",

freq = NULL, probability = !freq,
include.lowest = TRUE, right = TRUE,
density = NULL, angle = 45, col = NULL, border = NULL,
main = paste("Histogram of" , xname),
xlim = range(breaks), ylim = NULL,
xlab = xname, ylab,
axes = TRUE, plot = TRUE, labels = FALSE,
nclass = NULL, warn.unused = TRUE, ...)

hist 775

Arguments

x a vector of values for which the histogram is desired.

breaks one of:

• a vector giving the breakpoints between histogram cells,
• a single number giving the number of cells for the histogram,
• a character string naming an algorithm to compute the number of cells (see

‘Details’),
• a function to compute the number of cells.

In the last three cases the number is a suggestion only.

freq logical; if TRUE, the histogram graphic is a representation of frequencies, the
counts component of the result; if FALSE, probability densities, component
density, are plotted (so that the histogram has a total area of one). Defaults
to TRUE if and only if breaks are equidistant (and probability is not speci-
fied).

probability an alias for !freq, for S compatibility.

include.lowest logical; if TRUE, an x[i] equal to the breaks value will be included in the first
(or last, for right = FALSE) bar. This will be ignored (with a warning) unless
breaks is a vector.

right logical; if TRUE, the histogram cells are right-closed (left open) intervals.

density the density of shading lines, in lines per inch. The default value of NULL means
that no shading lines are drawn. Non-positive values of density also inhibit the
drawing of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).

col a colour to be used to fill the bars. The default of NULL yields unfilled bars.

border the color of the border around the bars. The default is to use the standard fore-
ground color.

main, xlab, ylab

these arguments to title have useful defaults here.

xlim, ylim the range of x and y values with sensible defaults. Note that xlim is not used to
define the histogram (breaks), but only for plotting (when plot = TRUE).

axes logical. If TRUE (default), axes are draw if the plot is drawn.

plot logical. If TRUE (default), a histogram is plotted, otherwise a list of breaks and
counts is returned. In the latter case, a warning is used if (typically graphical)
arguments are specified that only apply to the plot = TRUE case.

labels logical or character. Additionally draw labels on top of bars, if not FALSE; see
plot.histogram.

nclass numeric (integer). For S(-PLUS) compatibility only, nclass is equivalent to
breaks for a scalar or character argument.

warn.unused logical. If plot=FALSE and warn.unused=TRUE, a warning will be issued when
graphical parameters are passed to hist.default().

... further arguments and graphical parameters passed to plot.histogram and
thence to title and axis (if plot=TRUE).

776 hist

Details

The definition of histogram differs by source (with country-specific biases). R’s default with equi-
spaced breaks (also the default) is to plot the counts in the cells defined by breaks. Thus the height
of a rectangle is proportional to the number of points falling into the cell, as is the area provided the
breaks are equally-spaced.

The default with non-equi-spaced breaks is to give a plot of area one, in which the area of the
rectangles is the fraction of the data points falling in the cells.

If right = TRUE (default), the histogram cells are intervals of the form (a, b], i.e., they in-
clude their right-hand endpoint, but not their left one, with the exception of the first cell when
include.lowest is TRUE.

For right = FALSE, the intervals are of the form [a, b), and include.lowest means ‘include
highest’.

A numerical tolerance of 10−7 times the median bin size is applied when counting entries on the
edges of bins. This is not included in the reported breaks nor (as from R 2.11.0) in the calculation
of density.

The default for breaks is "Sturges": see nclass.Sturges. Other names for which algo-
rithms are supplied are "Scott" and "FD" / "Freedman-Diaconis" (with corresponding functions
nclass.scott and nclass.FD). Case is ignored and partial matching is used. Alternatively, a
function can be supplied which will compute the intended number of breaks as a function of x.

Value

an object of class "histogram" which is a list with components:

breaks the n+ 1 cell boundaries (= breaks if that was a vector). These are the nominal
breaks, not with the boundary fuzz.

counts n integers; for each cell, the number of x[] inside.

density values f̂(xi), as estimated density values. If all(diff(breaks) == 1), they
are the relative frequencies counts/n and in general satisfy

∑
i f̂(xi)(bi+1 −

bi) = 1, where bi = breaks[i].

intensities same as density. Deprecated, but retained for compatibility.

mids the n cell midpoints.

xname a character string with the actual x argument name.

equidist logical, indicating if the distances between breaks are all the same.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Venables, W. N. and Ripley. B. D. (2002) Modern Applied Statistics with S. Springer.

See Also

nclass.Sturges, stem, density, truehist in package MASS.

Typical plots with vertical bars are not histograms. Consider barplot or plot(*, type = "h")
for such bar plots.

http://CRAN.R-project.org/package=MASS

hist.POSIXt 777

Examples

op <- par(mfrow=c(2, 2))
hist(islands)
utils::str(hist(islands, col="gray", labels = TRUE))

hist(sqrt(islands), breaks = 12, col="lightblue", border="pink")
##-- For non-equidistant breaks, counts should NOT be graphed unscaled:
r <- hist(sqrt(islands), breaks = c(4*0:5, 10*3:5, 70, 100, 140),

col=’blue1’)
text(r$mids, r$density, r$counts, adj=c(.5, -.5), col=’blue3’)
sapply(r[2:3], sum)
sum(r$density * diff(r$breaks)) # == 1
lines(r, lty = 3, border = "purple") # -> lines.histogram(*)
par(op)

require(utils) # for str
str(hist(islands, breaks=12, plot= FALSE)) #-> 10 (~= 12) breaks
str(hist(islands, breaks=c(12,20,36,80,200,1000,17000), plot = FALSE))

hist(islands, breaks=c(12,20,36,80,200,1000,17000), freq = TRUE,
main = "WRONG histogram") # and warning

require(stats)
set.seed(14)
x <- rchisq(100, df = 4)

Comparing data with a model distribution should be done with qqplot()!
qqplot(x, qchisq(ppoints(x), df = 4)); abline(0,1, col = 2, lty = 2)

if you really insist on using hist() ... :
hist(x, freq = FALSE, ylim = c(0, 0.2))
curve(dchisq(x, df = 4), col = 2, lty = 2, lwd = 2, add = TRUE)

hist.POSIXt Histogram of a Date or Date-Time Object

Description

Method for hist applied to date or date-time objects.

Usage

S3 method for class ’POSIXt’
hist(x, breaks, ...,

xlab = deparse(substitute(x)),
plot = TRUE, freq = FALSE,
start.on.monday = TRUE, format)

S3 method for class ’Date’
hist(x, breaks, ...,

xlab = deparse(substitute(x)),
plot = TRUE, freq = FALSE,
start.on.monday = TRUE, format)

778 identify

Arguments

x an object inheriting from class "POSIXt" or "Date".

breaks a vector of cut points or number giving the number of intervals which x is to
be cut into or an interval specification, one of "days", "weeks", "months",
"quarters" or "years", plus "secs", "mins", "hours" for date-time objects.

... graphical parameters, or arguments to hist.default such as include.lowest,
right and labels.

xlab a character string giving the label for the x axis, if plotted.

plot logical. If TRUE (default), a histogram is plotted, otherwise a list of breaks and
counts is returned.

freq logical; if TRUE, the histogram graphic is a representation of frequencies, i.e, the
counts component of the result; if FALSE, relative frequencies (probabilities)
are plotted.

start.on.monday

logical. If breaks = "weeks", should the week start on Mondays or Sundays?

format for the x-axis labels. See strptime.

Details

Note that unlike the default method, breaks is a required argument.

Using breaks = "quarters" will create intervals of 3 calendar months, with the intervals begin-
ning on January 1, April 1, July 1 or October 1, based upon min(x) as appropriate.

Value

An object of class "histogram": see hist.

See Also

seq.POSIXt, axis.POSIXct, hist

Examples

hist(.leap.seconds, "years", freq = TRUE)
hist(.leap.seconds,

seq(ISOdate(1970, 1, 1), ISOdate(2015, 1, 1), "5 years"))

100 random dates in a 10-week period
random.dates <- as.Date("2001/1/1") + 70*stats::runif(100)
hist(random.dates, "weeks", format = "%d %b")

identify Identify Points in a Scatter Plot

Description

identify reads the position of the graphics pointer when the (first) mouse button is pressed. It then
searches the coordinates given in x and y for the point closest to the pointer. If this point is close
enough to the pointer, its index will be returned as part of the value of the call.

identify 779

Usage

identify(x, ...)

Default S3 method:
identify(x, y = NULL, labels = seq_along(x), pos = FALSE,

n = length(x), plot = TRUE, atpen = FALSE, offset = 0.5,
tolerance = 0.25, ...)

Arguments

x,y coordinates of points in a scatter plot. Alternatively, any object which defines
coordinates (a plotting structure, time series etc: see xy.coords) can be given
as x, and y left missing.

labels an optional character vector giving labels for the points. Will be coerced using
as.character, and recycled if necessary to the length of x. Excess labels will
be discarded, with a warning.

pos if pos is TRUE, a component is added to the return value which indicates where
text was plotted relative to each identified point: see Value.

n the maximum number of points to be identified.

plot logical: if plot is TRUE, the labels are printed near the points and if FALSE they
are omitted.

atpen logical: if TRUE and plot = TRUE, the lower-left corners of the labels are plotted
at the points clicked rather than relative to the points.

offset the distance (in character widths) which separates the label from identified
points. Negative values are allowed. Not used if atpen = TRUE.

tolerance the maximal distance (in inches) for the pointer to be ‘close enough’ to a point.

... further arguments passed to par such as cex, col and font.

Details

identify is a generic function, and only the default method is described here.

identify is only supported on screen devices such as X11, windows and quartz. On other devices
the call will do nothing.

Clicking near (as defined by tolerance) a point adds it to the list of identified points. Points can
be identified only once, and if the point has already been identified or the click is not near any of
the points a message is printed immediately on the R console.

If plot is TRUE, the point is labelled with the corresponding element of labels. If atpen is false
(the default) the labels are placed below, to the left, above or to the right of the identified point,
depending on where the pointer was relative to the point. If atpen is true, the labels are placed with
the bottom left of the string’s box at the pointer.

The identification process is terminated by clicking the second button and selecting ‘Stop’ from the
menu, or from the ‘Stop’ menu on the graphics window.

On most devices which support identify, successful selection of a point is indicated by a bell
sound unless options(locatorBell = FALSE) has been set.

If the window is resized or hidden and then exposed before the identification process has terminated,
any labels drawn by identify will disappear. These will reappear once the identification process
has terminated and the window is resized or hidden and exposed again. This is because the labels

780 identify

drawn by identify are not recorded in the device’s display list until the identification process has
terminated.

If you interrupt the identify call this leaves the graphics device in an undefined state, with points
labelled but labels not recorded in the display list. Copying a device in that state (e.g. saving the
plot from the window’s menu) will give unpredictable results.

Value

If pos is FALSE, an integer vector containing the indices of the identified points, in the order they
were identified.

If pos is TRUE, a list containing a component ind, indicating which points were identified and a
component pos, indicating where the labels were placed relative to the identified points (1=below,
2=left, 3=above, 4=right and 0=no offset, used if atpen = TRUE).

Technicalities

The algorithm used for placing labels is the same as used by text if pos is specified there, the differ-
ence being that the position of the pointer relative the identified point determines pos in identify.

For labels placed to the left of a point, the right-hand edge of the string’s box is placed offset units
to the left of the point, and analogously for points to the right. The baseline of the text is placed
below the point so as to approximately centre string vertically. For labels placed above or below a
point, the string is centered horizontally on the point. For labels placed above, the baseline of the
text is placed offset units above the point, and for those placed below, the baseline is placed so that
the top of the string’s box is approximately offset units below the point. If you want more precise
placement (e.g. centering) use plot = FALSE and plot via text or points: see the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

locator, text.

dev.capabilities to see if it is supported.

Examples

A function to use identify to select points, and overplot the
points with another symbol as they are selected
identifyPch <- function(x, y=NULL, n=length(x), pch=19, ...)
{

xy <- xy.coords(x, y); x <- xy$x; y <- xy$y
sel <- rep(FALSE, length(x)); res <- integer(0)
while(sum(sel) < n) {

ans <- identify(x[!sel], y[!sel], n=1, plot=FALSE, ...)
if(!length(ans)) break
ans <- which(!sel)[ans]
points(x[ans], y[ans], pch = pch)
sel[ans] <- TRUE
res <- c(res, ans)

}
res

}

image 781

image Display a Color Image

Description

Creates a grid of colored or gray-scale rectangles with colors corresponding to the values in z. This
can be used to display three-dimensional or spatial data aka images. This is a generic function.

The functions heat.colors, terrain.colors and topo.colors create heat-spectrum (red to
white) and topographical color schemes suitable for displaying ordered data, with n giving the
number of colors desired.

Usage

image(x, ...)

Default S3 method:
image(x, y, z, zlim, xlim, ylim, col = heat.colors(12),

add = FALSE, xaxs = "i", yaxs = "i", xlab, ylab,
breaks, oldstyle = FALSE, useRaster, ...)

Arguments

x,y locations of grid lines at which the values in z are measured. These must be
finite, non-missing and in (strictly) ascending order. By default, equally spaced
values from 0 to 1 are used. If x is a list, its components x$x and x$y are used
for x and y, respectively. If the list has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that x can
be used instead of z for convenience.

zlim the minimum and maximum z values for which colors should be plotted, de-
faulting to the range of the finite values of z. Each of the given colors will be
used to color an equispaced interval of this range. The midpoints of the intervals
cover the range, so that values just outside the range will be plotted.

xlim, ylim ranges for the plotted x and y values, defaulting to the ranges of x and y.

col a list of colors such as that generated by rainbow, heat.colors, topo.colors,
terrain.colors or similar functions.

add logical; if TRUE, add to current plot (and disregard the following four arguments).
This is rarely useful because image ‘paints’ over existing graphics.

xaxs, yaxs style of x and y axis. The default "i" is appropriate for images. See par.

xlab, ylab each a character string giving the labels for the x and y axis. Default to the ‘call
names’ of x or y, or to "" if these were unspecified.

breaks a set of breakpoints for the colours: must give one more breakpoint than colour
and be sorted in increasing order.

oldstyle logical. If true the midpoints of the colour intervals are equally spaced, and
zlim[1] and zlim[2] were taken to be midpoints. The default is to have colour
intervals of equal lengths between the limits.

useRaster logical; if TRUE a bitmap raster is used to plot the image instead of polygons. The
grid must be regular in that case, otherwise an error is raised. For the behaviour
when this is not specified, see ‘Details’.

782 image

... graphical parameters for plot may also be passed as arguments to this function,
as can the plot aspect ratio asp and axes (see plot.window).

Details

The length of x should be equal to the nrow(z)+1 or nrow(z). In the first case x specifies the
boundaries between the cells: in the second case x specifies the midpoints of the cells. Similar
reasoning applies to y. It probably only makes sense to specify the midpoints of an equally-spaced
grid. If you specify just one row or column and a length-one x or y, the whole user area in the
corresponding direction is filled. For logarithmic x or y axes the boundaries between cells must be
specified.

Rectangles corresponding to missing values are not plotted (and so are transparent and (unless
add=TRUE) the default background painted in par("bg") will show though and if that is transparent,
the canvas colour will be seen).

If breaks is specified then zlim is unused and the algorithm used follows cut, so intervals are
closed on the right and open on the left except for the lowest interval.

Notice that image interprets the z matrix as a table of f(x[i], y[j]) values, so that the x axis
corresponds to row number and the y axis to column number, with column 1 at the bottom, i.e. a 90
degree counter-clockwise rotation of the conventional printed layout of a matrix.

Images for large z on a regular grid are rendered more efficiently with useRaster = TRUE and can
prevent rare anti-aliasing artifacts, but may not be supported by all graphics devices. Some devices
(such as postscript and X11(type = "Xlib")) which do not support semi-transparent colours
may emit missing values as white rather than transparent, and there may be limitations on the size
of a raster image. (Problems with the rendering of raster images have been reported by users of
windows() devices under Remote Desktop, at least under its default settings.)

The graphics files in PDF and PostScript can be much smaller under this option.

If useRaster is not specified, raster images are used when the getOption("preferRaster") is
true, the grid is regular and either dev.capabilities("raster") is "yes" or it is "non-missing"
and there are no missing values.

Note

Originally based on a function by Thomas Lumley.

See Also

filled.contour or heatmap which can look nicer (but are less modular), contour; The lattice
equivalent of image is levelplot.

heat.colors, topo.colors, terrain.colors, rainbow, hsv, par.

dev.capabilities to see if useRaster = TRUE is supported on the current device.

Examples

require(grDevices) # for colours
x <- y <- seq(-4*pi, 4*pi, len=27)
r <- sqrt(outer(x^2, y^2, "+"))
image(z = z <- cos(r^2)*exp(-r/6), col=gray((0:32)/32))
image(z, axes = FALSE, main = "Math can be beautiful ...",

xlab = expression(cos(r^2) * e^{-r/6}))
contour(z, add = TRUE, drawlabels = FALSE)

Volcano data visualized as matrix. Need to transpose and flip

http://CRAN.R-project.org/package=lattice

layout 783

matrix horizontally.
image(t(volcano)[ncol(volcano):1,])

A prettier display of the volcano
x <- 10*(1:nrow(volcano))
y <- 10*(1:ncol(volcano))
image(x, y, volcano, col = terrain.colors(100), axes = FALSE)
contour(x, y, volcano, levels = seq(90, 200, by = 5),

add = TRUE, col = "peru")
axis(1, at = seq(100, 800, by = 100))
axis(2, at = seq(100, 600, by = 100))
box()
title(main = "Maunga Whau Volcano", font.main = 4)

layout Specifying Complex Plot Arrangements

Description

layout divides the device up into as many rows and columns as there are in matrix mat, with the
column-widths and the row-heights specified in the respective arguments.

Usage

layout(mat, widths = rep(1, ncol(mat)),
heights = rep(1, nrow(mat)), respect = FALSE)

layout.show(n = 1)
lcm(x)

Arguments

mat a matrix object specifying the location of the nextN figures on the output device.
Each value in the matrix must be 0 or a positive integer. If N is the largest
positive integer in the matrix, then the integers {1, . . . , N −1}must also appear
at least once in the matrix.

widths a vector of values for the widths of columns on the device. Relative widths are
specified with numeric values. Absolute widths (in centimetres) are specified
with the lcm() function (see examples).

heights a vector of values for the heights of rows on the device. Relative and absolute
heights can be specified, see widths above.

respect either a logical value or a matrix object. If the latter, then it must have the same
dimensions as mat and each value in the matrix must be either 0 or 1.

n number of figures to plot.

x a dimension to be interpreted as a number of centimetres.

784 layout

Details

Figure i is allocated a region composed from a subset of these rows and columns, based on the rows
and columns in which i occurs in mat.

The respect argument controls whether a unit column-width is the same physical measurement on
the device as a unit row-height.

There is a limit (currently 50) for the numbers of rows and columns in the layout, and also for the
total number of cells (500).

layout.show(n) plots (part of) the current layout, namely the outlines of the next n figures.

lcm is a trivial function, to be used as the interface for specifying absolute dimensions for the
widths and heights arguments of layout().

Value

layout returns the number of figures, N , see above.

Warnings

These functions are totally incompatible with the other mechanisms for arranging plots on a device:
par(mfrow), par(mfcol) and split.screen.

Author(s)

Paul R. Murrell

References

Murrell, P. R. (1999) Layouts: A mechanism for arranging plots on a page. Journal of Computa-
tional and Graphical Statistics, 8, 121–134.

Chapter 5 of Paul Murrell’s Ph.D. thesis.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

par with arguments mfrow, mfcol, or mfg.

Examples

def.par <- par(no.readonly = TRUE) # save default, for resetting...

divide the device into two rows and two columns
allocate figure 1 all of row 1
allocate figure 2 the intersection of column 2 and row 2
layout(matrix(c(1,1,0,2), 2, 2, byrow = TRUE))
show the regions that have been allocated to each plot
layout.show(2)

divide device into two rows and two columns
allocate figure 1 and figure 2 as above
respect relations between widths and heights
nf <- layout(matrix(c(1,1,0,2), 2, 2, byrow=TRUE), respect=TRUE)
layout.show(nf)

create single figure which is 5cm square

legend 785

nf <- layout(matrix(1), widths=lcm(5), heights=lcm(5))
layout.show(nf)

##-- Create a scatterplot with marginal histograms -----

x <- pmin(3, pmax(-3, stats::rnorm(50)))
y <- pmin(3, pmax(-3, stats::rnorm(50)))
xhist <- hist(x, breaks=seq(-3,3,0.5), plot=FALSE)
yhist <- hist(y, breaks=seq(-3,3,0.5), plot=FALSE)
top <- max(c(xhist$counts, yhist$counts))
xrange <- c(-3,3)
yrange <- c(-3,3)
nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
layout.show(nf)

par(mar=c(3,3,1,1))
plot(x, y, xlim=xrange, ylim=yrange, xlab="", ylab="")
par(mar=c(0,3,1,1))
barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0)
par(mar=c(3,0,1,1))
barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0, horiz=TRUE)

par(def.par)#- reset to default

legend Add Legends to Plots

Description

This function can be used to add legends to plots. Note that a call to the function locator(1) can
be used in place of the x and y arguments.

Usage

legend(x, y = NULL, legend, fill = NULL, col = par("col"),
border="black", lty, lwd, pch,
angle = 45, density = NULL, bty = "o", bg = par("bg"),
box.lwd = par("lwd"), box.lty = par("lty"), box.col = par("fg"),
pt.bg = NA, cex = 1, pt.cex = cex, pt.lwd = lwd,
xjust = 0, yjust = 1, x.intersp = 1, y.intersp = 1,
adj = c(0, 0.5), text.width = NULL, text.col = par("col"), text.font = NULL,
merge = do.lines && has.pch, trace = FALSE,
plot = TRUE, ncol = 1, horiz = FALSE, title = NULL,
inset = 0, xpd, title.col = text.col, title.adj = 0.5,
seg.len = 2)

Arguments

x, y the x and y co-ordinates to be used to position the legend. They can be specified
by keyword or in any way which is accepted by xy.coords: See ‘Details’.

legend a character or expression vector. of length ≥ 1 to appear in the legend. Other
objects will be coerced by as.graphicsAnnot.

786 legend

fill if specified, this argument will cause boxes filled with the specified colors (or
shaded in the specified colors) to appear beside the legend text.

col the color of points or lines appearing in the legend.

border the border color for the boxes (used only if fill is specified).

lty, lwd the line types and widths for lines appearing in the legend. One of these two
must be specified for line drawing.

pch the plotting symbols appearing in the legend, either as vector of 1-character
strings, or one (multi character) string. Must be specified for symbol drawing.

angle angle of shading lines.

density the density of shading lines, if numeric and positive. If NULL or negative or NA
color filling is assumed.

bty the type of box to be drawn around the legend. The allowed values are "o" (the
default) and "n".

bg the background color for the legend box. (Note that this is only used if
bty != "n".)

box.lty, box.lwd, box.col

the line type, width and color for the legend box (if bty = "o").

pt.bg the background color for the points, corresponding to its argument bg.

cex character expansion factor relative to current par("cex"). Used for text, and
provides the default for pt.cex and title.cex.

pt.cex expansion factor(s) for the points.

pt.lwd line width for the points, defaults to the one for lines, or if that is not set, to
par("lwd").

xjust how the legend is to be justified relative to the legend x location. A value of 0
means left justified, 0.5 means centered and 1 means right justified.

yjust the same as xjust for the legend y location.

x.intersp character interspacing factor for horizontal (x) spacing.

y.intersp the same for vertical (y) line distances.

adj numeric of length 1 or 2; the string adjustment for legend text. Useful for y-
adjustment when labels are plotmath expressions.

text.width the width of the legend text in x ("user") coordinates. (Should be posi-
tive even for a reversed x axis.) Defaults to the proper value computed by
strwidth(legend).

text.col the color used for the legend text.

text.font the font used for the legend text, see text.

merge logical; if TRUE, merge points and lines but not filled boxes. Defaults to TRUE if
there are points and lines.

trace logical; if TRUE, shows how legend does all its magical computations.

plot logical. If FALSE, nothing is plotted but the sizes are returned.

ncol the number of columns in which to set the legend items (default is 1, a vertical
legend).

horiz logical; if TRUE, set the legend horizontally rather than vertically (specifying
horiz overrides the ncol specification).

title a character string or length-one expression giving a title to be placed at the top
of the legend. Other objects will be coerced by as.graphicsAnnot.

legend 787

inset inset distance(s) from the margins as a fraction of the plot region when legend
is placed by keyword.

xpd if supplied, a value of the graphical parameter xpd to be used while the legend
is being drawn.

title.col color for title.

title.adj horizontal adjustment for title: see the help for par("adj").

seg.len the length of lines drawn to illustrate lty and/or lwd (in units of character
widths).

Details

Arguments x, y, legend are interpreted in a non-standard way to allow the coordinates to be spec-
ified via one or two arguments. If legend is missing and y is not numeric, it is assumed that the
second argument is intended to be legend and that the first argument specifies the coordinates.

The coordinates can be specified in any way which is accepted by xy.coords. If this gives the
coordinates of one point, it is used as the top-left coordinate of the rectangle containing the legend.
If it gives the coordinates of two points, these specify opposite corners of the rectangle (either pair
of corners, in any order).

The location may also be specified by setting x to a single keyword from the list "bottomright",
"bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". This
places the legend on the inside of the plot frame at the given location. Partial argument matching
is used. The optional inset argument specifies how far the legend is inset from the plot margins.
If a single value is given, it is used for both margins; if two values are given, the first is used for x-
distance, the second for y-distance.

Attribute arguments such as col, pch, lty, etc, are recycled if necessary: merge is not. Set entries
of lty to 0 or set entries of lwd to NA to suppress lines in corresponding legend entries; set pch
values to NA to suppress points.

Points are drawn after lines in order that they can cover the line with their background color pt.bg,
if applicable.

See the examples for how to right-justify labels.

Value

A list with list components

rect a list with components

w, h positive numbers giving width and height of the legend’s box.
left, top x and y coordinates of upper left corner of the box.

text a list with components

x, y numeric vectors of length length(legend), giving the x and y coordi-
nates of the legend’s text(s).

returned invisibly.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

788 legend

See Also

plot, barplot which uses legend(), and text for more examples of math expressions.

Examples

Run the example in ’?matplot’ or the following:
leg.txt <- c("Setosa Petals", "Setosa Sepals",

"Versicolor Petals", "Versicolor Sepals")
y.leg <- c(4.5, 3, 2.1, 1.4, .7)
cexv <- c(1.2, 1, 4/5, 2/3, 1/2)
matplot(c(1,8), c(0,4.5), type = "n", xlab = "Length", ylab = "Width",

main = "Petal and Sepal Dimensions in Iris Blossoms")
for (i in seq(cexv)) {

text (1, y.leg[i]-.1, paste("cex=",formatC(cexv[i])), cex=.8, adj = 0)
legend(3, y.leg[i], leg.txt, pch = "sSvV", col = c(1, 3), cex = cexv[i])

}

’merge = TRUE’ for merging lines & points:
x <- seq(-pi, pi, len = 65)
plot(x, sin(x), type = "l", ylim = c(-1.2, 1.8), col = 3, lty = 2)
points(x, cos(x), pch = 3, col = 4)
lines(x, tan(x), type = "b", lty = 1, pch = 4, col = 6)
title("legend(..., lty = c(2, -1, 1), pch = c(-1,3,4), merge = TRUE)",

cex.main = 1.1)
legend(-1, 1.9, c("sin", "cos", "tan"), col = c(3,4,6),

text.col = "green4", lty = c(2, -1, 1), pch = c(-1, 3, 4),
merge = TRUE, bg = ’gray90’)

right-justifying a set of labels: thanks to Uwe Ligges
x <- 1:5; y1 <- 1/x; y2 <- 2/x
plot(rep(x, 2), c(y1, y2), type="n", xlab="x", ylab="y")
lines(x, y1); lines(x, y2, lty=2)
temp <- legend("topright", legend = c(" ", " "),

text.width = strwidth("1,000,000"),
lty = 1:2, xjust = 1, yjust = 1,
title = "Line Types")

text(temp$rect$left + temp$rect$w, temp$text$y,
c("1,000", "1,000,000"), pos=2)

##--- log scaled Examples ------------------------------
leg.txt <- c("a one", "a two")

par(mfrow = c(2,2))
for(ll in c("","x","y","xy")) {

plot(2:10, log=ll, main=paste("log = ’",ll,"’", sep=""))
abline(1,1)
lines(2:3,3:4, col=2) #
points(2,2, col=3) #
rect(2,3,3,2, col=4)
text(c(3,3),2:3, c("rect(2,3,3,2, col=4)",

"text(c(3,3),2:3,\"c(rect(...)\")"), adj = c(0,.3))
legend(list(x=2,y=8), legend = leg.txt, col=2:3, pch=1:2,

lty=1, merge=TRUE)#, trace=TRUE)
}
par(mfrow=c(1,1))

legend 789

##-- Math expressions: ------------------------------
x <- seq(-pi, pi, len = 65)
plot(x, sin(x), type="l", col = 2, xlab = expression(phi),

ylab = expression(f(phi)))
abline(h=-1:1, v=pi/2*(-6:6), col="gray90")
lines(x, cos(x), col = 3, lty = 2)
ex.cs1 <- expression(plain(sin) * phi, paste("cos", phi))# 2 ways
utils::str(legend(-3, .9, ex.cs1, lty=1:2, plot=FALSE,

adj = c(0, .6)))# adj y !
legend(-3, .9, ex.cs1, lty=1:2, col=2:3, adj = c(0, .6))

require(stats)
x <- rexp(100, rate = .5)
hist(x, main = "Mean and Median of a Skewed Distribution")
abline(v = mean(x), col=2, lty=2, lwd=2)
abline(v = median(x), col=3, lty=3, lwd=2)
ex12 <- expression(bar(x) == sum(over(x[i], n), i==1, n),

hat(x) == median(x[i], i==1,n))
utils::str(legend(4.1, 30, ex12, col = 2:3, lty=2:3, lwd=2))

’Filled’ boxes -- for more, see example(plot.factor)
op <- par(bg="white") # to get an opaque box for the legend
plot(cut(weight, 3) ~ group, data = PlantGrowth, col = NULL,

density = 16*(1:3))
par(op)

Using ’ncol’ :
x <- 0:64/64
matplot(x, outer(x, 1:7, function(x, k) sin(k * pi * x)),

type = "o", col = 1:7, ylim = c(-1, 1.5), pch = "*")
op <- par(bg="antiquewhite1")
legend(0, 1.5, paste("sin(", 1:7, "pi * x)"), col=1:7, lty=1:7,

pch = "*", ncol = 4, cex = 0.8)
legend(.8,1.2, paste("sin(", 1:7, "pi * x)"), col=1:7, lty=1:7,

pch = "*", cex = 0.8)
legend(0, -.1, paste("sin(", 1:4, "pi * x)"), col=1:4, lty=1:4,

ncol = 2, cex = 0.8)
legend(0, -.4, paste("sin(", 5:7, "pi * x)"), col=4:6, pch=24,

ncol = 2, cex = 1.5, lwd = 2, pt.bg = "pink", pt.cex = 1:3)
par(op)

point covering line :
y <- sin(3*pi*x)
plot(x, y, type="l", col="blue",

main = "points with bg & legend(*, pt.bg)")
points(x, y, pch=21, bg="white")
legend(.4,1, "sin(c x)", pch=21, pt.bg="white", lty=1, col = "blue")

legends with titles at different locations
plot(x, y, type=’n’)
legend("bottomright", "(x,y)", pch=1, title="bottomright")
legend("bottom", "(x,y)", pch=1, title="bottom")
legend("bottomleft", "(x,y)", pch=1, title="bottomleft")
legend("left", "(x,y)", pch=1, title="left")
legend("topleft", "(x,y)", pch=1, title="topleft, inset = .05",

inset = .05)

790 lines

legend("top", "(x,y)", pch=1, title="top")
legend("topright", "(x,y)", pch=1, title="topright, inset = .02",

inset = .02)
legend("right", "(x,y)", pch=1, title="right")
legend("center", "(x,y)", pch=1, title="center")

using text.font (and text.col):
op <- par(mfrow = c(2, 2), mar=rep(2.1,4))
c6 <- terrain.colors(10)[1:6]
for(i in 1:4) {

plot(1, type = "n", axes=FALSE, ann=FALSE); title(paste("text.font =",i))
legend("top", legend = LETTERS[1:6], col = c6,

ncol =2, cex = 2, lwd = 3, text.font = i, text.col = c6)
}
par(op)

lines Add Connected Line Segments to a Plot

Description

A generic function taking coordinates given in various ways and joining the corresponding points
with line segments.

Usage

lines(x, ...)

Default S3 method:
lines(x, y = NULL, type = "l", ...)

Arguments

x, y coordinate vectors of points to join.

type character indicating the type of plotting; actually any of the types as in
plot.default.

... Further graphical parameters (see par) may also be supplied as arguments, par-
ticularly, line type, lty, line width, lwd, color, col and for type = "b", pch.
Also the line characteristics lend, ljoin and lmitre.

Details

The coordinates can be passed in a plotting structure (a list with x and y components), a two-column
matrix, a time series, See xy.coords. If supplied separately, they must be of the same length.

The coordinates can contain NA values. If a point contains NA in either its x or y value, it is omitted
from the plot, and lines are not drawn to or from such points. Thus missing values can be used to
achieve breaks in lines.

For type = "h", col can be a vector and will be recycled as needed.

lwd can be a vector: its first element will apply to lines but the whole vector to symbols (recycled
as necessary).

locator 791

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

lines.formula for the formula method; points, particularly for type %in% c("p","b","o"),
plot, and the workhorse function plot.xy.

abline for drawing (single) straight lines.

par for how to specify colors.

Examples

draw a smooth line through a scatter plot
plot(cars, main="Stopping Distance versus Speed")
lines(stats::lowess(cars))

locator Graphical Input

Description

Reads the position of the graphics cursor when the (first) mouse button is pressed.

Usage

locator(n = 512, type = "n", ...)

Arguments

n the maximum number of points to locate. Valid values start at 1.

type One of "n", "p", "l" or "o". If "p" or "o" the points are plotted; if "l" or "o"
they are joined by lines.

... additional graphics parameters used if type != "n" for plotting the locations.

Details

locator is only supported on screen devices such as X11, windows and quartz. On other devices
the call will do nothing.

Unless the process is terminated prematurely by the user (see below) at most n positions are deter-
mined.

The identification process can be terminated by clicking the second button and selecting ‘Stop’ from
the menu, or from the ‘Stop’ menu on the graphics window.

The current graphics parameters apply just as if plot.default has been called with the same value
of type. The plotting of the points and lines is subject to clipping, but locations outside the current
clipping rectangle will be returned.

On most devices which support locator, successful selection of a point is indicated by a bell sound
unless options(locatorBell=FALSE) has been set.

792 matplot

If the window is resized or hidden and then exposed before the input process has terminated, any
lines or points drawn by locator will disappear. These will reappear once the input process has
terminated and the window is resized or hidden and exposed again. This is because the points and
lines drawn by locator are not recorded in the device’s display list until the input process has
terminated.

Value

A list containing x and y components which are the coordinates of the identified points in the user
coordinate system, i.e., the one specified by par("usr").

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

identify.

dev.capabilities to see if it is supported.

matplot Plot Columns of Matrices

Description

Plot the columns of one matrix against the columns of another.

Usage

matplot(x, y, type = "p", lty = 1:5, lwd = 1, lend = par("lend"),
pch = NULL,
col = 1:6, cex = NULL, bg = NA,
xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
..., add = FALSE, verbose = getOption("verbose"))

matpoints(x, y, type = "p", lty = 1:5, lwd = 1, pch = NULL,
col = 1:6, ...)

matlines (x, y, type = "l", lty = 1:5, lwd = 1, pch = NULL,
col = 1:6, ...)

Arguments

x,y vectors or matrices of data for plotting. The number of rows should match. If
one of them are missing, the other is taken as y and an x vector of 1:n is used.
Missing values (NAs) are allowed.

type character string (length 1 vector) or vector of 1-character strings indicating the
type of plot for each column of y, see plot for all possible types. The first
character of type defines the first plot, the second character the second, etc.
Characters in type are cycled through; e.g., "pl" alternately plots points and
lines.

matplot 793

lty,lwd,lend vector of line types, widths, and end styles. The first element is for the first
column, the second element for the second column, etc., even if lines are not
plotted for all columns. Line types will be used cyclically until all plots are
drawn.

pch character string or vector of 1-characters or integers for plotting characters, see
points. The first character is the plotting-character for the first plot, the second
for the second, etc. The default is the digits (1 through 9, 0) then the lowercase
and uppercase letters.

col vector of colors. Colors are used cyclically.

cex vector of character expansion sizes, used cyclically. This works as a multiple of
par("cex"). NULL is equivalent to 1.0.

bg vector of background (fill) colors for the open plot symbols given by pch=21:25
as in points. The default NA corresponds to the one of the underlying function
plot.xy.

xlab, ylab titles for x and y axes, as in plot.

xlim, ylim ranges of x and y axes, as in plot.

... Graphical parameters (see par) and any further arguments of plot, typically
plot.default, may also be supplied as arguments to this function. Hence, the
high-level graphics control arguments described under par and the arguments to
title may be supplied to this function.

add logical. If TRUE, plots are added to current one, using points and lines.

verbose logical. If TRUE, write one line of what is done.

Details

Points involving missing values are not plotted.

The first column of x is plotted against the first column of y, the second column of x against the
second column of y, etc. If one matrix has fewer columns, plotting will cycle back through the
columns again. (In particular, either x or y may be a vector, against which all columns of the other
argument will be plotted.)

The first element of col, cex, lty, lwd is used to plot the axes as well as the first line.

Because plotting symbols are drawn with lines and because these functions may be changing the
line style, you should probably specify lty=1 when using plotting symbols.

Side Effects

Function matplot generates a new plot; matpoints and matlines add to the current one.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

plot, points, lines, matrix, par.

794 mosaicplot

Examples

require(grDevices)
matplot((-4:5)^2, main = "Quadratic") # almost identical to plot(*)
sines <- outer(1:20, 1:4, function(x, y) sin(x / 20 * pi * y))
matplot(sines, pch = 1:4, type = "o", col = rainbow(ncol(sines)))
matplot(sines, type = "b", pch = 21:23, col = 2:5, bg = 2:5,

main = "matplot(...., pch = 21:23, bg = 2:5)")

x <- 0:50/50
matplot(x, outer(x, 1:8, function(x, k) sin(k*pi * x)),

ylim = c(-2,2), type = "plobcsSh",
main= "matplot(,type = \"plobcsSh\")")

pch & type = vector of 1-chars :
matplot(x, outer(x, 1:4, function(x, k) sin(k*pi * x)),

pch = letters[1:4], type = c("b","p","o"))

lends <- c("round","butt","square")
matplot(matrix(1:12, 4), type="c", lty=1, lwd=10, lend=lends)
text(cbind(2.5, 2*c(1,3,5)-.4), lends, col= 1:3, cex = 1.5)

table(iris$Species) # is data.frame with ’Species’ factor
iS <- iris$Species == "setosa"
iV <- iris$Species == "versicolor"
op <- par(bg = "bisque")
matplot(c(1, 8), c(0, 4.5), type= "n", xlab = "Length", ylab = "Width",

main = "Petal and Sepal Dimensions in Iris Blossoms")
matpoints(iris[iS,c(1,3)], iris[iS,c(2,4)], pch = "sS", col = c(2,4))
matpoints(iris[iV,c(1,3)], iris[iV,c(2,4)], pch = "vV", col = c(2,4))
legend(1, 4, c(" Setosa Petals", " Setosa Sepals",

"Versicolor Petals", "Versicolor Sepals"),
pch = "sSvV", col = rep(c(2,4), 2))

nam.var <- colnames(iris)[-5]
nam.spec <- as.character(iris[1+50*0:2, "Species"])
iris.S <- array(NA, dim = c(50,4,3),

dimnames = list(NULL, nam.var, nam.spec))
for(i in 1:3) iris.S[,,i] <- data.matrix(iris[1:50+50*(i-1), -5])

matplot(iris.S[,"Petal.Length",], iris.S[,"Petal.Width",], pch="SCV",
col = rainbow(3, start = .8, end = .1),
sub = paste(c("S", "C", "V"), dimnames(iris.S)[[3]],

sep = "=", collapse= ", "),
main = "Fisher’s Iris Data")

par(op)

mosaicplot Mosaic Plots

Description

Plots a mosaic on the current graphics device.

mosaicplot 795

Usage

mosaicplot(x, ...)

Default S3 method:
mosaicplot(x, main = deparse(substitute(x)),

sub = NULL, xlab = NULL, ylab = NULL,
sort = NULL, off = NULL, dir = NULL,
color = NULL, shade = FALSE, margin = NULL,
cex.axis = 0.66, las = par("las"), border = NULL,
type = c("pearson", "deviance", "FT"), ...)

S3 method for class ’formula’
mosaicplot(formula, data = NULL, ...,

main = deparse(substitute(data)), subset,
na.action = stats::na.omit)

Arguments

x a contingency table in array form, with optional category labels specified in the
dimnames(x) attribute. The table is best created by the table() command.

main character string for the mosaic title.
sub character string for the mosaic sub-title (at bottom).
xlab,ylab x- and y-axis labels used for the plot; by default, the first and second element of

names(dimnames(X)) (i.e., the name of the first and second variable in X).
sort vector ordering of the variables, containing a permutation of the integers

1:length(dim(x)) (the default).
off vector of offsets to determine percentage spacing at each level of the mosaic

(appropriate values are between 0 and 20, and the default is 20 times the number
of splits for 2-dimensional tables, and 10 otherwise. Rescaled to maximally 50,
and recycled if necessary.

dir vector of split directions ("v" for vertical and "h" for horizontal) for each level
of the mosaic, one direction for each dimension of the contingency table. The
default consists of alternating directions, beginning with a vertical split.

color logical or (recycling) vector of colors for color shading, used only when shade
is FALSE, or NULL (default). By default, grey boxes are drawn. color=TRUE
uses a gamma-corrected grey palette. color=FALSE gives empty boxes with no
shading.

shade a logical indicating whether to produce extended mosaic plots, or a numeric
vector of at most 5 distinct positive numbers giving the absolute values of the
cut points for the residuals. By default, shade is FALSE, and simple mosaics are
created. Using shade = TRUE cuts absolute values at 2 and 4.

margin a list of vectors with the marginal totals to be fit in the log-linear model. By
default, an independence model is fitted. See loglin for further information.

cex.axis The magnification to be used for axis annotation, as a multiple of par("cex").
las numeric; the style of axis labels, see par.
border colour of borders of cells: see polygon.
type a character string indicating the type of residual to be represented. Must be one

of "pearson" (giving components of Pearson’s χ2), "deviance" (giving com-
ponents of the likelihood ratio χ2), or "FT" for the Freeman-Tukey residuals.
The value of this argument can be abbreviated.

796 mosaicplot

formula a formula, such as y ~ x.

data a data frame (or list), or a contingency table from which the variables in formula
should be taken.

... further arguments to be passed to or from methods.

subset an optional vector specifying a subset of observations in the data frame to be
used for plotting.

na.action a function which indicates what should happen when the data contains variables
to be cross-tabulated, and these variables contain NAs. The default is to omit
cases which have an NA in any variable. Since the tabulation will omit all cases
containing missing values, this will only be useful if the na.action function
replaces missing values.

Details

This is a generic function. It currently has a default method (mosaicplot.default) and a formula
interface (mosaicplot.formula).

Extended mosaic displays visualize standardized residuals of a loglinear model for the table by
color and outline of the mosaic’s tiles. (Standardized residuals are often referred to a standard
normal distribution.) Cells representing negative residuals are drawn in shaded of red and with
broken borders; positive ones are drawn in blue with solid borders.

For the formula method, if data is an object inheriting from class "table" or class "ftable" or an
array with more than 2 dimensions, it is taken as a contingency table, and hence all entries should
be non-negative. In this case the left-hand side of formula should be empty and the variables on
the right-hand side should be taken from the names of the dimnames attribute of the contingency
table. A marginal table of these variables is computed, and a mosaic plot of that table is produced.

Otherwise, data should be a data frame or matrix, list or environment containing the variables to be
cross-tabulated. In this case, after possibly selecting a subset of the data as specified by the subset
argument, a contingency table is computed from the variables given in formula, and a mosaic is
produced from this.

See Emerson (1998) for more information and a case study with television viewer data from Nielsen
Media Research.

Missing values are not supported except via an na.action function when data contains variables
to be cross-tabulated.

A more flexible and extensible implementation of mosaic plots written in the grid graphics system is
provided in the function mosaic in the contributed package vcd (Meyer, Zeileis and Hornik, 2005).

Author(s)

S-PLUS original by John Emerson <john.emerson@yale.edu>. Originally modified and enhanced
for R by Kurt Hornik.

References

Hartigan, J.A., and Kleiner, B. (1984) A mosaic of television ratings. The American Statistician,
38, 32–35.

Emerson, J. W. (1998) Mosaic displays in S-PLUS: A general implementation and a case study.
Statistical Computing and Graphics Newsletter (ASA), 9, 1, 17–23.

Friendly, M. (1994) Mosaic displays for multi-way contingency tables. Journal of the American
Statistical Association, 89, 190–200.

http://CRAN.R-project.org/package=vcd

mtext 797

Meyer, D., Zeileis, A., and Hornik, K. (2005) The strucplot framework: Visualizing multi-way con-
tingency tables with vcd. Report 22, Department of Statistics and Mathematics, Wirtschaftsuni-
versität Wien, Research Report Series. http://epub.wu.ac.at/dyn/openURL?id=oai:epub.
wu-wien.ac.at:epub-wu-01_8a1

The home page of Michael Friendly (http://www.math.yorku.ca/SCS/friendly.html) pro-
vides information on various aspects of graphical methods for analyzing categorical data, including
mosaic plots.

See Also

assocplot, loglin.

Examples

require(stats)
mosaicplot(Titanic, main = "Survival on the Titanic", color = TRUE)
Formula interface for tabulated data:
mosaicplot(~ Sex + Age + Survived, data = Titanic, color = TRUE)

mosaicplot(HairEyeColor, shade = TRUE)
Independence model of hair and eye color and sex. Indicates that
there are more blue eyed blonde females than expected in the case
of independence and too few brown eyed blonde females.
The corresponding model is:
fm <- loglin(HairEyeColor, list(1, 2, 3))
pchisq(fm$pearson, fm$df, lower.tail = FALSE)

mosaicplot(HairEyeColor, shade = TRUE, margin = list(1:2, 3))
Model of joint independence of sex from hair and eye color. Males
are underrepresented among people with brown hair and eyes, and are
overrepresented among people with brown hair and blue eyes.
The corresponding model is:
fm <- loglin(HairEyeColor, list(1:2, 3))
pchisq(fm$pearson, fm$df, lower.tail = FALSE)

Formula interface for raw data: visualize cross-tabulation of numbers
of gears and carburettors in Motor Trend car data.
mosaicplot(~ gear + carb, data = mtcars, color = TRUE, las = 1)
color recycling
mosaicplot(~ gear + carb, data = mtcars, color = 2:3, las = 1)

mtext Write Text into the Margins of a Plot

Description

Text is written in one of the four margins of the current figure region or one of the outer margins of
the device region.

Usage

mtext(text, side = 3, line = 0, outer = FALSE, at = NA,
adj = NA, padj = NA, cex = NA, col = NA, font = NA, ...)

http://epub.wu.ac.at/dyn/openURL?id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1
http://epub.wu.ac.at/dyn/openURL?id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1
http://www.math.yorku.ca/SCS/friendly.html

798 mtext

Arguments

text a character or expression vector specifying the text to be written. Other objects
are coerced by as.graphicsAnnot.

side on which side of the plot (1=bottom, 2=left, 3=top, 4=right).

line on which MARgin line, starting at 0 counting outwards.

outer use outer margins if available.

at give location of each string in user coordinates. If the component of at corre-
sponding to a particular text item is not a finite value (the default), the location
will be determined by adj.

adj adjustment for each string in reading direction. For strings parallel to the axes,
adj = 0 means left or bottom alignment, and adj = 1 means right or top align-
ment.
If adj is not a finite value (the default), the value of par("las") determines the
adjustment. For strings plotted parallel to the axis the default is to centre the
string.

padj adjustment for each string perpendicular to the reading direction (which is con-
trolled by adj). For strings parallel to the axes, padj = 0 means right or top
alignment, and padj = 1 means left or bottom alignment.
If padj is not a finite value (the default), the value of par("las") determines
the adjustment. For strings plotted perpendicular to the axis the default is to
centre the string.

cex character expansion factor. NULL and NA are equivalent to 1.0. This is an
absolute measure, not scaled by par("cex") or by setting par("mfrow") or
par("mfcol"). Can be a vector.

col color to use. Can be a vector. NA values (the default) mean use par("col").

font font for text. Can be a vector. NA values (the default) mean use par("font").

... Further graphical parameters (see par), including family, las and xpd. (The
latter defaults to the figure region unless outer = TRUE, otherwise the device
region. It can only be increased.)

Details

The user coordinates in the outer margins always range from zero to one, and are not affected by
the user coordinates in the figure region(s) — R differs here from other implementations of S.

All of the named arguments can be vectors, and recycling will take place to plot as many strings as
the longest of the vector arguments.

Note that a vector adj has a different meaning from text. adj = 0.5 will centre the string, but for
outer=TRUE on the device region rather than the plot region.

Parameter las will determine the orientation of the string(s). For strings plotted perpendicular to
the axis the default justification is to place the end of the string nearest the axis on the specified line.
(Note that this differs from S, which uses srt if at is supplied and las if it is not. Parameter srt is
ignored in R.)

Note that if the text is to be plotted perpendicular to the axis, adj determines the justification of the
string and the position along the axis unless at is specified.

Graphics parameter "ylbias" (see par) determines how the text baseline is placed relative to the
nominal line.

pairs 799

Side Effects

The given text is written onto the current plot.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

title, text, plot, par; plotmath for details on mathematical annotation.

Examples

plot(1:10, (-4:5)^2, main="Parabola Points", xlab="xlab")
mtext("10 of them")
for(s in 1:4)

mtext(paste("mtext(..., line= -1, {side, col, font} = ",s,
", cex = ", (1+s)/2, ")"), line = -1,
side=s, col=s, font=s, cex= (1+s)/2)

mtext("mtext(..., line= -2)", line = -2)
mtext("mtext(..., line= -2, adj = 0)", line = -2, adj =0)
##--- log axis :
plot(1:10, exp(1:10), log=’y’, main="log=’y’", xlab="xlab")
for(s in 1:4) mtext(paste("mtext(...,side=",s,")"), side=s)

pairs Scatterplot Matrices

Description

A matrix of scatterplots is produced.

Usage

pairs(x, ...)

S3 method for class ’formula’
pairs(formula, data = NULL, ..., subset,

na.action = stats::na.pass)

Default S3 method:
pairs(x, labels, panel = points, ...,

lower.panel = panel, upper.panel = panel,
diag.panel = NULL, text.panel = textPanel,
label.pos = 0.5 + has.diag/3,
cex.labels = NULL, font.labels = 1,
row1attop = TRUE, gap = 1)

800 pairs

Arguments

x the coordinates of points given as numeric columns of a matrix or dataframe.
Logical and factor columns are converted to numeric in the same way that
data.matrix does.

formula a formula, such as ~ x + y + z. Each term will give a separate variable in the
pairs plot, so terms should be numeric vectors. (A response will be interpreted
as another variable, but not treated specially, so it is confusing to use one.)

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used for plotting.

na.action a function which indicates what should happen when the data contain
NAs. The default is to pass missing values on to the panel functions, but
na.action = na.omit will cause cases with missing values in any of the vari-
ables to be omitted entirely.

labels the names of the variables.

panel function(x,y,...) which is used to plot the contents of each panel of the
display.

... arguments to be passed to or from methods.
Also, graphical parameters can be given as can arguments to plot such as main.
par("oma") will be set appropriately unless specified.

lower.panel, upper.panel

separate panel functions to be used below and above the diagonal respectively.

diag.panel optional function(x, ...) to be applied on the diagonals.

text.panel optional function(x, y, labels, cex, font, ...) to be applied on
the diagonals.

label.pos y position of labels in the text panel.
cex.labels, font.labels

graphics parameters for the text panel.

row1attop logical. Should the layout be matrix-like with row 1 at the top, or graph-like
with row 1 at the bottom?

gap Distance between subplots, in margin lines.

Details

The ijth scatterplot contains x[,i] plotted against x[,j]. The scatterplot can be customised by
setting panel functions to appear as something completely different. The off-diagonal panel func-
tions are passed the appropriate columns of x as x and y: the diagonal panel function (if any) is
passed a single column, and the text.panel function is passed a single (x, y) location and the
column name.

The graphical parameters pch and col can be used to specify a vector of plotting symbols and colors
to be used in the plots.

The graphical parameter oma will be set by pairs.default unless supplied as an argument.

A panel function should not attempt to start a new plot, but just plot within a given coordinate
system: thus plot and boxplot are not panel functions.

By default, missing values are passed to the panel functions and will often be ignored within a panel.
However, for the formula method and na.action = na.omit, all cases which contain a missing
values for any of the variables are omitted completely (including when the scales are selected).

panel.smooth 801

Author(s)

Enhancements for R 1.0.0 contributed by Dr. Jens Oehlschlaegel-Akiyoshi and R-core members.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

pairs(iris[1:4], main = "Anderson’s Iris Data -- 3 species",
pch = 21, bg = c("red", "green3", "blue")[unclass(iris$Species)])

formula method
pairs(~ Fertility + Education + Catholic, data = swiss,

subset = Education < 20, main = "Swiss data, Education < 20")

pairs(USJudgeRatings)

put histograms on the diagonal
panel.hist <- function(x, ...)
{

usr <- par("usr"); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5))
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)

}
pairs(USJudgeRatings[1:5], panel=panel.smooth,

cex = 1.5, pch = 24, bg="light blue",
diag.panel=panel.hist, cex.labels = 2, font.labels=2)

put (absolute) correlations on the upper panels,
with size proportional to the correlations.
panel.cor <- function(x, y, digits=2, prefix="", cex.cor, ...)
{

usr <- par("usr"); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- abs(cor(x, y))
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep="")
if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt)
text(0.5, 0.5, txt, cex = cex.cor * r)

}
pairs(USJudgeRatings, lower.panel=panel.smooth, upper.panel=panel.cor)

panel.smooth Simple Panel Plot

Description

An example of a simple useful panel function to be used as argument in e.g., coplot or pairs.

802 par

Usage

panel.smooth(x, y, col = par("col"), bg = NA, pch = par("pch"),
cex = 1, col.smooth = "red", span = 2/3, iter = 3,
...)

Arguments

x, y numeric vectors of the same length
col, bg, pch, cex

numeric or character codes for the color(s), point type and size of points; see
also par.

col.smooth color to be used by lines for drawing the smooths.

span smoothing parameter f for lowess, see there.

iter number of robustness iterations for lowess.

... further arguments to lines.

See Also

coplot and pairs where panel.smooth is typically used; lowess which does the smoothing.

Examples

pairs(swiss, panel = panel.smooth, pch = ".")# emphasize the smooths
pairs(swiss, panel = panel.smooth, lwd = 2, cex= 1.5, col="blue")# hmm...

par Set or Query Graphical Parameters

Description

par can be used to set or query graphical parameters. Parameters can be set by specifying them as
arguments to par in tag = value form, or by passing them as a list of tagged values.

Usage

par(..., no.readonly = FALSE)

<highlevel plot> (..., <tag> = <value>)

Arguments

... arguments in tag = value form, or a list of tagged values. The tags must come
from the names of graphical parameters described in the ‘Graphical Parameters’
section.

no.readonly logical; if TRUE and there are no other arguments, only parameters are returned
which can be set by a subsequent par() call on the same device.

par 803

Details

Each device has its own set of graphical parameters. If the current device is the null device,
par will open a new device before querying/setting parameters. (What device is controlled by
options("device").)

Parameters are queried by giving one or more character vectors of parameter names to par.

par() (no arguments) or par(no.readonly=TRUE) is used to get all the graphical parameters (as a
named list). Their names are currently taken from the unexported variable graphics:::.Pars.

R.O. indicates read-only arguments: These may only be used in queries and cannot be set. ("cin",
"cra", "csi", "cxy" and "din" are always read-only.)

Several parameters can only be set by a call to par():

• "ask",

• "fig", "fin",

• "lheight",

• "mai", "mar", "mex", "mfcol", "mfrow", "mfg",

• "new",

• "oma", "omd", "omi",

• "pin", "plt", "ps", "pty",

• "usr",

• "xlog", "ylog",

• "ylbias"

The remaining parameters can also be set as arguments (often via ...) to high-level plot func-
tions such as plot.default, plot.window, points, lines, abline, axis, title, text, mtext,
segments, symbols, arrows, polygon, rect, box, contour, filled.contour and image. Such
settings will be active during the execution of the function, only. However, see the comments on bg,
cex, col, lty, lwd and pch which may be taken as arguments to certain plot functions rather than
as graphical parameters.

The meaning of ‘character size’ is not well-defined: this is set up for the device taking pointsize
into account but often not the actual font family in use. Internally the corresponding pars (cra, cin,
cxy and csi) are used only to set the inter-line spacing used to convert mar and oma to physical
margins. (The same inter-line spacing multiplied by lheight is used for multi-line strings in text
and strheight.)

Note that graphical parameters are suggestions: plotting functions and devices need not make use
of them (and this is particularly true of non-default methods for e.g. plot).

Value

When parameters are set, their previous values are returned in an invisible named list. Such a
list can be passed as an argument to par to restore the parameter values. Use par(no.readonly
= TRUE) for the full list of parameters that can be restored. However, restoring all of these is not
wise: see the ‘Note’ section.

When just one parameter is queried, the value of that parameter is returned as (atomic) vector. When
two or more parameters are queried, their values are returned in a list, with the list names giving the
parameters.

Note the inconsistency: setting one parameter returns a list, but querying one parameter returns a
vector.

804 par

Graphical Parameters

adj The value of adj determines the way in which text strings are justified in text, mtext and
title. A value of 0 produces left-justified text, 0.5 (the default) centered text and 1 right-
justified text. (Any value in [0, 1] is allowed, and on most devices values outside that interval
will also work.)
Note that the adj argument of text also allows adj = c(x, y) for different adjustment in x-
and y- directions. Note that whereas for text it refers to positioning of text about a point, for
mtext and title it controls placement within the plot or device region.

ann If set to FALSE, high-level plotting functions calling plot.default do not annotate the plots
they produce with axis titles and overall titles. The default is to do annotation.

ask logical. If TRUE (and the R session is interactive) the user is asked for input, before a new figure
is drawn. As this applies to the device, it also affects output by packages grid and lattice. It
can be set even on non-screen devices but may have no effect there.
This not really a graphics parameter, and its use is deprecated in favour of devAskNewPage.

bg The color to be used for the background of the device region. When called from par() it also
sets new=FALSE. See section ‘Color Specification’ for suitable values. For many devices the
initial value is set from the bg argument of the device, and for the rest it is normally "white".
Note that some graphics functions such as plot.default and points have an argument of
this name with a different meaning.

bty A character string which determined the type of box which is drawn about plots. If bty is one
of "o" (the default), "l", "7", "c", "u", or "]" the resulting box resembles the corresponding
upper case letter. A value of "n" suppresses the box.

cex A numerical value giving the amount by which plotting text and symbols should be magnified
relative to the default. This starts as 1 when a device is opened, and is reset when the layout is
changed, e.g. by setting mfrow.
Note that some graphics functions such as plot.default have an argument of this name
which multiplies this graphical parameter, and some functions such as points and text accept
a vector of values which are recycled.

cex.axis The magnification to be used for axis annotation relative to the current setting of cex.

cex.lab The magnification to be used for x and y labels relative to the current setting of cex.

cex.main The magnification to be used for main titles relative to the current setting of cex.

cex.sub The magnification to be used for sub-titles relative to the current setting of cex.

cin R.O.; character size (width, height) in inches. These are the same measurements as cra,
expressed in different units.

col A specification for the default plotting color. See section ‘Color Specification’.
Some functions such as lines and text accept a vector of values which are recycled and may
be interpreted slightly differently.

col.axis The color to be used for axis annotation. Defaults to "black".

col.lab The color to be used for x and y labels. Defaults to "black".

col.main The color to be used for plot main titles. Defaults to "black".

col.sub The color to be used for plot sub-titles. Defaults to "black".

cra R.O.; size of default character (width, height) in ‘rasters’ (pixels). Some devices have no
concept of pixels and so assume an arbitrary pixel size, usually 1/72 inch. These are the same
measurements as cin, expressed in different units.

crt A numerical value specifying (in degrees) how single characters should be rotated. It is unwise
to expect values other than multiples of 90 to work. Compare with srt which does string
rotation.

http://CRAN.R-project.org/package=lattice

par 805

csi R.O.; height of (default-sized) characters in inches. The same as par("cin")[2].

cxy R.O.; size of default character (width, height) in user coordinate units.
par("cxy") is par("cin")/par("pin") scaled to user coordinates. Note that
c(strwidth(ch), strheight(ch)) for a given string ch is usually much more pre-
cise.

din R.O.; the device dimensions, (width,height), in inches. See also dev.size, which is up-
dated immediately when an on-screen device windows is re-sized.

err (Unimplemented; R is silent when points outside the plot region are not plotted.) The degree
of error reporting desired.

family The name of a font family for drawing text. The maximum allowed length is 200 bytes.
This name gets mapped by each graphics device to a device-specific font description. The
default value is "" which means that the default device fonts will be used (and what those
are should be listed on the help page for the device). Standard values are "serif", "sans"
and "mono", and the Hershey font families are also available. (Different devices may define
others, and some devices will ignore this setting completely.) This can be specified inline for
text.

fg The color to be used for the foreground of plots. This is the default color used for things like
axes and boxes around plots. When called from par() this also sets parameter col to the
same value. See section ‘Color Specification’. A few devices have an argument to set the
initial value, which is otherwise "black".

fig A numerical vector of the form c(x1, x2, y1, y2) which gives the (NDC) coordi-
nates of the figure region in the display region of the device. If you set this, unlike S, you start
a new plot, so to add to an existing plot use new=TRUE as well.

fin The figure region dimensions, (width,height), in inches. If you set this, unlike S, you start
a new plot.

font An integer which specifies which font to use for text. If possible, device drivers arrange so
that 1 corresponds to plain text (the default), 2 to bold face, 3 to italic and 4 to bold italic.
Also, font 5 is expected to be the symbol font, in Adobe symbol encoding. On some devices
font families can be selected by family to choose different sets of 5 fonts.

font.axis The font to be used for axis annotation.

font.lab The font to be used for x and y labels.

font.main The font to be used for plot main titles.

font.sub The font to be used for plot sub-titles.

lab A numerical vector of the form c(x, y, len) which modifies the default way that axes are
annotated. The values of x and y give the (approximate) number of tickmarks on the x and y
axes and len specifies the label length. The default is c(5, 5, 7). Note that this only affects
the way the parameters xaxp and yaxp are set when the user coordinate system is set up, and
is not consulted when axes are drawn. len is unimplemented in R.

las numeric in {0,1,2,3}; the style of axis labels.

0: always parallel to the axis [default],
1: always horizontal,
2: always perpendicular to the axis,
3: always vertical.

Also supported by mtext. Note that string/character rotation via argument srt to par does
not affect the axis labels.

lend The line end style. This can be specified as an integer or string:

0 and "round" mean rounded line caps [default];

806 par

1 and "butt" mean butt line caps;
2 and "square" mean square line caps.

lheight The line height multiplier. The height of a line of text (used to vertically space multi-line
text) is found by multiplying the character height both by the current character expansion and
by the line height multiplier. Default value is 1. Used in text and strheight.

ljoin The line join style. This can be specified as an integer or string:
0 and "round" mean rounded line joins [default];
1 and "mitre" mean mitred line joins;
2 and "bevel" mean bevelled line joins.

lmitre The line mitre limit. This controls when mitred line joins are automatically converted into
bevelled line joins. The value must be larger than 1 and the default is 10. Not all devices will
honour this setting.

lty The line type. Line types can either be specified as an integer (0=blank, 1=solid (default),
2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the character strings
"blank", "solid", "dashed", "dotted", "dotdash", "longdash", or "twodash", where
"blank" uses ‘invisible lines’ (i.e., does not draw them).
Alternatively, a string of up to 8 characters (from c(1:9, "A":"F")) may be given,
giving the length of line segments which are alternatively drawn and skipped. See section
‘Line Type Specification’.
Functions such as lines and segments accept a vector of values which are recycled.

lwd The line width, a positive number, defaulting to 1. The interpretation is device-specific, and
some devices do not implement line widths less than one. (See the help on the device for
details of the interpretation.)
Functions such as lines and segments accept a vector of values which are recycled.

mai A numerical vector of the form c(bottom, left, top, right) which gives the
margin size specified in inches.

x

y

−3.0 −1.5 0.0 1.5 3.0

−
3.

0
−

1.
5

0.
0

1.
5

3.
0

Plot region

mai[1]

mai[2]

Margin

−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−

mar[3]

mar A numerical vector of the form c(bottom, left, top, right) which gives the
number of lines of margin to be specified on the four sides of the plot. The default is
c(5, 4, 4, 2) + 0.1.

mex mex is a character size expansion factor which is used to describe coordinates in the margins
of plots. Note that this does not change the font size, rather specifies the size of font (as a
multiple of csi) used to convert between mar and mai, and between oma and omi.

par 807

This starts as 1 when the device is opened, and is reset when the layout is changed (alongside
resetting cex).

mfcol, mfrow A vector of the form c(nr, nc). Subsequent figures will be drawn in an nr-by-nc
array on the device by columns (mfcol), or rows (mfrow), respectively.
In a layout with exactly two rows and columns the base value of "cex" is reduced by a factor
of 0.83: if there are three or more of either rows or columns, the reduction factor is 0.66.
Setting a layout resets the base value of cex and that of mex to 1.
If either of these is queried it will give the current layout, so querying cannot tell you the order
in which the array will be filled.
Consider the alternatives, layout and split.screen.

mfg A numerical vector of the form c(i, j) where i and j indicate which figure in an array of
figures is to be drawn next (if setting) or is being drawn (if enquiring). The array must already
have been set by mfcol or mfrow.
For compatibility with S, the form c(i, j, nr, nc) is also accepted, when nr and nc should
be the current number of rows and number of columns. Mismatches will be ignored, with a
warning.

mgp The margin line (in mex units) for the axis title, axis labels and axis line. Note that mgp[1]
affects title whereas mgp[2:3] affect axis. The default is c(3, 1, 0).

mkh The height in inches of symbols to be drawn when the value of pch is an integer. Completely
ignored in R.

new logical, defaulting to FALSE. If set to TRUE, the next high-level plotting command (actually
plot.new) should not clean the frame before drawing as if it were on a new device. It is an
error (ignored with a warning) to try to use new = TRUE on a device that does not currently
contain a high-level plot.

oma A vector of the form c(bottom, left, top, right) giving the size of the outer
margins in lines of text.

mfg=c(3,2,3,2)

omi[1]

omi[4]

mfrow=c(3,2)

−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−

oma[3]

omd A vector of the form c(x1, x2, y1, y2) giving the region inside outer margins in NDC (=
normalized device coordinates), i.e., as a fraction (in [0, 1]) of the device region.

omi A vector of the form c(bottom, left, top, right) giving the size of the outer
margins in inches.

808 par

pch Either an integer specifying a symbol or a single character to be used as the default in plotting
points. See points for possible values and their interpretation. Note that only integers and
single-character strings can be set as a graphics parameter (and not NA nor NULL).
Some functions such as points accept a vector of values which are recycled.

pin The current plot dimensions, (width,height), in inches.

plt A vector of the form c(x1, x2, y1, y2) giving the coordinates of the plot region as fractions
of the current figure region.

ps integer; the point size of text (but not symbols). Unlike the pointsize argument of most de-
vices, this does not change the relationship between mar and mai (nor oma and omi).
What is meant by ‘point size’ is device-specific, but most devices mean a multiple of 1bp, that
is 1/72 of an inch.

pty A character specifying the type of plot region to be used; "s" generates a square plotting region
and "m" generates the maximal plotting region.

smo (Unimplemented) a value which indicates how smooth circles and circular arcs should be.

srt The string rotation in degrees. See the comment about crt. Only supported by text.

tck The length of tick marks as a fraction of the smaller of the width or height of the plotting
region. If tck >= 0.5 it is interpreted as a fraction of the relevant side, so if tck = 1 grid
lines are drawn. The default setting (tck = NA) is to use tcl = -0.5.

tcl The length of tick marks as a fraction of the height of a line of text. The default value is -0.5;
setting tcl = NA sets tck = -0.01 which is S’ default.

usr A vector of the form c(x1, x2, y1, y2) giving the extremes of the user coordinates of the
plotting region. When a logarithmic scale is in use (i.e., par("xlog") is true, see below), then
the x-limits will be 10 ^ par("usr")[1:2]. Similarly for the y-axis.

xaxp A vector of the form c(x1, x2, n) giving the coordinates of the extreme tick marks and
the number of intervals between tick-marks when par("xlog") is false. Otherwise, when
log coordinates are active, the three values have a different meaning: For a small range, n
is negative, and the ticks are as in the linear case, otherwise, n is in 1:3, specifying a case
number, and x1 and x2 are the lowest and highest power of 10 inside the user coordinates,
10 ^ par("usr")[1:2]. (The "usr" coordinates are log10-transformed here!)

n=1 will produce tick marks at 10j for integer j,
n=2 gives marks k10j with k ∈ {1, 5},
n=3 gives marks k10j with k ∈ {1, 2, 5}.

See axTicks() for a pure R implementation of this.
This parameter is reset when a user coordinate system is set up, for example by starting a
new page or by calling plot.window or setting par("usr"): n is taken from par("lab"). It
affects the default behaviour of subsequent calls to axis for sides 1 or 3.
It is only relevant to default numeric axis systems, and not for example to dates.

xaxs The style of axis interval calculation to be used for the x-axis. Possible values are "r", "i",
"e", "s", "d". The styles are generally controlled by the range of data or xlim, if given.
Style "r" (regular) first extends the data range by 4 percent at each end and then finds an axis
with pretty labels that fits within the extended range.
Style "i" (internal) just finds an axis with pretty labels that fits within the original data range.
Style "s" (standard) finds an axis with pretty labels within which the original data range fits.
Style "e" (extended) is like style "s", except that it is also ensures that there is room for
plotting symbols within the bounding box.
Style "d" (direct) specifies that the current axis should be used on subsequent plots.
(Only "r" and "i" styles have been implemented in R.)

par 809

xaxt A character which specifies the x axis type. Specifying "n" suppresses plotting of the axis.
The standard value is "s": for compatibility with S values "l" and "t" are accepted but are
equivalent to "s": any value other than "n" implies plotting.

xlog A logical value (see log in plot.default). If TRUE, a logarithmic scale is in use (e.g., after
plot(*, log = "x")). For a new device, it defaults to FALSE, i.e., linear scale.

xpd A logical value or NA. If FALSE, all plotting is clipped to the plot region, if TRUE, all plotting
is clipped to the figure region, and if NA, all plotting is clipped to the device region. See also
clip.

yaxp A vector of the form c(y1, y2, n) giving the coordinates of the extreme tick marks and the
number of intervals between tick-marks unless for log coordinates, see xaxp above.

yaxs The style of axis interval calculation to be used for the y-axis. See xaxs above.

yaxt A character which specifies the y axis type. Specifying "n" suppresses plotting.

ylbias A positive real value used in the positioning of text in the margins by axis and mtext. The
default is in principle device-specific, but currently 0.2 for all of R’s own devices. Set this to
0.2 for compatibility with R < 2.14.0 on x11 and windows() devices.

ylog A logical value; see xlog above.

Color Specification

Colors can be specified in several different ways. The simplest way is with a character string giving
the color name (e.g., "red"). A list of the possible colors can be obtained with the function colors.
Alternatively, colors can be specified directly in terms of their RGB components with a string of
the form "#RRGGBB" where each of the pairs RR, GG, BB consist of two hexadecimal digits giving a
value in the range 00 to FF. Colors can also be specified by giving an index into a small table of
colors, the palette. This provides compatibility with S. Index 0 corresponds to the background
color. (Because apparently some people have been assuming it, it is also possible to specify integers
as character strings, e.g. "3".)

Additionally, "transparent" is transparent, useful for filled areas (such as the background!),
and just invisible for things like lines or text. In most circumstances (integer) NA is equivalent
to "transparent" (but not for text and mtext).

Semi-transparent colors are available for use on devices that support them.

The functions rgb, hsv, hcl, gray and rainbow provide additional ways of generating colors.

Line Type Specification

Line types can either be specified by giving an index into a small built-in table of line types (1 =
solid, 2 = dashed, etc, see lty above) or directly as the lengths of on/off stretches of line. This is
done with a string of an even number (up to eight) of characters, namely non-zero (hexadecimal)
digits which give the lengths in consecutive positions in the string. For example, the string "33"
specifies three units on followed by three off and "3313" specifies three units on followed by three
off followed by one on and finally three off. The ‘units’ here are (on most devices) proportional to
lwd, and with lwd = 1 are in pixels or points or 1/96 inch.

The five standard dash-dot line types (lty = 2:6) correspond to
c("44", "13", "1343", "73", "2262").

Note that NA is not a valid value for lty.

810 par

Note

The effect of restoring all the (settable) graphics parameters as in the examples is hard to predict if
the device has been resized. Several of them are attempting to set the same things in different ways,
and those last in the alphabet will win. In particular, the settings of mai, mar, pin, plt and pty
interact, as do the outer margin settings, the figure layout and figure region size.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

plot.default for some high-level plotting parameters; colors; clip; options for other setup
parameters; graphic devices x11, postscript and setting up device regions by layout and
split.screen.

Examples

op <- par(mfrow = c(2, 2), # 2 x 2 pictures on one plot
pty = "s") # square plotting region,

independent of device size

At end of plotting, reset to previous settings:
par(op)

Alternatively,
op <- par(no.readonly = TRUE) # the whole list of settable par’s.
do lots of plotting and par(.) calls, then reset:
par(op)
Note this is not in general good practice

par("ylog") # FALSE
plot(1 : 12, log = "y")
par("ylog") # TRUE

plot(1:2, xaxs = "i") # ’inner axis’ w/o extra space
par(c("usr", "xaxp"))

(nr.prof <-
c(prof.pilots=16,lawyers=11,farmers=10,salesmen=9,physicians=9,

mechanics=6,policemen=6,managers=6,engineers=5,teachers=4,
housewives=3,students=3,armed.forces=1))

par(las = 3)
barplot(rbind(nr.prof)) # R 0.63.2: shows alignment problem
par(las = 0)# reset to default

require(grDevices) # for gray
’fg’ use:
plot(1:12, type = "b", main="’fg’ : axes, ticks and box in gray",

fg = gray(0.7), bty="7" , sub=R.version.string)

ex <- function() {
old.par <- par(no.readonly = TRUE) # all par settings which

persp 811

could be changed.
on.exit(par(old.par))
...
... do lots of par() settings and plots
...
invisible() #-- now, par(old.par) will be executed

}
ex()

persp Perspective Plots

Description

This function draws perspective plots of a surface over the x–y plane. persp is a generic function.

Usage

persp(x, ...)

Default S3 method:
persp(x = seq(0, 1, length.out = nrow(z)),

y = seq(0, 1, length.out = ncol(z)),
z, xlim = range(x), ylim = range(y),
zlim = range(z, na.rm = TRUE),
xlab = NULL, ylab = NULL, zlab = NULL,
main = NULL, sub = NULL,
theta = 0, phi = 15, r = sqrt(3), d = 1,
scale = TRUE, expand = 1,
col = "white", border = NULL, ltheta = -135, lphi = 0,
shade = NA, box = TRUE, axes = TRUE, nticks = 5,
ticktype = "simple", ...)

Arguments

x, y locations of grid lines at which the values in z are measured. These must be in
ascending order. By default, equally spaced values from 0 to 1 are used. If x is
a list, its components x$x and x$y are used for x and y, respectively.

z a matrix containing the values to be plotted (NAs are allowed). Note that x can
be used instead of z for convenience.

xlim, ylim, zlim

x-, y- and z-limits. These should be chosen to cover the range of values of the
surface: see ‘Details’.

xlab, ylab, zlab

titles for the axes. N.B. These must be character strings; expressions are not
accepted. Numbers will be coerced to character strings.

main, sub main and sub title, as for title.

theta, phi angles defining the viewing direction. theta gives the azimuthal direction and
phi the colatitude.

r the distance of the eyepoint from the centre of the plotting box.

812 persp

d a value which can be used to vary the strength of the perspective transformation.
Values of d greater than 1 will lessen the perspective effect and values less and
1 will exaggerate it.

scale before viewing the x, y and z coordinates of the points defining the surface are
transformed to the interval [0,1]. If scale is TRUE the x, y and z coordinates
are transformed separately. If scale is FALSE the coordinates are scaled so
that aspect ratios are retained. This is useful for rendering things like DEM
information.

expand a expansion factor applied to the z coordinates. Often used with
0 < expand < 1 to shrink the plotting box in the z direction.

col the color(s) of the surface facets. Transparent colours are ignored. This is recy-
cled to the (nx− 1)(ny − 1) facets.

border the color of the line drawn around the surface facets. The default, NULL, corre-
sponds to par("fg"). A value of NA will disable the drawing of borders: this is
sometimes useful when the surface is shaded.

ltheta, lphi if finite values are specified for ltheta and lphi, the surface is shaded as though
it was being illuminated from the direction specified by azimuth ltheta and
colatitude lphi.

shade the shade at a surface facet is computed as ((1+d)/2)^shade, where d is the
dot product of a unit vector normal to the facet and a unit vector in the direction
of a light source. Values of shade close to one yield shading similar to a point
light source model and values close to zero produce no shading. Values in the
range 0.5 to 0.75 provide an approximation to daylight illumination.

box should the bounding box for the surface be displayed. The default is TRUE.

axes should ticks and labels be added to the box. The default is TRUE. If box is FALSE
then no ticks or labels are drawn.

ticktype character: "simple" draws just an arrow parallel to the axis to indicate direction
of increase; "detailed" draws normal ticks as per 2D plots.

nticks the (approximate) number of tick marks to draw on the axes. Has no effect if
ticktype is "simple".

... additional graphical parameters (see par).

Details

The plots are produced by first transforming the (x,y,z) coordinates to the interval [0,1] using the
limits supplied or computed from the range of the data. The surface is then viewed by looking at
the origin from a direction defined by theta and phi. If theta and phi are both zero the viewing
direction is directly down the negative y axis. Changing theta will vary the azimuth and changing
phi the colatitude.

There is a hook called "persp" (see setHook) called after the plot is completed, which is used in
the testing code to annotate the plot page. The hook function(s) are called with no argument.

Notice that persp interprets the z matrix as a table of f(x[i], y[j]) values, so that the x axis
corresponds to row number and the y axis to column number, with column 1 at the bottom, so that
with the standard rotation angles, the top left corner of the matrix is displayed at the left hand side,
closest to the user.

The sizes and fonts of the axis labels and the annotations for ticktype="detailed" are controlled
by graphics parameters "cex.lab"/"font.lab" and "cex.axis"/"font.axis" respectively.

The bounding box is drawn with edges of faces facing away from the viewer (and hence at the back
of the box) with solid lines and other edges dashed and on top of the surface. This (and the plotting

persp 813

of the axes) assumes that the axis limits are chosen so that the surface is within the box, and the
function will warn if this is not the case.

Value

persp() returns the viewing transformation matrix, say VT, a 4 × 4 matrix suitable for projecting
3D coordinates (x, y, z) into the 2D plane using homogeneous 4D coordinates (x, y, z, t). It can be
used to superimpose additional graphical elements on the 3D plot, by lines() or points(), using
the function trans3d().

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

contour and image; trans3d.

Rotatable 3D plots can be produced by package rgl: other ways to produce static perspective plots
are available in packages lattice and scatterplot3d.

Examples

require(grDevices) # for trans3d
More examples in demo(persp) !!

(1) The Obligatory Mathematical surface.
Rotated sinc function.

x <- seq(-10, 10, length= 30)
y <- x
f <- function(x,y) { r <- sqrt(x^2+y^2); 10 * sin(r)/r }
z <- outer(x, y, f)
z[is.na(z)] <- 1
op <- par(bg = "white")
persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue")
persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue",

ltheta = 120, shade = 0.75, ticktype = "detailed",
xlab = "X", ylab = "Y", zlab = "Sinc(r)"

) -> res
round(res, 3)

(2) Add to existing persp plot - using trans3d() :

xE <- c(-10,10); xy <- expand.grid(xE, xE)
points(trans3d(xy[,1], xy[,2], 6, pmat = res), col = 2, pch =16)
lines (trans3d(x, y=10, z= 6 + sin(x), pmat = res), col = 3)

phi <- seq(0, 2*pi, len = 201)
r1 <- 7.725 # radius of 2nd maximum
xr <- r1 * cos(phi)
yr <- r1 * sin(phi)
lines(trans3d(xr,yr, f(xr,yr), res), col = "pink", lwd = 2)
(no hidden lines)

http://CRAN.R-project.org/package=rgl
http://CRAN.R-project.org/package=lattice
http://CRAN.R-project.org/package=scatterplot3d

814 pie

(3) Visualizing a simple DEM model

z <- 2 * volcano # Exaggerate the relief
x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)
y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)
Don’t draw the grid lines : border = NA
par(bg = "slategray")
persp(x, y, z, theta = 135, phi = 30, col = "green3", scale = FALSE,

ltheta = -120, shade = 0.75, border = NA, box = FALSE)

(4) Surface colours corresponding to z-values

par(bg = "white")
x <- seq(-1.95, 1.95, length = 30)
y <- seq(-1.95, 1.95, length = 35)
z <- outer(x, y, function(a,b) a*b^2)
nrz <- nrow(z)
ncz <- ncol(z)
Create a function interpolating colors in the range of specified colors
jet.colors <- colorRampPalette(c("blue", "green"))
Generate the desired number of colors from this palette
nbcol <- 100
color <- jet.colors(nbcol)
Compute the z-value at the facet centres
zfacet <- z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz]
Recode facet z-values into color indices
facetcol <- cut(zfacet, nbcol)
persp(x, y, z, col=color[facetcol], phi=30, theta=-30)

par(op)

pie Pie Charts

Description

Draw a pie chart.

Usage

pie(x, labels = names(x), edges = 200, radius = 0.8,
clockwise = FALSE, init.angle = if(clockwise) 90 else 0,
density = NULL, angle = 45, col = NULL, border = NULL,
lty = NULL, main = NULL, ...)

Arguments

x a vector of non-negative numerical quantities. The values in x are displayed as
the areas of pie slices.

labels one or more expressions or character strings giving names for the slices. Other
objects are coerced by as.graphicsAnnot. For empty or NA (after coercion to
character) labels, no label nor pointing line is drawn.

pie 815

edges the circular outline of the pie is approximated by a polygon with this many
edges.

radius the pie is drawn centered in a square box whose sides range from −1 to 1. If the
character strings labeling the slices are long it may be necessary to use a smaller
radius.

clockwise logical indicating if slices are drawn clockwise or counter clockwise (i.e., math-
ematically positive direction), the latter is default.

init.angle number specifying the starting angle (in degrees) for the slices. Defaults to 0
(i.e., ‘3 o’clock’) unless clockwise is true where init.angle defaults to 90
(degrees), (i.e., ‘12 o’clock’).

density the density of shading lines, in lines per inch. The default value of NULL means
that no shading lines are drawn. Non-positive values of density also inhibit the
drawing of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).

col a vector of colors to be used in filling or shading the slices. If missing a set of 6
pastel colours is used, unless density is specified when par("fg") is used.

border, lty (possibly vectors) arguments passed to polygon which draws each slice.

main an overall title for the plot.

... graphical parameters can be given as arguments to pie. They will affect the
main title and labels only.

Note

Pie charts are a very bad way of displaying information. The eye is good at judging linear measures
and bad at judging relative areas. A bar chart or dot chart is a preferable way of displaying this type
of data.

Cleveland (1985), page 264: “Data that can be shown by pie charts always can be shown by a dot
chart. This means that judgements of position along a common scale can be made instead of the less
accurate angle judgements.” This statement is based on the empirical investigations of Cleveland
and McGill as well as investigations by perceptual psychologists.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Cleveland, W. S. (1985) The Elements of Graphing Data. Wadsworth: Monterey, CA, USA.

See Also

dotchart.

Examples

require(grDevices)
pie(rep(1, 24), col = rainbow(24), radius = 0.9)

pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)
names(pie.sales) <- c("Blueberry", "Cherry",

"Apple", "Boston Cream", "Other", "Vanilla Cream")
pie(pie.sales) # default colours
pie(pie.sales, col = c("purple", "violetred1", "green3",

816 plot

"cornsilk", "cyan", "white"))
pie(pie.sales, col = gray(seq(0.4,1.0,length=6)))
pie(pie.sales, density = 10, angle = 15 + 10 * 1:6)
pie(pie.sales, clockwise=TRUE, main="pie(*, clockwise=TRUE)")
segments(0,0, 0,1, col= "red", lwd = 2)
text(0,1, "init.angle = 90", col= "red")

n <- 200
pie(rep(1,n), labels="", col=rainbow(n), border=NA,

main = "pie(*, labels=\"\", col=rainbow(n), border=NA,..")

plot Generic X-Y Plotting

Description

Generic function for plotting of R objects. For more details about the graphical parameter argu-
ments, see par.

For simple scatter plots, plot.default will be used. However, there are plot methods for many
R objects, including functions, data.frames, density objects, etc. Use methods(plot) and the
documentation for these.

Usage

plot(x, y, ...)

Arguments

x the coordinates of points in the plot. Alternatively, a single plotting structure,
function or any R object with a plot method can be provided.

y the y coordinates of points in the plot, optional if x is an appropriate structure.
... Arguments to be passed to methods, such as graphical parameters (see par).

Many methods will accept the following arguments:
type what type of plot should be drawn. Possible types are

• "p" for points,
• "l" for lines,
• "b" for both,
• "c" for the lines part alone of "b",
• "o" for both ‘overplotted’,
• "h" for ‘histogram’ like (or ‘high-density’) vertical lines,
• "s" for stair steps,
• "S" for other steps, see ‘Details’ below,
• "n" for no plotting.

All other types give a warning or an error; using, e.g., type = "punkte"
being equivalent to type = "p" for S compatibility. Note that some meth-
ods, e.g. plot.factor, do not accept this.

main an overall title for the plot: see title.
sub a sub title for the plot: see title.
xlab a title for the x axis: see title.
ylab a title for the y axis: see title.
asp the y/x aspect ratio, see plot.window.

plot.data.frame 817

Details

The two step types differ in their x-y preference: Going from (x1, y1) to (x2, y2) with x1 < x2,
type = "s" moves first horizontal, then vertical, whereas type = "S" moves the other way around.

See Also

plot.default, plot.formula and other methods; points, lines, par.

For X-Y-Z plotting see contour, persp and image.

Examples

require(stats)
plot(cars)
lines(lowess(cars))

plot(sin, -pi, 2*pi) # see ?plot.function

Discrete Distribution Plot:
plot(table(rpois(100,5)), type = "h", col = "red", lwd=10,

main="rpois(100,lambda=5)")

Simple quantiles/ECDF, see ecdf() {library(stats)} for a better one:
plot(x <- sort(rnorm(47)), type = "s", main = "plot(x, type = \"s\")")
points(x, cex = .5, col = "dark red")

plot.data.frame Plot Method for Data Frames

Description

plot.data.frame, a method for the plot generic. It is designed for a quick look at numeric data
frames.

Usage

S3 method for class ’data.frame’
plot(x, ...)

Arguments

x object of class data.frame.
... further arguments to stripchart, plot.default or pairs.

Details

This is intended for data frames with numeric columns. For more than two columns it first calls
data.matrix to convert the data frame to a numeric matrix and then calls pairs to produce a
scatterplot matrix). This can fail and may well be inappropriate: for example numerical conversion
of dates will lose their special meaning and a warning will be given.

For a two-column data frame it plots the second column against the first by the most appropriate
method for the first column.

For a single numeric column it uses stripchart, and for other single-column data frames tries to
find a plot method for the single column.

818 plot.default

See Also

data.frame

Examples

plot(OrchardSprays[1], method="jitter")
plot(OrchardSprays[c(4,1)])
plot(OrchardSprays)

plot(iris)
plot(iris[5:4])
plot(women)

plot.default The Default Scatterplot Function

Description

Draw a scatter plot with decorations such as axes and titles in the active graphics window.

Usage

Default S3 method:
plot(x, y = NULL, type = "p", xlim = NULL, ylim = NULL,

log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
ann = par("ann"), axes = TRUE, frame.plot = axes,
panel.first = NULL, panel.last = NULL, asp = NA, ...)

Arguments

x, y the x and y arguments provide the x and y coordinates for the plot. Any reason-
able way of defining the coordinates is acceptable. See the function xy.coords
for details. If supplied separately, they must be of the same length.

type 1-character string giving the type of plot desired. The following values are pos-
sible, for details, see plot: "p" for points, "l" for lines, "b" for both points and
lines, "c" for empty points joined by lines, "o" for overplotted points and lines,
"s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally, "n"
does not produce any points or lines.

xlim the x limits (x1, x2) of the plot. Note that x1 > x2 is allowed and leads to a
‘reversed axis’.
The default value, NULL, indicates that the range of the finite values to be plotted
should be used.

ylim the y limits of the plot.

log a character string which contains "x" if the x axis is to be logarithmic, "y" if the
y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.

main a main title for the plot, see also title.

sub a sub title for the plot.

xlab a label for the x axis, defaults to a description of x.

ylab a label for the y axis, defaults to a description of y.

plot.default 819

ann a logical value indicating whether the default annotation (title and x and y axis
labels) should appear on the plot.

axes a logical value indicating whether both axes should be drawn on the plot. Use
graphical parameter "xaxt" or "yaxt" to suppress just one of the axes.

frame.plot a logical indicating whether a box should be drawn around the plot.

panel.first an ‘expression’ to be evaluated after the plot axes are set up but before any plot-
ting takes place. This can be useful for drawing background grids or scatterplot
smooths. Note that this works by lazy evaluation: passing this argument from
other plot methods may well not work since it may be evaluated too early.

panel.last an expression to be evaluated after plotting has taken place but before the axes,
title and box are added. See the comments about panel.first.

asp the y/x aspect ratio, see plot.window.

... other graphical parameters (see par and section ‘Details’ below).

Details

Commonly used graphical parameters are:

col The colors for lines and points. Multiple colors can be specified so that each point can be given
its own color. If there are fewer colors than points they are recycled in the standard fashion.
Lines will all be plotted in the first colour specified.

bg a vector of background colors for open plot symbols, see points. Note: this is not the same
setting as par("bg").

pch a vector of plotting characters or symbols: see points.

cex a numerical vector giving the amount by which plotting characters and symbols should be
scaled relative to the default. This works as a multiple of par("cex"). NULL and NA are
equivalent to 1.0. Note that this does not affect annotation: see below.

lty a vector of line types, see par.

cex.main, col.lab, font.sub, etc settings for main- and sub-title and axis annotation, see title
and par.

lwd a vector of line widths, see par.

Note

The presence of panel.first and panel.last is a historical anomaly: default plots do not
have ‘panels’, unlike e.g. pairs plots. For more control, use lower-level plotting functions:
plot.default calls in turn some of plot.new, plot.window, plot.xy, axis, box and title,
and plots can be built up by calling these individually, or by calling plot(type = "n") and adding
further elements.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Cleveland, W. S. (1985) The Elements of Graphing Data. Monterey, CA: Wadsworth.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

plot, plot.window, xy.coords.

820 plot.design

Examples

Speed <- cars$speed
Distance <- cars$dist
plot(Speed, Distance, panel.first = grid(8,8),

pch = 0, cex = 1.2, col = "blue")
plot(Speed, Distance,

panel.first = lines(stats::lowess(Speed, Distance), lty = "dashed"),
pch = 0, cex = 1.2, col = "blue")

Show the different plot types
x <- 0:12
y <- sin(pi/5 * x)
op <- par(mfrow = c(3,3), mar = .1+ c(2,2,3,1))
for (tp in c("p","l","b", "c","o","h", "s","S","n")) {

plot(y ~ x, type = tp,
main = paste("plot(*, type = \"",tp,"\")",sep=""))

if(tp == "S") {
lines(x,y, type = "s", col = "red", lty = 2)
mtext("lines(*, type = \"s\", ...)", col = "red", cex=.8)

}
}
par(op)

##--- Log-Log Plot with custom axes
lx <- seq(1,5, length=41)
yl <- expression(e^{-frac(1,2) * {log[10](x)}^2})
y <- exp(-.5*lx^2)
op <- par(mfrow=c(2,1), mar=par("mar")+c(0,1,0,0))
plot(10^lx, y, log="xy", type="l", col="purple",

main="Log-Log plot", ylab=yl, xlab="x")
plot(10^lx, y, log="xy", type="o", pch=’.’, col="forestgreen",

main="Log-Log plot with custom axes", ylab=yl, xlab="x",
axes = FALSE, frame.plot = TRUE)

my.at <- 10^(1:5)
axis(1, at = my.at, labels = formatC(my.at, format="fg"))
at.y <- 10^(-5:-1)
axis(2, at = at.y, labels = formatC(at.y, format="fg"), col.axis="red")
par(op)

plot.design Plot Univariate Effects of a Design or Model

Description

Plot univariate effects of one or more factors, typically for a designed experiment as analyzed by
aov(). Further, in S this a method of the plot generic function for design objects.

Usage

plot.design(x, y = NULL, fun = mean, data = NULL, ...,
ylim = NULL, xlab = "Factors", ylab = NULL,
main = NULL, ask = NULL, xaxt = par("xaxt"),
axes = TRUE, xtick = FALSE)

plot.design 821

Arguments

x either a data frame containing the design factors and optionally the response, or
a formula or terms object.

y the response, if not given in x.

fun a function (or name of one) to be applied to each subset. It must return one
number for a numeric (vector) input.

data data frame containing the variables referenced by x when that is formula like.

... graphical parameters such as col, see par.

ylim range of y values, as in plot.default.

xlab x axis label, see title.

ylab y axis label with a ‘smart’ default.

main main title, see title.

ask logical indicating if the user should be asked before a new page is started – in
the case of multiple y’s.

xaxt character giving the type of x axis.

axes logical indicating if axes should be drawn.

xtick logical indicating if ticks (one per factor) should be drawn on the x axis.

Details

The supplied function will be called once for each level of each factor in the design and the plot
will show these summary values. The levels of a particular factor are shown along a vertical line,
and the overall value of fun() for the response is drawn as a horizontal line.

This is a new R implementation which will not be completely compatible to the earlier S imple-
mentations. This is not a bug but might still change.

Note

A big effort was taken to make this closely compatible to the S version. However, col (and fg)
specification has different effects.

Author(s)

Roberto Frisullo and Martin Maechler

References

Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Chapman & Hall, London, the
white book, pp. 546–7 (and 163–4).

Freeny, A. E. and Landwehr, J. M. (1990) Displays for data from large designed experiments;
Computer Science and Statistics: Proc.\ 22nd Symp\. Interface, 117–126, Springer Verlag.

See Also

interaction.plot for a ‘standard graphic’ of designed experiments.

822 plot.factor

Examples

require(stats)
plot.design(warpbreaks)# automatic for data frame with one numeric var.

Form <- breaks ~ wool + tension
summary(fm1 <- aov(Form, data = warpbreaks))
plot.design(Form, data = warpbreaks, col = 2)# same as above

More than one y :
utils::str(esoph)
plot.design(esoph) ## two plots; if interactive you are "ask"ed

or rather, compare mean and median:
op <- par(mfcol = 1:2)
plot.design(ncases/ncontrols ~ ., data = esoph, ylim = c(0, 0.8))
plot.design(ncases/ncontrols ~ ., data = esoph, ylim = c(0, 0.8),

fun = median)
par(op)

plot.factor Plotting Factor Variables

Description

This functions implements a scatterplot method for factor arguments of the generic plot function.

If y is missing barplot is produced. For numeric y a boxplot is used, and for a factor y
a spineplot is shown. For any other type of y the next plot method is called, normally
plot.default.

Usage

S3 method for class ’factor’
plot(x, y, legend.text = NULL, ...)

Arguments

x, y numeric or factor. y may be missing.

legend.text character vector for annotation of y axis in the case of a factor y: defaults to
levels(y). This sets the yaxlabels argument of spineplot.

... Further arguments to barplot, boxplot, spineplot or plot as appropriate. All
of these accept graphical parameters (see par) and annotation arguments passed
to title and axes = FALSE. None accept type.

See Also

plot.default, plot.formula, barplot, boxplot, spineplot.

plot.formula 823

Examples

require(grDevices)

plot(weight ~ group, data = PlantGrowth) # numeric vector ~ factor
plot(cut(weight, 2) ~ group, data = PlantGrowth) # factor ~ factor
passing "..." to spineplot() eventually:
plot(cut(weight, 3) ~ group, data = PlantGrowth,

col = hcl(c(0, 120, 240), 50, 70))

plot(PlantGrowth$group, axes=FALSE, main="no axes")# extremely silly

plot.formula Formula Notation for Scatterplots

Description

Specify a scatterplot or add points, lines, or text via a formula.

Usage

S3 method for class ’formula’
plot(formula, data = parent.frame(), ..., subset,

ylab = varnames[response], ask = dev.interactive())

S3 method for class ’formula’
points(formula, data = parent.frame(), ..., subset)

S3 method for class ’formula’
lines(formula, data = parent.frame(), ..., subset)

S3 method for class ’formula’
text(formula, data = parent.frame(), ..., subset)

Arguments

formula a formula, such as y ~ x.

data a data.frame (or list) from which the variables in formula should be taken. A
matrix is converted to a data frame.

... Arguments to be passed to or from other methods. horizontal = TRUE is also
accepted.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

ylab the y label of the plot(s).

ask logical, see par.

824 plot.formula

Details

For the lines, points and text methods the formula should be of the form y ~ x or y ~ 1 with
a left-hand side and a single term on the right-hand side. The plot method accepts other forms
discussed later in this section.

Both the terms in the formula and the ... arguments are evaluated in data enclosed in
parent.frame() if data is a list or a data frame. The terms of the formula and those arguments in
... that are of the same length as data are subjected to the subsetting specified in subset. A plot
against the running index can be specified as plot(y ~ 1).

If the formula in the plot method contains more than one term on the right-hand side, a series of
plots is produced of the response against each non-response term.

For the plot method the formula can be of the form ~ z + y + z: the variables specified
on the right-hand side are collected into a data frame, subsetted if specified, and displayed by
plot.data.frame.

Missing values are not considered in these methods, and in particular cases with missing values are
not removed.

If y is an object (i.e. has a class attribute) then plot.formula looks for a plot method for that
class first. Otherwise, the class of x will determine the type of the plot. For factors this will be a
parallel boxplot, and argument horizontal = TRUE can be specified (see boxplot).

Note that some arguments will need to be protected from premature evaluation by enclosing them
in quote: currently this is done automatically for main, sub and xlab. For example, it is needed for
the panel.first and panel.last arguments passed to plot.default.

Value

These functions are invoked for their side effect of drawing on the active graphics device.

See Also

plot.default, points, lines, plot.factor.

Examples

op <- par(mfrow = c(2,1))
plot(Ozone ~ Wind, data = airquality, pch = as.character(Month))
plot(Ozone ~ Wind, data = airquality, pch = as.character(Month),

subset = Month != 7)
par(op)

text.formula() can be very natural:
wb <- within(warpbreaks, {

time <- seq_along(breaks); W.T <- wool:tension })
plot(breaks ~ time, data = wb, type = "b")
text(breaks ~ time, data = wb, label = W.T, col = 1+as.integer(wool))

plot.histogram 825

plot.histogram Plot Histograms

Description

These are methods for objects of class "histogram", typically produced by hist.

Usage

S3 method for class ’histogram’
plot(x, freq = equidist, density = NULL, angle = 45,

col = NULL, border = par("fg"), lty = NULL,
main = paste("Histogram of",

paste(x$xname, collapse="\n")),
sub = NULL, xlab = x$xname, ylab,
xlim = range(x$breaks), ylim = NULL,
axes = TRUE, labels = FALSE, add = FALSE,
ann = TRUE, ...)

S3 method for class ’histogram’
lines(x, ...)

Arguments

x a histogram object, or a list with components density, mid, etc, see hist for
information about the components of x.

freq logical; if TRUE, the histogram graphic is to present a representation of fre-
quencies, i.e, x$counts; if FALSE, relative frequencies (probabilities), i.e.,
x$density, are plotted. The default is true for equidistant breaks and false
otherwise.

col a colour to be used to fill the bars. The default of NULL yields unfilled bars.

border the color of the border around the bars.

angle, density select shading of bars by lines: see rect.

lty the line type used for the bars, see also lines.
main, sub, xlab, ylab

these arguments to title have useful defaults here.

xlim, ylim the range of x and y values with sensible defaults.

axes logical, indicating if axes should be drawn.

labels logical or character. Additionally draw labels on top of bars, if not FALSE; if
TRUE, draw the counts or rounded densities; if labels is a character, draw
itself.

add logical. If TRUE, only the bars are added to the current plot. This is what
lines.histogram(*) does.

ann logical. Should annotations (titles and axis titles) be plotted?

... further graphical parameters to title and axis.

826 plot.table

Details

lines.histogram(*) is the same as plot.histogram(*, add = TRUE).

See Also

hist, stem, density.

Examples

(wwt <- hist(women$weight, nclass = 7, plot = FALSE))
plot(wwt, labels = TRUE) # default main & xlab using wwt$xname
plot(wwt, border = "dark blue", col = "light blue",

main = "Histogram of 15 women’s weights", xlab = "weight [pounds]")

Fake "lines" example, using non-default labels:
w2 <- wwt; w2$counts <- w2$counts - 1
lines(w2, col = "Midnight Blue", labels = ifelse(w2$counts, "> 1", "1"))

plot.table Plot Methods for table Objects

Description

This is a method of the generic plot function for (contingency) table objects. Whereas for two-
and more dimensional tables, a mosaicplot is drawn, one-dimensional ones are plotted as bars.

Usage

S3 method for class ’table’
plot(x, type = "h", ylim = c(0, max(x)), lwd = 2,

xlab = NULL, ylab = NULL, frame.plot = is.num, ...)
S3 method for class ’table’
points(x, y = NULL, type = "h", lwd = 2, ...)
S3 method for class ’table’
lines(x, y = NULL, type = "h", lwd = 2, ...)

Arguments

x a table (like) object.

y Must be NULL: there to protect against incorrect calls.

type plotting type.

ylim range of y-axis.

lwd line width for bars when type = "h" is used in the 1D case.

xlab, ylab x- and y-axis labels.

frame.plot logical indicating if a frame (box) should be drawn in the 1D case. Defaults to
true when x has dimnames coerce-able to numbers.

... further graphical arguments, see plot.default. axes = FALSE is accepted.

plot.window 827

See Also

plot.factor, the plot method for factors.

Examples

1-d tables
(Poiss.tab <- table(N = stats::rpois(200, lambda = 5)))
plot(Poiss.tab, main = "plot(table(rpois(200, lambda = 5)))")

plot(table(state.division))

4-D :
plot(Titanic, main ="plot(Titanic, main= *)")

plot.window Set up World Coordinates for Graphics Window

Description

This function sets up the world coordinate system for a graphics window. It is called by higher level
functions such as plot.default (after plot.new).

Usage

plot.window(xlim, ylim, log = "", asp = NA, ...)

Arguments

xlim, ylim numeric vectors of length 2, giving the x and y coordinates ranges.

log character; indicating which axes should be in log scale.

asp numeric, giving the aspect ratio y/x, see ‘Details’.

... further graphical parameters as in par. The relevant ones are xaxs, yaxs and
lab.

Details

asp: If asp is a finite positive value then the window is set up so that one data unit in the x direction
is equal in length to asp × one data unit in the y direction.
Note that in this case, par("usr") is no longer determined by, e.g., par("xaxs"), but rather
by asp and the device’s aspect ratio. (See what happens if you interactively resize the plot
device after running the example below!)
The special case asp == 1 produces plots where distances between points are represented
accurately on screen. Values with asp > 1 can be used to produce more accurate maps when
using latitude and longitude.

Note that the coordinate ranges will be extended by 4% if the appropriate graphical parameter xaxs
or yaxs has value "s" (which is the default).

To reverse an axis, use xlim or ylim of the form c(hi, lo).

The function attempts to produce a plausible set of scales if one or both of xlim and ylim is of
length one or the two values given are identical, but it is better to avoid that case.

828 plot.xy

Usually, one should rather use the higher-level functions such as plot, hist, image, . . . , instead
and refer to their help pages for explanation of the arguments.

A side-effect of the call is to set up the usr, xaxp and yaxp graphical parameters. (It is for the latter
two that lab is used.)

See Also

xy.coords, plot.xy, plot.default.

par for the graphical parameters mentioned.

Examples

##--- An example for the use of ’asp’ :
require(stats) # normally loaded
loc <- cmdscale(eurodist)
rx <- range(x <- loc[,1])
ry <- range(y <- -loc[,2])
plot(x, y, type="n", asp=1, xlab="", ylab="")
abline(h = pretty(rx, 10), v = pretty(ry, 10), col = "lightgray")
text(x, y, labels(eurodist), cex=0.8)

plot.xy Basic Internal Plot Function

Description

This is the internal function that does the basic plotting of points and lines. Usually, one should
rather use the higher level functions instead and refer to their help pages for explanation of the
arguments.

Usage

plot.xy(xy, type, pch = par("pch"), lty = par("lty"),
col = par("col"), bg = NA,
cex = 1, lwd = par("lwd"), ...)

Arguments

xy A four-element list as results from xy.coords.

type 1 character code: see plot.default. NULL is accepted as a synonym for "p".

pch character or integer code for kind of points, see points.default.

lty line type code, see lines.

col color code or name, see colors, palette. Here NULL means colour 0.

bg background (fill) color for the open plot symbols 21:25: see points.default.

cex character expansion.

lwd line width, also used for (non-filled) plot symbols, see lines and points.

... further graphical parameters such as xpd, lend, ljoin and lmitre.

points 829

Details

The arguments pch, col, bg, cex, lwd may be vectors and may be recycled, depending on type:
see points and lines for specifics. In particular note that lwd is treated as a vector for points and
as a single (first) value for lines.

cex is a numeric factor in addition to par("cex") which affects symbols and characters as drawn
by type "p", "o", "b" and "c".

See Also

plot, plot.default, points, lines.

Examples

points.default # to see how it calls "plot.xy(xy.coords(x, y), ...)"

points Add Points to a Plot

Description

points is a generic function to draw a sequence of points at the specified coordinates. The specified
character(s) are plotted, centered at the coordinates.

Usage

points(x, ...)

Default S3 method:
points(x, y = NULL, type = "p", ...)

Arguments

x, y coordinate vectors of points to plot.
type character indicating the type of plotting; actually any of the types as in

plot.default.
... Further graphical parameters may also be supplied as arguments. See ‘Details’.

Details

The coordinates can be passed in a plotting structure (a list with x and y components), a two-column
matrix, a time series, See xy.coords. If supplied separately, they must be of the same length.

Graphical parameters commonly used are

pch plotting ‘character’, i.e., symbol to use. This can either be a single character or an integer code
for one of a set of graphics symbols. The full set of S symbols is available with pch=0:18, see
the examples below. (NB: R uses circles instead of the octagons used in S.)
Value pch="." (equivalently pch = 46) is handled specially. It is a rectangle of side 0.01 inch
(scaled by cex). In addition, if cex = 1 (the default), each side is at least one pixel (1/72 inch
on the pdf, postscript and xfig devices).
For other text symbols, cex = 1 corresponds to the default fontsize of the device, often speci-
fied by an argument pointsize. For pch in 0:25 the default size is about 75% of the character
height (see par("cin")).

830 points

col color code or name, see par.

bg background (fill) color for the open plot symbols given by pch=21:25.

cex character (or symbol) expansion: a numerical vector. This works as a multiple of par("cex").

lwd line width for drawing symbols see par.

Others less commonly used are lty and lwd for types such as "b" and "l".

The graphical parameters pch, col, bg, cex and lwd can be vectors (which will be recycled as
needed) giving a value for each point plotted. If lines are to be plotted (e.g. for type = "b") the
first element of lwd is used.

Points whose x, y, pch, col or cex value is NA are omitted from the plot.

’pch’ values

Values of pch are stored internally as integers. The interpretation is

• NA_integer_: no symbol.

• 0:18: S-compatible vector symbols.

• 19:25: further R vector symbols.

• 26:31: unused (and ignored).

• 32:127: ASCII characters.

• 128:255 native characters only in a single-byte locale and for the symbol font. (128:159 are
only used on Windows.)

• -32 ... Unicode point (where supported).

Note that unlike S (which uses octagons), symbols 1, 10, 13 and 16 use circles. The filled shapes
15:18 do not include a border.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

● ● ● ● ● ● ●

The following R plotting symbols are can be obtained with pch=19:25: those with 21:25 can be
colored and filled with different colors: col gives the border color and bg the background color

(which is ‘"grey"’ in the figure)

• pch=19: solid circle,

• pch=20: bullet (smaller solid circle, 2/3 the size of 19),

• pch=21: filled circle,

• pch=22: filled square,

• pch=23: filled diamond,

• pch=24: filled triangle point-up,

• pch=25: filled triangle point down.

Note that all of these both fill the shape and draw a border. Some care in interpretation is needed
when semi-transparent colours are used for both fill and border (and the result might be device-
specific and even viewer-specific for pdf).

The difference between pch=16 and pch=19 is that the latter uses a border and so is perceptibly
larger when lwd is large relative to cex.

points 831

Values pch=26:31 are currently unused and pch=32:127 give the ASCII characters. In a single-byte
locale pch=128:255 give the corresponding character (if any) in the locale’s character set. Where
supported by the OS, negative values specify a Unicode point, so e.g. -0x2642L is a ‘male sign’
and -0x20ACL is the Euro.

A character string consisting of a single character is converted to an integer: 32:127 for ASCII
characters, and usually to the Unicode point number otherwise. (In non-Latin-1 single-byte locales,
128:255 will be used for 8-bit characters.)

If pch supplied is a logical, integer or character NA or an empty character string the point is omitted
from the plot.

If pch is NULL or otherwise of length 0, par("pch") is used.

If the symbol font (par(font = 5)) is used, numerical values should be used for pch: the range is
c(32:126, 160:254) in all locales (but 240 is not defined (used for ‘apple’ on Mac OS) and 160,
Euro, may not be present).

Note

A single-byte encoding may include the characters in pch=128:255, and if it does, a font may not
include all (or even any) of them.

Not all negative numbers are valid as Unicode points, and no check is done. A display device is
likely to use a rectangle for (or omit) Unicode points that do not exist or which it does not have a
glyph.

What happens for very small or zero values of cex is device-dependent: symbols or characters may
become invisible or they may be plotted at a fixed minimum size. As from R 2.15.0, circles of zero
radius will not be plotted.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

points.formula for the formula method; plot, lines, and the underlying workhorse function
plot.xy.

Examples

require(stats) # for rnorm
plot(-4:4, -4:4, type = "n")# setting up coord. system
points(rnorm(200), rnorm(200), col = "red")
points(rnorm(100)/2, rnorm(100)/2, col = "blue", cex = 1.5)

op <- par(bg = "light blue")
x <- seq(0,2*pi, len=51)
something "between type=’b’ and type=’o’":
plot(x, sin(x), type="o", pch=21, bg=par("bg"), col = "blue", cex=.6,
main=’plot(..., type="o", pch=21, bg=par("bg"))’)
par(op)

Not run:
The figure was produced by calls like
png("pch.png", height=0.7, width = 7, res = 100, units="in")
par(mar = rep(0,4))

832 points

plot(c(-1, 26), 0:1, type="n", axes= FALSE)
text(0:25, 0.6, 0:25, cex = 0.5)
points(0:25, rep(0.3, 26), pch = 0:25, bg = "grey")

End(Not run)

##-------- Showing all the extra & some char graphics symbols ---------
pchShow <-

function(extras = c("*",".", "o","O","0","+","-","|","%","#"),
cex = 3, ## good for both .Device=="postscript" and "x11"
col = "red3", bg = "gold", coltext = "brown", cextext = 1.2,
main = paste("plot symbols : points (... pch = *, cex =",

cex,")"))
{
nex <- length(extras)
np <- 26 + nex
ipch <- 0:(np-1)
k <- floor(sqrt(np))
dd <- c(-1,1)/2
rx <- dd + range(ix <- ipch %/% k)
ry <- dd + range(iy <- 3 + (k-1)- ipch %% k)
pch <- as.list(ipch) # list with integers & strings
if(nex > 0) pch[26+ 1:nex] <- as.list(extras)
plot(rx, ry, type="n", axes = FALSE, xlab = "", ylab = "",

main = main)
abline(v = ix, h = iy, col = "lightgray", lty = "dotted")
for(i in 1:np) {

pc <- pch[[i]]
’col’ symbols with a ’bg’-colored interior (where available) :
points(ix[i], iy[i], pch = pc, col = col, bg = bg, cex = cex)
if(cextext > 0)

text(ix[i] - 0.3, iy[i], pc, col = coltext, cex = cextext)
}

}

pchShow()
pchShow(c("o","O","0"), cex = 2.5)
pchShow(NULL, cex = 4, cextext = 0, main = NULL)

------------ test code for various pch specifications -------------
Try this in various font families (including Hershey)
and locales. Use sign=-1 asserts we want Latin-1.
Standard cases in a MBCS locale will not plot the top half.
TestChars <- function(sign=1, font=1, ...)
{

MB <- l10n_info()$MBCS
r <- if(font == 5) { sign <- 1; c(32:126, 160:254)

} else if(MB) 32:126 else 32:255
if (sign == -1) r <- c(32:126, 160:255)
par(pty="s")
plot(c(-1,16), c(-1,16), type="n", xlab="",ylab="", xaxs="i", yaxs="i",

main=sprintf("sign = %d, font = %d", sign,font))
grid(17, 17, lty=1) ; mtext(paste("MBCS:", MB))
for(i in r) try(points(i%%16, i%/%16, pch=sign*i, font=font,...))

}
TestChars()

polygon 833

try(TestChars(sign=-1))
TestChars(font=5) # Euro might be at 160 (0+10*16). Mac OS has apple at 240 (0+15*16).
try(TestChars(-1, font=2))# bold

polygon Polygon Drawing

Description

polygon draws the polygons whose vertices are given in x and y.

Usage

polygon(x, y = NULL, density = NULL, angle = 45,
border = NULL, col = NA, lty = par("lty"),
..., fillOddEven = FALSE)

Arguments

x,y vectors containing the coordinates of the vertices of the polygon.

density the density of shading lines, in lines per inch. The default value of NULL means
that no shading lines are drawn. A zero value of density means no shading
nor filling whereas negative values and NA suppress shading (and so allow color
filling).

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).

col the color for filling the polygon. The default, NA, is to leave polygons unfilled,
unless density is specified. (For back-compatibility, NULL is equivalent to NA.)
If density is specified with a positive value this gives the color of the shading
lines.

border the color to draw the border. The default, NULL, means to use par("fg"). Use
border = NA to omit borders.
For compatibility with S, border can also be logical, in which case FALSE is
equivalent to NA (borders omitted) and TRUE is equivalent to NULL (use the fore-
ground colour),

lty the line type to be used, as in par.

... graphical parameters such as xpd, lend, ljoin and lmitre can be given as
arguments.

fillOddEven logical controlling the polygon shading mode: see below for details. Default
FALSE.

Details

The coordinates can be passed in a plotting structure (a list with x and y components), a two-column
matrix, See xy.coords.

It is assumed that the polygon is to be closed by joining the last point to the first point.

The coordinates can contain missing values. The behaviour is similar to that of lines, except that
instead of breaking a line into several lines, NA values break the polygon into several complete
polygons (including closing the last point to the first point). See the examples below.

834 polygon

When multiple polygons are produced, the values of density, angle, col, border, and lty are
recycled in the usual manner.

Shading of polygons is only implemented for linear plots: if either axis is on log scale then shading
is omitted, with a warning.

Bugs

Self-intersecting polygons may be filled using either the “odd-even” or “non-zero” rule. These fill a
region if the polygon border encircles it an odd or non-zero number of times, respectively. Shading
lines are handled internally by R according to the fillOddEven argument, but device-based solid
fills depend on the graphics device. The windows, pdf and postscript devices have their own
fillOddEven argument to control this.

Author(s)

The code implementing polygon shading was donated by Kevin Buhr <buhr@stat.wisc.edu>.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

segments for even more flexibility, lines, rect, box, abline.

par for how to specify colors.

Examples

x <- c(1:9,8:1)
y <- c(1,2*(5:3),2,-1,17,9,8,2:9)
op <- par(mfcol=c(3,1))
for(xpd in c(FALSE,TRUE,NA)) {

plot(1:10, main = paste("xpd =", xpd))
box("figure", col = "pink", lwd=3)
polygon(x,y, xpd=xpd, col="orange", lty=2, lwd=2, border="red")

}
par(op)

n <- 100
xx <- c(0:n, n:0)
yy <- c(c(0,cumsum(stats::rnorm(n))), rev(c(0,cumsum(stats::rnorm(n)))))
plot (xx, yy, type="n", xlab="Time", ylab="Distance")
polygon(xx, yy, col="gray", border = "red")
title("Distance Between Brownian Motions")

Multiple polygons from NA values
and recycling of col, border, and lty
op <- par(mfrow=c(2,1))
plot(c(1,9), 1:2, type="n")
polygon(1:9, c(2,1,2,1,1,2,1,2,1),

col=c("red", "blue"),
border=c("green", "yellow"),
lwd=3, lty=c("dashed", "solid"))

polypath 835

plot(c(1,9), 1:2, type="n")
polygon(1:9, c(2,1,2,1,NA,2,1,2,1),

col=c("red", "blue"),
border=c("green", "yellow"),
lwd=3, lty=c("dashed", "solid"))

par(op)

Line-shaded polygons
plot(c(1,9), 1:2, type="n")
polygon(1:9, c(2,1,2,1,NA,2,1,2,1),

density=c(10, 20), angle=c(-45, 45))

polypath Path Drawing

Description

path draws a path whose vertices are given in x and y.

Usage

polypath(x, y = NULL,
border = NULL, col = NA, lty = par("lty"),
rule = "winding", ...)

Arguments

x,y vectors containing the coordinates of the vertices of the path.

col the color for filling the path. The default, NA, is to leave paths unfilled, un-
less density is specified. (For back-compatibility, NULL is equivalent to NA.)
If density is specified with a positive value this gives the color of the shading
lines.

border the color to draw the border. The default, NULL, means to use par("fg"). Use
border = NA to omit borders.
For compatibility with S, border can also be logical, in which case FALSE is
equivalent to NA (borders omitted) and TRUE is equivalent to NULL (use the fore-
ground colour),

lty the line type to be used, as in par.

rule character value specifying the path fill mode: either "winding" or "evenodd".

... graphical parameters such as xpd, lend, ljoin and lmitre can be given as
arguments.

Details

The coordinates can be passed in a plotting structure (a list with x and y components), a two-column
matrix, See xy.coords.

It is assumed that the path is to be closed by joining the last point to the first point.

The coordinates can contain missing values. The behaviour is similar to that of polygon, except that
instead of breaking a polygon into several polygons, NA values break the path into several sub-paths
(including closing the last point to the first point in each sub-path). See the examples below.

836 polypath

The distinction between a path and a polygon is that the former can contain holes, as interpreted by
the fill rule; these fill a region if the path border encircles it an odd or non-zero number of times,
respectively.

Hatched shading (as implemented for polygon()) is not (currently) supported.

Not all graphics devices support this function: for example xfig and pictex do not.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

segments for even more flexibility, lines, rect, box, polygon.

par for how to specify colors.

Examples

plotPath <- function(x, y, col = "grey", rule = "winding") {
plot.new()
plot.window(range(x, na.rm = TRUE), range(y, na.rm = TRUE))
polypath(x, y, col = col, rule = rule)
if (!is.na(col))

mtext(paste("Rule:", rule), side = 1, line = 0)
}

plotRules <- function(x, y, title) {
plotPath(x, y)
plotPath(x, y, rule = "evenodd")
mtext(title, side = 3, line = 0)
plotPath(x, y, col = NA)

}

op <- par(mfrow = c(5, 3), mar = c(2, 1, 1, 1))

plotRules(c(.1, .1, .9, .9, NA, .2, .2, .8, .8),
c(.1, .9, .9, .1, NA, .2, .8, .8, .2),
"Nested rectangles, both clockwise")

plotRules(c(.1, .1, .9, .9, NA, .2, .8, .8, .2),
c(.1, .9, .9, .1, NA, .2, .2, .8, .8),
"Nested rectangles, outer clockwise, inner anti-clockwise")

plotRules(c(.1, .1, .4, .4, NA, .6, .9, .9, .6),
c(.1, .4, .4, .1, NA, .6, .6, .9, .9),
"Disjoint rectangles")

plotRules(c(.1, .1, .6, .6, NA, .4, .4, .9, .9),
c(.1, .6, .6, .1, NA, .4, .9, .9, .4),
"Overlapping rectangles, both clockwise")

plotRules(c(.1, .1, .6, .6, NA, .4, .9, .9, .4),
c(.1, .6, .6, .1, NA, .4, .4, .9, .9),
"Overlapping rectangles, one clockwise, other anti-clockwise")

par(op)

rasterImage 837

rasterImage Draw One or More Raster Images

Description

rasterImage draws a raster image at the given locations and sizes.

Usage

rasterImage(image,
xleft, ybottom, xright, ytop,
angle = 0, interpolate = TRUE, ...)

Arguments

image a raster object, or an object that can be coerced to one by as.raster.

xleft a vector (or scalar) of left x positions.

ybottom a vector (or scalar) of bottom y positions.

xright a vector (or scalar) of right x positions.

ytop a vector (or scalar) of top y positions.

angle angle of rotation (in degrees, anti-clockwise from positive x-axis, about the
bottom-left corner).

interpolate a logical vector (or scalar) indicating whether to apply linear interpolation to the
image when drawing.

... graphical parameters.

Details

The positions supplied, i.e., xleft, ..., are relative to the current plotting region. If the x-axis
goes from 100 to 200 then xleft should be larger than 100 and xright should be less than 200.
The position vectors will be recycled to the length of the longest.

Plotting raster images is not supported on all devices and may have limitations where supported, for
example (e.g. for postscript and X11(type = "Xlib")) is restricted to opaque colors). Problems
with the rendering of raster images have been reported by users of windows() devices under Remote
Desktop, at least under its default settings.

See Also

rect, polygon, and segments and others for flexible ways to draw shapes.

dev.capabilities to see if it is supported.

Examples

require(grDevices)
set up the plot region:
op <- par(bg = "thistle")
plot(c(100, 250), c(300, 450), type = "n", xlab="", ylab="")
image <- as.raster(matrix(0:1, ncol=5, nrow=3))
rasterImage(image, 100, 300, 150, 350, interpolate=FALSE)

838 rect

rasterImage(image, 100, 400, 150, 450)
rasterImage(image, 200, 300, 200 + xinch(.5), 300 + yinch(.3),

interpolate=FALSE)
rasterImage(image, 200, 400, 250, 450, angle=15, interpolate=FALSE)
par(op)

rect Draw One or More Rectangles

Description

rect draws a rectangle (or sequence of rectangles) with the given coordinates, fill and border colors.

Usage

rect(xleft, ybottom, xright, ytop, density = NULL, angle = 45,
col = NA, border = NULL, lty = par("lty"), lwd = par("lwd"),
...)

Arguments

xleft a vector (or scalar) of left x positions.

ybottom a vector (or scalar) of bottom y positions.

xright a vector (or scalar) of right x positions.

ytop a vector (or scalar) of top y positions.

density the density of shading lines, in lines per inch. The default value of NULL means
that no shading lines are drawn. A zero value of density means no shading lines
whereas negative values (and NA) suppress shading (and so allow color filling).

angle angle (in degrees) of the shading lines.

col color(s) to fill or shade the rectangle(s) with. The default NA (or also NULL)
means do not fill, i.e., draw transparent rectangles, unless density is specified.

border color for rectangle border(s). The default means par("fg"). Use border = NA
to omit borders. If there are shading lines, border = TRUE means use the same
colour for the border as for the shading lines.

lty line type for borders and shading; defaults to "solid".

lwd line width for borders and shading. Note that the use of lwd = 0 (as in the
examples) is device-dependent.

... graphical parameters such as xpd, lend, ljoin and lmitre can be given as
arguments.

Details

The positions supplied, i.e., xleft, ..., are relative to the current plotting region. If the x-axis
goes from 100 to 200 then xleft must be larger than 100 and xright must be less than 200. The
position vectors will be recycled to the length of the longest.

It is a graphics primitive used in hist, barplot, legend, etc.

rug 839

See Also

box for the standard box around the plot; polygon and segments for flexible line drawing.

par for how to specify colors.

Examples

require(grDevices)
set up the plot region:
op <- par(bg = "thistle")
plot(c(100, 250), c(300, 450), type = "n", xlab="", ylab="",

main = "2 x 11 rectangles; ’rect(100+i,300+i, 150+i,380+i)’")
i <- 4*(0:10)
draw rectangles with bottom left (100, 300)+i
and top right (150, 380)+i
rect(100+i, 300+i, 150+i, 380+i, col=rainbow(11, start=.7,end=.1))
rect(240-i, 320+i, 250-i, 410+i, col=heat.colors(11), lwd=i/5)
Background alternating (transparent / "bg") :
j <- 10*(0:5)
rect(125+j, 360+j, 141+j, 405+j/2, col = c(NA,0),

border = "gold", lwd = 2)
rect(125+j, 296+j/2, 141+j, 331+j/5, col = c(NA,"midnightblue"))
mtext("+ 2 x 6 rect(*, col = c(NA,0)) and col = c(NA,\"m..blue\"))")

an example showing colouring and shading
plot(c(100, 200), c(300, 450), type= "n", xlab="", ylab="")
rect(100, 300, 125, 350) # transparent
rect(100, 400, 125, 450, col="green", border="blue") # coloured
rect(115, 375, 150, 425, col=par("bg"), border="transparent")
rect(150, 300, 175, 350, density=10, border="red")
rect(150, 400, 175, 450, density=30, col="blue",

angle=-30, border="transparent")

legend(180, 450, legend=1:4, fill=c(NA, "green", par("fg"), "blue"),
density=c(NA, NA, 10, 30), angle=c(NA, NA, 30, -30))

par(op)

rug Add a Rug to a Plot

Description

Adds a rug representation (1-d plot) of the data to the plot.

Usage

rug(x, ticksize = 0.03, side = 1, lwd = 0.5, col = par("fg"),
quiet = getOption("warn") < 0, ...)

840 screen

Arguments

x A numeric vector

ticksize The length of the ticks making up the ‘rug’. Positive lengths give inwards ticks.

side On which side of the plot box the rug will be plotted. Normally 1 (bottom) or 3
(top).

lwd The line width of the ticks. Some devices will round the default width up to 1.

col The colour the ticks are plotted in.

quiet logical indicating if there should be a warning about clipped values.

... further arguments, passed to axis, such as line or pos for specifying the loca-
tion of the rug.

Details

Because of the way rug is implemented, only values of x that fall within the plot region are included.
There will be a warning if any finite values are omitted, but non-finite values are omitted silently.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

jitter which you may want for ties in x.

Examples

require(stats)# both ’density’ and its default method
with(faithful, {

plot(density(eruptions, bw = 0.15))
rug(eruptions)
rug(jitter(eruptions, amount = 0.01), side = 3, col = "light blue")

})

screen Creating and Controlling Multiple Screens on a Single Device

Description

split.screen defines a number of regions within the current device which can, to some extent, be
treated as separate graphics devices. It is useful for generating multiple plots on a single device.
Screens can themselves be split, allowing for quite complex arrangements of plots.

screen is used to select which screen to draw in.

erase.screen is used to clear a single screen, which it does by filling with the background colour.

close.screen removes the specified screen definition(s).

screen 841

Usage

split.screen(figs, screen, erase = TRUE)
screen(n = , new = TRUE)
erase.screen(n =)
close.screen(n, all.screens = FALSE)

Arguments

figs A two-element vector describing the number of rows and the number of columns
in a screen matrix or a matrix with 4 columns. If a matrix, then each row de-
scribes a screen with values for the left, right, bottom, and top of the screen (in
that order) in NDC units, that is 0 at the lower left corner of the device surface,
and 1 at the upper right corner.

screen A number giving the screen to be split. It defaults to the current screen if there
is one, otherwise the whole device region.

erase logical: should be selected screen be cleared?

n A number indicating which screen to prepare for drawing (screen), erase
(erase.screen), or close (close.screen). (close.screen will accept a vector
of screen numbers.)

new A logical value indicating whether the screen should be erased as part of the
preparation for drawing in the screen.

all.screens A logical value indicating whether all of the screens should be closed.

Details

The first call to split.screen places R into split-screen mode. The other split-screen func-
tions only work within this mode. While in this mode, certain other commands should be
avoided (see the Warnings section below). Split-screen mode is exited by the command
close.screen(all = TRUE).

If the current screen is closed, close.screen sets the current screen to be the next larger screen
number if there is one, otherwise to the first available screen.

Value

split.screen returns a vector of screen numbers for the newly-created screens. With no argu-
ments, split.screen returns a vector of valid screen numbers.

screen invisibly returns the number of the selected screen. With no arguments, screen returns the
number of the current screen.

close.screen returns a vector of valid screen numbers.

screen, erase.screen, and close.screen all return FALSE if R is not in split-screen mode.

Warnings

The recommended way to use these functions is to completely draw a plot and all additions (i.e.
points and lines) to the base plot, prior to selecting and plotting on another screen. The behavior
associated with returning to a screen to add to an existing plot is unpredictable and may result in
problems that are not readily visible.

These functions are totally incompatible with the other mechanisms for arranging plots on a device:
par(mfrow), par(mfcol) and layout().

842 segments

The functions are also incompatible with some plotting functions, such as coplot, which make use
of these other mechanisms.

erase.screen will appear not to work if the background colour is transparent (as it is by default
on most devices).

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

par, layout, Devices, dev.*

Examples

if (interactive()) {
par(bg = "white") # default is likely to be transparent
split.screen(c(2,1)) # split display into two screens
split.screen(c(1,3), screen = 2) # now split the bottom half into 3
screen(1) # prepare screen 1 for output
plot(10:1)
screen(4) # prepare screen 4 for output
plot(10:1)
close.screen(all = TRUE) # exit split-screen mode

split.screen(c(2,1)) # split display into two screens
split.screen(c(1,2),2) # split bottom half in two
plot(1:10) # screen 3 is active, draw plot
erase.screen() # forgot label, erase and redraw
plot(1:10, ylab= "ylab 3")
screen(1) # prepare screen 1 for output
plot(1:10)
screen(4) # prepare screen 4 for output
plot(1:10, ylab="ylab 4")
screen(1, FALSE) # return to screen 1, but do not clear
plot(10:1, axes=FALSE, lty=2, ylab="") # overlay second plot
axis(4) # add tic marks to right-hand axis
title("Plot 1")
close.screen(all = TRUE) # exit split-screen mode
}

segments Add Line Segments to a Plot

Description

Draw line segments between pairs of points.

Usage

segments(x0, y0, x1 = x0, y1 = y0,
col = par("fg"), lty = par("lty"), lwd = par("lwd"),
...)

smoothScatter 843

Arguments

x0, y0 coordinates of points from which to draw.
x1, y1 coordinates of points to which to draw. At least one must be supplied.
col, lty, lwd graphical parameters as in par, possibly vectors. NA values in col cause the

segment to be omitted.
... further graphical parameters (from par), such as xpd and the line characteristics

lend, ljoin and lmitre.

Details

For each i, a line segment is drawn between the point (x0[i], y0[i]) and the point
(x1[i], y1[i]). The coordinate vectors will be recycled to the length of the longest.
The graphical parameters col, lty and lwd can be vectors of length greater than one and will be
recycled if necessary.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

arrows, polygon for slightly easier and less flexible line drawing, and lines for the usual polygons.

Examples

x <- stats::runif(12); y <- stats::rnorm(12)
i <- order(x,y); x <- x[i]; y <- y[i]
plot(x, y, main="arrows(.) and segments(.)")
draw arrows from point to point :
s <- seq(length(x)-1)# one shorter than data
arrows(x[s], y[s], x[s+1], y[s+1], col= 1:3)
s <- s[-length(s)]
segments(x[s], y[s], x[s+2], y[s+2], col= ’pink’)

smoothScatter Scatterplots with Smoothed Densities Color Representation

Description

smoothScatter produces a smoothed color density representation of the scatterplot, obtained
through a kernel density estimate. densCols produces a vector containing colors which encode
the local densities at each point in a scatterplot.

Usage

smoothScatter(x, y = NULL, nbin = 128, bandwidth,
colramp = colorRampPalette(c("white", blues9)),
nrpoints = 100, pch = ".", cex = 1, col = "black",
transformation = function(x) x^.25,
postPlotHook = box,
xlab = NULL, ylab = NULL, xlim, ylim,
xaxs = par("xaxs"), yaxs = par("yaxs"), ...)

844 smoothScatter

Arguments

x, y the x and y arguments provide the x and y coordinates for the plot. Any reason-
able way of defining the coordinates is acceptable. See the function xy.coords
for details. If supplied separately, they must be of the same length.

nbin numeric vector of length one (for both directions) or two (for x and y separately)
specifying the number of equally spaced grid points for the density estimation;
directly used as gridsize in bkde2D().

bandwidth numeric vector (length 1 or 2) of smoothing bandwidth(s). If missing, a more
or less useful default is used. bandwidth is subsequently passed to function
bkde2D.

colramp function accepting an integer n as an argument and returning n colors.

nrpoints number of points to be superimposed on the density image. The first nrpoints
points from those areas of lowest regional densities will be plotted. Adding
points to the plot allows for the identification of outliers. If all points are to be
plotted, choose nrpoints = Inf.

pch, cex, col arguments passed to points, when nrpoints > 0: point symbol, character ex-
pansion factor and color, see also par.

transformation function mapping the density scale to the color scale.

postPlotHook either NULL or a function which will be called (with no arguments) after image.

xlab, ylab character strings to be used as axis labels, passed to image.

xlim, ylim numeric vectors of length 2 specifying axis limits.
xaxs, yaxs, ...

further arguments, passed to image.

Details

smoothScatter produces a smoothed version of a scatter plot. Two dimensional (kernel density)
smoothing is performed by bkde2D from package KernSmooth. See the examples for how to use
this function together with pairs.

Author(s)

Florian Hahne at FHCRC, originally

See Also

bkde2D from package KernSmooth; densCols which uses the same smoothing computations and
blues9 in package grDevices.

scatter.smooth adds a loess regression smoother to a scatter plot.

Examples

A largish data set
n <- 10000
x1 <- matrix(rnorm(n), ncol=2)
x2 <- matrix(rnorm(n, mean=3, sd=1.5), ncol=2)
x <- rbind(x1,x2)

oldpar <- par(mfrow=c(2,2))
smoothScatter(x, nrpoints=0)

http://CRAN.R-project.org/package=KernSmooth
http://CRAN.R-project.org/package=KernSmooth

spineplot 845

smoothScatter(x)

a different color scheme:
Lab.palette <-

colorRampPalette(c("blue", "orange", "red"), space = "Lab")
smoothScatter(x, colramp = Lab.palette)

somewhat similar, using identical smoothing computations,
but considerably *less* efficient for really large data:
plot(x, col = densCols(x), pch=20)

use with pairs:
par(mfrow=c(1,1))
y <- matrix(rnorm(40000), ncol=4) + 3*rnorm(10000)
y[, c(2,4)] <- -y[, c(2,4)]
pairs(y,

panel = function(...) smoothScatter(..., nrpoints=0, add=TRUE))

par(oldpar)

spineplot Spine Plots and Spinograms

Description

Spine plots are a special cases of mosaic plots, and can be seen as a generalization of stacked (or
highlighted) bar plots. Analogously, spinograms are an extension of histograms.

Usage

spineplot(x, ...)

Default S3 method:
spineplot(x, y = NULL,

breaks = NULL, tol.ylab = 0.05, off = NULL,
ylevels = NULL, col = NULL,
main = "", xlab = NULL, ylab = NULL,
xaxlabels = NULL, yaxlabels = NULL,
xlim = NULL, ylim = c(0, 1), axes = TRUE, ...)

S3 method for class ’formula’
spineplot(formula, data = NULL,

breaks = NULL, tol.ylab = 0.05, off = NULL,
ylevels = NULL, col = NULL,
main = "", xlab = NULL, ylab = NULL,
xaxlabels = NULL, yaxlabels = NULL,
xlim = NULL, ylim = c(0, 1), axes = TRUE, ...,
subset = NULL)

Arguments

x an object, the default method expects either a single variable (interpreted to be
the explanatory variable) or a 2-way table. See details.

846 spineplot

y a "factor" interpreted to be the dependent variable

formula a "formula" of type y ~ x with a single dependent "factor" and a single
explanatory variable.

data an optional data frame.

breaks if the explanatory variable is numeric, this controls how it is discretized. breaks
is passed to hist and can be a list of arguments.

tol.ylab convenience tolerance parameter for y-axis annotation. If the distance between
two labels drops under this threshold, they are plotted equidistantly.

off vertical offset between the bars (in per cent). It is fixed to 0 for spinograms and
defaults to 2 for spine plots.

ylevels a character or numeric vector specifying in which order the levels of the depen-
dent variable should be plotted.

col a vector of fill colors of the same length as levels(y). The default is to call
gray.colors.

main, xlab, ylab

character strings for annotation
xaxlabels, yaxlabels

character vectors for annotation of x and y axis. Default to levels(y) and
levels(x), respectively for the spine plot. For xaxlabels in the spinogram,
the breaks are used.

xlim, ylim the range of x and y values with sensible defaults.

axes logical. If FALSE all axes (including those giving level names) are suppressed.

... additional arguments passed to rect.

subset an optional vector specifying a subset of observations to be used for plotting.

Details

spineplot creates either a spinogram or a spine plot. It can be called via spineplot(x, y) or
spineplot(y ~ x) where y is interpreted to be the dependent variable (and has to be categorical)
and x the explanatory variable. x can be either categorical (then a spine plot is created) or numer-
ical (then a spinogram is plotted). Additionally, spineplot can also be called with only a single
argument which then has to be a 2-way table, interpreted to correspond to table(x, y).

Both, spine plots and spinograms, are essentially mosaic plots with special formatting of spacing
and shading. Conceptually, they plot P (y|x) against P (x). For the spine plot (where both x and y
are categorical), both quantities are approximated by the corresponding empirical relative frequen-
cies. For the spinogram (where x is numerical), x is first discretized (by calling hist with breaks
argument) and then empirical relative frequencies are taken.

Thus, spine plots can also be seen as a generalization of stacked bar plots where not the heights
but the widths of the bars corresponds to the relative frequencies of x. The heights of the bars then
correspond to the conditional relative frequencies of y in every x group. Analogously, spinograms
extend stacked histograms.

Value

The table visualized is returned invisibly.

Author(s)

Achim Zeileis <Achim.Zeileis@R-project.org>

stars 847

References

Friendly, M. (1994), Mosaic displays for multi-way contingency tables. Journal of the American
Statistical Association, 89, 190–200.

Hartigan, J.A., and Kleiner, B. (1984), A mosaic of television ratings. The American Statistician,
38, 32–35.

Hofmann, H., Theus, M. (2005), Interactive graphics for visualizing conditional distributions, Un-
published Manuscript.

Hummel, J. (1996), Linked bar charts: Analysing categorical data graphically. Computational
Statistics, 11, 23–33.

See Also

mosaicplot, hist, cdplot

Examples

treatment and improvement of patients with rheumatoid arthritis
treatment <- factor(rep(c(1, 2), c(43, 41)), levels = c(1, 2),

labels = c("placebo", "treated"))
improved <- factor(rep(c(1, 2, 3, 1, 2, 3), c(29, 7, 7, 13, 7, 21)),

levels = c(1, 2, 3),
labels = c("none", "some", "marked"))

(dependence on a categorical variable)
(spineplot(improved ~ treatment))

applications and admissions by department at UC Berkeley
(two-way tables)
(spineplot(margin.table(UCBAdmissions, c(3, 2)),

main = "Applications at UCB"))
(spineplot(margin.table(UCBAdmissions, c(3, 1)),

main = "Admissions at UCB"))

NASA space shuttle o-ring failures
fail <- factor(c(2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1,

1, 1, 1, 2, 1, 1, 1, 1, 1),
levels = c(1, 2), labels = c("no", "yes"))

temperature <- c(53, 57, 58, 63, 66, 67, 67, 67, 68, 69, 70, 70,
70, 70, 72, 73, 75, 75, 76, 76, 78, 79, 81)

(dependence on a numerical variable)
(spineplot(fail ~ temperature))
(spineplot(fail ~ temperature, breaks = 3))
(spineplot(fail ~ temperature, breaks = quantile(temperature)))

highlighting for failures
spineplot(fail ~ temperature, ylevels = 2:1)

stars Star (Spider/Radar) Plots and Segment Diagrams

848 stars

Description

Draw star plots or segment diagrams of a multivariate data set. With one single location, also draws
‘spider’ (or ‘radar’) plots.

Usage

stars(x, full = TRUE, scale = TRUE, radius = TRUE,
labels = dimnames(x)[[1]], locations = NULL,
nrow = NULL, ncol = NULL, len = 1,
key.loc = NULL, key.labels = dimnames(x)[[2]],
key.xpd = TRUE,
xlim = NULL, ylim = NULL, flip.labels = NULL,
draw.segments = FALSE,
col.segments = 1:n.seg, col.stars = NA, col.lines = NA,
axes = FALSE, frame.plot = axes,
main = NULL, sub = NULL, xlab = "", ylab = "",
cex = 0.8, lwd = 0.25, lty = par("lty"), xpd = FALSE,
mar = pmin(par("mar"),

1.1+ c(2*axes+ (xlab != ""),
2*axes+ (ylab != ""), 1,0)),

add = FALSE, plot = TRUE, ...)

Arguments

x matrix or data frame of data. One star or segment plot will be produced for each
row of x. Missing values (NA) are allowed, but they are treated as if they were 0
(after scaling, if relevant).

full logical flag: if TRUE, the segment plots will occupy a full circle. Otherwise, they
occupy the (upper) semicircle only.

scale logical flag: if TRUE, the columns of the data matrix are scaled independently so
that the maximum value in each column is 1 and the minimum is 0. If FALSE,
the presumption is that the data have been scaled by some other algorithm to the
range [0, 1].

radius logical flag: in TRUE, the radii corresponding to each variable in the data will be
drawn.

labels vector of character strings for labeling the plots. Unlike the S function stars,
no attempt is made to construct labels if labels = NULL.

locations Either two column matrix with the x and y coordinates used to place each of the
segment plots; or numeric of length 2 when all plots should be superimposed
(for a ‘spider plot’). By default, locations = NULL, the segment plots will be
placed in a rectangular grid.

nrow, ncol integers giving the number of rows and columns to use when locations is NULL.
By default, nrow == ncol, a square layout will be used.

len scale factor for the length of radii or segments.

key.loc vector with x and y coordinates of the unit key.

key.labels vector of character strings for labeling the segments of the unit key. If omitted,
the second component of dimnames(x) is used, if available.

key.xpd clipping switch for the unit key (drawing and labeling), see par("xpd").

xlim vector with the range of x coordinates to plot.

stars 849

ylim vector with the range of y coordinates to plot.

flip.labels logical indicating if the label locations should flip up and down from diagram to
diagram. Defaults to a somewhat smart heuristic.

draw.segments logical. If TRUE draw a segment diagram.

col.segments color vector (integer or character, see par), each specifying a color for one of
the segments (variables). Ignored if draw.segments = FALSE.

col.stars color vector (integer or character, see par), each specifying a color for one of
the stars (cases). Ignored if draw.segments = TRUE.

col.lines color vector (integer or character, see par), each specifying a color for one of
the lines (cases). Ignored if draw.segments = TRUE.

axes logical flag: if TRUE axes are added to the plot.

frame.plot logical flag: if TRUE, the plot region is framed.

main a main title for the plot.

sub a sub title for the plot.

xlab a label for the x axis.

ylab a label for the y axis.

cex character expansion factor for the labels.

lwd line width used for drawing.

lty line type used for drawing.

xpd logical or NA indicating if clipping should be done, see par(xpd = .).

mar argument to par(mar = *), typically choosing smaller margins than by default.

... further arguments, passed to the first call of plot(), see plot.default and to
box() if frame.plot is true.

add logical, if TRUE add stars to current plot.

plot logical, if FALSE, nothing is plotted.

Details

Missing values are treated as 0.

Each star plot or segment diagram represents one row of the input x. Variables (columns) start on
the right and wind counterclockwise around the circle. The size of the (scaled) column is shown by
the distance from the center to the point on the star or the radius of the segment representing the
variable.

Only one page of output is produced.

Value

Returns the locations of the plots in a two column matrix, invisibly when plot=TRUE.

Note

This code started life as spatial star plots by David A. Andrews. See http://www.udallas.edu:
8080/~andrews/software/software.html.

Prior to 1.4.1, scaling only shifted the maximum to 1, although documented as here.

http://www.udallas.edu:8080/~andrews/software/software.html
http://www.udallas.edu:8080/~andrews/software/software.html

850 stars

Author(s)

Thomas S. Dye

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

symbols for another way to draw stars and other symbols.

Examples

require(grDevices)
stars(mtcars[, 1:7], key.loc = c(14, 2),

main = "Motor Trend Cars : stars(*, full = F)", full = FALSE)
stars(mtcars[, 1:7], key.loc = c(14, 1.5),

main = "Motor Trend Cars : full stars()",flip.labels=FALSE)

’Spider’ or ’Radar’ plot:
stars(mtcars[, 1:7], locations = c(0,0), radius = FALSE,

key.loc=c(0,0), main="Motor Trend Cars", lty = 2)

Segment Diagrams:
palette(rainbow(12, s = 0.6, v = 0.75))
stars(mtcars[, 1:7], len = 0.8, key.loc = c(12, 1.5),

main = "Motor Trend Cars", draw.segments = TRUE)
stars(mtcars[, 1:7], len = 0.6, key.loc = c(1.5, 0),

main = "Motor Trend Cars", draw.segments = TRUE,
frame.plot=TRUE, nrow = 4, cex = .7)

scale linearly (not affinely) to [0, 1]
USJudge <- apply(USJudgeRatings, 2, function(x) x/max(x))
Jnam <- row.names(USJudgeRatings)
Snam <- abbreviate(substring(Jnam,1,regexpr("[,.]",Jnam) - 1), 7)
stars(USJudge, labels = Jnam, scale = FALSE,

key.loc = c(13, 1.5), main = "Judge not ...", len = 0.8)
stars(USJudge, labels = Snam, scale = FALSE,

key.loc = c(13, 1.5), radius = FALSE)

loc <- stars(USJudge, labels = NULL, scale = FALSE,
radius = FALSE, frame.plot = TRUE,
key.loc = c(13, 1.5), main = "Judge not ...", len = 1.2)

text(loc, Snam, col = "blue", cex = 0.8, xpd = TRUE)

’Segments’:
stars(USJudge, draw.segments = TRUE, scale = FALSE, key.loc = c(13,1.5))

’Spider’:
stars(USJudgeRatings, locations=c(0,0), scale=FALSE,radius = FALSE,

col.stars=1:10, key.loc = c(0,0), main="US Judges rated")
Same as above, but with colored lines instead of filled polygons.
stars(USJudgeRatings, locations=c(0,0), scale=FALSE,radius = FALSE,

col.lines=1:10, key.loc = c(0,0), main="US Judges rated")
’Radar-Segments’

stem 851

stars(USJudgeRatings[1:10,], locations = 0:1, scale=FALSE,
draw.segments = TRUE, col.segments=0, col.stars=1:10,key.loc= 0:1,
main="US Judges 1-10 ")

palette("default")
stars(cbind(1:16,10*(16:1)),draw.segments=TRUE,

main = "A Joke -- do *not* use symbols on 2D data!")

stem Stem-and-Leaf Plots

Description

stem produces a stem-and-leaf plot of the values in x. The parameter scale can be used to expand
the scale of the plot. A value of scale=2 will cause the plot to be roughly twice as long as the
default.

Usage

stem(x, scale = 1, width = 80, atom = 1e-08)

Arguments

x a numeric vector.

scale This controls the plot length.

width The desired width of plot.

atom a tolerance.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

stem(islands)
stem(log10(islands))

stripchart 1-D Scatter Plots

Description

stripchart produces one dimensional scatter plots (or dot plots) of the given data. These plots are
a good alternative to boxplots when sample sizes are small.

852 stripchart

Usage

stripchart(x, ...)

S3 method for class ’formula’
stripchart(x, data = NULL, dlab = NULL, ...,

subset, na.action = NULL)

Default S3 method:
stripchart(x, method = "overplot", jitter = 0.1, offset = 1/3,

vertical = FALSE, group.names, add = FALSE,
at = NULL, xlim = NULL, ylim = NULL,
ylab=NULL, xlab=NULL, dlab="", glab="",
log = "", pch = 0, col = par("fg"), cex = par("cex"),
axes = TRUE, frame.plot = axes, ...)

Arguments

x the data from which the plots are to be produced. In the default method the
data can be specified as a single numeric vector, or as list of numeric vectors,
each corresponding to a component plot. In the formula method, a symbolic
specification of the form y ~ g can be given, indicating the observations in the
vector y are to be grouped according to the levels of the factor g. NAs are allowed
in the data.

data a data.frame (or list) from which the variables in x should be taken.

subset an optional vector specifying a subset of observations to be used for plotting.

na.action a function which indicates what should happen when the data contain NAs. The
default is to ignore missing values in either the response or the group.

... additional parameters passed to the default method, or by it to plot, points,
axis and title to control the appearance of the plot.

method the method to be used to separate coincident points. The default method
"overplot" causes such points to be overplotted, but it is also possible to spec-
ify "jitter" to jitter the points, or "stack" have coincident points stacked.
The last method only makes sense for very granular data.

jitter when method="jitter" is used, jitter gives the amount of jittering applied.

offset when stacking is used, points are stacked this many line-heights (symbol widths)
apart.

vertical when vertical is TRUE the plots are drawn vertically rather than the default hori-
zontal.

group.names group labels which will be printed alongside (or underneath) each plot.

add logical, if true add the chart to the current plot.

at numeric vector giving the locations where the charts should be drawn, particu-
larly when add = TRUE; defaults to 1:n where n is the number of boxes.

ylab, xlab labels: see title.

dlab, glab alternate way to specify axis labels: see ‘Details’.

xlim, ylim plot limits: see plot.window.

log on which axes to use a log scale: see plot.default

strwidth 853

pch, col, cex Graphical parameters: see par.
axes, frame.plot

Axis control: see plot.default

Details

Extensive examples of the use of this kind of plot can be found in Box, Hunter and Hunter or Seber
and Wild.

The dlab and glab labels may be used instead of xlab and ylab if those are not specified. dlab
applies to the continuous data axis (the X axis unless vertical is TRUE), glab to the group axis.

Examples

x <- stats::rnorm(50)
xr <- round(x, 1)
stripchart(x) ; m <- mean(par("usr")[1:2])
text(m, 1.04, "stripchart(x, \"overplot\")")
stripchart(xr, method = "stack", add = TRUE, at = 1.2)
text(m, 1.35, "stripchart(round(x,1), \"stack\")")
stripchart(xr, method = "jitter", add = TRUE, at = 0.7)
text(m, 0.85, "stripchart(round(x,1), \"jitter\")")

stripchart(decrease ~ treatment,
main = "stripchart(OrchardSprays)",
vertical = TRUE, log = "y", data = OrchardSprays)

stripchart(decrease ~ treatment, at = c(1:8)^2,
main = "stripchart(OrchardSprays)",
vertical = TRUE, log = "y", data = OrchardSprays)

strwidth Plotting Dimensions of Character Strings and Math Expressions

Description

These functions compute the width or height, respectively, of the given strings or mathematical
expressions s[i] on the current plotting device in user coordinates, inches or as fraction of the
figure width par("fin").

Usage

strwidth(s, units = "user", cex = NULL, font = NULL, vfont = NULL, ...)
strheight(s, units = "user", cex = NULL, font = NULL, vfont = NULL, ...)

Arguments

s a character or expression vector whose dimensions are to be determined. Other
objects are coerced by as.graphicsAnnot.

units character indicating in which units s is measured; should be one of "user",
"inches", "figure"; partial matching is performed.

cex numeric character expansion factor; multiplied by par("cex") yields the final
character size; the default NULL is equivalent to 1.

854 strwidth

font, vfont, ...

additional information about the font, possibly including the graphics parameter
"family": see text.

Details

Note that the ‘height’ of a string is determined only by the number of linefeeds ("\n") it contains:
it is the (number of linefeeds - 1) times the line spacing plus the height of "M" in the selected font.
For an expression it is the height of the bounding box as computed by plotmath. Thus in both cases
it is an estimate of how far above the final baseline the typeset object extends. (It may also extend
below the baseline.) The inter-line spacing is controlled by cex, par("lheight") and the ‘point
size’ (but not the actual font in use).

Measurements in "user" units (the default) are only available after plot.new has been called –
otherwise an error is thrown.

Value

Numeric vector with the same length as s, giving the estimate of width or height for each s[i]. NA
strings are given width and height 0 (as they are not plotted).

See Also

text, nchar

Examples

str.ex <- c("W","w","I",".","WwI.")
op <- par(pty=’s’); plot(1:100,1:100, type="n")
sw <- strwidth(str.ex); sw
all.equal(sum(sw[1:4]), sw[5])
#- since the last string contains the others

sw.i <- strwidth(str.ex, "inches"); 25.4 * sw.i # width in [mm]
unique(sw / sw.i)
constant factor: 1 value
mean(sw.i / strwidth(str.ex, "fig")) / par(’fin’)[1] # = 1: are the same

See how letters fall in classes
-- depending on graphics device and font!
all.lett <- c(letters, LETTERS)
shL <- strheight(all.lett, units = "inches") * 72 # ’big points’
table(shL) # all have same heights ...
mean(shL)/par("cin")[2] # around 0.6

(swL <- strwidth(all.lett, units="inches") * 72) # ’big points’
split(all.lett, factor(round(swL, 2)))

sumex <- expression(sum(x[i], i=1,n), e^{i * pi} == -1)
strwidth(sumex)
strheight(sumex)

par(op)#- reset to previous setting

sunflowerplot 855

sunflowerplot Produce a Sunflower Scatter Plot

Description

Multiple points are plotted as ‘sunflowers’ with multiple leaves (‘petals’) such that overplotting is
visualized instead of accidental and invisible.

Usage

sunflowerplot(x, ...)

Default S3 method:
sunflowerplot(x, y = NULL, number, log = "", digits = 6,

xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
add = FALSE, rotate = FALSE,
pch = 16, cex = 0.8, cex.fact = 1.5,
col = par("col"), bg = NA, size = 1/8, seg.col = 2,
seg.lwd = 1.5, ...)

S3 method for class ’formula’
sunflowerplot(formula, data = NULL, xlab = NULL, ylab = NULL, ...,

subset, na.action = NULL)

Arguments

x numeric vector of x-coordinates of length n, say, or another valid plotting struc-
ture, as for plot.default, see also xy.coords.

y numeric vector of y-coordinates of length n.

number integer vector of length n. number[i] = number of replicates for (x[i],y[i]),
may be 0.
Default (missing(number)): compute the exact multiplicity of the points
x[],y[], via xyTable().

log character indicating log coordinate scale, see plot.default.

digits when number is computed (i.e., not specified), x and y are rounded to digits
significant digits before multiplicities are computed.

xlab,ylab character label for x-, or y-axis, respectively.

xlim,ylim numeric(2) limiting the extents of the x-, or y-axis.

add logical; should the plot be added on a previous one ? Default is FALSE.

rotate logical; if TRUE, randomly rotate the sunflowers (preventing artefacts).

pch plotting character to be used for points (number[i]==1) and center of sunflow-
ers.

cex numeric; character size expansion of center points (s. pch).

cex.fact numeric shrinking factor to be used for the center points when there are flower
leaves, i.e., cex / cex.fact is used for these.

col, bg colors for the plot symbols, passed to plot.default.

856 sunflowerplot

size of sunflower leaves in inches, 1[in] := 2.54[cm]. Default: 1/8\", approximately
3.2mm.

seg.col color to be used for the segments which make the sunflowers leaves, see
par(col=); col = "gold" reminds of real sunflowers.

seg.lwd numeric; the line width for the leaves’ segments.

... further arguments to plot [if add = FALSE], or to be passed to or from another
method.

formula a formula, such as y ~ x.

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is to ignore case with missing values.

Details

This is a generic function with default and formula methods.

For number[i] == 1, a (slightly enlarged) usual plotting symbol (pch) is drawn. For
number[i] > 1, a small plotting symbol is drawn and number[i] equi-angular ‘rays’ emanate
from it.

If rotate = TRUE and number[i] >= 2, a random direction is chosen (instead of the y-axis) for
the first ray. The goal is to jitter the orientations of the sunflowers in order to prevent artefactual
visual impressions.

Value

A list with three components of same length,

x x coordinates

y y coordinates

number number

Use xyTable() (from package grDevices) if you are only interested in this return value.

Side Effects

A scatter plot is drawn with ‘sunflowers’ as symbols.

Author(s)

Andreas Ruckstuhl, Werner Stahel, Martin Maechler, Tim Hesterberg, 1989–1993. Port to R by
Martin Maechler <maechler@stat.math.ethz.ch>.

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data
Analysis. Wadsworth.

Schilling, M. F. and Watkins, A. E. (1994) A suggestion for sunflower plots. The American Statis-
tician, 48, 303–305.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

symbols 857

See Also

density, xyTable

Examples

require(stats)
require(grDevices)

’number’ is computed automatically:
sunflowerplot(iris[, 3:4])
Imitating Chambers et al., p.109, closely:
sunflowerplot(iris[, 3:4], cex=.2, cex.fact=1, size=.035, seg.lwd=.8)
or
sunflowerplot(Petal.Width ~ Petal.Length, data=iris,

cex=.2, cex.fact=1, size=.035, seg.lwd=.8)

sunflowerplot(x=sort(2*round(rnorm(100))), y= round(rnorm(100),0),
main = "Sunflower Plot of Rounded N(0,1)")

Similarly using a "xyTable" argument:
xyT <- xyTable(x=sort(2*round(rnorm(100))), y= round(rnorm(100),0),

digits=3)
utils::str(xyT, vec.len=20)
sunflowerplot(xyT, main = "2nd Sunflower Plot of Rounded N(0,1)")

A ’marked point process’ {explicit ’number’ argument}:
sunflowerplot(rnorm(100), rnorm(100), number = rpois(n=100,lambda=2),

main="Sunflower plot (marked point process)",
rotate=TRUE, col = "blue4")

symbols Draw Symbols (Circles, Squares, Stars, Thermometers, Boxplots)

Description

This function draws symbols on a plot. One of six symbols; circles, squares, rectangles, stars,
thermometers, and boxplots, can be plotted at a specified set of x and y coordinates. Specific
aspects of the symbols, such as relative size, can be customized by additional parameters.

Usage

symbols(x, y = NULL, circles, squares, rectangles, stars,
thermometers, boxplots, inches = TRUE, add = FALSE,
fg = par("col"), bg = NA,
xlab = NULL, ylab = NULL, main = NULL,
xlim = NULL, ylim = NULL, ...)

Arguments

x, y the x and y co-ordinates for the centres of the symbols. They can be specified in
any way which is accepted by xy.coords.

circles a vector giving the radii of the circles.

858 symbols

squares a vector giving the length of the sides of the squares.

rectangles a matrix with two columns. The first column gives widths and the second the
heights of rectangles.

stars a matrix with three or more columns giving the lengths of the rays from the
center of the stars. NA values are replaced by zeroes.

thermometers a matrix with three or four columns. The first two columns give the width and
height of the thermometer symbols. If there are three columns, the third is taken
as a proportion: the thermometers are filled (using colour fg) from their base
to this proportion of their height. If there are four columns, the third and fourth
columns are taken as proportions and the thermometers are filled between these
two proportions of their heights. The part of the box not filled in fg will be filled
in the background colour (default transparent) given by bg.

boxplots a matrix with five columns. The first two columns give the width and height of
the boxes, the next two columns give the lengths of the lower and upper whiskers
and the fifth the proportion (with a warning if not in [0,1]) of the way up the box
that the median line is drawn.

inches TRUE, FALSE or a positive number. See ‘Details’.

add if add is TRUE, the symbols are added to an existing plot, otherwise a new plot is
created.

fg colour(s) the symbols are to be drawn in.

bg if specified, the symbols are filled with colour(s), the vector bg being recycled
to the number of symbols. The default is to leave the symbols unfilled.

xlab the x label of the plot if add is not true. Defaults to the deparsed expression
used for x.

ylab the y label of the plot. Unused if add = TRUE.

main a main title for the plot. Unused if add = TRUE.

xlim numeric vector of length 2 giving the x limits for the plot. Unused if
add = TRUE.

ylim numeric vector of length 2 giving the y limits for the plot. Unused if
add = TRUE.

... graphics parameters can also be passed to this function, as can the plot aspect
ratio asp (see plot.window).

Details

Observations which have missing coordinates or missing size parameters are not plotted. The ex-
ception to this is stars. In that case, the length of any ray which is NA is reset to zero.

Argument inches controls the sizes of the symbols. If TRUE (the default), the symbols are scaled
so that the largest dimension of any symbol is one inch. If a positive number is given the symbols
are scaled to make largest dimension this size in inches (so TRUE and 1 are equivalent). If inches
is FALSE, the units are taken to be those of the appropriate axes. (For circles, squares and stars the
units of the x axis are used. For boxplots, the lengths of the whiskers are regarded as dimensions
alongside width and height when scaling by inches, and are otherwise interpreted in the units of
the y axis.)

Circles of radius zero are plotted at radius one pixel (which is device-dependent). Circles of a very
small non-zero radius may or may not be visible, and may be smaller than circles of radius zero.
On windows devices circles are plotted at radius at least one pixel as some Windows versions omit
smaller circles.

text 859

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

W. S. Cleveland (1985) The Elements of Graphing Data. Monterey, California: Wadsworth.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

stars for drawing stars with a bit more flexibility.

If you are thinking about doing ‘bubble plots’ by symbols(*, circles=*), you should really
consider using sunflowerplot instead.

Examples

require(stats); require(grDevices)
x <- 1:10
y <- sort(10*runif(10))
z <- runif(10)
z3 <- cbind(z, 2*runif(10), runif(10))
symbols(x, y, thermometers = cbind(.5, 1, z), inches = .5, fg = 1:10)
symbols(x, y, thermometers = z3, inches = FALSE)
text(x,y, apply(format(round(z3, digits=2)), 1, paste, collapse = ","),

adj = c(-.2,0), cex = .75, col = "purple", xpd = NA)

Note that example(trees) shows more sensible plots!
N <- nrow(trees)
with(trees, {
Girth is diameter in inches
symbols(Height, Volume, circles = Girth/24, inches = FALSE,

main = "Trees’ Girth") # xlab and ylab automatically
Colours too:
op <- palette(rainbow(N, end = 0.9))
symbols(Height, Volume, circles = Girth/16, inches = FALSE, bg = 1:N,

fg = "gray30", main = "symbols(*, circles = Girth/16, bg = 1:N)")
palette(op)
})

text Add Text to a Plot

Description

text draws the strings given in the vector labels at the coordinates given by x and y. y may be
missing since xy.coords(x,y) is used for construction of the coordinates.

Usage

text(x, ...)

Default S3 method:
text(x, y = NULL, labels = seq_along(x), adj = NULL,

pos = NULL, offset = 0.5, vfont = NULL,
cex = 1, col = NULL, font = NULL, ...)

860 text

Arguments

x, y numeric vectors of coordinates where the text labels should be written. If the
length of x and y differs, the shorter one is recycled.

labels a character vector or expression specifying the text to be written. An attempt is
made to coerce other language objects (names and calls) to expressions, and vec-
tors and other classed objects to character vectors by as.character. If labels
is longer than x and y, the coordinates are recycled to the length of labels.

adj one or two values in [0, 1] which specify the x (and optionally y) adjustment of
the labels. On most devices values outside that interval will also work.

pos a position specifier for the text. If specified this overrides any adj value given.
Values of 1, 2, 3 and 4, respectively indicate positions below, to the left of, above
and to the right of the specified coordinates.

offset when pos is specified, this value gives the offset of the label from the specified
coordinate in fractions of a character width.

vfont NULL for the current font family, or a character vector of length 2 for Hershey
vector fonts. The first element of the vector selects a typeface and the second
element selects a style. Ignored if labels is an expression.

cex numeric character expansion factor; multiplied by par("cex") yields the final
character size. NULL and NA are equivalent to 1.0.

col, font the color and (if vfont = NULL) font to be used, possibly vectors. These default
to the values of the global graphical parameters in par().

... further graphical parameters (from par), such as srt, family and xpd.

Details

labels must be of type character or expression (or be coercible to such a type). In the latter
case, quite a bit of mathematical notation is available such as sub- and superscripts, greek letters,
fractions, etc.

adj allows adjustment of the text with respect to (x,y). Values of 0, 0.5, and 1 specify
left/bottom, middle and right/top alignment, respectively. The default is for centered text, i.e.,
adj = c(0.5, NA). Accurate vertical centering needs character metric information on individual
characters which is only available on some devices. Vertical alignment is done slightly differently
for character strings and for expressions: adj=c(0,0) means to left-justify and to align on the base-
line for strings but on the bottom of the bounding box for expressions. This also affects vertical
centering: for strings the centering excludes any descenders whereas for expressions it includes
them. Using NA for strings centers them, including descenders.

The pos and offset arguments can be used in conjunction with values returned by identify to
recreate an interactively labelled plot.

Text can be rotated by using graphical parameters srt (see par); this rotates about the centre set by
adj.

Graphical parameters col, cex and font can be vectors and will then be applied cyclically to the
labels (and extra values will be ignored). NA values of font are replaced by par("font"), and
similarly for col.

Labels whose x, y or labels value is NA are omitted from the plot.

What happens when font = 5 (the symbol font) is selected can be both device- and locale-
dependent. Most often labels will be interpreted in the Adobe symbol encoding, so e.g. "d"
is delta, and "\300" is aleph.

title 861

Euro symbol

The Euro symbol was introduced relatively recently and may not be available in older fonts. In
recent versions of Adobe symbol fonts it is character 160, so text(x, y, "\xA0", font = 5)
may work. People using Western European locales on Unix-alikes can probably select ISO-8895-
15 (Latin-9) which has the Euro as character 165: this can also be used for postscript and pdf. It
is ‘\u20ac’ in Unicode, which can be used in UTF-8 locales.

In all the European Windows encodings the Euro is symbol 128 and ‘\u20ac’ will work in all
locales: however not all fonts will include it. It is not in the symbol font used for windows and
related devices, including the Windows printer.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

text.formula for the formula method; mtext, title, Hershey for details on Hershey vector fonts,
plotmath for details and more examples on mathematical annotation.

Examples

plot(-1:1,-1:1, type = "n", xlab = "Re", ylab = "Im")
K <- 16; text(exp(1i * 2 * pi * (1:K) / K), col = 2)

The following two examples use latin1 characters: these may not
appear correctly (or be omitted entirely).
plot(1:10, 1:10, main = "text(...) examples\n~~~~~~~~~~~~~~",

sub = "R is GNU ©, but not ® ...")
mtext("«Latin-1 accented chars»: éè øØ å<Å æ<Æ", side=3)
points(c(6,2), c(2,1), pch = 3, cex = 4, col = "red")
text(6, 2, "the text is CENTERED around (x,y) = (6,2) by default",

cex = .8)
text(2, 1, "or Left/Bottom - JUSTIFIED at (2,1) by ’adj = c(0,0)’",

adj = c(0,0))
text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y))
text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)",

cex = .75)
text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n)))

Two more latin1 examples
text(5,10.2,

"Le français, c’est façile: Règles, Liberté, Egalité, Fraternité...")
text(5,9.8,

"Jetz no chli züritüütsch: (noch ein bißchen Zürcher deutsch)")

title Plot Annotation

862 title

Description

This function can be used to add labels to a plot. Its first four principal arguments can also be used as
arguments in most high-level plotting functions. They must be of type character or expression.
In the latter case, quite a bit of mathematical notation is available such as sub- and superscripts,
greek letters, fractions, etc: see plotmath

Usage

title(main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
line = NA, outer = FALSE, ...)

Arguments

main The main title (on top) using font and size (character expansion)
par("font.main") and color par("col.main").

sub Sub-title (at bottom) using font and size par("font.sub") and color
par("col.sub").

xlab X axis label using font and character expansion par("font.lab") and color
par("col.lab").

ylab Y axis label, same font attributes as xlab.

line specifying a value for line overrides the default placement of labels, and places
them this many lines outwards from the plot edge.

outer a logical value. If TRUE, the titles are placed in the outer margins of the plot.

... further graphical parameters from par. Use e.g., col.main or cex.sub instead
of just col or cex. adj controls the justification of the titles. xpd can be used to
set the clipping region: this defaults to the figure region unless outer = TRUE,
otherwise the device region and can only be increased. mgp controls the default
placing of the axis titles.

Details

The labels passed to title can be character strings or language objects (names, calls or expres-
sions), or a list containing the string to be plotted, and a selection of the optional modifying graphi-
cal parameters cex=, col= and font=. Other objects will be coerced by as.graphicsAnnot.

The position of main defaults to being vertically centered in (outer) margin 3 and justified horizon-
tally according to par("adj") on the plot region (device region for outer=TRUE).

The positions of xlab, ylab and sub are line (default for xlab and ylab being par("mgp")[1]
and increased by 1 for sub) lines (of height par("mex")) into the appropriate margin, justified in
the text direction according to par("adj") on the plot/device region.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

mtext, text; plotmath for details on mathematical annotation.

units 863

Examples

plot(cars, main = "") # here, could use main directly
title(main = "Stopping Distance versus Speed")

plot(cars, main = "")
title(main = list("Stopping Distance versus Speed", cex=1.5,

col="red", font=3))

Specifying "..." :
plot(1, col.axis = "sky blue", col.lab = "thistle")
title("Main Title", sub = "sub title",

cex.main = 2, font.main= 4, col.main= "blue",
cex.sub = 0.75, font.sub = 3, col.sub = "red")

x <- seq(-4, 4, len = 101)
y <- cbind(sin(x), cos(x))
matplot(x, y, type = "l", xaxt = "n",

main = expression(paste(plain(sin) * phi, " and ",
plain(cos) * phi)),

ylab = expression("sin" * phi, "cos" * phi), # only 1st is taken
xlab = expression(paste("Phase Angle ", phi)),
col.main = "blue")

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),
labels = expression(-pi, -pi/2, 0, pi/2, pi))

abline(h = 0, v = pi/2 * c(-1,1), lty = 2, lwd = .1, col = "gray70")

units Graphical Units

Description

xinch and yinch convert the specified number of inches given as their arguments into the correct
units for plotting with graphics functions. Usually, this only makes sense when normal coordinates
are used, i.e., no log scale (see the log argument to par).

xyinch does the same for a pair of numbers xy, simultaneously.

Usage

xinch(x = 1, warn.log = TRUE)
yinch(y = 1, warn.log = TRUE)
xyinch(xy = 1, warn.log = TRUE)

Arguments

x,y numeric vector

xy numeric of length 1 or 2.

warn.log logical; if TRUE, a warning is printed in case of active log scale.

864 xspline

Examples

all(c(xinch(),yinch()) == xyinch()) # TRUE
xyinch()
xyinch #- to see that is really delta{"usr"} / "pin"

plot labels offset 0.12 inches to the right
of plotted symbols in a plot
with(mtcars, {

plot(mpg, disp, pch=19, main= "Motor Trend Cars")
text(mpg + xinch(0.12), disp, row.names(mtcars),

adj = 0, cex = .7, col = ’blue’)
})

xspline Draw an X-spline

Description

Draw an X-spline, a curve drawn relative to control points.

Usage

xspline(x, y = NULL, shape = 0, open = TRUE, repEnds = TRUE,
draw = TRUE, border = par("fg"), col = NA, ...)

Arguments

x,y vectors containing the coordinates of the vertices of the polygon. See xy.coords
for alternatives.

shape A numeric vector of values between -1 and 1, which control the shape of the
spline relative to the control points.

open A logical value indicating whether the spline is an open or a closed shape.

repEnds For open X-splines, a logical value indicating whether the first and last control
points should be replicated for drawing the curve. Ignored for closed X-splines.

draw logical: should the X-spline be drawn? If false, a set of line segments to draw
the curve is returned, and nothing is drawn.

border the color to draw the curve. Use border = NA to omit borders.

col the color for filling the shape. The default, NA, is to leave unfilled.

... graphical parameters such as lty, xpd, lend, ljoin and lmitre can be given as
arguments.

Details

An X-spline is a line drawn relative to control points. For each control point, the line may pass
through (interpolate) the control point or it may only approach (approximate) the control point; the
behaviour is determined by a shape parameter for each control point.

If the shape parameter is greater than zero, the spline approximates the control points (and is very
similar to a cubic B-spline when the shape is 1). If the shape parameter is less than zero, the spline

xspline 865

interpolates the control points (and is very similar to a Catmull-Rom spline when the shape is -1).
If the shape parameter is 0, the spline forms a sharp corner at that control point.

For open X-splines, the start and end control points must have a shape of 0 (and non-zero values are
silently converted to zero).

For open X-splines, by default the start and end control points are replicated before the curve is
drawn. A curve is drawn between (interpolating or approximating) the second and third of each set
of four control points, so this default behaviour ensures that the resulting curve starts at the first
control point you have specified and ends at the last control point. The default behaviour can be
turned off via the repEnds argument.

Value

If draw = TRUE, NULL otherwise a list with elements x and y which could be passed to lines,
polygon and so on.

Invisible in both cases.

Note

Two-dimensional splines need to be created in an isotropic coordinate system. Device coordinates
are used (with an anisotropy correction if needed.)

References

Blanc, C. and Schlick, C. (1995), X-splines : A Spline Model Designed for the End User, in Proceed-
ings of SIGGRAPH 95, pp. 377–386. http://dept-info.labri.fr/~schlick/DOC/sig1.html

See Also

polygon.

par for how to specify colors.

Examples

based on examples in ?grid.xspline

xsplineTest <- function(s, open = TRUE,
x = c(1,1,3,3)/4,
y = c(1,3,3,1)/4, ...) {

plot(c(0,1), c(0,1), type="n", axes=FALSE, xlab="", ylab="")
points(x, y, pch=19)
xspline(x, y, s, open, ...)
text(x+0.05*c(-1,-1,1,1), y+0.05*c(-1,1,1,-1), s)

}
op <- par(mfrow=c(3,3), mar=rep(0,4), oma=c(0,0,2,0))
xsplineTest(c(0, -1, -1, 0))
xsplineTest(c(0, -1, 0, 0))
xsplineTest(c(0, -1, 1, 0))
xsplineTest(c(0, 0, -1, 0))
xsplineTest(c(0, 0, 0, 0))
xsplineTest(c(0, 0, 1, 0))
xsplineTest(c(0, 1, -1, 0))
xsplineTest(c(0, 1, 0, 0))
xsplineTest(c(0, 1, 1, 0))
title("Open X-splines", outer=TRUE)

http://dept-info.labri.fr/~schlick/DOC/sig1.html

866 xspline

par(mfrow=c(3,3), mar=rep(0,4), oma=c(0,0,2,0))
xsplineTest(c(0, -1, -1, 0), FALSE, col="grey80")
xsplineTest(c(0, -1, 0, 0), FALSE, col="grey80")
xsplineTest(c(0, -1, 1, 0), FALSE, col="grey80")
xsplineTest(c(0, 0, -1, 0), FALSE, col="grey80")
xsplineTest(c(0, 0, 0, 0), FALSE, col="grey80")
xsplineTest(c(0, 0, 1, 0), FALSE, col="grey80")
xsplineTest(c(0, 1, -1, 0), FALSE, col="grey80")
xsplineTest(c(0, 1, 0, 0), FALSE, col="grey80")
xsplineTest(c(0, 1, 1, 0), FALSE, col="grey80")
title("Closed X-splines", outer=TRUE)

par(op)

x <- sort(stats::rnorm(5))
y <- sort(stats::rnorm(5))
plot(x, y, pch=19)
res <- xspline(x, y, 1, draw=FALSE)
lines(res)
the end points may be very close together,
so use last few for direction
nr <- length(res$x)
arrows(res$x[1], res$y[1], res$x[4], res$y[4], code=1, length=0.1)
arrows(res$x[nr-3], res$y[nr-3], res$x[nr], res$y[nr],

code = 2, length = 0.1)

Chapter 5

The grid package

grid-package The Grid Graphics Package

Description

A rewrite of the graphics layout capabilities, plus some support for interaction.

Details

This package contains a graphics system which supplements S-style graphics (see the graphics
package).

Further information is available in the following vignettes:

grid Introduction to grid (../doc/grid.pdf)
displaylist Display Lists in grid (../doc/displaylist.pdf)
frame Frames and packing grobs (../doc/frame.pdf)
grobs Working with grid grobs (../doc/grobs.pdf)
interactive Editing grid Graphics (../doc/interactive.pdf)
locndimn Locations versus Dimensions (../doc/locndimn.pdf)
moveline Demonstrating move-to and line-to (../doc/moveline.pdf)
nonfinite How grid responds to non-finite values (../doc/nonfinite.pdf)
plotexample Writing grid Code (../doc/plotexample.pdf)
rotated Rotated Viewports (../doc/rotated.pdf)
saveload Persistent representations (../doc/saveload.pdf)
sharing Modifying multiple grobs simultaneously (../doc/sharing.pdf)
viewports Working with grid viewports (../doc/viewports.pdf)

For a complete list of functions with individual help pages, use library(help="grid").

Author(s)

Paul Murrell <paul@stat.auckland.ac.nz>

Maintainer: R Core Team <R-core@r-project.org>

867

../doc/grid.pdf
../doc/displaylist.pdf
../doc/frame.pdf
../doc/grobs.pdf
../doc/interactive.pdf
../doc/locndimn.pdf
../doc/moveline.pdf
../doc/nonfinite.pdf
../doc/plotexample.pdf
../doc/rotated.pdf
../doc/saveload.pdf
../doc/sharing.pdf
../doc/viewports.pdf

868 absolute.size

References

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

absolute.size Absolute Size of a Grob

Description

This function converts a unit object into absolute units. Absolute units are unaffected, but non-
absolute units are converted into "null" units.

Usage

absolute.size(unit)

Arguments

unit An object of class "unit".

Details

Absolute units are things like "inches", "cm", and "lines". Non-absolute units are "npc" and
"native".

This function is designed to be used in widthDetails and heightDetails methods.

Value

An object of class "unit".

Author(s)

Paul Murrell

See Also

widthDetails and heightDetails methods.

arrow 869

arrow Describe arrows to add to a line.

Description

Produces a description of what arrows to add to a line. The result can be passed to a function that
draws a line, e.g., grid.lines.

Usage

arrow(angle = 30, length = unit(0.25, "inches"),
ends = "last", type = "open")

Arguments

angle The angle of the arrow head in degrees (smaller numbers produce narrower,
pointier arrows). Essentially describes the width of the arrow head.

length A unit specifying the length of the arrow head (from tip to base).

ends One of "last", "first", or "both", indicating which ends of the line to draw
arrow heads.

type One of "open" or "closed" indicating whether the arrow head should be a
closed triangle.

Examples

arrow()

calcStringMetric Calculate Metric Information for Text

Description

This function returns the ascent, descent, and width metric information for a character or expression
vector.

Usage

calcStringMetric(text)

Arguments

text A character or expression vector.

Value

A list with three numeric components named ascent, descent, and width. All values are in inches.

870 calcStringMetric

WARNING

The metric information from this function is based on the font settings that are in effect when this
function is called. It will not necessarily correspond to the metric information of any text that is
drawn on the page.

Author(s)

Paul Murrell

See Also

stringAscent, stringDescent, grobAscent, and grobDescent.

Examples

grid.newpage()
grid.segments(.01, .5, .99, .5, gp=gpar(col="grey"))
metrics <- calcStringMetric(letters)
grid.rect(x=1:26/27,

width=unit(metrics$width, "inches"),
height=unit(metrics$ascent, "inches"),
just="bottom",
gp=gpar(col="red"))

grid.rect(x=1:26/27,
width=unit(metrics$width, "inches"),
height=unit(metrics$descent, "inches"),
just="top",
gp=gpar(col="red"))

grid.text(letters, x=1:26/27, just="bottom")

test <- function(x) {
grid.text(x, just="bottom")
metric <- calcStringMetric(x)
if (is.character(x)) {

grid.rect(width=unit(metric$width, "inches"),
height=unit(metric$ascent, "inches"),
just="bottom",
gp=gpar(col=rgb(1,0,0,.5)))

grid.rect(width=unit(metric$width, "inches"),
height=unit(metric$descent, "inches"),
just="top",
gp=gpar(col=rgb(1,0,0,.5)))

} else {
grid.rect(width=unit(metric$width, "inches"),

y=unit(.5, "npc") + unit(metric[2], "inches"),
height=unit(metric$ascent, "inches"),
just="bottom",
gp=gpar(col=rgb(1,0,0,.5)))

grid.rect(width=unit(metric$width, "inches"),
height=unit(metric$descent, "inches"),
just="bottom",
gp=gpar(col=rgb(1,0,0,.5)))

}
}

tests <- list("t",

convertNative 871

"test",
"testy",
"test\ntwo",
expression(x),
expression(y),
expression(x + y),
expression(a + b),
expression(atop(x + y, 2)))

grid.newpage()
nrowcol <- n2mfrow(length(tests))
pushViewport(viewport(layout=grid.layout(nrowcol[1], nrowcol[2]),

gp=gpar(cex=5, lwd=.5)))
for (i in 1:length(tests)) {

col <- (i - 1) %% nrowcol[2] + 1
row <- (i - 1) %/% nrowcol[2] + 1
pushViewport(viewport(layout.pos.row=row, layout.pos.col=col))
test(tests[[i]])
popViewport()

}

convertNative Convert a Unit Object to Native units

Description

This function is deprecated in grid version 0.8 and will be made defunct in grid version 1.9
You should use the convertUnit() function or one of its close allies instead.

This function returns a numeric vector containing the specified x or y locations or dimensions,
converted to "user" or "data" units, relative to the current viewport.

Usage

convertNative(unit, dimension="x", type="location")

Arguments

unit A unit object.

dimension Either "x" or "y".

type Either "location" or "dimension".

Value

A numeric vector.

WARNING

If you draw objects based on output from these conversion functions, then resize your device, the
objects will be drawn incorrectly – the base R display list will not recalculate these conversions.
This means that you can only rely on the results of these calculations if the size of your device is
fixed.

872 dataViewport

Author(s)

Paul Murrell

See Also

grid.convert, unit

Examples

grid.newpage()
pushViewport(viewport(width=unit(.5, "npc"),

height=unit(.5, "npc")))
grid.rect()
w <- convertNative(unit(1, "inches"))
h <- convertNative(unit(1, "inches"), "y")
This rectangle starts off life as 1in square, but if you
resize the device it will no longer be 1in square
grid.rect(width=unit(w, "native"), height=unit(h, "native"),

gp=gpar(col="red"))
popViewport(1)

How to use grid.convert(), etc instead
convertNative(unit(1, "inches")) ==

convertX(unit(1, "inches"), "native", valueOnly=TRUE)
convertNative(unit(1, "inches"), "y", "dimension") ==

convertHeight(unit(1, "inches"), "native", valueOnly=TRUE)

dataViewport Create a Viewport with Scales based on Data

Description

This is a convenience function for producing a viewport with x- and/or y-scales based on numeric
values passed to the function.

Usage

dataViewport(xData = NULL, yData = NULL, xscale = NULL,
yscale = NULL, extension = 0.05, ...)

Arguments

xData A numeric vector of data.

yData A numeric vector of data.

xscale A numeric vector (length 2).

yscale A numeric vector (length 2).

extension A numeric. If length greater than 1, then first value is used to extend the xscale
and second value is used to extend the yscale.

... All other arguments will be passed to a call to the viewport() function.

drawDetails 873

Details

If xscale is not specified then the values in x are used to generate an x-scale based on the range of
x, extended by the proportion specified in extension. Similarly for the y-scale.

Value

A grid viewport object.

Author(s)

Paul Murrell

See Also

viewport and plotViewport.

drawDetails Customising grid Drawing

Description

These generic hook functions are called whenever a grid grob is drawn. They provide an opportunity
for customising the drawing of a new class derived from grob (or gTree).

Usage

drawDetails(x, recording)
draw.details(x, recording)
preDrawDetails(x)
postDrawDetails(x)

Arguments

x A grid grob.

recording A logical value indicating whether a grob is being added to the display list or
redrawn from the display list.

Details

These functions are called by the grid.draw methods for grobs and gTrees.

preDrawDetails is called first during the drawing of a grob. This is where any additional view-
ports should be pushed (see, for example, grid:::preDrawDetails.frame). Note that the default
behaviour for grobs is to push any viewports in the vp slot, and for gTrees is to also push and up
any viewports in the childrenvp slot so there is typically nothing to do here.

drawDetails is called next and is where any additional calculations and graphical output should
occur (see, for example, grid:::drawDetails.xaxis. Note that the default behaviour for gTrees
is to draw all grobs in the children slot so there is typically nothing to do here.

postDrawDetails is called last and should reverse anything done in preDrawDetails (i.e., pop or
up any viewports that were pushed; again, see, for example, grid:::postDrawDetails.frame).

874 editDetails

Note that the default behaviour for grobs is to pop any viewports that were pushed so there is
typically nothing to do here.

Note that preDrawDetails and postDrawDetails are also called in the calculation of
"grobwidth" and "grobheight" units.

Value

None of these functions are expected to return a value.

Author(s)

Paul Murrell

See Also

grid.draw

editDetails Customising grid Editing

Description

This generic hook function is called whenever a grid grob is edited via grid.edit or editGrob.
This provides an opportunity for customising the editing of a new class derived from grob (or
gTree).

Usage

editDetails(x, specs)

Arguments

x A grid grob.

specs A list of named elements. The names indicate the grob slots to modify and the
values are the new values for the slots.

Details

This function is called by grid.edit and editGrob. A method should be written for classes derived
from grob or gTree if a change in a slot has an effect on other slots in the grob or children of a gTree
(e.g., see grid:::editDetails.xaxis).

Note that the slot already has the new value.

Value

The function MUST return the modified grob.

Author(s)

Paul Murrell

gEdit 875

See Also

grid.edit

gEdit Create and Apply Edit Objects

Description

The functions gEdit and gEditList create objects representing an edit operation (essentially a list
of arguments to editGrob).

The functions applyEdit and applyEdits apply one or more edit operations to a graphical object.

These functions are most useful for developers creating new graphical functions and objects.

Usage

gEdit(...)
gEditList(...)
applyEdit(x, edit)
applyEdits(x, edits)

Arguments

... one or more arguments to the editGrob function (for gEdit) or one or more
"gEdit" objects (for gEditList).

x a grob (grid graphical object).

edit a "gEdit" object.

edits either a "gEdit" object or a "gEditList" object.

Value

gEdit returns an object of class "gEdit".

gEditList returns an object of class "gEditList".

applyEdit and applyEditList return the modified grob.

Author(s)

Paul Murrell

See Also

grob editGrob

Examples

grid.rect(gp=gpar(col="red"))
same thing, but more verbose
grid.draw(applyEdit(rectGrob(), gEdit(gp=gpar(col="red"))))

876 gpar

getNames List the names of grobs on the display list

Description

Returns a character vector containing the names of all top-level grobs on the display list.

Usage

getNames()

Value

A character vector.

Author(s)

Paul Murrell

Examples

grid.grill()
getNames()

gpar Handling Grid Graphical Parameters

Description

gpar() should be used to create a set of graphical parameter settings. It returns an object of class
"gpar". This is basically a list of name-value pairs.

get.gpar() can be used to query the current graphical parameter settings.

Usage

gpar(...)
get.gpar(names = NULL)

Arguments

... Any number of named arguments.

names A character vector of valid graphical parameter names.

gpar 877

Details

All grid viewports and (predefined) graphical objects have a slot called gp, which contains a "gpar"
object. When a viewport is pushed onto the viewport stack and when a graphical object is drawn,
the settings in the "gpar" object are enforced. In this way, the graphical output is modified by the
gp settings until the graphical object has finished drawing, or until the viewport is popped off the
viewport stack, or until some other viewport or graphical object is pushed or begins drawing.

The default parameter settings are defined by the ROOT viewport, which takes its settings from
the graphics device. These defaults may differ between devices (e.g., the default fill setting is
different for a PNG device compared to a PDF device).

Valid parameter names are:

col Colour for lines and borders.
fill Colour for filling rectangles, polygons, ...
alpha Alpha channel for transparency
lty Line type
lwd Line width
lex Multiplier applied to line width
lineend Line end style (round, butt, square)
linejoin Line join style (round, mitre, bevel)
linemitre Line mitre limit (number greater than 1)
fontsize The size of text (in points)
cex Multiplier applied to fontsize
fontfamily The font family
fontface The font face (bold, italic, ...)
lineheight The height of a line as a multiple of the size of text
font Font face (alias for fontface; for backward compatibility)

For more details of many of these, see the help for the corresponding graphical parameter par in
base graphics. (This may have a slightly different name, e.g. lend, ljoin, lmitre, family.)
Colours can be specified in one of the forms returned by rgb, as a name (see colors) or as a positive
integer index into the current palette (with zero or negative values being taken as transparent).
The alpha setting is combined with the alpha channel for individual colours by multiplying (with
both alpha settings normalised to the range 0 to 1).
The size of text is fontsize*cex. The size of a line is fontsize*cex*lineheight.
The cex setting is cumulative; if a viewport is pushed with a cex of 0.5 then another viewport is
pushed with a cex of 0.5, the effective cex is 0.25.
The alpha and lex settings are also cumulative.
Changes to the fontfamily may be ignored by some devices, but is supported by PostScript, PDF,
X11, Windows, and Quartz. The fontfamily may be used to specify one of the Hershey Font
families (e.g., HersheySerif) and this specification will be honoured on all devices.
The specification of fontface can be an integer or a string. If an integer, then it follows the R
base graphics standard: 1 = plain, 2 = bold, 3 = italic, 4 = bold italic. If a string, then valid values
are: "plain", "bold", "italic", "oblique", and "bold.italic". For the special case of the
HersheySerif font family, "cyrillic", "cyrillic.oblique", and "EUC" are also available.
All parameter values can be vectors of multiple values. (This will not always make sense – for
example, viewports will only take notice of the first parameter value.)
The gamma parameter is defunct since R 2.7.0.
get.gpar() returns all current graphical parameter settings.

878 gPath

Value

An object of class "gpar".

Author(s)

Paul Murrell

See Also

Hershey.

Examples

gp <- get.gpar()
utils::str(gp)
These *do* nothing but produce a "gpar" object:
gpar(col = "red")
gpar(col = "blue", lty = "solid", lwd = 3, fontsize = 16)
get.gpar(c("col", "lty"))
grid.newpage()
vp <- viewport(w = .8, h = .8, gp = gpar(col="blue"))
grid.draw(gTree(children=gList(rectGrob(gp = gpar(col="red")),

textGrob(paste("The rect is its own colour (red)",
"but this text is the colour",
"set by the gTree (green)",
sep = "\n"))),

gp = gpar(col="green"), vp = vp))
grid.text("This text is the colour set by the viewport (blue)",

y = 1, just = c("center", "bottom"),
gp = gpar(fontsize=20), vp = vp)

grid.newpage()
example with multiple values for a parameter
pushViewport(viewport())
grid.points(1:10/11, 1:10/11, gp = gpar(col=1:10))
popViewport()

gPath Concatenate Grob Names

Description

This function can be used to generate a grob path for use in grid.edit and friends.

A grob path is a list of nested grob names.

Usage

gPath(...)

Arguments

... Character values which are grob names.

Grid 879

Details

Grob names must only be unique amongst grobs which share the same parent in a gTree.

This function can be used to generate a specification for a grob that includes the grob’s parent’s
name (and the name of its parent and so on).

For interactive use, it is possible to directly specify a path, but it is strongly recommended that this
function is used otherwise in case the path separator is changed in future versions of grid.

Value

A gPath object.

See Also

grob, editGrob, addGrob, removeGrob, getGrob, setGrob

Examples

gPath("g1", "g2")

Grid Grid Graphics

Description

General information about the grid graphics package.

Details

Grid graphics provides an alternative to the standard R graphics. The user is able to define arbitrary
rectangular regions (called viewports) on the graphics device and define a number of coordinate sys-
tems for each region. Drawing can be specified to occur in any viewport using any of the available
coordinate systems.

Grid graphics and standard R graphics do not mix!

Type library(help = grid) to see a list of (public) Grid graphics functions.

Author(s)

Paul Murrell

See Also

viewport, grid.layout, and unit.

880 Grid Viewports

Examples

Diagram of a simple layout
grid.show.layout(grid.layout(4,2,

heights=unit(rep(1, 4),
c("lines", "lines", "lines", "null")),

widths=unit(c(1, 1), "inches")))
Diagram of a sample viewport
grid.show.viewport(viewport(x=0.6, y=0.6,

w=unit(1, "inches"), h=unit(1, "inches")))
A flash plotting example
grid.multipanel(vp=viewport(0.5, 0.5, 0.8, 0.8))

Grid Viewports Create a Grid Viewport

Description

These functions create viewports, which describe rectangular regions on a graphics device and
define a number of coordinate systems within those regions.

Usage

viewport(x = unit(0.5, "npc"), y = unit(0.5, "npc"),
width = unit(1, "npc"), height = unit(1, "npc"),
default.units = "npc", just = "centre",
gp = gpar(), clip = "inherit",
xscale = c(0, 1), yscale = c(0, 1),
angle = 0,
layout = NULL,
layout.pos.row = NULL, layout.pos.col = NULL,
name = NULL)

vpList(...)
vpStack(...)
vpTree(parent, children)

Arguments

x A numeric vector or unit object specifying x-location.

y A numeric vector or unit object specifying y-location.

width A numeric vector or unit object specifying width.

height A numeric vector or unit object specifying height.

default.units A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

just A string or numeric vector specifying the justification of the viewport relative
to its (x, y) location. If there are two values, the first value specifies horizontal
justification and the second value specifies vertical justification. Possible string
values are: "left", "right", "centre", "center", "bottom", and "top". For
numeric values, 0 means left alignment and 1 means right alignment.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

Grid Viewports 881

clip One of "on", "inherit", or "off", indicating whether to clip to the extent of
this viewport, inherit the clipping region from the parent viewport, or turn clip-
ping off altogether. For back-compatibility, a logical value of TRUE corresponds
to "on" and FALSE corresponds to "inherit".

xscale A numeric vector of length two indicating the minimum and maximum on the
x-scale.

yscale A numeric vector of length two indicating the minimum and maximum on the
y-scale.

angle A numeric value indicating the angle of rotation of the viewport. Positive values
indicate the amount of rotation, in degrees, anticlockwise from the positive x-
axis.

layout A Grid layout object which splits the viewport into subregions.
layout.pos.row A numeric vector giving the rows occupied by this viewport in its parent’s lay-

out.
layout.pos.col A numeric vector giving the columns occupied by this viewport in its parent’s

layout.
name A character value to uniquely identify the viewport once it has been pushed onto

the viewport tree.
... Any number of grid viewport objects.
parent A grid viewport object.
children A vpList object.

Details

The location and size of a viewport are relative to the coordinate systems defined by the view-
port’s parent (either a graphical device or another viewport). The location and size can be spec-
ified in a very flexible way by specifying them with unit objects. When specifying the location
of a viewport, specifying both layout.pos.row and layout.pos.col as NULL indicates that the
viewport ignores its parent’s layout and specifies its own location and size (via its locn). If only
one of layout.pos.row and layout.pos.col is NULL, this means occupy ALL of the appropri-
ate row(s)/column(s). For example, layout.pos.row = 1 and layout.pos.col = NULL means
occupy all of row 1. Specifying non-NULL values for both layout.pos.row and layout.pos.col
means occupy the intersection of the appropriate rows and columns. If a vector of length two is
specified for layout.pos.row or layout.pos.col, this indicates a range of rows or columns to
occupy. For example, layout.pos.row = c(1, 3) and layout.pos.col = c(2, 4) means oc-
cupy cells in the intersection of rows 1, 2, and 3, and columns, 2, 3, and 4.

Clipping obeys only the most recent viewport clip setting. For example, if you clip to viewport1,
then clip to viewport2, the clipping region is determined wholly by viewport2, the size and shape
of viewport1 is irrelevant (until viewport2 is popped of course).

If a viewport is rotated (because of its own angle setting or because it is within another viewport
which is rotated) then the clip flag is ignored.

Viewport names need not be unique. When pushed, viewports sharing the same parent must have
unique names, which means that if you push a viewport with the same name as an existing viewport,
the existing viewport will be replaced in the viewport tree. A viewport name can be any string, but
grid uses the reserved name "ROOT" for the top-level viewport. Also, when specifying a viewport
name in downViewport and seekViewport, it is possible to provide a viewport path, which consists
of several names concatenated using the separator (currently ::). Consequently, it is not advisable
to use this separator in viewport names.

The viewports in a vpList are pushed in parallel. The viewports in a vpStack are pushed in series.
When a vpTree is pushed, the parent is pushed first, then the children are pushed in parallel.

882 Grid Viewports

Value

An R object of class viewport.

Author(s)

Paul Murrell

See Also

Grid, pushViewport, popViewport, downViewport, seekViewport, upViewport, unit,
grid.layout, grid.show.layout.

Examples

Diagram of a sample viewport
grid.show.viewport(viewport(x=0.6, y=0.6,

w=unit(1, "inches"), h=unit(1, "inches")))
Demonstrate viewport clipping
clip.demo <- function(i, j, clip1, clip2) {

pushViewport(viewport(layout.pos.col=i,
layout.pos.row=j))

pushViewport(viewport(width=0.6, height=0.6, clip=clip1))
grid.rect(gp=gpar(fill="white"))
grid.circle(r=0.55, gp=gpar(col="red", fill="pink"))
popViewport()
pushViewport(viewport(width=0.6, height=0.6, clip=clip2))
grid.polygon(x=c(0.5, 1.1, 0.6, 1.1, 0.5, -0.1, 0.4, -0.1),

y=c(0.6, 1.1, 0.5, -0.1, 0.4, -0.1, 0.5, 1.1),
gp=gpar(col="blue", fill="light blue"))

popViewport(2)
}

grid.newpage()
grid.rect(gp=gpar(fill="grey"))
pushViewport(viewport(layout=grid.layout(2, 2)))
clip.demo(1, 1, FALSE, FALSE)
clip.demo(1, 2, TRUE, FALSE)
clip.demo(2, 1, FALSE, TRUE)
clip.demo(2, 2, TRUE, TRUE)
popViewport()
Demonstrate turning clipping off
grid.newpage()
pushViewport(viewport(w=.5, h=.5, clip="on"))
grid.rect()
grid.circle(r=.6, gp=gpar(lwd=10))
pushViewport(viewport(clip="inherit"))
grid.circle(r=.6, gp=gpar(lwd=5, col="grey"))
pushViewport(viewport(clip="off"))
grid.circle(r=.6)
popViewport(3)
Demonstrate vpList, vpStack, and vpTree
grid.newpage()
tree <- vpTree(viewport(w=0.8, h=0.8, name="A"),

vpList(vpStack(viewport(x=0.1, y=0.1, w=0.5, h=0.5,
just=c("left", "bottom"), name="B"),

viewport(x=0.1, y=0.1, w=0.5, h=0.5,

grid.add 883

just=c("left", "bottom"), name="C"),
viewport(x=0.1, y=0.1, w=0.5, h=0.5,

just=c("left", "bottom"), name="D")),
viewport(x=0.5, w=0.4, h=0.9,

just="left", name="E")))
pushViewport(tree)
for (i in LETTERS[1:5]) {

seekViewport(i)
grid.rect()
grid.text(current.vpTree(FALSE),

x=unit(1, "mm"), y=unit(1, "npc") - unit(1, "mm"),
just=c("left", "top"),
gp=gpar(fontsize=8))

}

grid.add Add a Grid Graphical Object

Description

Add a grob to a gTree or a descendant of a gTree.

Usage

grid.add(gPath, child, strict = FALSE, grep = FALSE,
global = FALSE, allDevices = FALSE, redraw = TRUE)

addGrob(gTree, child, gPath = NULL, strict = FALSE, grep = FALSE,
global = FALSE, warn = TRUE)

setChildren(x, children)

Arguments

gTree, x A gTree object.
gPath A gPath object. For grid.add this specifies a gTree on the display list. For

addGrob this specifies a descendant of the specified gTree.
child A grob object.
children A gList object.
strict A boolean indicating whether the gPath must be matched exactly.
grep A boolean indicating whether the gPath should be treated as a regular expres-

sion. Values are recycled across elements of the gPath (e.g., c(TRUE, FALSE)
means that every odd element of the gPath will be treated as a regular expres-
sion).

global A boolean indicating whether the function should affect just the first match of
the gPath, or whether all matches should be affected.

warn A logical to indicate whether failing to find the specified gPath should trigger an
error.

allDevices A boolean indicating whether all open devices should be searched for matches,
or just the current device. NOT YET IMPLEMENTED.

redraw A logical value to indicate whether to redraw the grob.

884 grid.arrows

Details

addGrob copies the specified grob and returns a modified grob.

grid.add destructively modifies a grob on the display list. If redraw is TRUE it then redraws
everything to reflect the change.

setChildren is a basic function for setting all children of a gTree at once (instead of repeated calls
to addGrob).

Value

addGrob returns a grob object; grid.add returns NULL.

Author(s)

Paul Murrell

See Also

grob, getGrob, addGrob, removeGrob.

grid.arrows Draw Arrows

Description

Functions to create and draw arrows at either end of a line, or at either end of a line.to, lines, or
segments grob.

These functions have been deprecated in favour of arrow arguments to the line-related primitives.

Usage

grid.arrows(x = c(0.25, 0.75), y = 0.5, default.units = "npc",
grob = NULL,
angle = 30, length = unit(0.25, "inches"),
ends = "last", type = "open", name = NULL,
gp = gpar(), draw = TRUE, vp = NULL)

arrowsGrob(x = c(0.25, 0.75), y = 0.5, default.units = "npc",
grob = NULL,
angle = 30, length = unit(0.25, "inches"),
ends = "last", type = "open", name = NULL,
gp = gpar(), vp = NULL)

Arguments

x A numeric vector or unit object specifying x-values.

y A numeric vector or unit object specifying y-values.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

grob A grob to add arrows to; currently can only be a line.to, lines, or segments grob.

grid.arrows 885

angle A numeric specifying (half) the width of the arrow head (in degrees).

length A unit object specifying the length of the arrow head.

ends One of "first", "last", or "both", indicating which end of the line to add
arrow heads.

type Either "open" or "closed" to indicate the type of arrow head.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create an arrows grob (a graphical object describing arrows), but only
grid.arrows() draws the arrows (and then only if draw is TRUE).

If the grob argument is specified, this overrides any x and/or y arguments.

Value

An arrows grob. grid.arrows() returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport, grid.line.to, grid.lines, grid.segments

Examples

Not run: ## to avoid lots of deprecation warnings
pushViewport(viewport(layout=grid.layout(2, 4)))
pushViewport(viewport(layout.pos.col=1,

layout.pos.row=1))
grid.rect(gp=gpar(col="grey"))
grid.arrows()
popViewport()
pushViewport(viewport(layout.pos.col=2,

layout.pos.row=1))
grid.rect(gp=gpar(col="grey"))
grid.arrows(angle=15, type="closed")
popViewport()
pushViewport(viewport(layout.pos.col=3,

layout.pos.row=1))
grid.rect(gp=gpar(col="grey"))
grid.arrows(angle=5, length=unit(0.1, "npc"),

type="closed", gp=gpar(fill="white"))
popViewport()
pushViewport(viewport(layout.pos.col=4,

layout.pos.row=1))
grid.rect(gp=gpar(col="grey"))
grid.arrows(x=unit(0:80/100, "npc"),

886 grid.bezier

y=unit(1 - (0:80/100)^2, "npc"))
popViewport()
pushViewport(viewport(layout.pos.col=1,

layout.pos.row=2))
grid.rect(gp=gpar(col="grey"))
grid.arrows(ends="both")
popViewport()
pushViewport(viewport(layout.pos.col=2,

layout.pos.row=2))
grid.rect(gp=gpar(col="grey"))
Recycling arguments
grid.arrows(x=unit(1:10/11, "npc"), y=unit(1:3/4, "npc"))
popViewport()
pushViewport(viewport(layout.pos.col=3,

layout.pos.row=2))
grid.rect(gp=gpar(col="grey"))
Drawing arrows on a segments grob
gs <- segmentsGrob(x0=unit(1:4/5, "npc"),

x1=unit(1:4/5, "npc"))
grid.arrows(grob=gs, length=unit(0.1, "npc"),

type="closed", gp=gpar(fill="white"))
popViewport()
pushViewport(viewport(layout.pos.col=4,

layout.pos.row=2))
grid.rect(gp=gpar(col="grey"))
Arrows on a lines grob
Name these because going to grid.edit them later
gl <- linesGrob(name="curve", x=unit(0:80/100, "npc"),

y=unit((0:80/100)^2, "npc"))
grid.arrows(name="arrowOnLine", grob=gl, angle=15, type="closed",

gp=gpar(fill="black"))
popViewport()
pushViewport(viewport(layout.pos.col=1,

layout.pos.row=2))
grid.move.to(x=0.5, y=0.8)
popViewport()
pushViewport(viewport(layout.pos.col=4,

layout.pos.row=1))
Arrows on a line.to grob
glt <- lineToGrob(x=0.5, y=0.2, gp=gpar(lwd=3))
grid.arrows(grob=glt, ends="first", gp=gpar(lwd=3))
popViewport(2)
grid.edit(gPath("arrowOnLine", "curve"), y=unit((0:80/100)^3, "npc"))

End(Not run)

grid.bezier Draw a Bezier Curve

Description

These functions create and draw Bezier Curves (a curve drawn relative to 4 control points).

grid.bezier 887

Usage

grid.bezier(...)
bezierGrob(x = c(0, 0.5, 1, 0.5), y = c(0.5, 1, 0.5, 0),

id = NULL, id.lengths = NULL,
default.units = "npc", arrow = NULL,
name = NULL, gp = gpar(), vp = NULL)

Arguments

x A numeric vector or unit object specifying x-locations of spline control points.

y A numeric vector or unit object specifying y-locations of spline control points.

id A numeric vector used to separate locations in x and y into multiple beziers. All
locations with the same id belong to the same bezier.

id.lengths A numeric vector used to separate locations in x and y into multiple bezier.
Specifies consecutive blocks of locations which make up separate beziers.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

arrow A list describing arrow heads to place at either end of the bezier, as produced by
the arrow function.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

... Arguments to be passed to bezierGrob.

Details

Both functions create a beziergrob (a graphical object describing a Bezier curve), but only
grid.bezier draws the Bezier curve.

A Bezier curve is a line drawn relative to 4 control points.

Missing values are not allowed for x and y (i.e., it is not valid for a control point to be missing).

The curve is currently drawn using an approximation based on X-splines.

Value

A grob object.

See Also

Grid, viewport, arrow.

grid.xspline.

Examples

x <- c(0.2, 0.2, 0.4, 0.4)
y <- c(0.2, 0.4, 0.4, 0.2)

grid.newpage()
grid.bezier(x, y)

888 grid.cap

grid.bezier(c(x, x + .4), c(y + .4, y + .4),
id=rep(1:2, each=4))

grid.segments(.4, .6, .6, .6)
grid.bezier(x, y,

gp=gpar(lwd=3, fill="black"),
arrow=arrow(type="closed"),
vp=viewport(x=.9))

grid.cap Capture a raster image

Description

Capture the current contents of a graphics device as a raster (bitmap) image.

Usage

grid.cap()

Details

This function is only implemented for on-screen graphics devices.

Value

A matrix of R colour names.

Author(s)

Paul Murrell

See Also

grid.raster

dev.capabilities to see if it is supported.

Examples

Not run:
dev.new(width=.5, height=.5)
grid.rect()
grid.text("hi")
cap <- grid.cap()
dev.off()

grid.raster(cap, width=.5, height=.5, interpolate=FALSE)

End(Not run)

grid.circle 889

grid.circle Draw a Circle

Description

Functions to create and draw a circle.

Usage

grid.circle(x=0.5, y=0.5, r=0.5, default.units="npc", name=NULL,
gp=gpar(), draw=TRUE, vp=NULL)

circleGrob(x=0.5, y=0.5, r=0.5, default.units="npc", name=NULL,
gp=gpar(), vp=NULL)

Arguments

x A numeric vector or unit object specifying x-locations.

y A numeric vector or unit object specifying y-locations.

r A numeric vector or unit object specifying radii.

default.units A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create a circle grob (a graphical object describing a circle), but only grid.circle()
draws the circle (and then only if draw is TRUE).

The radius may be given in any units; if the units are relative (e.g., "npc" or "native") then the
radius will be different depending on whether it is interpreted as a width or as a height. In such
cases, the smaller of these two values will be the result. To see the effect, type grid.circle() and
adjust the size of the window.

What happens for very small radii is device-dependent: the circle may become invisible or be shown
at a fixed minimum size. As from R 2.15.0, circles of zero radius will not be plotted.

Value

A circle grob. grid.circle() returns the value invisibly.

Warning

Negative values for the radius are silently converted to their absolute value.

Author(s)

Paul Murrell

890 grid.clip

See Also

Grid, viewport

grid.clip Set the Clipping Region

Description

These functions set the clipping region within the current viewport without altering the current
coordinate system.

Usage

grid.clip(...)
clipGrob(x = unit(0.5, "npc"), y = unit(0.5, "npc"),

width = unit(1, "npc"), height = unit(1, "npc"),
just = "centre", hjust = NULL, vjust = NULL,
default.units = "npc", name = NULL, vp = NULL)

Arguments

x A numeric vector or unit object specifying x-location.

y A numeric vector or unit object specifying y-location.

width A numeric vector or unit object specifying width.

height A numeric vector or unit object specifying height.

just The justification of the clip rectangle relative to its (x, y) location. If there are
two values, the first value specifies horizontal justification and the second value
specifies vertical justification. Possible string values are: "left", "right",
"centre", "center", "bottom", and "top". For numeric values, 0 means left
alignment and 1 means right alignment.

hjust A numeric vector specifying horizontal justification. If specified, overrides the
just setting.

vjust A numeric vector specifying vertical justification. If specified, overrides the
just setting.

default.units A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

name A character identifier.

vp A Grid viewport object (or NULL).

... Arguments passed to clipGrob.

Details

Both functions create a clip rectangle (a graphical object describing a clip rectangle), but only
grid.clip enforces the clipping.

Pushing or popping a viewport always overrides the clip region set by a clip grob, regardless of
whether that viewport explicitly enforces a clipping region.

grid.collection 891

Value

clipGrob returns a clip grob.

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

draw across entire viewport, but clipped
grid.clip(x = 0.3, width = 0.1)
grid.lines(gp=gpar(col="green", lwd=5))
draw across entire viewport, but clipped (in different place)
grid.clip(x = 0.7, width = 0.1)
grid.lines(gp=gpar(col="red", lwd=5))
Viewport sets new clip region
pushViewport(viewport(width=0.5, height=0.5, clip=TRUE))
grid.lines(gp=gpar(col="grey", lwd=3))
Return to original viewport; get
clip region from previous grid.clip()
(NOT from previous viewport clip region)
popViewport()
grid.lines(gp=gpar(col="black"))

grid.collection Create a Coherent Group of Grid Graphical Objects

Description

This function is deprecated; please use gTree.

This function creates a graphical object which contains several other graphical objects. When it is
drawn, it draws all of its children.

It may be convenient to name the elements of the collection.

Usage

grid.collection(..., gp=gpar(), draw=TRUE, vp=NULL)

Arguments

... Zero or more objects of class "grob".

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value to indicate whether to produce graphical output.

vp A Grid viewport object (or NULL).

892 grid.convert

Value

A collection grob.

Author(s)

Paul Murrell

See Also

grid.grob.

grid.convert Convert Between Different grid Coordinate Systems

Description

These functions take a unit object and convert it to an equivalent unit object in a different coordinate
system.

Usage

convertX(x, unitTo, valueOnly = FALSE)
convertY(x, unitTo, valueOnly = FALSE)
convertWidth(x, unitTo, valueOnly = FALSE)
convertHeight(x, unitTo, valueOnly = FALSE)
convertUnit(x, unitTo,

axisFrom = "x", typeFrom = "location",
axisTo = axisFrom, typeTo = typeFrom,
valueOnly = FALSE)

grid.convertX(x, unitTo, valueOnly = FALSE)
grid.convertY(x, unitTo, valueOnly = FALSE)
grid.convertWidth(x, unitTo, valueOnly = FALSE)
grid.convertHeight(x, unitTo, valueOnly = FALSE)
grid.convert(x, unitTo,

axisFrom = "x", typeFrom = "location",
axisTo = axisFrom, typeTo = typeFrom,
valueOnly = FALSE)

Arguments

x A unit object.
unitTo The coordinate system to convert the unit to. See the unit function for valid

coordinate systems.
axisFrom Either "x" or "y" to indicate whether the unit object represents a value in the x-

or y-direction.
typeFrom Either "location" or "dimension" to indicate whether the unit object repre-

sents a location or a length.
axisTo Same as axisFrom, but applies to the unit object that is to be created.
typeTo Same as typeFrom, but applies to the unit object that is to be created.
valueOnly A logical indicating. If TRUE then the function does not return a unit object, but

rather only the converted numeric values.

grid.convert 893

Details

The convertUnit function allows for general-purpose conversions. The other four functions are
just more convenient front-ends to it for the most common conversions.

The conversions occur within the current viewport.

It is not currently possible to convert to all valid coordinate systems (e.g., "strwidth" or "grob-
width"). I’m not sure if all of these are impossible, they just seem implausible at this stage.

In normal usage of grid, these functions should not be necessary. If you want to express a location
or dimension in inches rather than user coordinates then you should simply do something like
unit(1, "inches") rather than something like unit(0.134, "native").

In some cases, however, it is necessary for the user to perform calculations on a unit value and this
function becomes necessary. In such cases, please take note of the warning below.

The grid.* versions are just previous incarnations which have been deprecated.

Value

A unit object in the specified coordinate system (unless valueOnly is TRUE in which case the re-
turned value is a numeric).

Warning

The conversion is only valid for the current device size. If the device is resized then at least
some conversions will become invalid. For example, suppose that I create a unit object as follows:
oneinch <- convertUnit(unit(1, "inches"), "native". Now if I resize the device, the
unit object in oneinch no longer corresponds to a physical length of 1 inch.

Author(s)

Paul Murrell

See Also

unit

Examples

A tautology
convertX(unit(1, "inches"), "inches")
The physical units
convertX(unit(2.54, "cm"), "inches")
convertX(unit(25.4, "mm"), "inches")
convertX(unit(72.27, "points"), "inches")
convertX(unit(1/12*72.27, "picas"), "inches")
convertX(unit(72, "bigpts"), "inches")
convertX(unit(1157/1238*72.27, "dida"), "inches")
convertX(unit(1/12*1157/1238*72.27, "cicero"), "inches")
convertX(unit(65536*72.27, "scaledpts"), "inches")
convertX(unit(1/2.54, "inches"), "cm")
convertX(unit(1/25.4, "inches"), "mm")
convertX(unit(1/72.27, "inches"), "points")
convertX(unit(1/(1/12*72.27), "inches"), "picas")
convertX(unit(1/72, "inches"), "bigpts")
convertX(unit(1/(1157/1238*72.27), "inches"), "dida")
convertX(unit(1/(1/12*1157/1238*72.27), "inches"), "cicero")

894 grid.copy

convertX(unit(1/(65536*72.27), "inches"), "scaledpts")

pushViewport(viewport(width=unit(1, "inches"),
height=unit(2, "inches"),
xscale=c(0, 1),
yscale=c(1, 3)))

Location versus dimension
convertY(unit(2, "native"), "inches")
convertHeight(unit(2, "native"), "inches")
From "x" to "y" (the conversion is via "inches")
convertUnit(unit(1, "native"), "native",

axisFrom="x", axisTo="y")
Convert several values at once
convertX(unit(c(0.5, 2.54), c("npc", "cm")),

c("inches", "native"))
popViewport()
Convert a complex unit
convertX(unit(1, "strwidth", "Hello"), "native")

grid.copy Make a Copy of a Grid Graphical Object

Description

This function is redundant and will disappear in future versions.

Usage

grid.copy(grob)

Arguments

grob A grob object.

Value

A copy of the grob object.

Author(s)

Paul Murrell

See Also

grid.grob.

grid.curve 895

grid.curve Draw a Curve Between Locations

Description

These functions create and draw a curve from one location to another.

Usage

grid.curve(...)
curveGrob(x1, y1, x2, y2, default.units = "npc",

curvature = 1, angle = 90, ncp = 1, shape = 0.5,
square = TRUE, squareShape = 1,
inflect = FALSE, arrow = NULL, open = TRUE,
debug = FALSE,
name = NULL, gp = gpar(), vp = NULL)

arcCurvature(theta)

Arguments

x1 A numeric vector or unit object specifying the x-location of the start point.

y1 A numeric vector or unit object specifying the y-location of the start point.

x2 A numeric vector or unit object specifying the x-location of the end point.

y2 A numeric vector or unit object specifying the y-location of the end point.

default.units A string indicating the default units to use if x1, y1, x2 or y2 are only given as
numeric values.

curvature A numeric value giving the amount of curvature. Negative values produce left-
hand curves, positive values produce right-hand curves, and zero produces a
straight line.

angle A numeric value between 0 and 180, giving an amount to skew the control points
of the curve. Values less than 90 skew the curve towards the start point and
values greater than 90 skew the curve towards the end point.

ncp The number of control points used to draw the curve. More control points creates
a smoother curve.

shape A numeric vector of values between -1 and 1, which control the shape of the
curve relative to its control points. See grid.xspline for more details.

square A logical value that controls whether control points for the curve are created
city-block fashion or obliquely. When ncp is 1 and angle is 90, this is typically
TRUE, otherwise this should probably be set to FALSE (see Examples below).

squareShape A shape value to control the behaviour of the curve relative to any additional
control point that is inserted if square is TRUE.

inflect A logical value specifying whether the curve should be cut in half and inverted
(see Examples below).

arrow A list describing arrow heads to place at either end of the curve, as produced by
the arrow function.

open A logical value indicating whether to close the curve (connect the start and end
points).

896 grid.curve

debug A logical value indicating whether debugging information should be drawn.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

... Arguments to be passed to curveGrob.

theta An angle (in degrees).

Details

Both functions create a curve grob (a graphical object describing an curve), but only grid.curve
draws the curve.

The arcCurvature function can be used to calculate a curvature such that control points are
generated on an arc corresponding to angle theta. This is typically used in conjunction with a
large ncp to produce a curve corresponding to the desired arc.

Value

A grob object.

See Also

Grid, viewport, grid.xspline, arrow

Examples

curveTest <- function(i, j, ...) {
pushViewport(viewport(layout.pos.col=j, layout.pos.row=i))
do.call("grid.curve", c(list(x1=.25, y1=.25, x2=.75, y2=.75), list(...)))
grid.text(sub("list\\((.*)\\)", "\\1",

deparse(substitute(list(...)))),
y=unit(1, "npc"))

popViewport()
}
grid.newpage()
pushViewport(plotViewport(c(0, 0, 1, 0),

layout=grid.layout(2, 1, heights=c(2, 1))))
pushViewport(viewport(layout.pos.row=1,

layout=grid.layout(3, 3, respect=TRUE)))
curveTest(1, 1)
curveTest(1, 2, inflect=TRUE)
curveTest(1, 3, angle=135)
curveTest(2, 1, arrow=arrow())
curveTest(2, 2, ncp=8)
curveTest(2, 3, shape=0)
curveTest(3, 1, curvature=-1)
curveTest(3, 2, square=FALSE)
curveTest(3, 3, debug=TRUE)
popViewport()
pushViewport(viewport(layout.pos.row=2,

layout=grid.layout(3, 3)))
curveTest(1, 1)
curveTest(1, 2, inflect=TRUE)
curveTest(1, 3, angle=135)

grid.display.list 897

curveTest(2, 1, arrow=arrow())
curveTest(2, 2, ncp=8)
curveTest(2, 3, shape=0)
curveTest(3, 1, curvature=-1)
curveTest(3, 2, square=FALSE)
curveTest(3, 3, debug=TRUE)
popViewport(2)

grid.display.list Control the Grid Display List

Description

Turn the Grid display list on or off.

Usage

grid.display.list(on=TRUE)
engine.display.list(on=TRUE)

Arguments

on A logical value to indicate whether the display list should be on or off.

Details

All drawing and viewport-setting operations are (by default) recorded in the Grid display list. This
allows redrawing to occur following an editing operation.

This display list could get very large so it may be useful to turn it off in some cases; this will of
course disable redrawing.

All graphics output is also recorded on the main display list of the R graphics engine (by default).
This supports redrawing following a device resize and allows copying between devices.

Turning off this display list means that grid will redraw from its own display list for device resizes
and copies. This will be slower than using the graphics engine display list.

Value

None.

WARNING

Turning the display list on causes the display list to be erased!

Turning off both the grid display list and the graphics engine display list will result in no redrawing
whatsoever.

Author(s)

Paul Murrell

898 grid.DLapply

grid.DLapply Modify the Grid Display List

Description

Call a function on each element of the current display list and replace the element with the result.

Usage

grid.DLapply(FUN, ...)

Arguments

FUN A function.

... Further arguments to pass to FUN .

Details

This is an insanely dangerous function (for the grid display list).

Two token efforts are made to try to avoid ending up with complete garbage on the display list:

1. The display list is only replaced once all new elements have been generated (so an error during
generation does not result in a half-finished display list).

2. All new elements must be either NULL or inherit from the class of the element that they are
replacing.

Value

The side effect of this function is to modify the grid display list.

See Also

Grid.

Examples

grid.newpage()
grid.rect(width=.5, height=.5, gp=gpar(fill="grey"))
grid.DLapply(function(x) { if (is.grob(x)) x$gp <- gpar(); x })
grid.refresh()

grid.draw 899

grid.draw Draw a grid grob

Description

Produces graphical output from a graphical object.

Usage

grid.draw(x, recording=TRUE)

Arguments

x An object of class "grob" or NULL.

recording A logical value to indicate whether the drawing operation should be recorded on
the Grid display list.

Details

This is a generic function with methods for grob and gTree objects.

The grob and gTree methods automatically push any viewports in a vp slot and automatically apply
any gpar settings in a gp slot. In addition, the gTree method pushes and ups any viewports in a
childrenvp slot and automatically calls grid.draw for any grobs in a children slot.

The methods for grob and gTree call the generic hook functions preDrawDetails, drawDetails,
and postDrawDetails to allow classes derived from grob or gTree to perform additional viewport
pushing/popping and produce additional output beyond the default behaviour for grobs and gTrees.

Value

None.

Author(s)

Paul Murrell

See Also

grob.

Examples

grid.newpage()
Create a graphical object, but don’t draw it
l <- linesGrob()
Draw it
grid.draw(l)

900 grid.edit

grid.edit Edit the Description of a Grid Graphical Object

Description

Changes the value of one of the slots of a grob and redraws the grob.

Usage

grid.edit(gPath, ..., strict = FALSE, grep = FALSE,
global = FALSE, allDevices = FALSE, redraw = TRUE)

grid.gedit(..., grep = TRUE, global = TRUE)

editGrob(grob, gPath = NULL, ..., strict = FALSE, grep = FALSE,
global = FALSE, warn = TRUE)

Arguments

grob A grob object.

... Zero or more named arguments specifying new slot values.

gPath A gPath object. For grid.edit this specifies a grob on the display list. For
editGrob this specifies a descendant of the specified grob.

strict A boolean indicating whether the gPath must be matched exactly.

grep A boolean indicating whether the gPath should be treated as a regular expres-
sion. Values are recycled across elements of the gPath (e.g., c(TRUE, FALSE)
means that every odd element of the gPath will be treated as a regular expres-
sion).

global A boolean indicating whether the function should affect just the first match of
the gPath, or whether all matches should be affected.

warn A logical to indicate whether failing to find the specified gPath should trigger an
error.

allDevices A boolean indicating whether all open devices should be searched for matches,
or just the current device. NOT YET IMPLEMENTED.

redraw A logical value to indicate whether to redraw the grob.

Details

editGrob copies the specified grob and returns a modified grob.

grid.edit destructively modifies a grob on the display list. If redraw is TRUE it then redraws
everything to reflect the change.

Both functions call editDetails to allow a grob to perform custom actions and validDetails to
check that the modified grob is still coherent.

grid.gedit (g for global) is just a convenience wrapper for grid.edit with different defaults.

Value

editGrob returns a grob object; grid.edit returns NULL.

grid.frame 901

Author(s)

Paul Murrell

See Also

grob, getGrob, addGrob, removeGrob.

Examples

grid.newpage()
grid.xaxis(name = "xa", vp = viewport(width=.5, height=.5))
grid.edit("xa", gp = gpar(col="red"))
won’t work because no ticks (at is NULL)
try(grid.edit(gPath("xa", "ticks"), gp = gpar(col="green")))
grid.edit("xa", at = 1:4/5)
Now it should work
try(grid.edit(gPath("xa", "ticks"), gp = gpar(col="green")))

grid.frame Create a Frame for Packing Objects

Description

These functions, together with grid.pack, grid.place, packGrob, and placeGrob are part of a
GUI-builder-like interface to constructing graphical images. The idea is that you create a frame
with this function then use grid.pack or whatever to pack/place objects into the frame.

Usage

grid.frame(layout=NULL, name=NULL, gp=gpar(), vp=NULL, draw=TRUE)
frameGrob(layout=NULL, name=NULL, gp=gpar(), vp=NULL)

Arguments

layout A Grid layout, or NULL. This can be used to initialise the frame with a number
of rows and columns, with initial widths and heights, etc.

name A character identifier.

vp An object of class viewport, or NULL.

gp An object of class gpar; typically the output from a call to the function gpar.

draw Should the frame be drawn.

Details

Both functions create a frame grob (a graphical object describing a frame), but only grid.frame()
draws the frame (and then only if draw is TRUE). Nothing will actually be drawn, but it will put the
frame on the display list, which means that the output will be dynamically updated as objects are
packed into the frame. Possibly useful for debugging.

Value

A frame grob. grid.frame() returns the value invisibly.

902 grid.function

Author(s)

Paul Murrell

See Also

grid.pack

Examples

grid.newpage()
grid.frame(name="gf", draw=TRUE)
grid.pack("gf", rectGrob(gp=gpar(fill="grey")), width=unit(1, "null"))
grid.pack("gf", textGrob("hi there"), side="right")

grid.function Draw a curve representing a function

Description

Draw a curve representing a function.

Usage

grid.function(...)
functionGrob(f, n = 101, range = "x", units = "native",

name = NULL, gp=gpar(), vp = NULL)

grid.abline(intercept, slope, ...)

Arguments

f A function that must take a single argument and return a list with two numeric
components named x and y.

n The number values that will be generated as input to the function f.

range Either "x", "y", or a numeric vector. See the ‘Details’ section.

units A string indicating the units to use for the x and y values generated by the func-
tion.

intercept Numeric.

slope Numeric.

... Arguments passed to grid.function()

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

grid.function 903

Details

n values are generated and passed to the function f and a series of lines are drawn through the
resulting x and y values.

The generation of the n values depends on the value of range. In the default case, dim is "x", which
means that a set of x values are generated covering the range of the current viewport scale in the
x-dimension. If dim is "y" then values are generated from the current y-scale instead. If range is a
numeric vector, then values are generated from that range.

grid.abline() provides a simple front-end for a straight line parameterized by intercept and
slope.

Value

A functiongrob grob.

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

abline
NOTE: in ROOT viewport on screen, (0, 0) at top-left
and "native" is pixels!
grid.function(function(x) list(x=x, y=0 + 1*x))
a more "normal" viewport with default normalized "native" coords
grid.newpage()
pushViewport(viewport())
grid.function(function(x) list(x=x, y=0 + 1*x))
slightly simpler
grid.newpage()
pushViewport(viewport())
grid.abline()
sine curve
grid.newpage()
pushViewport(viewport(xscale=c(0, 2*pi), yscale=c(-1, 1)))
grid.function(function(x) list(x=x, y=sin(x)))
constrained sine curve
grid.newpage()
pushViewport(viewport(xscale=c(0, 2*pi), yscale=c(-1, 1)))
grid.function(function(x) list(x=x, y=sin(x)),

range=0:1)
inverse sine curve
grid.newpage()
pushViewport(viewport(xscale=c(-1, 1), yscale=c(0, 2*pi)))
grid.function(function(y) list(x=sin(y), y=y),

range="y")
parametric function
grid.newpage()
pushViewport(viewport(xscale=c(-1, 1), yscale=c(-1, 1)))
grid.function(function(t) list(x=cos(t), y=sin(t)),

range=c(0, 9*pi/5))

904 grid.get

physical abline
grid.newpage()
grid.function(function(x) list(x=x, y=0 + 1*x),

units="in")

grid.get Get a Grid Graphical Object

Description

Retrieve a grob or a descendant of a grob.

Usage

grid.get(gPath, strict = FALSE, grep = FALSE, global = FALSE,
allDevices = FALSE)

grid.gget(..., grep = TRUE, global = TRUE)

getGrob(gTree, gPath, strict = FALSE, grep = FALSE, global = FALSE)

Arguments

gTree A gTree object.

gPath A gPath object. For grid.get this specifies a grob on the display list. For
getGrob this specifies a descendant of the specified gTree.

strict A boolean indicating whether the gPath must be matched exactly.

grep A boolean indicating whether the gPath should be treated as a regular expres-
sion. Values are recycled across elements of the gPath (e.g., c(TRUE, FALSE)
means that every odd element of the gPath will be treated as a regular expres-
sion).

global A boolean indicating whether the function should affect just the first match of
the gPath, or whether all matches should be affected.

allDevices A boolean indicating whether all open devices should be searched for matches,
or just the current device. NOT YET IMPLEMENTED.

... Arguments that are passed to grid.get.

Details

grid.gget (g for global) is just a convenience wrapper for grid.get with different defaults.

Value

A grob object.

Author(s)

Paul Murrell

grid.grab 905

See Also

grob, getGrob, addGrob, removeGrob.

Examples

grid.xaxis(name="xa")
grid.get("xa")
grid.get(gPath("xa", "ticks"))

grid.draw(gTree(name="gt", children=gList(xaxisGrob(name="axis"))))
grid.get(gPath("gt", "axis", "ticks"))

grid.grab Grab the current grid output

Description

Creates a gTree object from the current grid display list or from a scene generated by user-specified
code.

Usage

grid.grab(warn = 2, wrap = FALSE, ...)
grid.grabExpr(expr, warn = 2, wrap = FALSE, ...)

Arguments

expr An expression to be evaluated. Typically, some calls to grid drawing functions.

warn An integer specifying the amount of warnings to emit. 0 means no warnings,
1 means warn when it is certain that the grab will not faithfully represent the
original scene. 2 means warn if there’s any possibility that the grab will not
faithfully represent the original scene.

wrap A logical indicating how the output should be captured. If TRUE, each non-grob
element on the display list is captured by wrapping it in a grob.

... arguments passed to gTree, for example, a name and/or class for the gTree that
is created.

Details

There are four ways to capture grid output as a gTree.

There are two functions for capturing output: use grid.grab to capture an existing drawing and
grid.grabExpr to capture the output from an expression (without drawing anything).

For each of these functions, the output can be captured in two ways. One way tries to be clever and
make a gTree with a childrenvp slot containing all viewports on the display list (including those that
are popped) and every grob on the display list as a child of the new gTree; each child has a vpPath
in the vp slot so that it is drawn in the appropriate viewport. In other words, the gTree contains all
elements on the display list, but in a slightly altered form.

The other way, wrap=TRUE, is to create a grob for every element on the display list (and make all of
those grobs children of the gTree).

906 grid.grill

The first approach creates a more compact and elegant gTree, which is more flexible to work with,
but is not guaranteed to faithfully replicate all possible grid output. The second approach is more
brute force, and harder to work with, but should always faithfully replicate the original output.

Value

A gTree object.

See Also

gTree

Examples

pushViewport(viewport(w=.5, h=.5))
grid.rect()
grid.points(stats::runif(10), stats::runif(10))
popViewport()
grab <- grid.grab()
grid.newpage()
grid.draw(grab)

grid.grill Draw a Grill

Description

This function draws a grill within a Grid viewport.

Usage

grid.grill(h = unit(seq(0.25, 0.75, 0.25), "npc"),
v = unit(seq(0.25, 0.75, 0.25), "npc"),
default.units = "npc", gp=gpar(col = "grey"), vp = NULL)

Arguments

h A numeric vector or unit object indicating the horizontal location of the vertical
grill lines.

v A numeric vector or unit object indicating the vertical location of the horizontal
grill lines.

default.units A string indicating the default units to use if h or v are only given as numeric
vectors.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object.

Value

None.

grid.grob 907

Author(s)

Paul Murrell

See Also

Grid, viewport.

grid.grob Create a Grid Graphical Object

Description

These functions create grid graphical objects.

Usage

grid.grob(list.struct, cl = NULL, draw = TRUE)
grob(..., name = NULL, gp = NULL, vp = NULL, cl = NULL)
gTree(..., name = NULL, gp = NULL, vp = NULL, children = NULL,

childrenvp = NULL, cl = NULL)
grobTree(..., name = NULL, gp = NULL, vp = NULL,

childrenvp = NULL, cl = NULL)
childNames(gTree)
gList(...)
is.grob(x)

Arguments

... For grob and gTree, the named slots describing important features of the graph-
ical object. For gList and grobTree, a series of grob objects.

list.struct A list (preferably with each element named).

name A character identifier for the grob. Used to find the grob on the display list
and/or as a child of another grob.

children A gList object.

childrenvp A viewport object (or NULL).

gp A gpar object, typically the output from a call to the function gpar. This is
basically a list of graphical parameter settings.

vp A viewport object (or NULL).

cl A string giving the class attribute for the list.struct

draw A logical value to indicate whether to produce graphical output.

gTree A gTree object.

x An R object.

908 grid.layout

Details

These functions can be used to create a basic grob, gTree, or gList object, or a new class derived
from one of these.

A grid graphical object (grob) is a description of a graphical item. These basic classes provide
default behaviour for validating, drawing, and modifying graphical objects. Both call the function
validDetails to check that the object returned is coherent.

A gTree can have other grobs as children; when a gTree is drawn, it draws all of its children.
Before drawing its children, a gTree pushes its childrenvp slot and then navigates back up (calls
upViewport) so that the children can specify their location within the childrenvp via a vpPath.

Grob names need not be unique in general, but all children of a gTree must have different names.
A grob name can be any string, though it is not advisable to use the gPath separator (currently ::)
in grob names.

The function childNames returns the names of the grobs which are children of a gTree.

All grid primitives (grid.lines, grid.rect, ...) and some higher-level grid components (e.g.,
grid.xaxis and grid.yaxis) are derived from these classes.

grobTree is just a convenient wrapper for gTree when the only components of the gTree are grobs
(so all unnamed arguments become children of the gTree).

grid.grob is deprecated.

Value

A grob object.

Author(s)

Paul Murrell

See Also

grid.draw, grid.edit, grid.get.

grid.layout Create a Grid Layout

Description

This function returns a Grid layout, which describes a subdivision of a rectangular region.

Usage

grid.layout(nrow = 1, ncol = 1,
widths = unit(rep(1, ncol), "null"),
heights = unit(rep(1, nrow), "null"),
default.units = "null", respect = FALSE,
just="centre")

grid.layout 909

Arguments

nrow An integer describing the number of rows in the layout.

ncol An integer describing the number of columns in the layout.

widths A numeric vector or unit object describing the widths of the columns in the
layout.

heights A numeric vector or unit object describing the heights of the rows in the layout.

default.units A string indicating the default units to use if widths or heights are only given
as numeric vectors.

respect A logical value or a numeric matrix. If a logical, this indicates whether row
heights and column widths should respect each other. If a matrix, non-zero
values indicate that the corresponding row and column should be respected (see
examples below).

just A string or numeric vector specifying how the layout should be justified if it is
not the same size as its parent viewport. If there are two values, the first value
specifies horizontal justification and the second value specifies vertical justi-
fication. Possible string values are: "left", "right", "centre", "center",
"bottom", and "top". For numeric values, 0 means left alignment and 1 means
right alignment. NOTE that in this context, "left", for example, means align
the left edge of the left-most layout column with the left edge of the parent
viewport.

Details

The unit objects given for the widths and heights of a layout may use a special units that only has
meaning for layouts. This is the "null" unit, which indicates what relative fraction of the available
width/height the column/row occupies. See the reference for a better description of relative widths
and heights in layouts.

Value

A Grid layout object.

WARNING

This function must NOT be confused with the base R graphics function layout. In particular, do
not use layout in combination with Grid graphics. The documentation for layout may provide
some useful information and this function should behave identically in comparable situations. The
grid.layout function has added the ability to specify a broader range of units for row heights and
column widths, and allows for nested layouts (see viewport).

Author(s)

Paul Murrell

References

Murrell, P. R. (1999), Layouts: A Mechanism for Arranging Plots on a Page, Journal of Computa-
tional and Graphical Statistics, 8, 121–134.

See Also

Grid, grid.show.layout, viewport, layout

910 grid.lines

Examples

A variety of layouts (some a bit mid-bending ...)
layout.torture()
Demonstration of layout justification
grid.newpage()
testlay <- function(just="centre") {

pushViewport(viewport(layout=grid.layout(1, 1, widths=unit(1, "inches"),
heights=unit(0.25, "npc"),
just=just)))

pushViewport(viewport(layout.pos.col=1, layout.pos.row=1))
grid.rect()
grid.text(paste(just, collapse="-"))
popViewport(2)

}
testlay()
testlay(c("left", "top"))
testlay(c("right", "top"))
testlay(c("right", "bottom"))
testlay(c("left", "bottom"))
testlay(c("left"))
testlay(c("right"))
testlay(c("bottom"))
testlay(c("top"))

grid.lines Draw Lines in a Grid Viewport

Description

These functions create and draw a series of lines.

Usage

grid.lines(x = unit(c(0, 1), "npc"),
y = unit(c(0, 1), "npc"),
default.units = "npc",
arrow = NULL, name = NULL,
gp=gpar(), draw = TRUE, vp = NULL)

linesGrob(x = unit(c(0, 1), "npc"),
y = unit(c(0, 1), "npc"),
default.units = "npc",
arrow = NULL, name = NULL,
gp=gpar(), vp = NULL)

grid.polyline(...)
polylineGrob(x = unit(c(0, 1), "npc"),

y = unit(c(0, 1), "npc"),
id=NULL, id.lengths=NULL,
default.units = "npc",
arrow = NULL, name = NULL,
gp=gpar(), vp = NULL)

grid.lines 911

Arguments

x A numeric vector or unit object specifying x-values.
y A numeric vector or unit object specifying y-values.
default.units A string indicating the default units to use if x or y are only given as numeric

vectors.
arrow A list describing arrow heads to place at either end of the line, as produced by

the arrow function.
name A character identifier.
gp An object of class gpar, typically the output from a call to the function gpar.

This is basically a list of graphical parameter settings.
draw A logical value indicating whether graphics output should be produced.
vp A Grid viewport object (or NULL).
id A numeric vector used to separate locations in x and y into multiple lines. All

locations with the same id belong to the same line.
id.lengths A numeric vector used to separate locations in x and y into multiple lines. Spec-

ifies consecutive blocks of locations which make up separate lines.
... Arguments passed to polylineGrob.

Details

The first two functions create a lines grob (a graphical object describing lines), and grid.lines
draws the lines (if draw is TRUE).

The second two functions create or draw a polyline grob, which is just like a lines grob, except that
there can be multiple distinct lines drawn.

Value

A lines grob or a polyline grob. grid.lines returns a lines grob invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport, arrow

Examples

grid.lines()
Using id (NOTE: locations are not in consecutive blocks)
grid.newpage()
grid.polyline(x=c((0:4)/10, rep(.5, 5), (10:6)/10, rep(.5, 5)),

y=c(rep(.5, 5), (10:6/10), rep(.5, 5), (0:4)/10),
id=rep(1:5, 4),
gp=gpar(col=1:5, lwd=3))

Using id.lengths
grid.newpage()
grid.polyline(x=outer(c(0, .5, 1, .5), 5:1/5),

y=outer(c(.5, 1, .5, 0), 5:1/5),
id.lengths=rep(4, 5),
gp=gpar(col=1:5, lwd=3))

912 grid.locator

grid.locator Capture a Mouse Click

Description

Allows the user to click the mouse once within the current graphics device and returns the location
of the mouse click within the current viewport, in the specified coordinate system.

Usage

grid.locator(unit = "native")

Arguments

unit The coordinate system in which to return the location of the mouse click. See
the unit function for valid coordinate systems.

Details

This function is modal (like the graphics package function locator) so the command line and
graphics drawing is blocked until the use has clicked the mouse in the current device.

Value

A unit object representing the location of the mouse click within the current viewport, in the speci-
fied coordinate system.

If the user did not click mouse button 1, the function (invisibly) returns NULL.

Author(s)

Paul Murrell

See Also

viewport, unit, locator in package graphics, and for an application see trellis.focus and
panel.identify in package lattice.

Examples

if (interactive()) {
Need to write a more sophisticated unit as.character method
unittrim <- function(unit) {
sub("^([0-9]+|[0-9]+[.][0-9])[0-9]*", "\\1", as.character(unit))

}
do.click <- function(unit) {

click.locn <- grid.locator(unit)
grid.segments(unit.c(click.locn$x, unit(0, "npc")),

unit.c(unit(0, "npc"), click.locn$y),
click.locn$x, click.locn$y,
gp=gpar(lty="dashed", col="grey"))

grid.points(click.locn$x, click.locn$y, pch=16, size=unit(1, "mm"))
clickx <- unittrim(click.locn$x)
clicky <- unittrim(click.locn$y)

http://CRAN.R-project.org/package=lattice

grid.ls 913

grid.text(paste("(", clickx, ", ", clicky, ")", sep=""),
click.locn$x + unit(2, "mm"), click.locn$y,
just="left")

}
do.click("inches")
pushViewport(viewport(width=0.5, height=0.5,

xscale=c(0, 100), yscale=c(0, 10)))
grid.rect()
grid.xaxis()
grid.yaxis()
do.click("native")
popViewport()

}

grid.ls List the names of grobs or viewports

Description

Returns a listing of the names of grobs or viewports.

This is a generic function with methods for grobs (including gTrees) and viewports (including
vpTrees).

Usage

grid.ls(x=NULL, grobs=TRUE, viewports=FALSE, fullNames=FALSE,
recursive=TRUE, print=TRUE, flatten=TRUE, ...)

nestedListing(x, gindent=" ", vpindent=gindent)
pathListing(x, gvpSep=" | ", gAlign=TRUE)
grobPathListing(x, ...)

Arguments

x A grob or viewport or NULL. If NULL, the current grid display list is listed.
For print functions, this should be the result of a call to grid.ls.

grobs A logical value indicating whether to list grobs.
viewports A logical value indicating whether to list viewports.
fullNames A logical value indicating whether to embellish object names with information

about the object type.
recursive A logical value indicating whether recursive structures should also list their chil-

dren.
print A logical indicating whether to print the listing or a function that will print the

listing.
flatten A logical value indicating whether to flatten the listing. Otherwise a more com-

plex hierarchical object is produced.
gindent The indent used to show nesting in the output for grobs.
vpindent The indent used to show nesting in the output for viewports.
gvpSep The string used to separate viewport paths from grob paths.
gAlign Logical indicating whether to align the left hand edge of all grob paths.
... Arguments passed to the print function.

914 grid.ls

Details

If the argument x is NULL, the current contents of the grid display list are listed (both viewports and
grobs). In other words, all objects representing the current scene are listed.

Otherwise, x should be a grob or a viewport.

The default behaviour of this function is to print information about the grobs in the current scene.
It is also possible to add information about the viewports in the scene. By default, the listing is
recursive, so all children of gTrees and all nested viewports are reported.

The format of the information can be controlled via the print argument, which can be given a
function to perform the formatting. The nestedListing function produces a line per grob or view-
port, with indenting used to show nesting. The pathListing function produces a line per grob or
viewport, with viewport paths and grob paths used to show nesting. The grobPathListing is a
simple derivation that only shows lines for grobs. The user can define new functions.

Value

The result of this function is either a "gridFlatListing" object (if flatten is TRUE) or a
"gridListing" object.

The former is a simple (flat) list of vectors. This is convenient, for example, for working program-
matically with the list of grob and viewport names, or for writing a new display function for the
listing.

The latter is a more complex hierarchical object (list of lists), but it does contain more detailed
information so may be of use for more advanced customisations.

Author(s)

Paul Murrell

See Also

grob viewport

Examples

A gTree, called "parent", with childrenvp vpTree (vp2 within vp1)
and child grob, called "child", with vp vpPath (down to vp2)
sampleGTree <- gTree(name="parent",

children=gList(grob(name="child", vp="vp1::vp2")),
childrenvp=vpTree(parent=viewport(name="vp1"),

children=vpList(viewport(name="vp2"))))
grid.ls(sampleGTree)
Show viewports too
grid.ls(sampleGTree, view=TRUE)
Only show viewports
grid.ls(sampleGTree, view=TRUE, grob=FALSE)
Alternate displays
nested listing, custom indent
grid.ls(sampleGTree, view=TRUE, print=nestedListing, gindent="--")
path listing
grid.ls(sampleGTree, view=TRUE, print=pathListing)
path listing, without grobs aligned
grid.ls(sampleGTree, view=TRUE, print=pathListing, gAlign=FALSE)
grob path listing
grid.ls(sampleGTree, view=TRUE, print=grobPathListing)

grid.move.to 915

path listing, grobs only
grid.ls(sampleGTree, print=pathListing)
path listing, viewports only
grid.ls(sampleGTree, view=TRUE, grob=FALSE, print=pathListing)
raw flat listing
str(grid.ls(sampleGTree, view=TRUE, print=FALSE))

grid.move.to Move or Draw to a Specified Position

Description

Grid has the notion of a current location. These functions sets that location.

Usage

grid.move.to(x = 0, y = 0, default.units = "npc", name = NULL,
draw = TRUE, vp = NULL)

moveToGrob(x = 0, y = 0, default.units = "npc", name = NULL, vp = NULL)

grid.line.to(x = 1, y = 1, default.units = "npc",
arrow = NULL, name = NULL,
gp = gpar(), draw = TRUE, vp = NULL)

lineToGrob(x = 1, y = 1, default.units = "npc", arrow = NULL,
name = NULL, gp = gpar(), vp = NULL)

Arguments

x A numeric value or a unit object specifying an x-value.

y A numeric value or a unit object specifying a y-value.

default.units A string indicating the default units to use if x or y are only given as numeric
values.

arrow A list describing arrow heads to place at either end of the line, as produced by
the arrow function.

name A character identifier.

draw A logical value indicating whether graphics output should be produced.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

Details

Both functions create a move.to/line.to grob (a graphical object describing a move-to/line-to), but
only grid.move.to/line.to() draws the move.to/line.to (and then only if draw is TRUE).

Value

A move.to/line.to grob. grid.move.to/line.to() returns the value invisibly.

916 grid.newpage

Author(s)

Paul Murrell

See Also

Grid, viewport, arrow

Examples

grid.newpage()
grid.move.to(0.5, 0.5)
grid.line.to(1, 1)
grid.line.to(0.5, 0)
pushViewport(viewport(x=0, y=0, w=0.25, h=0.25, just=c("left", "bottom")))
grid.rect()
grid.grill()
grid.line.to(0.5, 0.5)
popViewport()

grid.newpage Move to a New Page on a Grid Device

Description

This function erases the current device or moves to a new page.

Usage

grid.newpage(recording = TRUE)

Arguments

recording A logical value to indicate whether the new-page operation should be saved onto
the Grid display list.

Details

The new page is painted with the fill colour (gpar("fill")), which is often transparent. For devices
with a canvas colour (the on-screen devices X11, windows and quartz), the page is first painted with
the canvas colour and then the background colour.

There are two hooks called "before.grid.newpage" and "grid.newpage" (see setHook). The
latter is used in the testing code to annotate the new page. The hook function(s) are called with no
argument. (If the value is a character string, get is called on it from within the grid namespace.)

Value

None.

Author(s)

Paul Murrell

grid.null 917

See Also

Grid

grid.null Null Graphical Object

Description

These functions create a NULL graphical object, which has zero width, zero height, and draw
nothing. It can be used as a place-holder or as an invisible reference point for other drawing.

Usage

nullGrob(x = unit(0.5, "npc"), y = unit(0.5, "npc"),
default.units = "npc",
name = NULL, vp = NULL)

grid.null(...)

Arguments

x A numeric vector or unit object specifying x-location.

y A numeric vector or unit object specifying y-location.

default.units A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

name A character identifier.

vp A Grid viewport object (or NULL).

... Arguments passed to nullGrob().

Value

A null grob.

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

grid.newpage()
grid.null(name="ref")
grid.rect(height=grobHeight("ref"))
grid.segments(0, 0, grobX("ref", 0), grobY("ref", 0))

918 grid.pack

grid.pack Pack an Object within a Frame

Description

This functions, together with grid.frame and frameGrob are part of a GUI-builder-like interface to
constructing graphical images. The idea is that you create a frame with grid.frame or frameGrob
then use this functions to pack objects into the frame.

Usage

grid.pack(gPath, grob, redraw = TRUE, side = NULL,
row = NULL, row.before = NULL, row.after = NULL,
col = NULL, col.before = NULL, col.after = NULL,
width = NULL, height = NULL,
force.width = FALSE, force.height = FALSE, border = NULL,
dynamic = FALSE)

packGrob(frame, grob, side = NULL,
row = NULL, row.before = NULL, row.after = NULL,
col = NULL, col.before = NULL, col.after = NULL,
width = NULL, height = NULL,
force.width = FALSE, force.height = FALSE, border = NULL,
dynamic = FALSE)

Arguments

gPath A gPath object, which specifies a frame on the display list.

frame An object of class frame, typically the output from a call to grid.frame.

grob An object of class grob. The object to be packed.

redraw A boolean indicating whether the output should be updated.

side One of "left", "top", "right", "bottom" to indicate which side to pack the
object on.

row Which row to add the object to. Must be between 1 and the-number-of-rows-
currently-in-the-frame + 1, or NULL in which case the object occupies all rows.

row.before Add the object to a new row just before this row.

row.after Add the object to a new row just after this row.

col Which col to add the object to. Must be between 1 and the-number-of-cols-
currently-in-the-frame + 1, or NULL in which case the object occupies all cols.

col.before Add the object to a new col just before this col.

col.after Add the object to a new col just after this col.

width Specifies the width of the column that the object is added to (rather than allowing
the width to be taken from the object).

height Specifies the height of the row that the object is added to (rather than allowing
the height to be taken from the object).

force.width A logical value indicating whether the width of the column that the grob is being
packed into should be EITHER the width specified in the call to grid.pack OR
the maximum of that width and the pre-existing width.

grid.path 919

force.height A logical value indicating whether the height of the column that the grob is being
packed into should be EITHER the height specified in the call to grid.pack OR
the maximum of that height and the pre-existing height.

border A unit object of length 4 indicating the borders around the object.

dynamic If the width/height is taken from the grob being packed, this boolean flag in-
dicates whether the grobwidth/height unit refers directly to the grob, or uses a
gPath to the grob. In the latter case, changes to the grob will trigger a recalcula-
tion of the width/height.

Details

packGrob modifies the given frame grob and returns the modified frame grob.

grid.pack destructively modifies a frame grob on the display list (and redraws the display list if
redraw is TRUE).

These are (meant to be) very flexible functions. There are many different ways to specify where the
new object is to be added relative to the objects already in the frame. The function checks that the
specification is not self-contradictory.

NOTE that the width/height of the row/col that the object is added to is taken from the object itself
unless the width/height is specified.

Value

packGrob returns a frame grob, but grid.pack returns NULL.

Author(s)

Paul Murrell

See Also

grid.frame, grid.place, grid.edit, and gPath.

grid.path Draw a Path

Description

These functions create and draw a path. The final point will automatically be connected to the initial
point.

Usage

pathGrob(x, y,
id=NULL, id.lengths=NULL,
rule="winding",
default.units="npc",
name=NULL, gp=gpar(), vp=NULL)

grid.path(...)

920 grid.path

Arguments

x A numeric vector or unit object specifying x-locations.

y A numeric vector or unit object specifying y-locations.

id A numeric vector used to separate locations in x and y into sub-paths. All loca-
tions with the same id belong to the same sub-path.

id.lengths A numeric vector used to separate locations in x and y into sub-paths. Specifies
consecutive blocks of locations which make up separate sub-paths.

rule A character value specifying the fill rule: either "winding" or "evenodd".

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

... Arguments passed to pathGrob().

Details

Both functions create a path grob (a graphical object describing a path), but only grid.path draws
the path (and then only if draw is TRUE).

A path is like a polygon except that the former can contain holes, as interpreted by the fill rule;
these fill a region if the path border encircles it an odd or non-zero number of times, respectively.

Not all graphics devices support this function: for example xfig and pictex do not.

Value

A grob object.

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

pathSample <- function(x, y, rule, gp = gpar()) {
if (is.na(rule))

grid.path(x, y, id = rep(1:2, each = 4), gp = gp)
else

grid.path(x, y, id = rep(1:2, each = 4), rule = rule, gp = gp)
if (!is.na(rule))

grid.text(paste("Rule:", rule), y = 0, just = "bottom")
}

pathTriplet <- function(x, y, title) {
pushViewport(viewport(height = 0.9, layout = grid.layout(1, 3),

gp = gpar(cex = .7)))
grid.rect(y = 1, height = unit(1, "char"), just = "top",

grid.place 921

gp = gpar(col = NA, fill = "grey"))
grid.text(title, y = 1, just = "top")
pushViewport(viewport(layout.pos.col = 1))
pathSample(x, y, rule = "winding",

gp = gpar(fill = "grey"))
popViewport()
pushViewport(viewport(layout.pos.col = 2))
pathSample(x, y, rule = "evenodd",

gp = gpar(fill = "grey"))
popViewport()
pushViewport(viewport(layout.pos.col = 3))
pathSample(x, y, rule = NA)
popViewport()
popViewport()

}

pathTest <- function() {
grid.newpage()
pushViewport(viewport(layout = grid.layout(5, 1)))
pushViewport(viewport(layout.pos.row = 1))
pathTriplet(c(.1, .1, .9, .9, .2, .2, .8, .8),

c(.1, .9, .9, .1, .2, .8, .8, .2),
"Nested rectangles, both clockwise")

popViewport()
pushViewport(viewport(layout.pos.row = 2))
pathTriplet(c(.1, .1, .9, .9, .2, .8, .8, .2),

c(.1, .9, .9, .1, .2, .2, .8, .8),
"Nested rectangles, outer clockwise, inner anti-clockwise")

popViewport()
pushViewport(viewport(layout.pos.row = 3))
pathTriplet(c(.1, .1, .4, .4, .6, .9, .9, .6),

c(.1, .4, .4, .1, .6, .6, .9, .9),
"Disjoint rectangles")

popViewport()
pushViewport(viewport(layout.pos.row = 4))
pathTriplet(c(.1, .1, .6, .6, .4, .4, .9, .9),

c(.1, .6, .6, .1, .4, .9, .9, .4),
"Overlapping rectangles, both clockwise")

popViewport()
pushViewport(viewport(layout.pos.row = 5))
pathTriplet(c(.1, .1, .6, .6, .4, .9, .9, .4),

c(.1, .6, .6, .1, .4, .4, .9, .9),
"Overlapping rectangles, one clockwise, other anti-clockwise")

popViewport()
popViewport()

}

pathTest()

grid.place Place an Object within a Frame

Description

These functions provide a simpler (and faster) alternative to the grid.pack() and packGrob func-
tions. They can be used to place objects within the existing rows and columns of a frame layout.

922 grid.plot.and.legend

They do not provide the ability to add new rows and columns nor do they affect the heights and
widths of the rows and columns.

Usage

grid.place(gPath, grob, row = 1, col = 1, redraw = TRUE)
placeGrob(frame, grob, row = NULL, col = NULL)

Arguments

gPath A gPath object, which specifies a frame on the display list.

frame An object of class frame, typically the output from a call to grid.frame.

grob An object of class grob. The object to be placed.

row Which row to add the object to. Must be between 1 and the-number-of-rows-
currently-in-the-frame.

col Which col to add the object to. Must be between 1 and the-number-of-cols-
currently-in-the-frame.

redraw A boolean indicating whether the output should be updated.

Details

placeGrob modifies the given frame grob and returns the modified frame grob.

grid.place destructively modifies a frame grob on the display list (and redraws the display list if
redraw is TRUE).

Value

placeGrob returns a frame grob, but grid.place returns NULL.

Author(s)

Paul Murrell

See Also

grid.frame, grid.pack, grid.edit, and gPath.

grid.plot.and.legend A Simple Plot and Legend Demo

Description

This function is just a wrapper for a simple demonstration of how a basic plot and legend can be
drawn from scratch using grid.

Usage

grid.plot.and.legend()

grid.points 923

Author(s)

Paul Murrell

Examples

grid.plot.and.legend()

grid.points Draw Data Symbols

Description

These functions create and draw data symbols.

Usage

grid.points(x = stats::runif(10),
y = stats::runif(10),
pch = 1, size = unit(1, "char"),
default.units = "native", name = NULL,
gp = gpar(), draw = TRUE, vp = NULL)

pointsGrob(x = stats::runif(10),
y = stats::runif(10),
pch = 1, size = unit(1, "char"),
default.units = "native", name = NULL,
gp = gpar(), vp = NULL)

Arguments

x A numeric vector or unit object specifying x-values.

y A numeric vector or unit object specifying y-values.

pch A numeric or character vector indicating what sort of plotting symbol to use.
See points for the interpretation of these values.

size A unit object specifying the size of the plotting symbols.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create a points grob (a graphical object describing points), but only grid.points
draws the points (and then only if draw is TRUE).

924 grid.polygon

Value

A points grob. grid.points returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport

grid.polygon Draw a Polygon

Description

These functions create and draw a polygon. The final point will automatically be connected to the
initial point.

Usage

grid.polygon(x=c(0, 0.5, 1, 0.5), y=c(0.5, 1, 0.5, 0),
id=NULL, id.lengths=NULL,
default.units="npc", name=NULL,
gp=gpar(), draw=TRUE, vp=NULL)

polygonGrob(x=c(0, 0.5, 1, 0.5), y=c(0.5, 1, 0.5, 0),
id=NULL, id.lengths=NULL,
default.units="npc", name=NULL,
gp=gpar(), vp=NULL)

Arguments

x A numeric vector or unit object specifying x-locations.

y A numeric vector or unit object specifying y-locations.

id A numeric vector used to separate locations in x and y into multiple polygons.
All locations with the same id belong to the same polygon.

id.lengths A numeric vector used to separate locations in x and y into multiple polygons.
Specifies consecutive blocks of locations which make up separate polygons.

default.units A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create a polygon grob (a graphical object describing a polygon), but only
grid.polygon draws the polygon (and then only if draw is TRUE).

grid.pretty 925

Value

A grob object.

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

grid.polygon()
Using id (NOTE: locations are not in consecutive blocks)
grid.newpage()
grid.polygon(x=c((0:4)/10, rep(.5, 5), (10:6)/10, rep(.5, 5)),

y=c(rep(.5, 5), (10:6/10), rep(.5, 5), (0:4)/10),
id=rep(1:5, 4),
gp=gpar(fill=1:5))

Using id.lengths
grid.newpage()
grid.polygon(x=outer(c(0, .5, 1, .5), 5:1/5),

y=outer(c(.5, 1, .5, 0), 5:1/5),
id.lengths=rep(4, 5),
gp=gpar(fill=1:5))

grid.pretty Generate a Sensible Set of Breakpoints

Description

Produces a pretty set of breakpoints within the range given.

Usage

grid.pretty(range)

Arguments

range A numeric vector

Value

A numeric vector of breakpoints.

Author(s)

Paul Murrell

926 grid.raster

grid.prompt Prompt before New Page

Description

This function can be used to control whether the user is prompted before starting a new page of
output.

Usage

grid.prompt(ask)

Arguments

ask a logical value. If TRUE, the user is prompted before a new page of output is
started.

Details

Yhis is deprecated in favour of devAskNewPage as a single setting inside the device affects both the
base and grid graphics systems.

The default value when a device is opened is taken from the setting of
options("device.ask.default").

Value

The current prompt setting before any new setting is applied.

Author(s)

Paul Murrell

See Also

grid.newpage

grid.raster Render a raster object

Description

Render a raster object (bitmap image) at the given location, size, and orientation.

grid.raster 927

Usage

grid.raster(image,
x = unit(0.5, "npc"), y = unit(0.5, "npc"),
width = NULL, height = NULL,
just = "centre", hjust = NULL, vjust = NULL,
interpolate = TRUE, default.units = "npc",
name = NULL, gp = gpar(), vp = NULL)

rasterGrob(image,
x = unit(0.5, "npc"), y = unit(0.5, "npc"),
width = NULL, height = NULL,
just = "centre", hjust = NULL, vjust = NULL,
interpolate = TRUE, default.units = "npc",
name = NULL, gp = gpar(), vp = NULL)

Arguments

image Any R object that can be coerced to a raster object.

x A numeric vector or unit object specifying x-location.

y A numeric vector or unit object specifying y-location.

width A numeric vector or unit object specifying width.

height A numeric vector or unit object specifying height.

just The justification of the rectangle relative to its (x, y) location. If there are two
values, the first value specifies horizontal justification and the second value
specifies vertical justification. Possible string values are: "left", "right",
"centre", "center", "bottom", and "top". For numeric values, 0 means left
alignment and 1 means right alignment.

hjust A numeric vector specifying horizontal justification. If specified, overrides the
just setting.

vjust A numeric vector specifying vertical justification. If specified, overrides the
just setting.

default.units A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

interpolate A logical value indicating whether to linearly interpolate the image (the alterna-
tive is to use nearest-neighbour interpolation, which gives a more blocky result).

Details

Neither width nor height needs to be specified, in which case, the aspect ratio of the image is
preserved. If both width and height are specified, it is likely that the image will be distorted.

Not all graphics devices are capable of rendering raster images and some may not be able to produce
rotated images (i.e., if a raster object is rendered within a rotated viewport).

All graphical parameter settings in gp will be ignored, including alpha.

928 grid.record

Value

A rastergrob grob.

Author(s)

Paul Murrell

See Also

as.raster.

dev.capabilities to see if it is supported.

Examples

redGradient <- matrix(hcl(0, 80, seq(50, 80, 10)),
nrow=4, ncol=5)

interpolated
grid.newpage()
grid.raster(redGradient)
blocky
grid.newpage()
grid.raster(redGradient, interpolate=FALSE)
blocky and stretched
grid.newpage()
grid.raster(redGradient, interpolate=FALSE, height=unit(1, "npc"))

The same raster drawn several times
grid.newpage()
grid.raster(0, x=1:3/4, y=1:3/4, w=.1, interp=FALSE)

grid.record Encapsulate calculations and drawing

Description

Evaluates an expression that includes both calculations and drawing that depends on the calculations
so that both the calculations and the drawing will be rerun when the scene is redrawn (e.g., device
resize or editing).

Intended only for expert use.

Usage

recordGrob(expr, list, name=NULL, gp=NULL, vp=NULL)
grid.record(expr, list, name=NULL, gp=NULL, vp=NULL)

Arguments

expr object of mode expression or call or an unevaluated expression.
list a list defining the environment in which expr is to be evaluated.
name A character identifier.
gp An object of class gpar, typically the output from a call to the function gpar.

This is basically a list of graphical parameter settings.
vp A Grid viewport object (or NULL).

grid.rect 929

Details

A grob is created of special class "recordedGrob" (and drawn, in the case of grid.record). The
drawDetails method for this class evaluates the expression with the list as the evaluation environ-
ment (and the grid Namespace as the parent of that environment).

Note

This function must be used instead of the function recordGraphics; all of the dire warnings about
using recordGraphics responsibly also apply here.

Author(s)

Paul Murrell

See Also

recordGraphics

Examples

grid.record({
w <- convertWidth(unit(1, "inches"), "npc")
grid.rect(width=w)

},
list())

grid.rect Draw rectangles

Description

These functions create and draw rectangles.

Usage

grid.rect(x = unit(0.5, "npc"), y = unit(0.5, "npc"),
width = unit(1, "npc"), height = unit(1, "npc"),
just = "centre", hjust = NULL, vjust = NULL,
default.units = "npc", name = NULL,
gp=gpar(), draw = TRUE, vp = NULL)

rectGrob(x = unit(0.5, "npc"), y = unit(0.5, "npc"),
width = unit(1, "npc"), height = unit(1, "npc"),
just = "centre", hjust = NULL, vjust = NULL,
default.units = "npc", name = NULL,
gp=gpar(), vp = NULL)

930 grid.rect

Arguments

x A numeric vector or unit object specifying x-location.

y A numeric vector or unit object specifying y-location.

width A numeric vector or unit object specifying width.

height A numeric vector or unit object specifying height.

just The justification of the rectangle relative to its (x, y) location. If there are two
values, the first value specifies horizontal justification and the second value
specifies vertical justification. Possible string values are: "left", "right",
"centre", "center", "bottom", and "top". For numeric values, 0 means left
alignment and 1 means right alignment.

hjust A numeric vector specifying horizontal justification. If specified, overrides the
just setting.

vjust A numeric vector specifying vertical justification. If specified, overrides the
just setting.

default.units A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create a rect grob (a graphical object describing rectangles), but only grid.rect
draws the rectangles (and then only if draw is TRUE).

Value

A rect grob. grid.rect returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport

grid.refresh 931

grid.refresh Refresh the current grid scene

Description

Replays the current grid display list.

Usage

grid.refresh()

Author(s)

Paul Murrell

grid.remove Remove a Grid Graphical Object

Description

Remove a grob from a gTree or a descendant of a gTree.

Usage

grid.remove(gPath, warn = TRUE, strict = FALSE, grep = FALSE,
global = FALSE, allDevices = FALSE, redraw = TRUE)

grid.gremove(..., grep = TRUE, global = TRUE)

removeGrob(gTree, gPath, strict = FALSE, grep = FALSE,
global = FALSE, warn = TRUE)

Arguments

gTree A gTree object.
gPath A gPath object. For grid.remove this specifies a gTree on the display list. For

removeGrob this specifies a descendant of the specified gTree.
strict A boolean indicating whether the gPath must be matched exactly.
grep A boolean indicating whether the gPath should be treated as a regular expres-

sion. Values are recycled across elements of the gPath (e.g., c(TRUE, FALSE)
means that every odd element of the gPath will be treated as a regular expres-
sion).

global A boolean indicating whether the function should affect just the first match of
the gPath, or whether all matches should be affected.

allDevices A boolean indicating whether all open devices should be searched for matches,
or just the current device. NOT YET IMPLEMENTED.

warn A logical to indicate whether failing to find the specified grob should trigger an
error.

redraw A logical value to indicate whether to redraw the grob.
... Arguments that are passed to grid.get.

932 grid.segments

Details

removeGrob copies the specified grob and returns a modified grob.

grid.remove destructively modifies a grob on the display list. If redraw is TRUE it then redraws
everything to reflect the change.

grid.gremove (g for global) is just a convenience wrapper for grid.remove with different defaults.

Value

removeGrob returns a grob object; grid.remove returns NULL.

Author(s)

Paul Murrell

See Also

grob, getGrob, removeGrob, removeGrob.

grid.segments Draw Line Segments

Description

These functions create and draw line segments.

Usage

grid.segments(x0 = unit(0, "npc"), y0 = unit(0, "npc"),
x1 = unit(1, "npc"), y1 = unit(1, "npc"),
default.units = "npc",
arrow = NULL,
name = NULL, gp = gpar(), draw = TRUE, vp = NULL)

segmentsGrob(x0 = unit(0, "npc"), y0 = unit(0, "npc"),
x1 = unit(1, "npc"), y1 = unit(1, "npc"),
default.units = "npc",
arrow = NULL, name = NULL, gp = gpar(), vp = NULL)

Arguments

x0 Numeric indicating the starting x-values of the line segments.
y0 Numeric indicating the starting y-values of the line segments.
x1 Numeric indicating the stopping x-values of the line segments.
y1 Numeric indicating the stopping y-values of the line segments.
default.units A string.
arrow A list describing arrow heads to place at either end of the line segments, as

produced by the arrow function.
name A character identifier.
gp An object of class gpar.
draw A logical value indicating whether graphics output should be produced.
vp A Grid viewport object (or NULL).

grid.set 933

Details

Both functions create a segments grob (a graphical object describing segments), but only
grid.segments draws the segments (and then only if draw is TRUE).

Value

A segments grob. grid.segments returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport, arrow

grid.set Set a Grid Graphical Object

Description

Replace a grob or a descendant of a grob.

Usage

grid.set(gPath, newGrob, strict = FALSE, grep = FALSE,
redraw = TRUE)

setGrob(gTree, gPath, newGrob, strict = FALSE, grep = FALSE)

Arguments

gTree A gTree object.

gPath A gPath object. For grid.set this specifies a grob on the display list. For
setGrob this specifies a descendant of the specified gTree.

newGrob A grob object.

strict A boolean indicating whether the gPath must be matched exactly.

grep A boolean indicating whether the gPath should be treated as a regular expres-
sion. Values are recycled across elements of the gPath (e.g., c(TRUE, FALSE)
means that every odd element of the gPath will be treated as a regular expres-
sion).

redraw A logical value to indicate whether to redraw the grob.

Details

setGrob copies the specified grob and returns a modified grob.

grid.set destructively replaces a grob on the display list. If redraw is TRUE it then redraws every-
thing to reflect the change.

These functions should not normally be called by the user.

934 grid.show.layout

Value

setGrob returns a grob object; grid.set returns NULL.

Author(s)

Paul Murrell

See Also

grid.grob.

grid.show.layout Draw a Diagram of a Grid Layout

Description

This function uses Grid graphics to draw a diagram of a Grid layout.

Usage

grid.show.layout(l, newpage=TRUE, bg = "light grey",
cell.border = "blue", cell.fill = "light blue",
cell.label = TRUE, label.col = "blue",
unit.col = "red", vp = NULL)

Arguments

l A Grid layout object.

newpage A logical value indicating whether to move on to a new page before drawing the
diagram.

bg The colour used for the background.

cell.border The colour used to draw the borders of the cells in the layout.

cell.fill The colour used to fill the cells in the layout.

cell.label A logical indicating whether the layout cells should be labelled.

label.col The colour used for layout cell labels.

unit.col The colour used for labelling the widths/heights of columns/rows.

vp A Grid viewport object (or NULL).

Details

A viewport is created within vp to provide a margin for annotation, and the layout is drawn within
that new viewport. The margin is filled with light grey, the new viewport is filled with white and
framed with a black border, and the layout regions are filled with light blue and framed with a blue
border. The diagram is annotated with the widths and heights (including units) of the columns and
rows of the layout using red text. (All colours are defaults and may be customised via function
arguments.)

Value

None.

grid.show.viewport 935

Author(s)

Paul Murrell

See Also

Grid, viewport, grid.layout

Examples

Diagram of a simple layout
grid.show.layout(grid.layout(4,2,

heights=unit(rep(1, 4),
c("lines", "lines", "lines", "null")),

widths=unit(c(1, 1), "inches")))

grid.show.viewport Draw a Diagram of a Grid Viewport

Description

This function uses Grid graphics to draw a diagram of a Grid viewport.

Usage

grid.show.viewport(v, parent.layout = NULL, newpage = TRUE,
border.fill="light grey",
vp.col="blue", vp.fill="light blue",
scale.col="red",
vp = NULL)

Arguments

v A Grid viewport object.
parent.layout A grid layout object. If this is not NULL and the viewport given in v has its

location specified relative to the layout, then the diagram shows the layout and
which cells v occupies within the layout.

newpage A logical value to indicate whether to move to a new page before drawing the
diagram.

border.fill Colour to fill the border margin.
vp.col Colour for the border of the viewport region.
vp.fill Colour to fill the viewport region.
scale.col Colour to draw the viewport axes.
vp A Grid viewport object (or NULL).

Details

A viewport is created within vp to provide a margin for annotation, and the diagram is drawn within
that new viewport. By default, the margin is filled with light grey, the new viewport is filled with
white and framed with a black border, and the viewport region is filled with light blue and framed
with a blue border. The diagram is annotated with the width and height (including units) of the
viewport, the (x, y) location of the viewport, and the x- and y-scales of the viewport, using red lines
and text.

936 grid.text

Value

None.

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

Diagram of a sample viewport
grid.show.viewport(viewport(x=0.6, y=0.6,

w=unit(1, "inches"), h=unit(1, "inches")))
grid.show.viewport(viewport(layout.pos.row=2, layout.pos.col=2:3),

grid.layout(3, 4))

grid.text Draw Text

Description

These functions create and draw text and plotmath expressions.

Usage

grid.text(label, x = unit(0.5, "npc"), y = unit(0.5, "npc"),
just = "centre", hjust = NULL, vjust = NULL, rot = 0,
check.overlap = FALSE, default.units = "npc",
name = NULL, gp = gpar(), draw = TRUE, vp = NULL)

textGrob(label, x = unit(0.5, "npc"), y = unit(0.5, "npc"),
just = "centre", hjust = NULL, vjust = NULL, rot = 0,
check.overlap = FALSE, default.units = "npc",
name = NULL, gp = gpar(), vp = NULL)

Arguments

label A character or expression vector. Other objects are coerced by
as.graphicsAnnot.

x A numeric vector or unit object specifying x-values.

y A numeric vector or unit object specifying y-values.

just The justification of the text relative to its (x, y) location. If there are two values,
the first value specifies horizontal justification and the second value specifies
vertical justification. Possible string values are: "left", "right", "centre",
"center", "bottom", and "top". For numeric values, 0 means left alignment
and 1 means right alignment.

hjust A numeric vector specifying horizontal justification. If specified, overrides the
just setting.

grid.text 937

vjust A numeric vector specifying vertical justification. If specified, overrides the
just setting.

rot The angle to rotate the text.

check.overlap A logical value to indicate whether to check for and omit overlapping text.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create a text grob (a graphical object describing text), but only grid.text draws the
text (and then only if draw is TRUE).

If the label argument is an expression, the output is formatted as a mathematical annotation, as for
base graphics text.

Value

A text grob. grid.text returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

grid.newpage()
x <- stats::runif(20)
y <- stats::runif(20)
rot <- stats::runif(20, 0, 360)
grid.text("SOMETHING NICE AND BIG", x=x, y=y, rot=rot,

gp=gpar(fontsize=20, col="grey"))
grid.text("SOMETHING NICE AND BIG", x=x, y=y, rot=rot,

gp=gpar(fontsize=20), check=TRUE)
grid.newpage()
draw.text <- function(just, i, j) {

grid.text("ABCD", x=x[j], y=y[i], just=just)
grid.text(deparse(substitute(just)), x=x[j], y=y[i] + unit(2, "lines"),

gp=gpar(col="grey", fontsize=8))
}
x <- unit(1:4/5, "npc")
y <- unit(1:4/5, "npc")
grid.grill(h=y, v=x, gp=gpar(col="grey"))
draw.text(c("bottom"), 1, 1)
draw.text(c("left", "bottom"), 2, 1)
draw.text(c("right", "bottom"), 3, 1)

938 grid.xaxis

draw.text(c("centre", "bottom"), 4, 1)
draw.text(c("centre"), 1, 2)
draw.text(c("left", "centre"), 2, 2)
draw.text(c("right", "centre"), 3, 2)
draw.text(c("centre", "centre"), 4, 2)
draw.text(c("top"), 1, 3)
draw.text(c("left", "top"), 2, 3)
draw.text(c("right", "top"), 3, 3)
draw.text(c("centre", "top"), 4, 3)
draw.text(c(), 1, 4)
draw.text(c("left"), 2, 4)
draw.text(c("right"), 3, 4)
draw.text(c("centre"), 4, 4)

grid.xaxis Draw an X-Axis

Description

These functions create and draw an x-axis.

Usage

grid.xaxis(at = NULL, label = TRUE, main = TRUE,
edits = NULL, name = NULL,
gp = gpar(), draw = TRUE, vp = NULL)

xaxisGrob(at = NULL, label = TRUE, main = TRUE,
edits = NULL, name = NULL,
gp = gpar(), vp = NULL)

Arguments

at A numeric vector of x-value locations for the tick marks.

label A logical value indicating whether to draw the labels on the tick marks, or an
expression or character vector which specify the labels to use. If not logical,
must be the same length as the at argument.

main A logical value indicating whether to draw the axis at the bottom (TRUE) or at
the top (FALSE) of the viewport.

edits A gEdit or gEditList containing edit operations to apply (to the children of the
axis) when the axis is first created and during redrawing whenever at is NULL.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport obect (or NULL).

Details

Both functions create an xaxis grob (a graphical object describing an xaxis), but only grid.xaxis
draws the xaxis (and then only if draw is TRUE).

grid.xspline 939

Value

An xaxis grob. grid.xaxis returns the value invisibly.

Children

If the at slot of an xaxis grob is not NULL then the xaxis will have the following children:

major representing the line at the base of the tick marks.

ticks representing the tick marks.

labels representing the tick labels.

If the at slot is NULL then there are no children and ticks are drawn based on the current viewport
scale.

Author(s)

Paul Murrell

See Also

Grid, viewport, grid.yaxis

grid.xspline Draw an Xspline

Description

These functions create and draw an xspline, a curve drawn relative to control points.

Usage

grid.xspline(...)
xsplineGrob(x = c(0, 0.5, 1, 0.5), y = c(0.5, 1, 0.5, 0),

id = NULL, id.lengths = NULL,
default.units = "npc",
shape = 0, open = TRUE, arrow = NULL, repEnds = TRUE,
name = NULL, gp = gpar(), vp = NULL)

Arguments

x A numeric vector or unit object specifying x-locations of spline control points.

y A numeric vector or unit object specifying y-locations of spline control points.

id A numeric vector used to separate locations in x and y into multiple xsplines.
All locations with the same id belong to the same xspline.

id.lengths A numeric vector used to separate locations in x and y into multiple xspline.
Specifies consecutive blocks of locations which make up separate xsplines.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

shape A numeric vector of values between -1 and 1, which control the shape of the
spline relative to the control points.

940 grid.xspline

open A logical value indicating whether the spline is a line or a closed shape.

arrow A list describing arrow heads to place at either end of the xspline, as produced
by the arrow function.

repEnds A logical value indicating whether the first and last control points should be
replicated for drawing the curve (see Details below).

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

... Arguments to be passed to xsplineGrob.

Details

Both functions create an xspline grob (a graphical object describing an xspline), but only
grid.xspline draws the xspline.

An xspline is a line drawn relative to control points. For each control point, the line may pass
through (interpolate) the control point or it may only approach (approximate) the control point; the
behaviour is determined by a shape parameter for each control point.

If the shape parameter is greater than zero, the spline approximates the control points (and is very
similar to a cubic B-spline when the shape is 1). If the shape parameter is less than zero, the spline
interpolates the control points (and is very similar to a Catmull-Rom spline when the shape is -1).
If the shape parameter is 0, the spline forms a sharp corner at that control point.

For open xsplines, the start and end control points must have a shape of 0 (and non-zero values are
silently converted to zero without warning).

For open xsplines, by default the start and end control points are actually replicated before the curve
is drawn. A curve is drawn between (interpolating or approximating) the second and third of each
set of four control points, so this default behaviour ensures that the resulting curve starts at the first
control point you have specified and ends at the last control point. The default behaviour can be
turned off via the repEnds argument, in which case the curve that is drawn starts (approximately)
at the second control point and ends (approximately) at the first and second-to-last control point.

The repEnds argument is ignored for closed xsplines.

Missing values are not allowed for x and y (i.e., it is not valid for a control point to be missing).

For closed xsplines, a curve is automatically drawn between the final control point and the initial
control point.

Value

A grob object.

References

Blanc, C. and Schlick, C. (1995), "X-splines : A Spline Model Designed for the End User", in
Proceedings of SIGGRAPH 95, pp. 377–386. http://dept-info.labri.fr/~schlick/DOC/
sig1.html

See Also

Grid, viewport, arrow.

xspline.

http://dept-info.labri.fr/~schlick/DOC/sig1.html
http://dept-info.labri.fr/~schlick/DOC/sig1.html

grid.yaxis 941

Examples

x <- c(0.25, 0.25, 0.75, 0.75)
y <- c(0.25, 0.75, 0.75, 0.25)

xsplineTest <- function(s, i, j, open) {
pushViewport(viewport(layout.pos.col=j, layout.pos.row=i))
grid.points(x, y, default.units="npc", pch=16, size=unit(2, "mm"))
grid.xspline(x, y, shape=s, open=open, gp=gpar(fill="grey"))
grid.text(s, gp=gpar(col="grey"),

x=unit(x, "npc") + unit(c(-1, -1, 1, 1), "mm"),
y=unit(y, "npc") + unit(c(-1, 1, 1, -1), "mm"),
hjust=c(1, 1, 0, 0),
vjust=c(1, 0, 0, 1))

popViewport()
}

pushViewport(viewport(width=.5, x=0, just="left",
layout=grid.layout(3, 3, respect=TRUE)))

pushViewport(viewport(layout.pos.row=1))
grid.text("Open Splines", y=1, just="bottom")
popViewport()
xsplineTest(c(0, -1, -1, 0), 1, 1, TRUE)
xsplineTest(c(0, -1, 0, 0), 1, 2, TRUE)
xsplineTest(c(0, -1, 1, 0), 1, 3, TRUE)
xsplineTest(c(0, 0, -1, 0), 2, 1, TRUE)
xsplineTest(c(0, 0, 0, 0), 2, 2, TRUE)
xsplineTest(c(0, 0, 1, 0), 2, 3, TRUE)
xsplineTest(c(0, 1, -1, 0), 3, 1, TRUE)
xsplineTest(c(0, 1, 0, 0), 3, 2, TRUE)
xsplineTest(c(0, 1, 1, 0), 3, 3, TRUE)
popViewport()
pushViewport(viewport(width=.5, x=1, just="right",

layout=grid.layout(3, 3, respect=TRUE)))
pushViewport(viewport(layout.pos.row=1))
grid.text("Closed Splines", y=1, just="bottom")
popViewport()
xsplineTest(c(-1, -1, -1, -1), 1, 1, FALSE)
xsplineTest(c(-1, -1, 0, -1), 1, 2, FALSE)
xsplineTest(c(-1, -1, 1, -1), 1, 3, FALSE)
xsplineTest(c(0, 0, -1, 0), 2, 1, FALSE)
xsplineTest(c(0, 0, 0, 0), 2, 2, FALSE)
xsplineTest(c(0, 0, 1, 0), 2, 3, FALSE)
xsplineTest(c(1, 1, -1, 1), 3, 1, FALSE)
xsplineTest(c(1, 1, 0, 1), 3, 2, FALSE)
xsplineTest(c(1, 1, 1, 1), 3, 3, FALSE)
popViewport()

grid.yaxis Draw a Y-Axis

Description

These functions create and draw a y-axis.

942 grid.yaxis

Usage

grid.yaxis(at = NULL, label = TRUE, main = TRUE,
edits = NULL, name = NULL,
gp = gpar(), draw = TRUE, vp = NULL)

yaxisGrob(at = NULL, label = TRUE, main = TRUE,
edits = NULL, name = NULL,
gp = gpar(), vp = NULL)

Arguments

at A numeric vector of y-value locations for the tick marks.
label A logical value indicating whether to draw the labels on the tick marks, or an

expression or character vector which specify the labels to use. If not logical,
must be the same length as the at argument.

main A logical value indicating whether to draw the axis at the left (TRUE) or at the
right (FALSE) of the viewport.

edits A gEdit or gEditList containing edit operations to apply (to the children of the
axis) when the axis is first created and during redrawing whenever at is NULL.

name A character identifier.
gp An object of class gpar, typically the output from a call to the function gpar.

This is basically a list of graphical parameter settings.
draw A logical value indicating whether graphics output should be produced.
vp A Grid viewport object (or NULL).

Details

Both functions create a yaxis grob (a graphical object describing a yaxis), but only grid.yaxis
draws the yaxis (and then only if draw is TRUE).

Value

A yaxis grob. grid.yaxis returns the value invisibly.

Children

If the at slot of an xaxis grob is not NULL then the xaxis will have the following children:

major representing the line at the base of the tick marks.
ticks representing the tick marks.
labels representing the tick labels.

If the at slot is NULL then there are no children and ticks are drawn based on the current viewport
scale.

Author(s)

Paul Murrell

See Also

Grid, viewport, grid.xaxis

grobName 943

grobName Generate a Name for a Grob

Description

This function generates a unique (within-session) name for a grob, based on the grob’s class.

Usage

grobName(grob = NULL, prefix = "GRID")

Arguments

grob A grob object or NULL.

prefix The prefix part of the name.

Value

A character string of the form prefix.class(grob).index

Author(s)

Paul Murrell

grobWidth Create a Unit Describing the Width of a Grob

Description

These functions create a unit object describing the width or height of a grob. They are generic.

Usage

grobWidth(x)
grobHeight(x)
grobAscent(x)
grobDescent(x)

Arguments

x A grob object.

Value

A unit object.

Author(s)

Paul Murrell

944 grobX

See Also

unit and stringWidth

grobX Create a Unit Describing a Grob Boundary Location

Description

These functions create a unit object describing a location somewhere on the boundary of a grob.
They are generic.

Usage

grobX(x, theta)
grobY(x, theta)

Arguments

x A grob, or gList, or gTree, or gPath.

theta An angle indicating where the location is on the grob boundary. Can be one of
"east", "north", "west", or "south", which correspond to angles 0, 90, 180,
and 270, respectively.

Details

The angle is anti-clockwise with zero corresponding to a line with an origin centred between the
extreme points of the shape, and pointing at 3 o’clock.

If the grob describes a single shape, the boundary value should correspond to the exact edge of the
shape.

If the grob describes multiple shapes, the boundary value will either correspond to the edge of
a bounding box around all of the shapes described by the grob (for multiple rectangles, circles,
xsplines, or text), or to a convex hull around all vertices of all shapes described by the grob (for
multiple polygons, points, lines, polylines, and segments).

Points grobs are currently a special case because the convex hull is based on the data symbol loca-
tions and does not take into account the extent of the data symbols themselves.

The extents of any arrow heads are currently not taken into account.

Value

A unit object.

Author(s)

Paul Murrell

See Also

unit and grobWidth

plotViewport 945

plotViewport Create a Viewport with a Standard Plot Layout

Description

This is a convenience function for producing a viewport with the common S-style plot layout – i.e.,
a central plot region surrounded by margins given in terms of a number of lines of text.

Usage

plotViewport(margins=c(5.1, 4.1, 4.1, 2.1), ...)

Arguments

margins A numeric vector interpreted in the same way as par(mar) in base graphics.

... All other arguments will be passed to a call to the viewport() function.

Value

A grid viewport object.

Author(s)

Paul Murrell

See Also

viewport and dataViewport.

pop.viewport Pop a Viewport off the Grid Viewport Stack

Description

Grid maintains a viewport stack — a list of nested drawing contexts.

This function makes the parent of the specified viewport the new default viewport.

Usage

pop.viewport(n=1, recording=TRUE)

Arguments

n An integer giving the number of viewports to pop. Defaults to 1.

recording A logical value to indicate whether the set-viewport operation should be
recorded on the Grid display list.

Value

None.

946 push.viewport

Warning

This function has been deprecated. Please use popViewport instead.

Author(s)

Paul Murrell

See Also

push.viewport.

push.viewport Push a Viewport onto the Grid Viewport Stack

Description

Grid maintains a viewport stack — a list of nested drawing contexts.

This function makes the specified viewport the default viewport and makes its parent the previous
default viewport (i.e., nests the specified context within the previous default context).

Usage

push.viewport(..., recording=TRUE)

Arguments

... One or more objects of class "viewport", or NULL.

recording A logical value to indicate whether the set-viewport operation should be
recorded on the Grid display list.

Value

None.

Warning

This function has been deprecated. Please use pushViewport instead.

Author(s)

Paul Murrell

See Also

pop.viewport.

Querying the Viewport Tree 947

Querying the Viewport Tree

Get the Current Grid Viewport (Tree)

Description

current.viewport() returns the viewport that Grid is going to draw into.

current.vpTree returns the entire Grid viewport tree.

current.vpPath returns the viewport path to the current viewport.

current.transform returns the transformation matrix for the current viewport.

Usage

current.viewport(vp=NULL)
current.vpTree(all=TRUE)
current.vpPath()
current.transform()

Arguments

vp A Grid viewport object. Use of this argument has been deprecated.

all A logical value indicating whether the entire viewport tree should be returned.

Details

If all is FALSE then current.vpTree only returns the subtree below the current viewport.

Value

A Grid viewport object from current.viewport or current.vpTree.

current.transform returns a 4x4 transformation matrix.

The viewport path returned by current.vpPath is NULL if the current viewport is the ROOT viewport

Author(s)

Paul Murrell

See Also

viewport

Examples

grid.newpage()
pushViewport(viewport(width=0.8, height=0.8, name="A"))
pushViewport(viewport(x=0.1, width=0.3, height=0.6,

just="left", name="B"))
upViewport(1)
pushViewport(viewport(x=0.5, width=0.4, height=0.8,

just="left", name="C"))
pushViewport(viewport(width=0.8, height=0.8, name="D"))

948 roundrect

current.vpPath()
upViewport(1)
current.vpPath()
current.vpTree()
current.viewport()
current.vpTree(all=FALSE)
popViewport(0)

roundrect Draw a rectangle with rounded corners

Description

Draw a single rectangle with rounded corners.

Usage

roundrectGrob(x=0.5, y=0.5, width=1, height=1,
default.units="npc",
r=unit(0.1, "snpc"),
just="centre",
name=NULL, gp=NULL, vp=NULL)

grid.roundrect(...)

Arguments

x, y, width, height

The location and size of the rectangle.

default.units A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

r The radius of the rounded corners.

just The justification of the rectangle relative to its location.

name A name to identify the grob.

gp Graphical parameters to apply to the grob.

vp A viewport object or NULL.

... Arguments to be passed to roundrectGrob().

Details

At present, this function can only be used to draw one rounded rectangle.

Examples

grid.roundrect(width=.5, height=.5, name="rr")
theta <- seq(0, 360, length=50)
for (i in 1:50)

grid.circle(x=grobX("rr", theta[i]),
y=grobY("rr", theta[i]),
r=unit(1, "mm"),
gp=gpar(fill="black"))

showGrob 949

showGrob Label grid grobs.

Description

Produces a graphical display of (by default) the current grid scene, with labels showing the names
of each grob in the scene. It is also possible to label only specific grobs in the scene.

Usage

showGrob(x = NULL,
gPath = NULL, strict = FALSE, grep = FALSE,
recurse = TRUE, depth = NULL,
labelfun = grobLabel, ...)

Arguments

x If NULL, the current grid scene is labelled. Otherwise, a grob (or gTree) to draw
and then label.

gPath A path identifying a subset of the current scene or grob to be labelled.

strict Logical indicating whether the gPath is strict.

grep Logical indicating whether the gPath is a regular expression.

recurse Should the children of gTrees also be labelled?

depth Only display grobs at the specified depth (may be a vector of depths).

labelfun Function used to generate a label from each grob.

... Arguments passed to labelfun to control fine details of the generated label.

Details

None of the labelling is recorded on the grid display list so the original scene can be reproduced by
calling grid.refresh.

See Also

grob and gTree

Examples

grid.newpage()
gt <- gTree(childrenvp=vpStack(

viewport(x=0, width=.5, just="left", name="vp"),
viewport(y=.5, height=.5, just="bottom", name="vp2")),

children=gList(rectGrob(vp="vp::vp2", name="child")),
name="parent")

grid.draw(gt)
showGrob()
showGrob(gPath="child")
showGrob(recurse=FALSE)
showGrob(depth=1)
showGrob(depth=2)

950 showViewport

showGrob(depth=1:2)
showGrob(gt)
showGrob(gt, gPath="child")
showGrob(just="left", gp=gpar(col="red", cex=.5), rot=45)
showGrob(labelfun=function(grob, ...) {

x <- grobX(grob, "west")
y <- grobY(grob, "north")
gTree(children=gList(rectGrob(x=x, y=y,

width=stringWidth(grob$name) + unit(2, "mm"),
height=stringHeight(grob$name) + unit(2, "mm"),
gp=gpar(col=NA, fill=rgb(1, 0, 0, .5)),
just=c("left", "top")),
textGrob(grob$name,

x=x + unit(1, "mm"), y=y - unit(1, "mm"),
just=c("left", "top"))))

})

Not run:
Examples from higher-level packages

library(lattice)
Ctrl-c after first example
example(histogram)
showGrob()
showGrob(gPath="plot_01.ylab")

library(ggplot2)
Ctrl-c after first example
example(qplot)
showGrob()
showGrob(recurse=FALSE)
showGrob(gPath="panel-3-3")
showGrob(gPath="axis.title", grep=TRUE)
showGrob(depth=2)

End(Not run)

showViewport Display grid viewports.

Description

Produces a graphical display of (by default) the current grid viewport tree. It is also possible to
display only specific viewports. Each viewport is drawn as a rectangle and the leaf viewports are
labelled with the viewport name.

Usage

showViewport(vp = NULL, recurse = TRUE, depth = NULL,
newpage = FALSE, leaves = FALSE,
col = rgb(0, 0, 1, 0.2), fill = rgb(0, 0, 1, 0.1),
label = TRUE, nrow = 3, ncol = nrow)

stringWidth 951

Arguments

vp If NULL, the current viewport tree is displayed. Otherwise, a viewport (or vpList,
or vpStack, or vpTree) or a vpPath that specifies which viewport to display.

recurse Should the children of the specified viewport also be displayed?

depth Only display viewports at the specified depth (may be a vector of depths).

newpage Start a new page for the display? Otherwise, the viewports are displayed on top
of the current plot.

leaves Produce a matrix of smaller displays, with each leaf viewport in its own display.

col The colour used to draw the border of the rectangle for each viewport and to
draw the label for each viewport. If a vector, then the first colour is used for the
top-level viewport, the second colour is used for its children, the third colour for
their children, and so on.

fill The colour used to fill each viewport. May be a vector as per col.

label Should the viewports be labelled (with the viewport name)?

nrow, ncol The number of rows and columns when leaves is TRUE. Otherwise ignored.

See Also

viewport and grid.show.viewport

Examples

showViewport(viewport(width=.5, height=.5))

showViewport(vpStack(viewport(width=.5, height=.5),
viewport(width=.5, height=.5)),

newpage=TRUE)

showViewport(vpStack(viewport(width=.5, height=.5),
viewport(width=.5, height=.5)),

fill=rgb(1:0, 0:1, 0, .1),
newpage=TRUE)

stringWidth Create a Unit Describing the Width and Height of a String or Math
Expression

Description

These functions create a unit object describing the width or height of a string.

Usage

stringWidth(string)
stringHeight(string)
stringAscent(string)
stringDescent(string)

952 unit

Arguments

string A character vector or a language object (as used for ‘plotmath’ calls.

Value

A unit object.

Author(s)

Paul Murrell

See Also

unit and grobWidth

strwidth in the graphics package for more details of the typographic concepts behind the compu-
tations.

unit Function to Create a Unit Object

Description

This function creates a unit object — a vector of unit values. A unit value is typically just a single
numeric value with an associated unit.

Usage

unit(x, units, data=NULL)

Arguments

x A numeric vector.

units A character vector specifying the units for the corresponding numeric values.

data This argument is used to supply extra information for special unit types.

Details

Unit objects allow the user to specify locations and dimensions in a large number of different coor-
dinate systems. All drawing occurs relative to a viewport and the units specifies what coordinate
system to use within that viewport.

Possible units (coordinate systems) are:

"npc" Normalised Parent Coordinates (the default). The origin of the viewport is (0, 0) and the
viewport has a width and height of 1 unit. For example, (0.5, 0.5) is the centre of the viewport.

"cm" Centimetres.

"inches" Inches. 1 in = 2.54 cm.

"mm" Millimetres. 10 mm = 1 cm.

"points" Points. 72.27 pt = 1 in.

"picas" Picas. 1 pc = 12 pt.

unit 953

"bigpts" Big Points. 72 bp = 1 in.

"dida" Dida. 1157 dd = 1238 pt.

"cicero" Cicero. 1 cc = 12 dd.

"scaledpts" Scaled Points. 65536 sp = 1 pt.

"lines" Lines of text. Locations and dimensions are in terms of multiples of the default text size
of the viewport (as specified by the viewport’s fontsize and lineheight).

"char" Multiples of nominal font height of the viewport (as specified by the viewport’s fontsize).

"native" Locations and dimensions are relative to the viewport’s xscale and yscale.

"snpc" Square Normalised Parent Coordinates. Same as Normalised Parent Coordinates, except
gives the same answer for horizontal and vertical locations/dimensions. It uses the lesser of
npc-width and npc-height. This is useful for making things which are a proportion of the
viewport, but have to be square (or have a fixed aspect ratio).

"strwidth" Multiples of the width of the string specified in the data argument. The font size is
determined by the pointsize of the viewport.

"strheight" Multiples of the height of the string specified in the data argument. The font size is
determined by the pointsize of the viewport.

"grobwidth" Multiples of the width of the grob specified in the data argument.

"grobheight" Multiples of the height of the grob specified in the data argument.

A number of variations are also allowed for the most common units. For example, it is possible to
use "in" or "inch" instead of "inches" and "centimetre" or "centimeter" instead of "cm".

A special units value of "null" is also allowed, but only makes sense when used in specifying
widths of columns or heights of rows in grid layouts (see grid.layout).

The data argument must be a list when the unit.length() is greater than 1. For example,
unit(rep(1, 3), c("npc", "strwidth", "inches"), data=list(NULL, "my string", NULL)).

It is possible to subset unit objects in the normal way (e.g., unit(1:5, "npc")[2:4]), but a special
function unit.c is provided for combining unit objects.

Certain arithmetic and summary operations are defined for unit objects. In particular, it is
possible to add and subtract unit objects (e.g., unit(1, "npc") - unit(1, "inches")),
and to specify the minimum or maximum of a list of unit objects (e.g.,
min(unit(0.5, "npc"), unit(1, "inches"))).

Value

An object of class "unit".

WARNING

There is a special function unit.c for concatenating several unit objects.

The c function will not give the right answer.

There used to be "mylines", "mychar", "mystrwidth", "mystrheight" units. These will still be
accepted, but work exactly the same as "lines", "char", "strwidth", "strheight".

Author(s)

Paul Murrell

954 unit.c

See Also

unit.c

Examples

unit(1, "npc")
unit(1:3/4, "npc")
unit(1:3/4, "npc") + unit(1, "inches")
min(unit(0.5, "npc"), unit(1, "inches"))
unit.c(unit(0.5, "npc"), unit(2, "inches") + unit(1:3/4, "npc"),

unit(1, "strwidth", "hi there"))

unit.c Combine Unit Objects

Description

This function produces a new unit object by combining the unit objects specified as arguments.

Usage

unit.c(...)

Arguments

... An arbitrary number of unit objects.

Value

An object of class unit.

Author(s)

Paul Murrell

See Also

unit.

unit.length 955

unit.length Length of a Unit Object

Description

The length of a unit object is defined as the number of unit values in the unit object.

This function has been deprecated in favour of a unit method for the generic length function.

Usage

unit.length(unit)

Arguments

unit A unit object.

Value

An integer value.

Author(s)

Paul Murrell

See Also

unit

Examples

length(unit(1:3, "npc"))
length(unit(1:3, "npc") + unit(1, "inches"))
length(max(unit(1:3, "npc") + unit(1, "inches")))
length(max(unit(1:3, "npc") + unit(1, "strwidth", "a"))*4)
length(unit(1:3, "npc") + unit(1, "strwidth", "a")*4)

unit.pmin Parallel Unit Minima and Maxima

Description

Returns a unit object whose i’th value is the minimum (or maximum) of the i’th values of the
arguments.

Usage

unit.pmin(...)
unit.pmax(...)

956 unit.rep

Arguments

... One or more unit objects.

Details

The length of the result is the maximum of the lengths of the arguments; shorter arguments are
recycled in the usual manner.

Value

A unit object.

Author(s)

Paul Murrell

Examples

max(unit(1:3, "cm"), unit(0.5, "npc"))
unit.pmax(unit(1:3, "cm"), unit(0.5, "npc"))

unit.rep Replicate Elements of Unit Objects

Description

Replicates the units according to the values given in times and length.out.

This function has been deprecated in favour of a unit method for the generic rep function.

Usage

unit.rep(x, ...)

Arguments

x An object of class "unit".

... arguments to be passed to rep such as times and length.out.

Value

An object of class "unit".

Author(s)

Paul Murrell

See Also

rep

valid.just 957

Examples

rep(unit(1:3, "npc"), 3)
rep(unit(1:3, "npc"), 1:3)
rep(unit(1:3, "npc") + unit(1, "inches"), 3)
rep(max(unit(1:3, "npc") + unit(1, "inches")), 3)
rep(max(unit(1:3, "npc") + unit(1, "strwidth", "a"))*4, 3)
rep(unit(1:3, "npc") + unit(1, "strwidth", "a")*4, 3)

valid.just Validate a Justification

Description

This utility function is useful for determining whether a justification specification is valid. An error
is given if the justification is not valid.

Usage

valid.just(just)

Arguments

just A justification either as a character value, e.g., "left", or as a numeric value,
e.g., 0.

Details

This function is useful within a validDetails method when writing a new grob class.

Value

A numeric representation of the justification (e.g., "left" becomes 0, "right" becomes 1, etc, ...).

Author(s)

Paul Murrell

validDetails Customising grid grob Validation

Description

This generic hook function is called whenever a grid grob is created or edited via grob, gTree,
grid.edit or editGrob. This provides an opportunity for customising the validation of a new
class derived from grob (or gTree).

Usage

validDetails(x)

958 vpPath

Arguments

x A grid grob.

Details

This function is called by grob, gTree, grid.edit and editGrob. A method should be written for
classes derived from grob or gTree to validate the values of slots specific to the new class. (e.g., see
grid:::validDetails.axis).

Note that the standard slots for grobs and gTrees are automatically validated (e.g., vp, gp slots for
grobs and, in addition, children, and childrenvp slots for gTrees) so only slots specific to a new
class need to be addressed.

Value

The function MUST return the validated grob.

Author(s)

Paul Murrell

See Also

grid.edit

vpPath Concatenate Viewport Names

Description

This function can be used to generate a viewport path for use in downViewport or seekViewport.

A viewport path is a list of nested viewport names.

Usage

vpPath(...)

Arguments

... Character values which are viewport names.

Details

Viewport names must only be unique amongst viewports which share the same parent in the view-
port tree.

This function can be used to generate a specification for a viewport that includes the viewport’s
parent’s name (and the name of its parent and so on).

For interactive use, it is possible to directly specify a path, but it is strongly recommended that this
function is used otherwise in case the path separator is changed in future versions of grid.

widthDetails 959

Value

A vpPath object.

See Also

viewport, pushViewport, popViewport, downViewport, seekViewport, upViewport

Examples

vpPath("vp1", "vp2")

widthDetails Width and Height of a grid grob

Description

These generic functions are used to determine the size of grid grobs.

Usage

widthDetails(x)
heightDetails(x)
ascentDetails(x)
descentDetails(x)

Arguments

x A grid grob.

Details

These functions are called in the calculation of "grobwidth" and "grobheight" units. Methods
should be written for classes derived from grob or gTree where the size of the grob can be deter-
mined (see, for example grid:::widthDetails.frame).

The ascent of a grob is the height of the grob by default and the descent of a grob is zero by default,
except for text grobs where the label is a single character value or expression.

Value

A unit object.

Author(s)

Paul Murrell

See Also

absolute.size.

960 Working with Viewports

Working with Viewports

Maintaining and Navigating the Grid Viewport Tree

Description

Grid maintains a tree of viewports — nested drawing contexts.

These functions provide ways to add or remove viewports and to navigate amongst viewports in the
tree.

Usage

pushViewport(..., recording=TRUE)
popViewport(n, recording=TRUE)
downViewport(name, strict=FALSE, recording=TRUE)
seekViewport(name, recording=TRUE)
upViewport(n, recording=TRUE)

Arguments

... One or more objects of class "viewport".

n An integer value indicating how many viewports to pop or navigate up. The spe-
cial value 0 indicates to pop or navigate viewports right up to the root viewport.

name A character value to identify a viewport in the tree.

strict A boolean indicating whether the vpPath must be matched exactly.

recording A logical value to indicate whether the viewport operation should be recorded
on the Grid display list.

Details

Objects created by the viewport() function are only descriptions of a drawing context. A viewport
object must be pushed onto the viewport tree before it has any effect on drawing.

The viewport tree always has a single root viewport (created by the system) which corresponds to
the entire device (and default graphical parameter settings). Viewports may be added to the tree
using pushViewport() and removed from the tree using popViewport().

There is only ever one current viewport, which is the current position within the viewport tree. All
drawing and viewport operations are relative to the current viewport. When a viewport is pushed it
becomes the current viewport. When a viewport is popped, the parent viewport becomes the current
viewport. Use upViewport to navigate to the parent of the current viewport, without removing the
current viewport from the viewport tree. Use downViewport to navigate to a viewport further down
the viewport tree and seekViewport to navigate to a viewport anywhere else in the tree.

If a viewport is pushed and it has the same name as a viewport at the same level in the tree, then it
replaces the existing viewport in the tree.

Value

downViewport returns the number of viewports it went down.

This can be useful for returning to your starting point by doing something like
depth <- downViewport() then upViewport(depth).

Working with Viewports 961

Author(s)

Paul Murrell

See Also

viewport and vpPath.

Examples

push the same viewport several times
grid.newpage()
vp <- viewport(width=0.5, height=0.5)
pushViewport(vp)
grid.rect(gp=gpar(col="blue"))
grid.text("Quarter of the device",

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="blue"))
pushViewport(vp)
grid.rect(gp=gpar(col="red"))
grid.text("Quarter of the parent viewport",

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="red"))
popViewport(2)
push several viewports then navigate amongst them
grid.newpage()
grid.rect(gp=gpar(col="grey"))
grid.text("Top-level viewport",

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="grey"))
if (interactive()) Sys.sleep(1.0)
pushViewport(viewport(width=0.8, height=0.7, name="A"))
grid.rect(gp=gpar(col="blue"))
grid.text("1. Push Viewport A",

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="blue"))
if (interactive()) Sys.sleep(1.0)
pushViewport(viewport(x=0.1, width=0.3, height=0.6,

just="left", name="B"))
grid.rect(gp=gpar(col="red"))
grid.text("2. Push Viewport B (in A)",

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="red"))
if (interactive()) Sys.sleep(1.0)
upViewport(1)
grid.text("3. Up from B to A",

y=unit(1, "npc") - unit(2, "lines"), gp=gpar(col="blue"))
if (interactive()) Sys.sleep(1.0)
pushViewport(viewport(x=0.5, width=0.4, height=0.8,

just="left", name="C"))
grid.rect(gp=gpar(col="green"))
grid.text("4. Push Viewport C (in A)",

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="green"))
if (interactive()) Sys.sleep(1.0)
pushViewport(viewport(width=0.8, height=0.6, name="D"))
grid.rect()
grid.text("5. Push Viewport D (in C)",

y=unit(1, "npc") - unit(1, "lines"))
if (interactive()) Sys.sleep(1.0)
upViewport(0)
grid.text("6. Up from D to top-level",

y=unit(1, "npc") - unit(2, "lines"), gp=gpar(col="grey"))

962 xDetails

if (interactive()) Sys.sleep(1.0)
downViewport("D")
grid.text("7. Down from top-level to D",

y=unit(1, "npc") - unit(2, "lines"))
if (interactive()) Sys.sleep(1.0)
seekViewport("B")
grid.text("8. Seek from D to B",

y=unit(1, "npc") - unit(2, "lines"), gp=gpar(col="red"))
pushViewport(viewport(width=0.9, height=0.5, name="A"))
grid.rect()
grid.text("9. Push Viewport A (in B)",

y=unit(1, "npc") - unit(1, "lines"))
if (interactive()) Sys.sleep(1.0)
seekViewport("A")
grid.text("10. Seek from B to A (in ROOT)",

y=unit(1, "npc") - unit(3, "lines"), gp=gpar(col="blue"))
if (interactive()) Sys.sleep(1.0)
seekViewport(vpPath("B", "A"))
grid.text("11. Seek from\nA (in ROOT)\nto A (in B)")
popViewport(0)

xDetails Boundary of a grid grob

Description

These generic functions are used to determine a location on the boundary of a grid grob.

Usage

xDetails(x, theta)
yDetails(x, theta)

Arguments

x A grid grob.

theta A numeric angle, in degrees, measured anti-clockwise from the 3 o’clock or one
of the following character strings: "north", "east", "west", "south".

Details

The location on the grob boundary is determined by taking a line from the centre of the grob at the
angle theta and intersecting it with the convex hull of the grob (for the basic grob primitives, the
centre is determined as half way between the minimum and maximum values in x and y directions).

These functions are called in the calculation of "grobx" and "groby" units as produced by the
grobX and grobY functions. Methods should be written for classes derived from grob or gTree
where the boundary of the grob can be determined.

Value

A unit object.

xsplinePoints 963

Author(s)

Paul Murrell

See Also

grobX, grobY.

xsplinePoints Return the points that would be used to draw an Xspline (or a Bezier
curve).

Description

Rather than drawing an Xspline (or Bezier curve), this function returns the points that would be
used to draw the series of line segments for the Xspline. This may be useful to post-process the
Xspline curve, for example, to clip the curve.

Usage

xsplinePoints(x)
bezierPoints(x)

Arguments

x An Xspline grob, as produced by the xsplineGrob() function (or a beziergrob,
as produced by the bezierGrob() function).

Details

The points returned by this function will only be relevant for the drawing context in force when this
function was called.

Value

Depends on how many Xsplines would be drawn. If only one, then a list with two components,
named x and y, both of which are unit objects (in inches). If several Xsplines would be drawn then
the result of this function is a list of lists.

Author(s)

Paul Murrell

See Also

xsplineGrob and bezierGrob

964 xsplinePoints

Examples

grid.newpage()
xsg <- xsplineGrob(c(.1, .1, .9, .9), c(.1, .9, .9, .1), shape=1)
grid.draw(xsg)
trace <- xsplinePoints(xsg)
grid.circle(trace$x, trace$y, default.units="inches", r=unit(.5, "mm"))

grid.newpage()
vp <- viewport(width=.5)
xg <- xsplineGrob(x=c(0, .2, .4, .2, .5, .7, .9, .7),

y=c(.5, 1, .5, 0, .5, 1, .5, 0),
id=rep(1:2, each=4),
shape=1,
vp=vp)

grid.draw(xg)
trace <- xsplinePoints(xg)
pushViewport(vp)
lapply(trace, function(t) grid.lines(tx, ty, gp=gpar(col="red")))
popViewport()

grid.newpage()
bg <- bezierGrob(c(.2, .2, .8, .8), c(.2, .8, .8, .2))
grid.draw(bg)
trace <- bezierPoints(bg)
grid.circle(trace$x, trace$y, default.units="inches", r=unit(.5, "mm"))

Chapter 6

The methods package

methods-package Formal Methods and Classes

Description

Formally defined methods and classes for R objects, plus other programming tools, as described in
the references.

Details

This package provides the ‘S4’ or ‘S version 4’ approach to methods and classes in a functional
language.

See the documentation entries Classes, Methods, and GenericFunctions for general discussion of
these topics, at a fairly technical level. Links from those pages, and the documentation of setClass
and setMethod cover the main programming tools needed.

For a complete list of functions and classes, use library(help="methods").

Author(s)

R Core Team

Maintainer: R Core Team <R-core@r-project.org>

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

965

966 as

.BasicFunsList List of Builtin and Special Functions

Description

A named list providing instructions for turning builtin and special functions into generic functions.

Functions in R that are defined as .Primitive(<name>) are not suitable for formal methods, be-
cause they lack the basic reflectance property. You can’t find the argument list for these functions
by examining the function object itself.

Future versions of R may fix this by attaching a formal argument list to the corresponding function.
While generally the names of arguments are not checked by the internal code implementing the
function, the number of arguments frequently is.

In any case, some definition of a formal argument list is needed if users are to define methods for
these functions. In particular, if methods are to be merged from multiple packages, the different
sets of methods need to agree on the formal arguments.

In the absence of reflectance, this list provides the relevant information via a dummy function
associated with each of the known specials for which methods are allowed.

At the same, the list flags those specials for which methods are meaningless (e.g., for) or just a
very bad idea (e.g., .Primitive).

A generic function created via setMethod, for example, for one of these special functions will have
the argument list from .BasicFunsList. If no entry exists, the argument list (x, ...) is assumed.

as Force an Object to Belong to a Class

Description

These functions manage the relations that allow coercing an object to a given class.

Usage

as(object, Class, strict=TRUE, ext)

as(object, Class) <- value

setAs(from, to, def, replace, where = topenv(parent.frame()))

Arguments

object any R object.

Class the name of the class to which object should be coerced.

strict logical flag. If TRUE, the returned object must be strictly from the target class
(unless that class is a virtual class, in which case the object will be from the
closest actual class, in particular the original object, if that class extends the
virtual class directly).

as 967

If strict = FALSE, any simple extension of the target class will be returned,
without further change. A simple extension is, roughly, one that just adds slots
to an existing class.

value The value to use to modify object (see the discussion below). You should
supply an object with class Class; some coercion is done, but you’re unwise to
rely on it.

from, to The classes between which the coerce methods def and replace perform coer-
cion.

def function of one argument. It will get an object from class from and had better
return an object of class to. The convention is that the name of the argument is
from; if another argument name is used, setAs will attempt to substitute from.

replace if supplied, the function to use as a replacement method, when as is used on the
left of an assignment. Should be a function of two arguments, from, value,
although setAs will attempt to substitute if the arguments differ.

where the position or environment in which to store the resulting methods. For most
applications, it is recommended to omit this argument and to include the call to
setAs in source code that is evaluated at the top level; that is, either in an R
session by something equivalent to a call to source, or as part of the R source
code for a package.

ext the optional object defining how Class is extended by the class of the object (as
returned by possibleExtends). This argument is used internally (to provide
essential information for non-public classes), but you are unlikely to want to use
it directly.

Summary of Functions

as: Returns the version of this object coerced to be the given Class. When used in the replacement
form on the left of an assignment, the portion of the object corresponding to Class is replaced
by value.
The operation of as() in either form depends on the definition of coerce methods. Methods
are defined automatically when the two classes are related by inheritance; that is, when one of
the classes is a subclass of the other. See the section on inheritance below for details.
Coerce methods are also predefined for basic classes (including all the types of vectors, func-
tions and a few others). See showMethods(coerce) for a list of these.
Beyond these two sources of methods, further methods are defined by calls to the setAs
function.

setAs: Define methods for coercing an object of class from to be of class to; the def argument
provides for direct coercing and the replace argument, if included, provides for replacement.
See the “How” section below for details.

coerce, coerce<-: Coerce from to be of the same class as to.
These functions should not be called explicitly. The function setAs creates methods for them
for the as function to use.

Inheritance and Coercion

Objects from one class can turn into objects from another class either automatically or by an explicit
call to the as function. Automatic conversion is special, and comes from the designer of one class
of objects asserting that this class extends another class. The most common case is that one or more
class names are supplied in the contains= argument to setClass, in which case the new class

968 as

extends each of the earlier classes (in the usual terminology, the earlier classes are superclasses of
the new class and it is a subclass of each of them).

This form of inheritance is called simple inheritance in R. See setClass for details. Inheritance
can also be defined explicitly by a call to setIs. The two versions have slightly different implica-
tions for coerce methods. Simple inheritance implies that inherited slots behave identically in the
subclass and the superclass. Whenever two classes are related by simple inheritance, corresponding
coerce methods are defined for both direct and replacement use of as. In the case of simple inheri-
tance, these methods do the obvious computation: they extract or replace the slots in the object that
correspond to those in the superclass definition.

The implicitly defined coerce methods may be overridden by a call to setAs; note, however, that
the implicit methods are defined for each subclass-superclass pair, so that you must override each
of these explicitly, not rely on inheritance.

When inheritance is defined by a call to setIs, the coerce methods are provided explicitly, not
generated automatically. Inheritance will apply (to the from argument, as described in the section
below). You could also supply methods via setAs for non-inherited relationships, and now these
also can be inherited.

For further on the distinction between simple and explicit inheritance, see setIs.

How Functions ’as’ and ’setAs’ Work

The function as turns object into an object of class Class. In doing so, it applies a “coerce
method”, using S4 classes and methods, but in a somewhat special way. Coerce methods are meth-
ods for the function coerce or, in the replacement case the function ‘coerce<-‘. These functions
have two arguments in method signatures, from and to, corresponding to the class of the object and
the desired coerce class. These functions must not be called directly, but are used to store tables of
methods for the use of as, directly and for replacements. In this section we will describe the direct
case, but except where noted the replacement case works the same way, using ‘coerce<-‘ and the
replace argument to setAs, rather than coerce and the def argument.

Assuming the object is not already of the desired class, as first looks for a method in the table of
methods for the function coerce for the signature c(from = class(object), to = Class),
in the same way method selection would do its initial lookup. To be precise, this means the table of
both direct and inherited methods, but inheritance is used specially in this case (see below).

If no method is found, as looks for one. First, if either Class or class(object) is a superclass
of the other, the class definition will contain the information needed to construct a coerce method.
In the usual case that the subclass contains the superclass (i.e., has all its slots), the method is
constructed either by extracting or replacing the inherited slots. Non-simple extensions (the result
of a call to setIs) will usually contain explicit methods, though possibly not for replacement.

If no subclass/superclass relationship provides a method, as looks for an inherited method, but ap-
plying, inheritance for the argument from only, not for the argument to (if you think about it, you’ll
probably agree that you wouldn’t want the result to be from some class other than the Class spec-
ified). Thus, selectMethod("coerce", sig, useInherited= c(from=TRUE, to= FALSE))
replicates the method selection used by as().

In nearly all cases the method found in this way will be cached in the table of coerce methods (the
exception being subclass relationships with a test, which are legal but discouraged). So the detailed
calculations should be done only on the first occurrence of a coerce from class(object) to Class.

Note that coerce is not a standard generic function. It is not intended to be called directly. To
prevent accidentally caching an invalid inherited method, calls are routed to an equivalent call to
as, and a warning is issued. Also, calls to selectMethod for this function may not represent the
method that as will choose. You can only trust the result if the corresponding call to as has occurred
previously in this session.

as 969

With this explanation as background, the function setAs does a fairly obvious computation: It
constructs and sets a method for the function coerce with signature c(from, to), using the def
argument to define the body of the method. The function supplied as def can have one argument
(interpreted as an object to be coerced) or two arguments (the from object and the to class). Either
way, setAs constructs a function of two arguments, with the second defaulting to the name of the to
class. The method will be called from as with the object as the from argument and no to argument,
with the default for this argument being the name of the intended to class, so the method can use
this information in messages.

The direct version of the as function also has a strict= argument that defaults to TRUE. Calls during
the evaluation of methods for other functions will set this argument to FALSE. The distinction is
relevant when the object being coerced is from a simple subclass of the to class; if strict=FALSE
in this case, nothing need be done. For most user-written coerce methods, when the two classes
have no subclass/superclass, the strict= argument is irrelevant.

The replace argument to setAs provides a method for ‘coerce<-‘. As with all replacement
methods, the last argument of the method must have the name value for the object on the right
of the assignment. As with the coerce method, the first two arguments are from, to; there is no
strict= option for the replace case.

The function coerce exists as a repository for such methods, to be selected as described above by
the as function. Actually dispatching the methods using standardGeneric could produce incorrect
inherited methods, by using inheritance on the to argument; as mentioned, this is not the logic used
for as. To prevent selecting and caching invalid methods, calls to coerce are currently mapped into
calls to as, with a warning message.

Basic Coercion Methods

Methods are pre-defined for coercing any object to one of the basic datatypes. For example,
as(x, "numeric") uses the existing as.numeric function. These built-in methods can be listed
by showMethods("coerce").

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

If you think of using try(as(x, cl)), consider canCoerce(x, cl) instead.

Examples

using the definition of class "track" from \link{setClass}

setAs("track", "numeric", function(from) from@y)

t1 <- new("track", x=1:20, y=(1:20)^2)

as(t1, "numeric")

The next example shows:
1. A virtual class to define setAs for several classes at once.

970 BasicClasses

2. as() using inherited information

setClass("ca", representation(a = "character", id = "numeric"))

setClass("cb", representation(b = "character", id = "numeric"))

setClass("id")
setIs("ca", "id")
setIs("cb", "id")

setAs("id", "numeric", function(from) from@id)

CA <- new("ca", a = "A", id = 1)
CB <- new("cb", b = "B", id = 2)

setAs("cb", "ca", function(from, to)new(to, a=from@b, id = from@id))

as(CB, "numeric")

BasicClasses Classes Corresponding to Basic Data Types

Description

Formal classes exist corresponding to the basic R object types, allowing these types to be used in
method signatures, as slots in class definitions, and to be extended by new classes.

Usage

The following are all basic vector classes.
They can appear as class names in method signatures,
in calls to as(), is(), and new().
"character"
"complex"
"double"
"expression"
"integer"
"list"
"logical"
"numeric"
"single"
"raw"

the class
"vector"
is a virtual class, extended by all the above

the class
"S4"
is an object type for S4 objects that do not extend

BasicClasses 971

any of the basic vector classes. It is a virtual class.

The following are additional basic classes
"NULL" # NULL objects
"function" # function objects, including primitives
"externalptr" # raw external pointers for use in C code

"ANY" # virtual classes used by the methods package itself
"VIRTUAL"
"missing"

"namedList" # the alternative to "list" that preserves
the names attribute

Objects from the Classes

Objects can be created by calls of the form new(Class, ...), where Class is the quoted class
name, and the remaining arguments if any are objects to be interpreted as vectors of this class.
Multiple arguments will be concatenated.

The class "expression" is slightly odd, in that the . . . arguments will not be evaluated; therefore,
don’t enclose them in a call to quote().

Note that class "list" is a pure vector. Although lists with names go back to the earliest versions
of S, they are an extension of the vector concept in that they have an attribute (which can now be
a slot) and which is either NULL or a character vector of the same length as the vector. If you want
to guarantee that list names are preserved, use class "namedList", rather than "list". Objects
from this class must have a names attribute, corresponding to slot "names", of type "character".
Internally, R treats names for lists specially, which makes it impractical to have the corresponding
slot in class "namedList" be a union of character names and NULL.

Classes and Types

The basic classes include classes for the basic R types. Note that objects of these types will not
usually be S4 objects (isS4 will return FALSE), although objects from classes that contain the basic
class will be S4 objects, still with the same type. The type as returned by typeof will sometimes
differ from the class, either just from a choice of terminology (type "symbol" and class "name", for
example) or because there is not a one-to-one correspondence between class and type (most of the
classes that inherit from class "language" have type "language", for example).

Extends

The vector classes extend "vector", directly.

Methods

coerce Methods are defined to coerce arbitrary objects to the vector classes, by calling the corre-
sponding basic function, for example, as(x, "numeric") calls as.numeric(x).

972 callGeneric

callGeneric Call the Current Generic Function from a Method

Description

A call to callGeneric can only appear inside a method definition. It then results in a call to the
current generic function. The value of that call is the value of callGeneric. While it can be called
from any method, it is useful and typically used in methods for group generic functions.

Usage

callGeneric(...)

Arguments

... Optionally, the arguments to the function in its next call.
If no arguments are included in the call to callGeneric, the effect is to call the
function with the current arguments. See the detailed description for what this
really means.

Details

The name and package of the current generic function is stored in the environment of the method
definition object. This name is looked up and the corresponding function called.

The statement that passing no arguments to callGeneric causes the generic function to be called
with the current arguments is more precisely as follows. Arguments that were missing in the current
call are still missing (remember that "missing" is a valid class in a method signature). For a
formal argument, say x, that appears in the original call, there is a corresponding argument in the
generated call equivalent to x = x. In effect, this means that the generic function sees the same
actual arguments, but arguments are evaluated only once.

Using callGeneric with no arguments is prone to creating infinite recursion, unless one of the
arguments in the signature has been modified in the current method so that a different method is
selected.

Value

The value returned by the new call.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

GroupGenericFunctions for other information about group generic functions; Methods for the
general behavior of method dispatch

callNextMethod 973

Examples

the method for group generic function Ops
for signature(e1="structure", e2="vector")
function (e1, e2)
{

value <- callGeneric(e1@.Data, e2)
if (length(value) == length(e1)) {

e1@.Data <- value
e1

}
else value

}

For more examples
Not run:
showMethods("Ops", includeDefs = TRUE)

End(Not run)

callNextMethod Call an Inherited Method

Description

A call to callNextMethod can only appear inside a method definition. It then results in a call to
the first inherited method after the current method, with the arguments to the current method passed
down to the next method. The value of that method call is the value of callNextMethod.

Usage

callNextMethod(...)

Arguments

... Optionally, the arguments to the function in its next call (but note that the dis-
patch is as in the detailed description below; the arguments have no effect on
selecting the next method.)
If no arguments are included in the call to callNextMethod, the effect is to call
the method with the current arguments. See the detailed description for what
this really means.
Calling with no arguments is often the natural way to use callNextMethod; see
the examples.

Details

The ‘next’ method (i.e., the first inherited method) is defined to be that method which would have
been called if the current method did not exist. This is more-or-less literally what happens: The cur-
rent method (to be precise, the method with signature given by the defined slot of the method from
which callNextMethod is called) is deleted from a copy of the methods for the current generic,
and selectMethod is called to find the next method (the result is cached in a special object, so the
search only typically happens once per session per combination of argument classes).

974 callNextMethod

Note that the preceding definition means that the next method is defined uniquely when setMethod
inserts the method containing the callNextMethod call, given the definitions of the classes in the
signature. The choice does not depend on the path that gets us to that method (for example, through
inheritance or from another callNextMethod call). This definition was not enforced in versions of
R prior to 2.3.0, where the method was selected based on the target signature, and so could vary
depending on the actual arguments.

It is also legal, and often useful, for the method called by callNextMethod to itself have a call to
callNextMethod. This generally works as you would expect, but for completeness be aware that it
is possible to have ambiguous inheritance in the S structure, in the sense that the same two classes
can appear as superclasses in the opposite order in two other class definitions. In this case the effect
of a nested instance of callNextMethod is not well defined. Such inconsistent class hierarchies are
both rare and nearly always the result of bad design, but they are possible, and currently undetected.

The statement that the method is called with the current arguments is more precisely as follows.
Arguments that were missing in the current call are still missing (remember that "missing" is a
valid class in a method signature). For a formal argument, say x, that appears in the original call,
there is a corresponding argument in the next method call equivalent to x = x. In effect, this means
that the next method sees the same actual arguments, but arguments are evaluated only once.

Value

The value returned by the selected method.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

callGeneric to call the generic function with the current dispatch rules (typically for a group
generic function); Methods for the general behavior of method dispatch.

Examples

some class definitions with simple inheritance
setClass("B0" , representation(b0 = "numeric"))

setClass("B1", representation(b1 = "character"), contains = "B0")

setClass("B2", representation(b2 = "logical"), contains = "B1")

and a rather silly function to illustrate callNextMethod

f <- function(x) class(x)

setMethod("f", "B0", function(x) c(x@b0^2, callNextMethod()))
setMethod("f", "B1", function(x) c(paste(x@b1,":"), callNextMethod()))
setMethod("f", "B2", function(x) c(x@b2, callNextMethod()))

b1 <- new("B1", b0 = 2, b1 = "Testing")

b2 <- new("B2", b2 = FALSE, b1 = "More testing", b0 = 10)

canCoerce 975

f(b2)
stopifnot(identical(f(b2), c(b2@b2, paste(b2@b1,":"), b2@b0^2, "B2")))

f(b1)

a sneakier method: the *changed* x is used:
setMethod("f", "B2",

function(x) {x@b0 <- 111; c(x@b2, callNextMethod())})
f(b2)
stopifnot(identical(f(b2), c(b2@b2, paste(b2@b1,":"), 111^2, "B2")))

canCoerce Can an Object be Coerced to a Certain S4 Class?

Description

Test if an object can be coerced to a given S4 class. Maybe useful inside if() to ensure that calling
as(object, Class) will find a method.

Usage

canCoerce(object, Class)

Arguments

object any R object, typically of a formal S4 class.

Class an S4 class (see isClass).

Value

a scalar logical, TRUE if there is a coerce method (as defined by setAs, e.g.) for the signature
(from = class(object), to = Class).

See Also

as, setAs, selectMethod, setClass,

Examples

m <- matrix(pi, 2,3)
canCoerce(m, "numeric") # TRUE
canCoerce(m, "array") # TRUE

976 cbind2

cbind2 Combine two Objects by Columns or Rows

Description

Combine two matrix-like R objects by columns (cbind2) or rows (rbind2). These are (S4) generic
functions with default methods.

Usage

cbind2(x, y, ...)
rbind2(x, y, ...)

Arguments

x any R object, typically matrix-like.

y any R object, typically similar to x, or missing completely.

... optional arguments for methods.

Details

The main use of cbind2 (rbind2) is to be called by cbind() (rbind()) if these are activated. This
allows cbind (rbind) to work for formally classed (aka ‘S4’) objects by providing S4 methods for
these objects. Currently, a call
methods:::bind_activation(TRUE)
is needed to install a cbind2-calling version of cbind (into the base namespace) and the same for
rbind.
methods:::bind_activation(FALSE) reverts to the previous internal version of cbind which
does not build on cbind2, see the examples.

Value

A matrix (or matrix like object) combining the columns (or rows) of x and y.

Methods

signature(x = "ANY", y = "ANY") the default method using R’s internal code.

signature(x = "ANY", y = "missing") the default method for one argument using R’s internal
code.

See Also

cbind, rbind; further, cBind, rBind in the Matrix package.

Examples

cbind2(1:3, 4)
m <- matrix(3:8, 2,3, dimnames=list(c("a","b"), LETTERS[1:3]))
cbind2(1:2, m) # keeps dimnames from m

Note: Use the following activation if you want cbind() to work
---- on S4 objects -- be careful otherwise!

http://CRAN.R-project.org/package=Matrix

Classes 977

methods:::bind_activation(on = TRUE)
trace("cbind2")
cbind(a=1:3)# no call to cbind2()
cbind(a=1:3, four=4, 7:9)# calling cbind2() twice
untrace("cbind2")

cbind(m, a=1, b=3)

turn off the ‘special cbind()’ :
methods:::bind_activation(FALSE)

Classes Class Definitions

Description

Class definitions are objects that contain the formal definition of a class of R objects, usually re-
ferred to as an S4 class, to distinguish them from the informal S3 classes. This document gives
an overview of S4 classes; for details of the class representation objects, see help for the class
classRepresentation.

Metadata Information

When a class is defined, an object is stored that contains the information about that class. The
object, known as the metadata defining the class, is not stored under the name of the class (to allow
programmers to write generating functions of that name), but under a specially constructed name.
To examine the class definition, call getClass. The information in the metadata object includes:

Slots: The data contained in an object from an S4 class is defined by the slots in the class definition.
Each slot in an object is a component of the object; like components (that is, elements) of a
list, these may be extracted and set, using the function slot() or more often the operator "@".
However, they differ from list components in important ways. First, slots can only be referred
to by name, not by position, and there is no partial matching of names as with list elements.
All the objects from a particular class have the same set of slot names; specifically, the slot
names that are contained in the class definition. Each slot in each object always is an object of
the class specified for this slot in the definition of the current class. The word “is” corresponds
to the R function of the same name (is), meaning that the class of the object in the slot must
be the same as the class specified in the definition, or some class that extends the one in the
definition (a subclass).
A special slot name, .Data, stands for the ‘data part’ of the object. An object from a class
with a data part is defined by specifying that the class contains one of the R object types
or one of the special pseudo-classes, matrix or array, usually because the definition of the
class, or of one of its superclasses, has included the type or pseudo-class in its contains
argument. A second special slot name, .xData, is used to enable inheritance from abnormal
types such as "environment" See the section on inheriting from non-S4 classes for details on
the representation and for the behavior of S3 methods with objects from these classes.
Some slot names correspond to attributes used in old-style S3 objects and in R objects without
an explicit class, for example, the names attribute. If you define a class for which that attribute

978 Classes

will be set, such as a subclass of named vectors, you should include "names" as a slot. See the
definition of class "namedList" for an example. Using the names() assignment to set such
names will generate a warning if there is no names slot and an error if the object in question
is not a vector type. A slot called "names" can be used anywhere, but only if it is assigned as
a slot, not via the default names() assignment.

Superclasses: The definition of a class includes the superclasses —the classes that this class ex-
tends. A class Fancy, say, extends a class Simple if an object from the Fancy class has all
the capabilities of the Simple class (and probably some more as well). In particular, and very
usefully, any method defined to work for a Simple object can be applied to a Fancy object as
well.
This relationship is expressed equivalently by saying that Simple is a superclass of Fancy, or
that Fancy is a subclass of Simple.
The direct superclasses of a class are those superclasses explicitly defined. Direct superclasses
can be defined in three ways. Most commonly, the superclasses are listed in the contains=
argument in the call to setClass that creates the subclass. In this case the subclass will
contain all the slots of the superclass, and the relation between the class is called simple, as
it in fact is. Superclasses can also be defined explicitly by a call to setIs; in this case, the
relation requires methods to be specified to go from subclass to superclass. Thirdly, a class
union is a superclass of all the members of the union. In this case too the relation is simple,
but notice that the relation is defined when the superclass is created, not when the subclass is
created as with the contains= mechanism.
The definition of a superclass will also potentially contain its own direct superclasses. These
are considered (and shown) as superclasses at distance 2 from the original class; their direct
superclasses are at distance 3, and so on. All these are legitimate superclasses for purposes
such as method selection.
When superclasses are defined by including the names of superclasses in the contains= ar-
gument to setClass, an object from the class will have all the slots defined for its own class
and all the slots defined for all its superclasses as well.
The information about the relation between a class and a particular superclass is encoded as an
object of class SClassExtension. A list of such objects for the superclasses (and sometimes
for the subclasses) is included in the metadata object defining the class. If you need to compute
with these objects (for example, to compare the distances), call the function extends with
argument fullInfo=TRUE.

Prototype: The objects from a class created by a call to new are defined by the prototype object for
the class and by additional arguments in the call to new, which are passed to a method for that
class for the function initialize.
Each class representation object contains a prototype object for the class (although for a virtual
class the prototype may be NULL). The prototype object must have values for all the slots of
the class. By default, these are the prototypes of the corresponding slot classes. However, the
definition of the class can specify any valid object for any of the slots.

Virtual classes; Basic classes

Classes exist for which no actual objects can be created by a call to new, the virtual classes, in
fact a very important programming tool. They are used to group together ordinary classes that
want to share some programming behavior, without necessarily restricting how the behavior is
implemented. Virtual class definitions may if you want include slots (to provide some common
behavior without fully defining the object—see the class traceable for an example).

A simple and useful form of virtual class is the class union, a virtual class that is defined in a call
to setClassUnion by listing one or more of subclasses (classes that extend the class union). Class
unions can include as subclasses basic object types (whose definition is otherwise sealed).

Classes 979

There are a number of ‘basic’ classes, corresponding to the ordinary kinds of data occurring in
R. For example, "numeric" is a class corresponding to numeric vectors. The other vector basic
classes are "logical", "integer", "complex", "character", "raw", "list" and "expression".
The prototypes for the vector classes are vectors of length 0 of the corresponding type. Notice that
basic classes are unusual in that the prototype object is from the class itself.

In addition to the vector classes there are also basic classes corresponding to objects in the language,
such as "function" and "call". These classes are subclasses of the virtual class "language".
Finally, there are object types and corresponding basic classes for “abnormal” objects, such as
"environment" and "externalptr". These objects do not follow the functional behavior of the
language; in particular, they are not copied and so cannot have attributes or slots defined locally.

All these classes can be used as slots or as superclasses for any other class definitions, although they
do not themselves come with an explicit class. For the abnormal object types, a special mechanism
is used to enable inheritance as described below.

Inheriting from non-S4 Classes

A class definition can extend classes other than regular S4 classes, usually by specifying them in
the contains= argument to setClass. Three groups of such classes behave distinctly:

1. S3 classes, which must have been registered by a previous call to setOldClass (you can
check that this has been done by calling getClass, which should return a class that extends
oldClass);

2. One of the R object types, typically a vector type, which then defines the type of the S4
objects, but also a type such as environment that can not be used directly as a type for an S4
object. See below.

3. One of the pseudo-classes matrix and array, implying objects with arbitrary vector types
plus the dim and dimnames attributes.

This section describes the approach to combining S4 computations with older S3 computations by
using such classes as superclasses. The design goal is to allow the S4 class to inherit S3 methods
and default computations in as consistent a form as possible.

As part of a general effort to make the S4 and S3 code in R more consistent, when objects from an
S4 class are used as the first argument to a non-default S3 method, either for an S3 generic function
(one that calls UseMethod) or for one of the primitive functions that dispatches S3 methods, an effort
is made to provide a valid object for that method. In particular, if the S4 class extends an S3 class
or matrix or array, and there is an S3 method matching one of these classes, the S4 object will be
coerced to a valid S3 object, to the extent that is possible given that there is no formal definition of
an S3 class.

For example, suppose "myFrame" is an S4 class that includes the S3 class "data.frame" in the
contains= argument to setClass. If an object from this S4 class is passed to a function, say
as.matrix, that has an S3 method for "data.frame", the internal code for UseMethod will convert
the object to a data frame; in particular, to an S3 object whose class attribute will be the vector
corresponding to the S3 class (possibly containing multiple class names). Similarly for an S4 object
inheriting from "matrix" or "array", the S4 object will be converted to a valid S3 matrix or array.

Note that the conversion is not applied when an S4 object is passed to the default S3 method. Some
S3 generics attempt to deal with general objects, including S4 objects. Also, no transformation
is applied to S4 objects that do not correspond to a selected S3 method; in particular, to objects
from a class that does not contain either an S3 class or one of the basic types. See asS4 for the
transformation details.

In addition to explicit S3 generic functions, S3 methods are defined for a variety of operators and
functions implemented as primitives. These methods are dispatched by some internal C code that

980 classesToAM

operates partly through the same code as real S3 generic functions and partly via special consider-
ations (for example, both arguments to a binary operator are examined when looking for methods).
The same mechanism for adapting S4 objects to S3 methods has been applied to these computations
as well, with a few exceptions such as generating an error if an S4 object that does not extend an
appropriate S3 class or type is passed to a binary operator.

The remainder of this section discusses the mechanisms for inheriting from basic object types. See
matrix or array for inhering from the matrix and array pseudo-classes, or from time-series. For
the corresponding details for inheritance from S3 classes, see setOldClass.

An object from a class that directly and simply contains one of the basic object types in R, has
implicitly a corresponding .Data slot of that type, allowing computations to extract or replace the
data part while leaving other slots unchanged. If the type is one that can accept attributes and is
duplicated normally, the inheritance also determines the type of the object; if the class definition
has a .Data slot corresponding to a normal type, the class of the slot determines the type of the
object (that is, the value of typeof(x)). For such classes, .Data is a pseudo-slot; that is, extracting
or setting it modifies the non-slot data in the object. The functions getDataPart and setDataPart
are a cleaner, but essentially equivalent way to deal with the data part.

Extending a basic type this way allows objects to use old-style code for the corresponding type as
well as S4 methods. Any basic type can be used for .Data, but a few types are treated differently
because they do not behave like ordinary objects; for example, "NULL", environments, and external
pointers. Classes extend these types by having a slot, .xData, itself inherited from an internally
defined S4 class. This slot actually contains an object of the inherited type, to protect computations
from the reference semantics of the type. Coercing to the nonstandard object type then requires an
actual computation, rather than the "simple" inclusion for other types and classes. The intent is
that programmers will not need to take account of the mechanism, but one implication is that you
should not explicitly use the type of an S4 object to detect inheritance from an arbitrary object type.
Use is and similar functions instead.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

Chambers, John M. and Hastie, Trevor J. eds (1992) Statistical Models in S. Wadsworth &
Brooks/Cole (Appendix A for S3 classes.)

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (Out of print.) (The description of vectors, matrix, array and time-series objects.)

See Also

Methods for analogous discussion of methods, setClass for details of specifying class definitions,
is, as, new, slot

classesToAM Compute an Adjacency Matrix for Superclasses of Class Definitions

classesToAM 981

Description

Given a vector of class names or a list of class definitions, the function returns an adjacency matrix
of the superclasses of these classes; that is, a matrix with class names as the row and column names
and with element [i, j] being 1 if the class in column j is a direct superclass of the class in row i, and
0 otherwise.

The matrix has the information implied by the contains slot of the class definitions, but in a form
that is often more convenient for further analysis; for example, an adjacency matrix is used in
packages and other software to construct graph representations of relationships.

Usage

classesToAM(classes, includeSubclasses = FALSE,
abbreviate = 2)

Arguments

classes Either a character vector of class names or a list, whose elements can be either
class names or class definitions. The list is convenient, for example, to include
the package slot for the class name. See the examples.

includeSubclasses

A logical flag; if TRUE, then the matrix will include all the known subclasses of
the specified classes as well as the superclasses. The argument can also be a
logical vector of the same length as classes, to include subclasses for some but
not all the classes.

abbreviate Control of the abbreviation of the row and/or column labels of the matrix re-
turned: values 0, 1, 2, or 3 abbreviate neither, rows, columns or both. The
default, 2, is useful for printing the matrix, since class names tend to be more
than one character long, making for spread-out printing. Values of 0 or 3 would
be appropriate for making a graph (3 avoids the tendency of some graph plotting
software to produce labels in minuscule font size).

Details

For each of the classes, the calculation gets all the superclass names from the class definition,
and finds the edges in those classes’ definitions; that is, all the superclasses at distance 1. The
corresponding elements of the adjacency matrix are set to 1.

The adjacency matrices for the individual class definitions are merged. Note two possible kinds
of inconsistency, neither of which should cause problems except possibly with identically named
classes from different packages. Edges are computed from each superclass definition, so that in-
formation overrides a possible inference from extension elements with distance > 1 (and it should).
When matrices from successive classes in the argument are merged, the computations do not cur-
rently check for inconsistencies—this is the area where possible multiple classes with the same
name could cause confusion. A later revision may include consistency checks.

Value

As described, a matrix with entries 0 or 1, non-zero values indicating that the class corresponding to
the column is a direct superclass of the class corresponding to the row. The row and column names
are the class names (without package slot).

982 className

See Also

extends and classRepresentation for the underlying information from the class definition.

Examples

the super- and subclasses of "standardGeneric"
and "derivedDefaultMethod"
am <- classesToAM(list(class(show), class(getMethod(show))), TRUE)
am

Not run:
the following function depends on the Bioconductor package Rgraphviz
plotInheritance <- function(classes, subclasses = FALSE, ...) {

if(!require("Rgraphviz", quietly=TRUE))
stop("Only implemented if Rgraphviz is available")

mm <- classesToAM(classes, subclasses)
classes <- rownames(mm); rownames(mm) <- colnames(mm)
graph <- new("graphAM", mm, "directed", ...)
plot(graph)
cat("Key:\n", paste(abbreviate(classes), " = ", classes, ", ",

sep = ""), sep = "", fill = TRUE)
invisible(graph)

}

The plot of the class inheritance of the package "graph"
require(graph)
plotInheritance(getClasses("package:graph"))

End(Not run)

className Class names including the corresponding package

Description

The function className() generates a valid references to a class, including the name of the package
containing the class definition. The object returned, from class "className", is the unambiguous
way to refer to a class, for example when calling setMethod, just in case multiple definitions of the
class exist.

Function "multipleClasses" returns information about multiple definitions of classes with the
same name from different packages.

Usage

className(class, package)

multipleClasses(details = FALSE)

className 983

Arguments

class, package The character string name of a class and, optionally, of the package to which it
belongs. If argument package is missing and the class argument has a package
slot, that is used (in particular, passing in an object from class "className"
returns itself in this case, but changes the package slot if the second argument is
supplied).
If there is no package argument or slot, a definition for the class must exist and
will be used to define the package. If there are multiple definitions, one will be
chosen and a warning printed giving the other possibilities.

details If FALSE, the default, multipleClasses() returns a character vector of those
classes currently known with multiple definitions.
If TRUE, a named list of those class definitions is returned. Each element of
the list is itself a list of the corresponding class definitions, with the package
names as the names of the list. Note that identical class definitions will not be
considered “multiple” definitions (see the discussion of the details below).

Details

The table of class definitions used internally can maintain multiple definitions for classes with the
same name but coming from different packages. If identical class definitions are encountered, only
one class definition is kept; this occurs most often with S3 classes that have been specified in calls to
setOldClass. For true classes, multiple class definitions are unavoidable in general if two packages
happen to have used the same name, independently.

Overriding a class definition in another package with the same name deliberately is usually a bad
idea. Although R attempts to keep and use the two definitions (as of version 2.14.0), ambiguities
are always possible. It is more sensible to define a new class that extends an existing class but has
a different name.

Value

A call to className() returns an object from class "className".

A call to multipleClasses() returns either a character vector or a named list of class definitions.
In either case, testing the length of the returned value for being greater than 0 is a check for the
existence of multiply defined classes.

Objects from the Class

The class "className" extends "character" and has a slot "package", also of class
"character".

Examples

Not run:
className("vector") # will be found, from package "methods"
className("vector", "magic") # OK, even though the class doesn’t exist

className("An unknown class") # Will cause an error

End(Not run)

984 classRepresentation-class

classRepresentation-class

Class Objects

Description

These are the objects that hold the definition of classes of objects. They are constructed and stored
as meta-data by calls to the function setClass. Don’t manipulate them directly, except perhaps to
look at individual slots.

Details

Class definitions are stored as metadata in various packages. Additional metadata supplies infor-
mation on inheritance (the result of calls to setIs). Inheritance information implied by the class
definition itself (because the class contains one or more other classes) is also constructed automati-
cally.

When a class is to be used in an R session, this information is assembled to complete the class
definition. The completion is a second object of class "classRepresentation", cached for the
session or until something happens to change the information. A call to getClass returns the
completed definition of a class; a call to getClassDef returns the stored definition (uncompleted).

In particular, completion fills in the upward- and downward-pointing inheritance information for
the class, in slots contains and subclasses respectively. It’s in principle important to note that
this information can depend on which packages are installed, since these may define additional
subclasses or superclasses.

Slots

slots: A named list of the slots in this class; the elements of the list are the classes to which the
slots must belong (or extend), and the names of the list gives the corresponding slot names.

contains: A named list of the classes this class ‘contains’; the elements of the list are objects
of SClassExtension. The list may be only the direct extensions or all the currently known
extensions (see the details).

virtual: Logical flag, set to TRUE if this is a virtual class.
prototype: The object that represents the standard prototype for this class; i.e., the data and slots

returned by a call to new for this class with no special arguments. Don’t mess with the proto-
type object directly.

validity: Optionally, a function to be used to test the validity of objects from this class. See
validObject.

access: Access control information. Not currently used.
className: The character string name of the class.
package: The character string name of the package to which the class belongs. Nearly always the

package on which the metadata for the class is stored, but in operations such as constructing
inheritance information, the internal package name rules.

subclasses: A named list of the classes known to extend this class’; the elements of the list are
objects of class SClassExtension. The list is currently only filled in when completing the
class definition (see the details).

versionKey: Object of class "externalptr"; eventually will perhaps hold some versioning infor-
mation, but not currently used.

sealed: Object of class "logical"; is this class sealed? If so, no modifications are allowed.

Documentation 985

See Also

See function setClass to supply the information in the class definition. See Classes for a more
basic discussion of class information.

Documentation Using and Creating On-line Documentation for Classes and Methods

Description

Special documentation can be supplied to describe the classes and methods that are created by the
software in the methods package. Techniques to access this documentation and to create it in R help
files are described here.

Getting documentation on classes and methods

You can ask for on-line help for class definitions, for specific methods for a generic function, and
for general discussion of methods for a generic function. These requests use the ? operator (see
help for a general description of the operator). Of course, you are at the mercy of the implementer
as to whether there is any documentation on the corresponding topics.

Documentation on a class uses the argument class on the left of the ?, and the name of the class
on the right; for example,

class ? genericFunction

to ask for documentation on the class "genericFunction".

When you want documentation for the methods defined for a particular function, you can ask either
for a general discussion of the methods or for documentation of a particular method (that is, the
method that would be selected for a particular set of actual arguments).

Overall methods documentation is requested by calling the ? operator with methods as the left-side
argument and the name of the function as the right-side argument. For example,

methods ? initialize

asks for documentation on the methods for the initialize function.

Asking for documentation on a particular method is done by giving a function call expression as the
right-hand argument to the "?" operator. There are two forms, depending on whether you prefer to
give the class names for the arguments or expressions that you intend to use in the actual call.

If you planned to evaluate a function call, say myFun(x, sqrt(wt)) and wanted to find out some-
thing about the method that would be used for this call, put the call on the right of the "?" operator:

?myFun(x, sqrt(wt))

A method will be selected, as it would be for the call itself, and documentation for that method will
be requested. If myFun is not a generic function, ordinary documentation for the function will be
requested.

If you know the actual classes for which you would like method documentation, you can supply
these explicitly in place of the argument expressions. In the example above, if you want method
documentation for the first argument having class "maybeNumber" and the second "logical", call
the "?" operator, this time with a left-side argument method, and with a function call on the right
using the class names as arguments:

method ? myFun("maybeNumber", "logical")

986 dotsMethods

Once again, a method will be selected, this time corresponding to the specified classes, and method
documentation will be requested. This version only works with generic functions.

The two forms each have advantages. The version with actual arguments doesn’t require you to
figure out (or guess at) the classes of the arguments. On the other hand, evaluating the arguments
may take some time, depending on the example. The version with class names does require you to
pick classes, but it’s otherwise unambiguous. It has a subtler advantage, in that the classes supplied
may be virtual classes, in which case no actual argument will have specifically this class. The class
"maybeNumber", for example, might be a class union (see the example for setClassUnion).

In either form, methods will be selected as they would be in actual computation, including use of
inheritance and group generic functions. See selectMethod for the details, since it is the function
used to find the appropriate method.

Writing Documentation for Methods

The on-line documentation for methods and classes uses some extensions to the R documentation
format to implement the requests for class and method documentation described above. See the
document Writing R Extensions for the available markup commands (you should have consulted
this document already if you are at the stage of documenting your software).

In addition to the specific markup commands to be described, you can create an initial, overall file
with a skeleton of documentation for the methods defined for a particular generic function:

promptMethods("myFun")

will create a file, ‘myFun-methods.Rd’ with a skeleton of documentation for the methods defined
for function myFun. The output from promptMethods is suitable if you want to describe all or most
of the methods for the function in one file, separate from the documentation of the generic function
itself. Once the file has been filled in and moved to the ‘man’ subdirectory of your source package,
requests for methods documentation will use that file, both for specific methods documentation as
described above, and for overall documentation requested by

methods ? myFun

You are not required to use promptMethods, and if you do, you may not want to use the entire file
created:

• If you want to document the methods in the file containing the documentation for the generic
function itself, you can cut-and-paste to move the \alias lines and the Methods section from
the file created by promptMethods to the existing file.

• On the other hand, if these are auxiliary methods, and you only want to document the added
or modified software, you should strip out all but the relevant \alias lines for the methods of
interest, and remove all but the corresponding \item entries in the Methods section. Note that in
this case you will usually remove the first \alias line as well, since that is the marker for general
methods documentation on this function (in the example, ‘\alias{myfun-methods}’).

If you simply want to direct documentation for one or more methods to a particular R documentation
file, insert the appropriate alias.

dotsMethods The Use of ... in Method Signatures

dotsMethods 987

Description

The “. . . ” argument in R functions is treated specially, in that it matches zero, one or more actual
arguments (and so, objects). A mechanism has been added to R to allow “. . . ” as the signature
of a generic function. Methods defined for such functions will be selected and called when all the
arguments matching “. . . ” are from the specified class or from some subclass of that class.

Using "..." in a Signature

Beginning with version 2.8.0 of R, S4 methods can be dispatched (selected and called) correspond-
ing to the special argument “. . . ”. Currently, “. . . ” cannot be mixed with other formal arguments:
either the signature of the generic function is “. . . ” only, or it does not contain “. . . ”. (This restric-
tion may be lifted in a future version.)

Given a suitable generic function, methods are specified in the usual way by a call to setMethod.
The method definition must be written expecting all the arguments corresponding to “. . . ” to be
from the class specified in the method’s signature, or from a class that extends that class (i.e., a
subclass of that class).

Typically the methods will pass “. . . ” down to another function or will create a list of the arguments
and iterate over that. See the examples below.

When you have a computation that is suitable for more than one existing class, a convenient ap-
proach may be to define a union of these classes by a call to setClassUnion. See the example
below.

Method Selection and Dispatch for "..."

See Methods for a general discussion. The following assumes you have read the “Method Selection
and Dispatch” section of that documentation.

A method selecting on “. . . ” is specified by a single class in the call to setMethod. If all the actual
arguments corresponding to “. . . ” have this class, the corresponding method is selected directly.

Otherwise, the class of each argument and that class’ superclasses are computed, beginning with the
first “. . . ” argument. For the first argument, eligible methods are those for any of the classes. For
each succeeding argument that introduces a class not considered previously, the eligible methods
are further restricted to those matching the argument’s class or superclasses. If no further eligible
classes exist, the iteration breaks out and the default method, if any, is selected.

At the end of the iteration, one or more methods may be eligible. If more than one, the selection
looks for the method with the least distance to the actual arguments. For each argument, any in-
herited method corresponds to a distance, available from the contains slot of the class definition.
Since the same class can arise for more than one argument, there may be several distances associ-
ated with it. Combining them is inevitably arbitrary: the current computation uses the minimum
distance. Thus, for example, if a method matched one argument directly, one as first generation
superclass and another as a second generation superclass, the distances are 0, 1 and 2. The current
selection computation would use distance 0 for this method. In particular, this selection criterion
tends to use a method that matches exactly one or more of the arguments’ class.

As with ordinary method selection, there may be multiple methods with the same distance. A
warning message is issued and one of the methods is chosen (the first encountered, which in this
case is rather arbitrary).

Notice that, while the computation examines all arguments, the essential cost of dispatch goes up
with the number of distinct classes among the arguments, likely to be much smaller than the number
of arguments when the latter is large.

988 dotsMethods

Implementation Details

Methods dispatching on “. . . ” were introduced in version 2.8.0 of R. The initial implementation of
the corresponding selection and dispatch is in an R function, for flexibility while the new mechanism
is being studied. In this implementation, a local version of setGeneric is inserted in the generic
function’s environment. The local version selects a method according to the criteria above and
calls that method, from the environment of the generic function. This is slightly different from the
action taken by the C implementation when “. . . ” is not involved. Aside from the extra computing
time required, the method is evaluated in a true function call, as opposed to the special context
constructed by the C version (which cannot be exactly replicated in R code.) However, situations
in which different computational results would be obtained have not been encountered so far, and
seem very unlikely.

Methods dispatching on arguments other than “. . . ” are cached by storing the inherited method in
the table of all methods, where it will be found on the next selection with the same combination of
classes in the actual arguments (but not used for inheritance searches). Methods based on “. . . ” are
also cached, but not found quite as immediately. As noted, the selected method depends only on the
set of classes that occur in the “. . . ” arguments. Each of these classes can appear one or more times,
so many combinations of actual argument classes will give rise to the same effective signature. The
selection computation first computes and sorts the distinct classes encountered. This gives a label
that will be cached in the table of all methods, avoiding any further search for inherited classes after
the first occurrence. A call to showMethods will expose such inherited methods.

The intention is that the “. . . ” features will be added to the standard C code when enough experience
with them has been obtained. It is possible that at the same time, combinations of “. . . ” with other
arguments in signatures may be supported.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

For the general discussion of methods, see Methods and links from there.

Examples

cc <- function(...)c(...)

setGeneric("cc")

setMethod("cc", "character", function(...)paste(...))

setClassUnion("Number", c("numeric", "complex"))

setMethod("cc", "Number", function(...) sum(...))

setClass("cdate", contains = "character", representation(date = "Date"))

setClass("vdate", contains = "vector", representation(date = "Date"))

cd1 <- new("cdate", "abcdef", date = Sys.Date())

cd2 <- new("vdate", "abcdef", date = Sys.Date())

environment-class 989

stopifnot(identical(cc(letters, character(), cd1),
paste(letters, character(), cd1))) # the "character" method

stopifnot(identical(cc(letters, character(), cd2),
c(letters, character(), cd2)))

the default, because "vdate" doesn’t extend "character"

stopifnot(identical(cc(1:10, 1+1i), sum(1:10, 1+1i))) # the "Number" method

stopifnot(identical(cc(1:10, 1+1i, TRUE), c(1:10, 1+1i, TRUE))) # the default

stopifnot(identical(cc(), c())) # no arguments implies the default method

setGeneric("numMax", function(...)standardGeneric("numMax"))

setMethod("numMax", "numeric", function(...)max(...))
won’t work for complex data
setMethod("numMax", "Number", function(...) paste(...))
should not be selected w/o complex args

stopifnot(identical(numMax(1:10, pi, 1+1i), paste(1:10, pi, 1+1i)))
stopifnot(identical(numMax(1:10, pi, 1), max(1:10, pi, 1)))

try(numMax(1:10, pi, TRUE)) # should be an error: no default method

A generic version of paste(), dispatching on the "..." argument:
setGeneric("paste", signature = "...")

setMethod("paste", "Number", function(..., sep, collapse) c(...))

stopifnot(identical(paste(1:10, pi, 1), c(1:10, pi, 1)))

environment-class Class "environment"

Description

A formal class for R environments.

Objects from the Class

Objects can be created by calls of the form new("environment", ...). The arguments in . . . , if
any, should be named and will be assigned to the newly created environment.

Methods

coerce signature(from = "ANY", to = "environment"): calls as.environment.

initialize signature(object = "environment"): Implements the assignments in the new envi-
ronment. Note that the object argument is ignored; a new environment is always created,
since environments are not protected by copying.

990 envRefClass-class

See Also

new.env

envRefClass-class Class "envRefClass"

Description

Support Class to Implement R Objects using Reference Semantics

NOTE:

The software described here is an initial version. The eventual goal is to support reference-style
classes with software in R itself or using inter-system interfaces. The current implementation (R
version 2.12.0) is preliminary and subject to change, and currently includes only the R-only imple-
mentation. Developers are encouraged to experiment with the software, but the description here is
more than usually subject to change.

Purpose of the Class

This class implements basic reference-style semantics for R objects. Objects normally do not come
directly from this class, but from subclasses defined by a call to setRefClass. The documentation
below is technical background describing the implementation, but applications should use the in-
terface documented under setRefClass, in particular the $ operator and field accessor functions as
described there.

A Basic Reference Class

The design of reference classes for R divides those classes up according to the mechanism used for
implementing references, fields, and class methods. Each version of this mechanism is defined by a
basic reference class, which must implement a set of methods and provide some further information
used by setRefClass.

The required methods are for operators $ and $<- to get and set a field in an object, and for
initialize to initialize objects.

To support these methods, the basic reference class needs to have some implementation mechanism
to store and retrieve data from fields in the object. The mechanism needs to be consistent with
reference semantics; that is, changes made to the contents of an object are global, seen by any code
accessing that object, rather than only local to the function call where the change takes place. As
described below, class envRefClass implements reference semantics through specialized use of
environment objects. Other basic reference classes may use an interface to a language such as Java
or C++ using reference semantics for classes.

Usually, the R user will be able to invoke class methods on the class, using the $ operator. The basic
reference class method for $ needs to make this possible. Essentially, the operator must return an R
function corresponding to the object and the class method name.

Class methods may include an implementation of data abstraction, in the sense that fields are ac-
cessed by “get” and “set” methods. The basic reference class provides this facility by setting the
"fieldAccessorGenerator" slot in its definition to a function of one variable. This function will
be called by setRefClass with the vector of field names as arguments. The generator function must
return a list of defined accessor functions. An element corresponding to a get operation is invoked
with no arguments and should extract the corresponding field; an element for a set operation will

evalSource 991

be invoked with a single argument, the value to be assigned to the field. The implementation needs
to supply the object, since that is not an argument in the method invocation. The mechanism used
currently by envRefClass is described below.

Support Classes

Two virtual classes are supplied to test for reference objects: is(x, "refClass") tests
whether x comes from a class defined using the reference class mechanism described here;
is(x, "refObject") tests whether the object has reference semantics generally, including the
previous classes and also classes inheriting from the R types with reference semantics, such as
"environment".

Installed class methods are "classMethodDefinition" objects, with slots that identify the name
of the function as a class method and the other class methods called from this method. The latter
information is determined heuristically when the class is defined by using the codetools recom-
mended package. This package must be installed when reference classes are defined, but is not
needed in order to use existing reference classes.

Author(s)

John Chambers

evalSource Use Function Definitions from a Source File without Reinstalling a
Package

Description

Definitions of functions and/or methods from a source file are inserted into a package, using the
trace mechanism. Typically, this allows testing or debugging modified versions of a few functions
without reinstalling a large package.

Usage

evalSource(source, package = "", lock = TRUE, cache = FALSE)

insertSource(source, package = "", functions = , methods = ,
force =)

Arguments

source A file to be parsed and evaluated by evalSource to find the new function and
method definitions.
The argument to insertSource can be an object of class
"sourceEnvironment" returned from a previous call to evalSource If a
file name is passed to insertSource it calls evalSource to obtain the
corresponding object. See the section on the class for details.

package Optionally, the name of the package to which the new code corresponds and into
which it will be inserted. Although the computations will attempt to infer the
package if it is omitted, the safe approach is to supply it. In the case of a package
that is not attached to the search list, the package name must be supplied.

992 evalSource

functions, methods

Optionally, the character-string names of the functions to be used in the inser-
tion. Names supplied in the functions argument are expected to be defined as
functions in the source. For names supplied in the methods argument, a table
of methods is expected (as generated by calls to setMethod, see the details sec-
tion); methods from this table will be inserted by insertSource. In both cases,
the revised function or method is inserted only if it differs from the version in
the corresponding package as loaded.
If what is omitted, the results of evaluating the source file will be compared to
the contents of the package (see the details section).

lock, cache Optional arguments to control the actions taken by evalSource. If lock is TRUE,
the environment in the object returned will be locked, and so will all its bindings.
If cache is FALSE, the normal caching of method and class definitions will be
suppressed during evaluation of the source file.
The default settings are generally recommended, the lock to support the cred-
ibility of the object returned as a snapshot of the source file, and the second so
that method definitions can be inserted later by insertSource using the trace
mechanism.

force If FALSE, only functions currently in the environment will be redefined, using
trace. If TRUE, other objects/functions will be simply assigned. By default,
TRUE if neither the functions nor the methods argument is supplied.

Details

The source file is parsed and evaluated, suppressing by default the actual caching of method and
class definitions contained in it, so that functions and methods can be tested out in a reversible
way. The result, if all goes well, is an environment containing the assigned objects and metadata
corresponding to method and class definitions in the source file.

From this environment, the objects are inserted into the package, into its namespace if it has one,
for use during the current session or until reverting to the original version by a call to untrace. The
insertion is done by calls to the internal version of trace, to make reversion possible.

Because the trace mechanism is used, only function-type objects will be inserted, functions them-
selves or S4 methods.

When the functions and methods arguments are both omitted, insertSource selects all suitable
objects from the result of evaluating the source file.

In all cases, only objects in the source file that differ from the corresponding objects in the package
are inserted. The definition of “differ” is that either the argument list (including default expressions)
or the body of the function is not identical. Note that in the case of a method, there need be no
specific method for the corresponding signature in the package: the comparison is made to the
method that would be selected for that signature.

Nothing in the computation requires that the source file supplied be the same file as in the origi-
nal package source, although that case is both likely and sensible if one is revising the package.
Nothing in the computations compares source files: the objects generated by evaluating source are
compared as objects to the content of the package.

Value

An object from class "sourceEnvironment", a subclass of "environment" (see the section on the
class) The environment contains the versions of all object resulting from evaluation of the source
file. The class also has slots for the time of creation, the source file and the package name. Future
extensions may use these objects for versioning or other code tools.

evalSource 993

The object returned can be used in debugging (see the section on that topic) or as the source
argument in a future call to insertSource. If only some of the revised functions were inserted in
the first call, others can be inserted in a later call without re-evaluating the source file, by supplying
the environment and optionally suitable functions and/or methods argument.

Debugging

Once a function or method has been inserted into a package by insertSource, it can be studied by
the standard debugging tools; for example, debug or the various versions of trace.

Calls to trace should take the extra argument edit = env, where env is the value returned by the
call to evalSource. The trace mechanism has been used to install the revised version from the
source file, and supplying the argument ensures that it is this version, not the original, that will be
traced. See the example below.

To turn tracing off, but retain the source version, use trace(x,edit = env) as in the example. To
return to the original version from the package, use untrace(x).

Class "sourceEnvironment"

Objects from this class can be treated as environments, to extract the version of functions and
methods generated by evalSource. The objects also have the following slots:

packageName: The character-string name of the package to which the source code corresponds.
dateCreated: The date and time that the source file was evaluated (usually from a call to

Sys.time).
sourceFile: The character-string name of the source file used.

Note that using the environment does not change the dateCreated.

See Also

trace for the underlying mechanism, and also for the edit= argument that can be used for some-
what similar purposes; that function and also debug and setBreakpoint, for techniques more
oriented to traditional debugging styles. The present function is directly intended for the case that
one is modifying some of the source for an existing package, although it can be used as well by
inserting debugging code in the source (more useful if the debugging involved is non-trivial). As
noted in the details section, the source file need not be the same one in the original package source.

Examples

Not run:
Suppose package P0 has a source file "all.R"
First, evaluate the source, and from it
insert the revised version of methods for summary()

env <- insertSource("./P0/R/all.R", package = "P0",
methods = "summary")

now test one of the methods, tracing the version from the source
trace("summary", signature = "myMat", browser, edit = env)

After testing, remove the browser() call but keep the source
trace("summary", signature = "myMat", edit = env)

Now insert all the (other) revised functions and methods
without re-evaluating the source file.
The package name is included in the object env.

insertSource(env)

End(Not run)

994 findClass

findClass Computations with Classes

Description

Functions to find and manipulate class definitions.

Usage

removeClass(Class, where)

isClass(Class, formal=TRUE, where)

getClasses(where, inherits = missing(where))

findClass(Class, where, unique = "")

resetClass(Class, classDef, where)

sealClass(Class, where)

Arguments

Class character string name for the class. The functions will usually take a class def-
inition instead of the string. To restrict the class to those defined in a particular
package, set the packageSlot of the character string.

where the environment in which to modify or remove the definition. Defaults to the
top-level environment of the calling function (the global environment for ordi-
nary computations, but the environment or namespace of a package in the source
for a package).
When searching for class definitions, where defines where to do the search, and
the default is to search from the top-level environment or namespace of the caller
to this function.

unique if findClass expects a unique location for the class, unique is a character string
explaining the purpose of the search (and is used in warning and error messages).
By default, multiple locations are possible and the function always returns a list.

inherits in a call to getClasses, should the value returned include all parent environ-
ments of where, or that environment only? Defaults to TRUE if where is omitted,
and to FALSE otherwise.

formal Should a formal definition be required?

classDef For removeClass, the optional class definition (but usually it’s better for Class
to be the class definition, and to omit classDef).

Details

These are the functions that test and manipulate formal class definitions. Brief documentation is
provided below. See the references for an introduction and for more details.

findMethods 995

removeClass: Remove the definition of this class, from the environment where if this argument is
supplied; if not, removeClass will search for a definition, starting in the top-level environment
of the call to removeClass, and remove the (first) definition found.

isClass: Is this the name of a formally defined class? (Argument formal is for compatibility and
is ignored.)

getClasses: The names of all the classes formally defined on where. If called with no argument,
all the classes visible from the calling function (if called from the top-level, all the classes in
any of the environments on the search list). The inherits argument can be used to search a
particular environment and all its parents, but usually the default setting is what you want.

findClass: The list of environments or positions on the search list in which a class definition
of Class is found. If where is supplied, this is an environment (or namespace) from which
the search takes place; otherwise the top-level environment of the caller is used. If unique is
supplied as a character string, findClass returns a single environment or position. By default,
it always returns a list. The calling function should select, say, the first element as a position
or environment for functions such as get.
If unique is supplied as a character string, findClass will warn if there is more than one
definition visible (using the string to identify the purpose of the call), and will generate an
error if no definition can be found.

resetClass: Reset the internal definition of a class. Causes the complete definition of the class
to be re-computed, from the representation and superclasses specified in the original call to
setClass.
This function is called when aspects of the class definition are changed. You would need to
call it explicitly if you changed the definition of a class that this class extends (but doing that
in the middle of a session is living dangerously, since it may invalidate existing objects).

sealClass: Seal the current definition of the specified class, to prevent further changes. It is
possible to seal a class in the call to setClass, but sometimes further changes have to be
made (e.g., by calls to setIs). If so, call sealClass after all the relevant changes have been
made.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

setClassUnion, Methods, makeClassRepresentation

findMethods Description of the Methods Defined for a Generic Function

Description

The function findMethods converts the methods defined in a table for a generic function (as
used for selection of methods) into a list, for study or display. The list is actually from the class
listOfMethods (see the section describing the class, below).

996 findMethods

The list will be limited to the methods defined in environment where if that argument is supplied
and limited to those including one or more of the specified classes in the method signature if that
argument is supplied.

To see the actual table (an environment) used for methods dispatch, call getMethodsForDispatch.
The names of the list returned by findMethods are the names of the objects in the table.

The function findMethodSignatures returns a character matrix whose rows are the class names
from the signature of the corresponding methods; it operates either from a list returned by
findMethods, or by computing such a list itself, given the same arguments as findMethods .

The function hasMethods returns TRUE or FALSE according to whether there is a non-empty table
of methods for function f in the environment or search position where (or for the generic function
generally if where is missing).

The deprecated function getMethods is an older alternative to findMethods , returning information
in the form of an object of class MethodsList, previously used for method dispatch. It is not
recommended, since this class of objects is deprecated generally and will disappear in a future
version of R.

Usage

findMethods(f, where, classes = character(), inherited = FALSE,
package = "")

findMethodSignatures(..., target = TRUE, methods =)

hasMethods(f, where, package)

DEPRECATED
getMethods(f, where, table = FALSE)

Arguments

f A generic function or the character-string name of one.
where Optionally, an environment or position on the search list to look for methods

metadata.
If where is missing, findMethods uses the current table of methods in the
generic function itself, and hasMethods looks for metadata anywhere in the
search list.

table If TRUE in a call to getMethods the returned value is the table used for dispatch,
including inherited methods discovered to date. Used internally, but since the
default result is the now unused mlist object, the default will likely be changed
at some point.

classes If supplied, only methods whose signatures contain at least one of the supplied
classes will be included in the value returned.

inherited Logical flag; if TRUE, the table of all methods, inherited or defined directly,
will be used; otherwise, only the methods explicitly defined. Option TRUE is
meaningful only if where is missing.

... In the call to findMethodSignatures, any arguments that might be given to
findMethods.

target Optional flag to findMethodSignatures; if TRUE, the signatures used are the
target signatures (the classes for which the method will be selected); if FALSE,
they will be the signatures are defined. The difference is only meaningful if
inherited is TRUE.

findMethods 997

methods In the call to findMethodSignatures, an optional list of methods, presumably
returned by a previous call to findMethods. If missing, that function will be
call with the . . . arguments.

package In a call to hasMethods, the package name for the generic function (e.g., "base"
for primitives). If missing this will be inferred either from the "package" at-
tribute of the function name, if any, or from the package slot of the generic
function. See ‘Details’.

Details

The functions obtain a table of the defined methods, either from the generic function or from the
stored metadata object in the environment specified by where. In a call to getMethods, the infor-
mation in the table is converted as described above to produce the returned value, except with the
table argument.

Note that hasMethods, but not the other functions, can be used even if no generic function of this
name is currently found. In this case package must either be supplied as an argument or included
as an attribute of f, since the package name is part of the identification of the methods tables.

The Class for lists of methods

The class "listOfMethods" returns the methods as a named list of method definitions (or a prim-
itive function, see the slot documentation below). The names are the strings used to store the
corresponding objects in the environment from which method dispatch is computed. The current
implementation uses the names of the corresponding classes in the method signature, separated by
"#" if more than one argument is involved in the signature.

Slots

.Data: Object of class "list" The method definitions.
Note that these may include the primitive function itself as default method, when the generic
corresponds to a primitive. (Basically, because primitive functions are abnormal R objects,
which cannot currently be extended as method definitions.) Computations that use the returned
list to derive other information need to take account of this possibility. See the implementation
of findMethodSignatures for an example.

arguments: Object of class "character". The names of the formal arguments in the signature of
the generic function.

signatures: Object of class "list". A list of the signatures of the individual methods. This is
currently the result of splitting the names according to the "#" separator.
If the object has been constructed from a table, as when returned by findMethods, the signa-
tures will all have the same length. However, a list rather than a character matrix is used for
generality. Calling findMethodSignatures as in the example below will always convert to
the matrix form.

generic: Object of class "genericFunction". The generic function corresponding to these meth-
ods. There are plans to generalize this slot to allow reference to the function.

names: Object of class "character". The names as noted are the class names separated by "#" .

Extends

Class "namedList", directly.

Class "list", by class "namedList", distance 2.

Class "vector", by class "namedList", distance 3.

998 fixPre1.8

See Also

showMethods, selectMethod, Methods

Examples

mm <- findMethods("Ops")
findMethodSignatures(methods = mm)

fixPre1.8 Fix Objects Saved from R Versions Previous to 1.8

Description

Beginning with R version 1.8.0, the class of an object contains the identification of the package
in which the class is defined. The function fixPre1.8 fixes and re-assigns objects missing that
information (typically because they were loaded from a file saved with a previous version of R.)

Usage

fixPre1.8(names, where)

Arguments

names Character vector of the names of all the objects to be fixed and re-assigned.

where The environment from which to look for the objects, and for class definitions.
Defaults to the top environment of the call to fixPre1.8, the global environment
if the function is used interactively.

Details

The named object will be saved where it was found. Its class attribute will be changed to the full
form required by R 1.8; otherwise, the contents of the object should be unchanged.

Objects will be fixed and re-assigned only if all the following conditions hold:

1. The named object exists.

2. It is from a defined class (not a basic datatype which has no actual class attribute).

3. The object appears to be from an earlier version of R.

4. The class is currently defined.

5. The object is consistent with the current class definition.

If any condition except the second fails, a warning message is generated.

Note that fixPre1.8 currently fixes only the change in class attributes. In particular, it will not fix
binary versions of packages installed with earlier versions of R if these use incompatible features.
Such packages must be re-installed from source, which is the wise approach always when major
version changes occur in R.

Value

The names of all the objects that were in fact re-assigned.

genericFunction-class 999

genericFunction-class Generic Function Objects

Description

Generic functions (objects from or extending class genericFunction) are extended function ob-
jects, containing information used in creating and dispatching methods for this function. They also
identify the package associated with the function and its methods.

Objects from the Class

Generic functions are created and assigned by setGeneric or setGroupGeneric and, indirectly,
by setMethod.

As you might expect setGeneric and setGroupGeneric create objects of class
"genericFunction" and "groupGenericFunction" respectively.

Slots

.Data: Object of class "function", the function definition of the generic, usually created auto-
matically as a call to standardGeneric.

generic: Object of class "character", the name of the generic function.

package: Object of class "character", the name of the package to which the function definition
belongs (and not necessarily where the generic function is stored). If the package is not speci-
fied explicitly in the call to setGeneric, it is usually the package on which the corresponding
non-generic function exists.

group: Object of class "list", the group or groups to which this generic function belongs. Empty
by default.

valueClass: Object of class "character"; if not an empty character vector, identifies one or more
classes. It is asserted that all methods for this function return objects from these class (or from
classes that extend them).

signature: Object of class "character", the vector of formal argument names that can appear in
the signature of methods for this generic function. By default, it is all the formal arguments,
except for Order matters for efficiency: the most commonly used arguments in specifying
methods should come first.

default: Object of class "optionalMethod" (a union of classes "function" and "NULL"), con-
taining the default method for this function if any. Generated automatically and used to ini-
tialize method dispatch.

skeleton: Object of class "call", a slot used internally in method dispatch. Don’t expect to use
it directly.

Extends

Class "function", from data part.
Class "OptionalMethods", by class "function".
Class "PossibleMethod", by class "function".

1000 GenericFunctions

Methods

Generic function objects are used in the creation and dispatch of formal methods; information from
the object is used to create methods list objects and to merge or update the existing methods for this
generic.

GenericFunctions Tools for Managing Generic Functions

Description

The functions documented here manage collections of methods associated with a generic function,
as well as providing information about the generic functions themselves.

Usage

isGeneric(f, where, fdef, getName = FALSE)
isGroup(f, where, fdef)
removeGeneric(f, where)

dumpMethod(f, signature, file, where, def)
findFunction(f, generic = TRUE, where = topenv(parent.frame()))
dumpMethods(f, file, signature, methods, where)
signature(...)

removeMethods(f, where = topenv(parent.frame()), all = missing(where))

setReplaceMethod(f, ..., where = topenv(parent.frame()))

getGenerics(where, searchForm = FALSE)

Arguments

f The character string naming the function.

where The environment, namespace, or search-list position from which to search for
objects. By default, start at the top-level environment of the calling function,
typically the global environment (i.e., use the search list), or the namespace of a
package from which the call came. It is important to supply this argument when
calling any of these functions indirectly. With package namespaces, the default
is likely to be wrong in such calls.

signature The class signature of the relevant method. A signature is a named or un-
named vector of character strings. If named, the names must be formal argu-
ment names for the generic function. Signatures are matched to the arguments
specified in the signature slot of the generic function (see the Details section of
the setMethod documentation).
The signature argument to dumpMethods is ignored (it was used internally in
previous implementations).

file The file or connection on which to dump method definitions.

def The function object defining the method; if omitted, the current method defini-
tion corresponding to the signature.

GenericFunctions 1001

... Named or unnamed arguments to form a signature.

generic In testing or finding functions, should generic functions be included. Supply as
FALSE to get only non-generic functions.

fdef Optional, the generic function definition.
Usually omitted in calls to isGeneric

getName If TRUE, isGeneric returns the name of the generic. By default, it returns TRUE.

methods The methods object containing the methods to be dumped. By default, the meth-
ods defined for this generic (optionally on the specified where location).

all in removeMethods, logical indicating if all (default) or only the first method
found should be removed.

searchForm In getGenerics, if TRUE, the package slot of the returned result is in
the form used by search(), otherwise as the simple package name (e.g,
"package:base" vs "base").

Summary of Functions

isGeneric: Is there a function named f, and if so, is it a generic?
The getName argument allows a function to find the name from a function definition. If it
is TRUE then the name of the generic is returned, or FALSE if this is not a generic function
definition.
The behavior of isGeneric and getGeneric for primitive functions is slightly different.
These functions don’t exist as formal function objects (for efficiency and historical reasons),
regardless of whether methods have been defined for them. A call to isGeneric tells you
whether methods have been defined for this primitive function, anywhere in the current search
list, or in the specified position where. In contrast, a call to getGeneric will return what the
generic for that function would be, even if no methods have been currently defined for it.

removeGeneric, removeMethods: Remove all the methods for the generic function of this name.
In addition, removeGeneric removes the function itself; removeMethods restores the
non-generic function which was the default method. If there was no default method,
removeMethods leaves a generic function with no methods.

standardGeneric: Dispatches a method from the current function call for the generic function
f. It is an error to call standardGeneric anywhere except in the body of the corresponding
generic function.
Note that standardGeneric is a primitive function in the base package for efficiency reasons,
but rather documented here where it belongs naturally.

dumpMethod: Dump the method for this generic function and signature.

findFunction: return a list of either the positions on the search list, or the current top-level envi-
ronment, on which a function object for name exists. The returned value is always a list, use
the first element to access the first visible version of the function. See the example.
NOTE: Use this rather than find with mode="function", which is not as meaningful, and has
a few subtle bugs from its use of regular expressions. Also, findFunction works correctly in
the code for a package when attaching the package via a call to library.

dumpMethods: Dump all the methods for this generic.

signature: Returns a named list of classes to be matched to arguments of a generic function.

getGenerics: returns the names of the generic functions that have methods defined on where; this
argument can be an environment or an index into the search list. By default, the whole search
list is used.

1002 GenericFunctions

The methods definitions are stored with package qualifiers; for example, methods for function
"initialize" might refer to two different functions of that name, on different packages. The
package names corresponding to the method list object are contained in the slot package of
the returned object. The form of the returned name can be plain (e.g., "base"), or in the form
used in the search list ("package:base") according to the value of searchForm

Details

setGeneric: If there is already a non-generic function of this name, it will be used to define the
generic unless def is supplied, and the current function will become the default method for
the generic.
If def is supplied, this defines the generic function, and no default method will exist (often a
good feature, if the function should only be available for a meaningful subset of all objects).
Arguments group and valueClass are retained for consistency with S-Plus, but are currently
not used.

isGeneric: If the fdef argument is supplied, take this as the definition of the generic, and test
whether it is really a generic, with f as the name of the generic. (This argument is not available
in S-Plus.)

removeGeneric: If where supplied, just remove the version on this element of the search list;
otherwise, removes the first version encountered.

standardGeneric: Generic functions should usually have a call to standardGeneric as their en-
tire body. They can, however, do any other computations as well.
The usual setGeneric (directly or through calling setMethod) creates a function with a call
to standardGeneric.

dumpMethod: The resulting source file will recreate the method.

findFunction: If generic is FALSE, ignore generic functions.

dumpMethods: If signature is supplied only the methods matching this initial signature are
dumped. (This feature is not found in S-Plus: don’t use it if you want compatibility.)

signature: The advantage of using signature is to provide a check on which arguments you
meant, as well as clearer documentation in your method specification. In addition, signature
checks that each of the elements is a single character string.

removeMethods: Returns TRUE if f was a generic function, FALSE (silently) otherwise.
If there is a default method, the function will be re-assigned as a simple function with this
definition. Otherwise, the generic function remains but with no methods (so any call to it will
generate an error). In either case, a following call to setMethod will consistently re-establish
the same generic function as before.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

getMethod (also for selectMethod), setGeneric, setClass, showMethods

getClass 1003

Examples

require(stats) # for lm

get the function "myFun" -- throw an error if 0 or > 1 versions visible:
findFuncStrict <- function(fName) {

allF <- findFunction(fName)
if(length(allF) == 0)
stop("No versions of ",fName," visible")

else if(length(allF) > 1)
stop(fName," is ambiguous: ", length(allF), " versions")

else
get(fName, allF[[1]])

}

try(findFuncStrict("myFun"))# Error: no version
lm <- function(x) x+1
try(findFuncStrict("lm"))# Error: 2 versions
findFuncStrict("findFuncStrict")# just 1 version
rm(lm)

method dumping ------------------------------------

setClass("A", representation(a="numeric"))
setMethod("plot", "A", function(x,y,...){ cat("A meth\n") })
dumpMethod("plot","A", file="")
Not run:
setMethod("plot", "A",
function (x, y, ...)
{

cat("AAAAA\n")
}
)

End(Not run)
tmp <- tempfile()
dumpMethod("plot","A", file=tmp)
now remove, and see if we can parse the dump
stopifnot(removeMethod("plot", "A"))
source(tmp)
stopifnot(is(getMethod("plot", "A"), "MethodDefinition"))

same with dumpMethods() :
setClass("B", contains="A")
setMethod("plot", "B", function(x,y,...){ cat("B ...\n") })
dumpMethods("plot", file=tmp)
stopifnot(removeMethod("plot", "A"),

removeMethod("plot", "B"))
source(tmp)
stopifnot(is(getMethod("plot", "A"), "MethodDefinition"),

is(getMethod("plot", "B"), "MethodDefinition"))

getClass Get Class Definition

1004 getClass

Description

Get the definition of a class.

Usage

getClass(Class, .Force = FALSE, where)
getClassDef(Class, where, package, inherits = TRUE)

Arguments

Class the character-string name of the class, often with a "package" attribute as noted
below under package.

.Force if TRUE, return NULL if the class is undefined; otherwise, an undefined class
results in an error.

where environment from which to begin the search for the definition; by default, start
at the top-level (global) environment and proceed through the search list.

package the name of the package asserted to hold the definition. If it is a non-empty
string it is used instead of where, as the first place to look for the class. Note that
the package must be loaded but need not be attached. By default, the package
attribute of the Class argument is used, if any. There will usually be a package
attribute if Class comes from class(x) for some object.

inherits Should the class definition be retrieved from any enclosing environment and
also from the cache? If FALSE only a definition in the environment where will
be returned.

Details

Class definitions are stored in metadata objects in a package namespace or other environment where
they are defined. When packages are loaded, the class definitions in the package are cached in an
internal table. Therefore, most calls to getClassDef will find the class in the cache or fail to find
it at all, unless inherits is FALSE, in which case only the environment(s) defined by package or
where are searched.

The class cache allows for multiple definitions of the same class name in separate environments,
with of course the limitation that the package attribute or package name must be provided in the
call to

Value

The object defining the class. If the class definition is not found, getClassDef returns NULL, while
getClass, which calls getClassDef, either generates an error or, if .Force is TRUE, returns a
simple definition for the class. The latter case is used internally, but is not typically sensible in user
code.

The non-null returned value is an object of class classRepresentation. For all reasonable pur-
poses, use this object only to extract information, rather than trying to modify it: Use functions such
as setClass and setIs to create or modify class definitions.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

getMethod 1005

See Also

Classes, setClass, isClass.

Examples

getClass("numeric") ## a built in class

cld <- getClass("thisIsAnUndefinedClass", .Force = TRUE)
cld ## a NULL prototype
If you are really curious:
utils::str(cld)
Whereas these generate errors:
try(getClass("thisIsAnUndefinedClass"))
try(getClassDef("thisIsAnUndefinedClass"))

getMethod Get or Test for the Definition of a Method

Description

Functions to look for a method corresponding to a given generic function and signature. The
functions getMethod and selectMethod return the method; the functions existsMethod and
hasMethod test for its existence. In both cases the first function only gets direct definitions and
the second uses inheritance. In all cases, the search is in the generic function itself or in the pack-
age/environment specified by argument where.

The function findMethod returns the package(s) in the search list (or in the packages specified by
the where argument) that contain a method for this function and signature.

Usage

getMethod(f, signature=character(), where, optional = FALSE,
mlist, fdef)

existsMethod(f, signature = character(), where)

findMethod(f, signature, where)

selectMethod(f, signature, optional = FALSE, useInherited =,
mlist = , fdef = , verbose = , doCache = , returnAll =)

hasMethod(f, signature=character(), where)

Arguments

f A generic function or the character-string name of one.

signature the signature of classes to match to the arguments of f. See the details below.

where The position or environment in which to look for the method(s): by default, the
table of methods defined in the generic function itself is used.

1006 getMethod

optional If the selection in selectMethod does not find a valid method an error is gener-
ated, unless this argument is TRUE. In that case, the value returned is NULL if no
method matches.

mlist, fdef, useInherited, verbose, doCache, returnAll

Optional arguments to getMethod and selectMethod for internal use. Avoid
these: some will work as expected and others will not, and none of them is
required for normal use of the functions.

Details

The signature argument specifies classes, corresponding to formal arguments of the generic func-
tion; to be precise, to the signature slot of the generic function object. The argument may be a
vector of strings identifying classes, and may be named or not. Names, if supplied, match the names
of those formal arguments included in the signature of the generic. That signature is normally all
the arguments except However, generic functions can be specified with only a subset of the
arguments permitted, or with the signature taking the arguments in a different order.

It’s a good idea to name the arguments in the signature to avoid confusion, if you’re dealing with
a generic that does something special with its signature. In any case, the elements of the signature
are matched to the formal signature by the same rules used in matching arguments in function calls
(see match.call).

The strings in the signature may be class names, "missing" or "ANY". See Methods for the meaning
of these in method selection. Arguments not supplied in the signature implicitly correspond to class
"ANY"; in particular, giving an empty signature means to look for the default method.

A call to getMethod returns the method for a particular function and signature. As with other get
functions, argument where controls where the function looks (by default anywhere in the search
list) and argument optional controls whether the function returns NULL or generates an error if the
method is not found. The search for the method makes no use of inheritance.

The function selectMethod also looks for a method given the function and signature, but makes
full use of the method dispatch mechanism; i.e., inherited methods and group generics are taken
into account just as they would be in dispatching a method for the corresponding signature, with
the one exception that conditional inheritance is not used. Like getMethod, selectMethod returns
NULL or generates an error if the method is not found, depending on the argument optional.

The functions existsMethod and hasMethod return TRUE or FALSE according to whether a method
is found, the first corresponding to getMethod (no inheritance) and the second to selectMethod.

Value

The call to selectMethod or getMethod returns the selected method, if one is found. (This class ex-
tends function, so you can use the result directly as a function if that is what you want.) Otherwise
an error is thrown if optional is FALSE and NULL is returned if optional is TRUE.

The returned method object is a MethodDefinition object, except that the default method for a
primitive function is required to be the primitive itself. Note therefore that the only reliable test that
the search failed is is.null().

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

getPackageName 1007

See Also

Methods for the details of method selection; GenericFunctions for other functions manipulating
methods and generic function objects; MethodDefinition for the class that represents method
definitions.

Examples

setGeneric("testFun", function(x)standardGeneric("testFun"))
setMethod("testFun", "numeric", function(x)x+1)
hasMethod("testFun", "numeric")
Not run: [1] TRUE
hasMethod("testFun", "integer") #inherited
Not run: [1] TRUE
existsMethod("testFun", "integer")
Not run: [1] FALSE
hasMethod("testFun") # default method
Not run: [1] FALSE
hasMethod("testFun", "ANY")
Not run: [1] FALSE

getPackageName The Name associated with a Given Package

Description

The functions below produce the package associated with a particular environment or position on
the search list, or of the package containing a particular function. They are primarily used to support
computations that need to differentiate objects on multiple packages.

Usage

getPackageName(where, create = TRUE)
setPackageName(pkg, env)

packageSlot(object)
packageSlot(object) <- value

Arguments

where the environment or position on the search list associated with the desired pack-
age.

object object providing a character string name, plus the package in which this object
is to be found.

value the name of the package.

create flag, should a package name be created if none can be inferred? If TRUE and
no non-empty package name is found, the current date and time are used as
a package name, and a warning is issued. The created name is stored in the
environment if that environment is not locked.

pkg, env make the string in pkg the internal package name for all computations that set
class and method definitions in environment env.

1008 hasArg

Details

Package names are normally installed during loading of the package, by the INSTALL script or by
the library function. (Currently, the name is stored as the object .packageName but don’t trust
this for the future.)

Value

packageName returns the character-string name of the package (without the extraneous "package:"
found in the search list).

packageSlot returns or sets the package name slot (currently an attribute, not a formal slot, but this
may change someday).

setPackageName can be used to establish a package name in an environment that would otherwise
not have one. This allows you to create classes and/or methods in an arbitrary environment, but it
is usually preferable to create packages by the standard R programming tools (package.skeleton,
etc.)

See Also

search

Examples

all the following usually return "base"
getPackageName(length(search()))
getPackageName(baseenv())
getPackageName(asNamespace("base"))
getPackageName("package:base")

hasArg Look for an Argument in the Call

Description

Returns TRUE if name corresponds to an argument in the call, either a formal argument to the func-
tion, or a component of ..., and FALSE otherwise.

Usage

hasArg(name)

Arguments

name The unquoted name of a potential argument.

Details

The expression hasArg(x), for example, is similar to !missing(x), with two exceptions. First,
hasArg will look for an argument named x in the call if x is not a formal argument to the calling
function, but ... is. Second, hasArg never generates an error if given a name as an argument,
whereas missing(x) generates an error if x is not a formal argument.

implicitGeneric 1009

Value

Always TRUE or FALSE as described above.

See Also

missing

Examples

ftest <- function(x1, ...) c(hasArg(x1), hasArg(y2))

ftest(1) ## c(TRUE, FALSE)
ftest(1, 2) ## c(TRUE, FALSE)
ftest(y2=2) ## c(FALSE, TRUE)
ftest(y=2) ## c(FALSE, FALSE) (no partial matching)
ftest(y2 = 2, x=1) ## c(TRUE, TRUE) partial match x1

implicitGeneric Manage Implicit Versions of Generic Functions

Description

Create or access implicit generic functions, used to enforce consistent generic versions of functions
that are not currently generic. Function implicitGeneric() returns the implicit generic version,
setGenericImplicit() turns a generic implicit, prohibitGeneric() prevents your function from
being made generic, and registerImplicitGenerics() saves a set of implicit generic definitions
in the cached table of the current session.

Usage

implicitGeneric(name, where, generic)
setGenericImplicit(name, where, restore = TRUE)
prohibitGeneric(name, where)
registerImplicitGenerics(what, where)

Arguments

name Character string name of the function.

where Package or environment in which to register the implicit generics. When using
the functions from the top level of your own package source, this argument can
usually be omitted (and should be).

generic Optionally, the generic function definition to be cached, but usually omitted. See
Details section.

restore Should the non-generic version of the function be restored after the current.

what For registerImplicitGenerics(), Optional table of the implicit generics to
register, but nearly always omitted. See Details section.

1010 implicitGeneric

Details

Multiple packages may define methods for the same function, using the version of a function stored
in one package. All these methods should be marshaled and dispatched consistently when a user
calls the function. For consistency, the generic version of the function must have a unique definition
(the same arguments allowed in methods signatures, the same values for optional slots such as the
value class, and the same standard or non-standard definition of the function itself).

If the original function is already an S4 generic, there is no problem. The implicit generic mecha-
nism enforces consistency when the version in the package owning the function is not generic. If a
call to setGeneric() attempts to turn a function in another package into a generic, the mechanism
compares the proposed new generic function to the implicit generic version of that function. If the
two agree, all is well. If not, and if the function belongs to another package, then the new generic
will not be associated with that package. Instead, a warning is issued and a separate generic function
is created, with its package slot set to the current package, not the one that owns the non-generic
version of the function. The effect is that the new package can still define methods for this function,
but it will not share the methods in other packages, since it is forcing a different definition of the
generic function.

The right way to proceed in nearly all cases is to call setGeneric("foo"), giving only the name of
the function; this will automatically use the implicit generic version. If you don’t like that version,
the best solution is to convince the owner of the other package to agree with you and to insert code
to define the non-default properties of the function (even if the owner does not want foo() to be a
generic by default).

For any function, the implicit generic form is a standard generic in which all formal arguments,
except for ..., are allowed in the signature of methods. If that is the suitable generic for a function,
no action is needed. If not, the best mechanism is to set up the generic in the code of the package
owning the function, and to then call setGenericImplicit() to record the implicit generic and
restore the non-generic version. See the example.

Note that the package can define methods for the implicit generic as well; when the implicit generic
is made a real generic, those methods will be included.

Other than predefining methods, the usual reason for having a non-default implicit generic is to
provide a non-default signature, and the usual reason for that is to allow lazy evaluation of some
arguments. See the example. All arguments in the signature of a generic function must be evaluated
at the time the function needs to select a method. (But those arguments can be missing, with or with-
out a default expression being defined; you can always examine missing(x) even for arguments in
the signature.)

If you want to completely prohibit anyone from turning your function into a generic, call
prohibitGeneric().

Value

Function implicitGeneric() returns the implicit generic definition (and caches that definition the
first time if it has to construct it).

The other functions exist for their side effect and return nothing useful.

See Also

setGeneric

Examples

inheritedSlotNames 1011

How we would make the function \link{with}() into a generic:

Since the second argument, ’expr’ is used literally, we want
with() to only have "data" in the signature.

Note that ’methods’-internal code now has already extended with()
to do the equivalent of the following
Not run:
setGeneric("with", signature = "data")
Now we could predefine methods for "with" if we wanted to.

When ready, we store the generic as implicit, and restore the original
setGenericImplicit("with")

(This example would only work if we "owned" function with(),
but it is in base.)
End(Not run)

implicitGeneric("with")

inheritedSlotNames Names of Slots Inherited From a Super Class

Description

For a class (or class definition, see getClass and the description of class classRepresentation),
give the names which are inherited from “above”, i.e., super classes, rather than by this class’
definition itself.

Usage

inheritedSlotNames(Class, where = topenv(parent.frame()))

Arguments

Class character string or classRepresentation, i.e., resulting from getClass.

where environment, to be passed further to isClass and getClass.

Value

character vector of slot names, or NULL.

See Also

slotNames, slot, setClass, etc.

Examples

.srch <- search()
library(stats4)
inheritedSlotNames("mle")

1012 initialize-methods

Not run:
if(require("Matrix")) {

print(inheritedSlotNames("Matrix")) # NULL
whereas
print(inheritedSlotNames("sparseMatrix")) # --> Dim & Dimnames
i.e. inherited from "Matrix" class

print(cl <- getClass("dgCMatrix")) # six slots, etc

print(inheritedSlotNames(cl)) # *all* six slots are inherited
}

detach package we’ve attached above:
for(n in rev(which(is.na(match(search(), .srch)))))

detach(pos = n)

End(Not run)

initialize-methods Methods to Initialize New Objects from a Class

Description

The arguments to function new to create an object from a particular class can be interpreted spe-
cially for that class, by the definition of a method for function initialize for the class. This
documentation describes some existing methods, and also outlines how to write new ones.

Methods

signature(.Object = "ANY") The default method for initialize takes either named or un-
named arguments. Argument names must be the names of slots in this class definition, and
the corresponding arguments must be valid objects for the slot (that is, have the same class
as specified for the slot, or some superclass of that class). If the object comes from a su-
perclass, it is not coerced strictly, so normally it will retain its current class (specifically,
as(object, Class, strict = FALSE)).
Unnamed arguments must be objects of this class, of one of its superclasses, or one of its
subclasses (from the class, from a class this class extends, or from a class that extends this
class). If the object is from a superclass, this normally defines some of the slots in the object.
If the object is from a subclass, the new object is that argument, coerced to the current class.
Unnamed arguments are processed first, in the order they appear. Then named arguments
are processed. Therefore, explicit values for slots always override any values inferred from
superclass or subclass arguments.

signature(.Object = "traceable") Objects of a class that extends traceable are used to im-
plement debug tracing (see class traceable and trace).
The initialize method for these classes takes special arguments
def, tracer, exit, at, print. The first of these is the object to use as the origi-
nal definition (e.g., a function). The others correspond to the arguments to trace.

signature(.Object = "environment"), signature(.Object = ".environment") The
initialize method for environments takes a named list of objects to be used to initial-
ize the environment. Subclasses of "environment" inherit an initialize method through

is 1013

".environment", which has the additional effect of allocating a new environment. If you
define your own method for such a subclass, be sure either to call the existing method
via callNextMethod or allocate an environment in your method, since environments are
references and are not duplicated automatically.

signature(.Object = "signature") This is a method for internal use only. It takes an optional
functionDef argument to provide a generic function with a signature slot to define the
argument names. See Methods for details.

Writing Initialization Methods

Initialization methods provide a general mechanism corresponding to generator functions in other
languages.

The arguments to initialize are .Object and Nearly always, initialize is called from
new, not directly. The .Object argument is then the prototype object from the class.

Two techniques are often appropriate for initialize methods: special argument names and
callNextMethod.

You may want argument names that are more natural to your users than the (default) slot names.
These will be the formal arguments to your method definition, in addition to .Object (always)
and . . . (optionally). For example, the method for class "traceable" documented above would be
created by a call to setMethod of the form:

setMethod("initialize", "traceable",
function(.Object, def, tracer, exit, at, print) ...

)

In this example, no other arguments are meaningful, and the resulting method will throw an error if
other names are supplied.

When your new class extends another class, you may want to call the initialize method for this
superclass (either a special method or the default). For example, suppose you want to define a
method for your class, with special argument x, but you also want users to be able to set slots
specifically. If you want x to override the slot information, the beginning of your method definition
might look something like this:

function(.Object, x, ...) {
Object <- callNextMethod(.Object, ...)
if(!missing(x)) { # do something with x

You could also choose to have the inherited method override, by first interpreting x, and then calling
the next method.

is Is an Object from a Class?

Description

Functions to test inheritance relationships between an object and a class (is) or between two classes
(extends), and to establish such relationships (setIs, an explicit alternative to the contains=
argument to setClass).

1014 is

Usage

is(object, class2)

extends(class1, class2, maybe = TRUE, fullInfo = FALSE)

setIs(class1, class2, test=NULL, coerce=NULL, replace=NULL,
by = character(), where = topenv(parent.frame()), classDef =,
extensionObject = NULL, doComplete = TRUE)

Arguments

object any R object.

class1, class2 the names of the classes between which is relations are to be examined defined,
or (more efficiently) the class definition objects for the classes.

maybe, fullInfo

In a call to extends, maybe is the value returned if a relation is conditional. In
a call with class2 missing, fullInfo is a flag, which if TRUE causes a list of
objects of class classExtension to be returned, rather than just the names of
the classes.

coerce, replace

In a call to setIs, functions optionally supplied to coerce the object to class2,
and to alter the object so that is(object, class2) is identical to value. See
the details section below.

test In a call to setIs, a conditional relationship is defined by supplying this func-
tion. Conditional relations are discouraged and are not included in selecting
methods. See the details section below.
The remaining arguments are for internal use and/or usually omitted.

extensionObject

alternative to the test, coerce, replace, by arguments; an object from
class SClassExtension describing the relation. (Used in internal calls.)

doComplete when TRUE, the class definitions will be augmented with indirect relations as
well. (Used in internal calls.)

by In a call to setIs, the name of an intermediary class. Coercion will proceed by
first coercing to this class and from there to the target class. (The intermediate
coercions have to be valid.)

where In a call to setIs, where to store the metadata defining the relationship. Default
is the global environment for calls from the top level of the session or a source
file evaluated there. When the call occurs in the top level of a file in the source
of a package, the default will be the namespace or environment of the package.
Other uses are tricky and not usually a good idea, unless you really know what
you are doing.

classDef Optional class definition for class , required internally when setIs is called
during the initial definition of the class by a call to setClass. Don’t use this
argument, unless you really know why you’re doing so.

Summary of Functions

is: With two arguments, tests whether object can be treated as from class2.
With one argument, returns all the super-classes of this object’s class.

is 1015

extends: Does the first class extend the second class? The call returns maybe if the extension
includes a test.
When called with one argument, the value is a vector of the superclasses of class1. If argu-
ment fullInfo is TRUE, the call returns a named list of objects of class SClassExtension;
otherwise, just the names of the superclasses.

setIs: Defines class1 to be an extension (subclass) of class2. If class2 is an existing virtual
class, such as a class union, then only the two classes need to be supplied in the call, if the
implied inherited methods work for class1. See the details section below.
Alternatively, arguments coerce and replace should be supplied, defining methods to coerce
to the superclass and to replace the part corresponding to the superclass. As discussed in the
details and other sections below, this form is often less recommended than the corresponding
call to setAs, to which it is an alternative.
Argument test allows conditional inheritance, in which the is() result is tested for each
object rather than being determined by the class definition. This form is discouraged when it
can be avoided; in particular, note that conditional inheritance is not used to select methods
for dispatch.

Details

Arranging for a class to inherit from another class is a key tool in programming. In R, there are
three basic techniques, the first two providing what is called “simple” inheritance, the preferred
form:

1. By the contains= argument in a call to setClass. This is and should be the most common
mechanism. It arranges that the new class contains all the structure of the existing class, and
in particular all the slots with the same class specified. The resulting class extension is defined
to be simple, with important implications for method definition (see the section on this topic
below).

2. Making class1 a subclass of a virtual class either by a call to setClassUnion to make the
subclass a member of a new class union, or by a call to setIs to add a class to an existing
class union or as a new subclass of an existing virtual class. In either case, the implication
should be that methods defined for the class union or other superclass all work correctly for
the subclass. This may depend on some similarity in the structure of the subclasses or simply
indicate that the superclass methods are defined in terms of generic functions that apply to all
the subclasses. These relationships are also generally simple.

3. Supplying coerce and replace arguments to setAs. R allows arbitrary inheritance rela-
tionships, using the same mechanism for defining coerce methods by a call to setAs. The
difference between the two is simply that setAs will require a call to as for a conversion
to take place, whereas after the call to setIs, objects will be automatically converted to the
superclass.
The automatic feature is the dangerous part, mainly because it results in the subclass poten-
tially inheriting methods that do not work. See the section on inheritance below. If the two
classes involved do not actually inherit a large collection of methods, as in the first example
below, the danger may be relatively slight.
If the superclass inherits methods where the subclass has only a default or remotely inherited
method, problems are more likely. In this case, a general recommendation is to use the setAs
mechanism instead, unless there is a strong counter reason. Otherwise, be prepared to override
some of the methods inherited.

With this caution given, the rest of this section describes what happens when coerce= and replace=
arguments are supplied to setIs.

1016 is

The coerce and replace arguments are functions that define how to coerce a class1 object to
class2, and how to replace the part of the subclass object that corresponds to class2. The first of
these is a function of one argument which should be from, and the second of two arguments (from,
value). For details, see the section on coerce functions below .

When by is specified, the coerce process first coerces to this class and then to class2. It’s unlikely
you would use the by argument directly, but it is used in defining cached information about classes.

The value returned (invisibly) by setIs is the revised class definition of class1.

Coerce, replace, and test functions

The coerce argument is a function that turns a class1 object into a class2 object. The replace
argument is a function of two arguments that modifies a class1 object (the first argument) to replace
the part of it that corresponds to class2 (supplied as value, the second argument). It then returns
the modified object as the value of the call. In other words, it acts as a replacement method to
implement the expression as(object, class2) <- value.

The easiest way to think of the coerce and replace functions is by thinking of the case that class1
contains class2 in the usual sense, by including the slots of the second class. (To repeat, in this
situation you would not call setIs, but the analogy shows what happens when you do.)

The coerce function in this case would just make a class2 object by extracting the corresponding
slots from the class1 object. The replace function would replace in the class1 object the slots
corresponding to class2, and return the modified object as its value.

For additional discussion of these functions, see the documentation of the setAs function. (Unfor-
tunately, argument def to that function corresponds to argument coerce here.)

The inheritance relationship can also be conditional, if a function is supplied as the test argument.
This should be a function of one argument that returns TRUE or FALSE according to whether the
object supplied satisfies the relation is(object, class2). Conditional relations between classes
are discouraged in general because they require a per-object calculation to determine their validity.
They cannot be applied as efficiently as ordinary relations and tend to make the code that uses them
harder to interpret. NOTE: conditional inheritance is not used to dispatch methods. Methods for
conditional superclasses will not be inherited. Instead, a method for the subclass should be defined
that tests the conditional relationship.

Inherited methods

A method written for a particular signature (classes matched to one or more formal arguments to
the function) naturally assumes that the objects corresponding to the arguments can be treated as
coming from the corresponding classes. The objects will have all the slots and available methods
for the classes.

The code that selects and dispatches the methods ensures that this assumption is correct. If the
inheritance was “simple”, that is, defined by one or more uses of the contains= argument in a call
to setClass, no extra work is generally needed. Classes are inherited from the superclass, with the
same definition.

When inheritance is defined by a general call to setIs, extra computations are required. This form
of inheritance implies that the subclass does not just contain the slots of the superclass, but instead
requires the explicit call to the coerce and/or replace method. To ensure correct computation, the
inherited method is supplemented by calls to as before the body of the method is evaluated.

The calls to as generated in this case have the argument strict = FALSE, meaning that extra
information can be left in the converted object, so long as it has all the appropriate slots. (It’s this
option that allows simple subclass objects to be used without any change.) When you are writing
your coerce method, you may want to take advantage of that option.

is 1017

Methods inherited through non-simple extensions can result in ambiguities or unexpected selec-
tions. If class2 is a specialized class with just a few applicable methods, creating the inheritance
relation may have little effect on the behavior of class1. But if class2 is a class with many meth-
ods, you may find that you now inherit some undesirable methods for class1, in some cases, fail
to inherit expected methods. In the second example below, the non-simple inheritance from class
"factor" might be assumed to inherit S3 methods via that class. But the S3 class is ambiguous,
and in fact is "character" rather than "factor".

For some generic functions, methods inherited by non-simple extensions are either known to be
invalid or sufficiently likely to be so that the generic function has been defined to exclude such
inheritance. For example initialize methods must return an object of the target class; this is
straightforward if the extension is simple, because no change is made to the argument object, but
is essentially impossible. For this reason, the generic function insists on only simple extensions for
inheritance. See the simpleInheritanceOnly argument to setGeneric for the mechanism. You
can use this mechanism when defining new generic functions.

If you get into problems with functions that do allow non-simple inheritance, there are two basic
choices. Either back off from the setIs call and settle for explicit coercing defined by a call to
setAs; or, define explicit methods involving class1 to override the bad inherited methods. The
first choice is the safer, when there are serious problems.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

inherits is nearly always equivalent to is, both for S4 and non-S4 objects, and is somewhat faster.
The non-equivalence applies to classes that have conditional superclasses, with a non-trivial test=
in the relation (not common and discouraged): for these, is tests for the relation but inherits by
definition ignores conditional inheritance for S4 objects.

selectSuperClasses(cl) has similar semantics as extends(cl), typically returning subsets of
the latter.

Examples

Two examples of setIs() with coerce= and replace= arguments
The first one works fairly well, because neither class has many
inherited methods do be disturbed by the new inheritance

The second example does NOT work well, because the new superclass,
"factor", causes methods to be inherited that should not be.

First example:
a class definition (see \link{setClass} for class "track")
setClass("trackCurve", contains = "track",

representation(smooth = "numeric"))
A class similar to "trackCurve", but with different structure
allowing matrices for the "y" and "smooth" slots
setClass("trackMultiCurve",

representation(x="numeric", y="matrix", smooth="matrix"),
prototype = structure(list(), x=numeric(), y=matrix(0,0,0),

1018 isSealedMethod

smooth= matrix(0,0,0)))
Automatically convert an object from class "trackCurve" into
"trackMultiCurve", by making the y, smooth slots into 1-column matrices
setIs("trackCurve",

"trackMultiCurve",
coerce = function(obj) {

new("trackMultiCurve",
x = obj@x,
y = as.matrix(obj@y),
smooth = as.matrix(obj@smooth))

},
replace = function(obj, value) {

obj@y <- as.matrix(value@y)
obj@x <- value@x
obj@smooth <- as.matrix(value@smooth)
obj})

Second Example:
A class that adds a slot to "character"
setClass("stringsDated", contains = "character",

representation(stamp="POSIXt"))

Convert automatically to a factor by explicit coerce
setIs("stringsDated", "factor",

coerce = function(from) factor(from@.Data),
replace= function(from, value) {

from@.Data <- as.character(value); from })

ll <- sample(letters, 10, replace = TRUE)
ld <- new("stringsDated", ll, stamp = Sys.time())

levels(as(ld, "factor"))
levels(ld) # will be NULL--see comment in section on inheritance above.

In contrast, a class that simply extends "factor"
has no such ambiguities
setClass("factorDated", contains = "factor",

representation(stamp="POSIXt"))
fd <- new("factorDated", factor(ll), stamp = Sys.time())
identical(levels(fd), levels(as(fd, "factor")))

isSealedMethod Check for a Sealed Method or Class

Description

These functions check for either a method or a class that has been sealed when it was defined, and
which therefore cannot be re-defined.

isSealedMethod 1019

Usage

isSealedMethod(f, signature, fdef, where)
isSealedClass(Class, where)

Arguments

f The quoted name of the generic function.

signature The class names in the method’s signature, as they would be supplied to
setMethod.

fdef Optional, and usually omitted: the generic function definition for f.

Class The quoted name of the class.

where where to search for the method or class definition. By default, searches from the
top environment of the call to isSealedMethod or isSealedClass, typically
the global environment or the namespace of a package containing a call to one
of the functions.

Details

In the R implementation of classes and methods, it is possible to seal the definition of either a class
or a method. The basic classes (numeric and other types of vectors, matrix and array data) are
sealed. So also are the methods for the primitive functions on those data types. The effect is that
programmers cannot re-define the meaning of these basic data types and computations. More pre-
cisely, for primitive functions that depend on only one data argument, methods cannot be specified
for basic classes. For functions (such as the arithmetic operators) that depend on two arguments,
methods can be specified if one of those arguments is a basic class, but not if both are.

Programmers can seal other class and method definitions by using the sealed argument to
setClass or setMethod.

Value

The functions return FALSE if the method or class is not sealed (including the case that it is not
defined); TRUE if it is.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

Examples

these are both TRUE
isSealedMethod("+", c("numeric", "character"))
isSealedClass("matrix")

setClass("track",
representation(x="numeric", y="numeric"))

but this is FALSE
isSealedClass("track")
and so is this
isSealedClass("A Name for an undefined Class")
and so are these, because only one of the two arguments is basic

1020 language-class

isSealedMethod("+", c("track", "numeric"))
isSealedMethod("+", c("numeric", "track"))

language-class Classes to Represent Unevaluated Language Objects

Description

The virtual class "language" and the specific classes that extend it represent unevaluated objects,
as produced for example by the parser or by functions such as quote.

Usage

each of these classes corresponds to an unevaluated object
in the S language.
The class name can appear in method signatures,
and in a few other contexts (such as some calls to as()).

"("
"<-"
"call"
"for"
"if"
"repeat"
"while"
"name"
"{"

Each of the classes above extends the virtual class
"language"

Objects from the Class

"language" is a virtual class; no objects may be created from it.

Objects from the other classes can be generated by a call to new(Class, ...), where Class is the
quoted class name, and the . . . arguments are either empty or a single object that is from this class
(or an extension).

Methods

coerce signature(from = "ANY", to = "call"). A method exists for as(object, "call"),
calling as.call().

LinearMethodsList-class 1021

LinearMethodsList-class

Class "LinearMethodsList"

Description

A version of methods lists that has been ‘linearized’ for producing summary information. The
actual objects from class "MethodsList" used for method dispatch are defined recursively over the
arguments involved.

Objects from the Class

The function linearizeMlist converts an ordinary methods list object into the linearized form.

Slots

methods: Object of class "list", the method definitions.

arguments: Object of class "list", the corresponding formal arguments, namely as many of the
arguments in the signature of the generic function as are active in the relevant method table.

classes: Object of class "list", the corresponding classes in the signatures.

generic: Object of class "genericFunction"; the generic function to which the methods corre-
spond.

Future Note

The current version of linearizeMlist does not take advantage of the MethodDefinition class,
and therefore does more work for less effect than it could. In particular, we may move to redefine
both the function and the class to take advantage of the stored signatures. Don’t write code de-
pending precisely on the present form, although all the current information will be obtainable in the
future.

See Also

Function linearizeMlist for the computation, and class MethodsList for the original, recursive
form.

makeClassRepresentation

Create a Class Definition

Description

Constructs an object of class classRepresentation to describe a particular class. Mostly a utility
function, but you can call it to create a class definition without assigning it, as setClass would do.

Usage

makeClassRepresentation(name, slots=list(), superClasses=character(),
prototype=NULL, package, validity, access,
version, sealed, virtual=NA, where)

1022 method.skeleton

Arguments

name character string name for the class

slots named list of slot classes as would be supplied to setClass, but without the
unnamed arguments for superClasses if any.

superClasses what classes does this class extend

prototype an object providing the default data for the class, e.g, the result of a call to
prototype.

package The character string name for the package in which the class will be stored; see
getPackageName.

validity Optional validity method. See validObject, and the discussion of validity
methods in the reference.

access Access information. Not currently used.

version Optional version key for version control. Currently generated, but not used.

sealed Is the class sealed? See setClass.

virtual Is this known to be a virtual class?

where The environment from which to look for class definitions needed (e.g., for slots
or superclasses). See the discussion of this argument under GenericFunctions.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

setClass

method.skeleton Create a Skeleton File for a New Method

Description

This function writes a source file containing a call to setMethod to define a method for the generic
function and signature supplied. By default the method definition is in line in the call, but can be
made an external (previously assigned) function.

Usage

method.skeleton(generic, signature, file, external = FALSE, where)

MethodDefinition-class 1023

Arguments

generic the character string name of the generic function, or the generic function itself.
In the first case, the function need not currently be a generic, as it would not for
the resulting call to setMethod.

signature the method signature, as it would be given to setMethod

file a character string name for the output file, or a writable connection. By default
the generic function name and the classes in the signature are concatenated, with
separating underscore characters. The file name should normally end in ".R".
To write multiple method skeletons to one file, open the file connection first and
then pass it to method.skeleton() in multiple calls.

external flag to control whether the function definition for the method should be a sepa-
rate external object assigned in the source file, or included in line in the call to
setMethod. If supplied as a character string, this will be used as the name for
the external function; by default the name concatenates the generic and signature
names, with separating underscores.

where The environment in which to look for the function; by default, the top-level
environment of the call to method.skeleton.

Value

The file argument, invisibly, but the function is used for its side effect.

See Also

setMethod, package.skeleton

Examples

setClass("track", representation(x ="numeric", y="numeric"))
method.skeleton("show", "track") ## writes show_track.R
method.skeleton("Ops", c("track", "track")) ## writes "Ops_track_track.R"

write multiple method skeletons to one file
con <- file("./Math_track.R", "w")
method.skeleton("Math", "track", con)
method.skeleton("exp", "track", con)
method.skeleton("log", "track", con)
close(con)

MethodDefinition-class

Classes to Represent Method Definitions

Description

These classes extend the basic class "function" when functions are to be stored and used as method
definitions.

1024 Methods

Details

Method definition objects are functions with additional information defining how the function is
being used as a method. The target slot is the class signature for which the method will be
dispatched, and the defined slot the signature for which the method was originally specified (that
is, the one that appeared in some call to setMethod).

Objects from the Class

The action of setting a method by a call to setMethod creates an object of this class. It’s unwise to
create them directly.

The class "SealedMethodDefinition" is created by a call to setMethod with argument
sealed = TRUE. It has the same representation as "MethodDefinition".

Slots

.Data: Object of class "function"; the data part of the definition.

target: Object of class "signature"; the signature for which the method was wanted.

defined: Object of class "signature"; the signature for which a method was found. If the method
was inherited, this will not be identical to target.

generic: Object of class "character"; the function for which the method was created.

Extends

Class "function", from data part.
Class "PossibleMethod", directly.
Class "OptionalMethods", by class "function".

See Also

class MethodsList for the objects defining sets of methods associated with a particular
generic function. The individual method definitions stored in these objects are from class
MethodDefinition, or an extension. Class MethodWithNext for an extension used by
callNextMethod.

Methods General Information on Methods

Description

This documentation section covers some general topics on how methods work and how the methods
package interacts with the rest of R. The information is usually not needed to get started with
methods and classes, but may be helpful for moderately ambitious projects, or when something
doesn’t work as expected.

The section “How Methods Work” describes the underlying mechanism; “S3 Methods and Generic
Functions” gives the rules applied when S4 classes and methods interact with older S3 methods;
“Method Selection and Dispatch” provides more details on how class definitions determine which
methods are used; “Generic Functions” discusses generic functions as objects. For additional infor-
mation specifically about class definitions, see Classes.

Methods 1025

How Methods Work

A generic function has associated with it a collection of other functions (the methods), all of which
have the same formal arguments as the generic. See the “Generic Functions” section below for
more on generic functions themselves.

Each R package will include methods metadata objects corresponding to each generic function for
which methods have been defined in that package. When the package is loaded into an R session,
the methods for each generic function are cached, that is, stored in the environment of the generic
function along with the methods from previously loaded packages. This merged table of methods
is used to dispatch or select methods from the generic, using class inheritance and possibly group
generic functions (see GroupGenericFunctions) to find an applicable method. See the “Method
Selection and Dispatch” section below. The caching computations ensure that only one version of
each generic function is visible globally; although different attached packages may contain a copy
of the generic function, these behave identically with respect to method selection. In contrast, it is
possible for the same function name to refer to more than one generic function, when these have
different package slots. In the latter case, R considers the functions unrelated: A generic function
is defined by the combination of name and package. See the “Generic Functions” section below.

The methods for a generic are stored according to the corresponding signature in the call to
setMethod that defined the method. The signature associates one class name with each of a subset
of the formal arguments to the generic function. Which formal arguments are available, and the
order in which they appear, are determined by the "signature" slot of the generic function itself.
By default, the signature of the generic consists of all the formal arguments except . . . , in the order
they appear in the function definition.

Trailing arguments in the signature of the generic will be inactive if no method has yet been specified
that included those arguments in its signature. Inactive arguments are not needed or used in labeling
the cached methods. (The distinction does not change which methods are dispatched, but ignoring
inactive arguments improves the efficiency of dispatch.)

All arguments in the signature of the generic function will be evaluated when the function is called,
rather than using the traditional lazy evaluation rules of S. Therefore, it’s important to exclude from
the signature any arguments that need to be dealt with symbolically (such as the first argument to
function substitute). Note that only actual arguments are evaluated, not default expressions. A
missing argument enters into the method selection as class "missing".

The cached methods are stored in an environment object. The names used for assignment are a
concatenation of the class names for the active arguments in the method signature.

Methods for S3 Generic Functions

S4 methods may be wanted for functions that also have S3 methods, corresponding to classes for
the first formal argument of an S3 generic function–either a regular R function in which there is a
call to the S3 dispatch function, UseMethod, or one of a fixed set of primitive functions, which are
not true functions but go directly to C code. In either case S3 method dispatch looks at the class of
the first argument or the class of either argument in a call to one of the primitive binary operators.
S3 methods are ordinary functions with the same arguments as the generic function (for primitives
the formal arguments are not actually part of the object, but are simulated when the object is printed
or viewed by args()). The “signature” of an S3 method is identified by the name to which the
method is assigned, composed of the name of the generic function, followed by ".", followed by
the name of the class. For details, see S3Methods.

To implement a method for one of these functions corresponding to S4 classes, there are two pos-
sibilities: either an S4 method or an S3 method with the S4 class name. The S3 method is only
possible if the intended signature has the first argument and nothing else. In this case, the recom-
mended approach is to define the S3 method and also supply the identical function as the definition

1026 Methods

of the S4 method. If the S3 generic function was f3(x, ...) and the S4 class for the new method
was "myClass":

f3.myClass <- function(x, ...) { }

setMethod("f3", "myClass", f3.myClass)

The reasons for defining both S3 and S4 methods are as follows:

1. An S4 method alone will not be seen if the S3 generic function is called directly. However,
primitive functions and operators are exceptions: The internal C code will look for S4 meth-
ods if and only if the object is an S4 object. In the examples, the method for ‘[‘ for class
"myFrame" will always be called for objects of this class.
For the same reason, an S4 method defined for an S3 class will not be called from internal
code for a non-S4 object. (See the example for function Math and class "data.frame" in the
examples.)

2. An S3 method alone will not be called if there is any eligible non-default S4 method. (See the
example for function f3 and class "classA" in the examples.)

Details of the selection computations are given below.

When an S4 method is defined for an existing function that is not an S4 generic function (whether or
not the existing function is an S3 generic), an S4 generic function will be created corresponding to
the existing function and the package in which it is found (more precisely, according to the implicit
generic function either specified or inferred from the ordinary function; see implicitGeneric). A
message is printed after the initial call to setMethod; this is not an error, just a reminder that you
have created the generic. Creating the generic explicitly by the call

setGeneric("f3")

avoids the message, but has the same effect. The existing function becomes the default method for
the S4 generic function. Primitive functions work the same way, but the S4 generic function is not
explicitly created (as discussed below).

S4 and S3 method selection are designed to follow compatible rules of inheritance, as far as possible.
S3 classes can be used for any S4 method selection, provided that the S3 classes have been registered
by a call to setOldClass, with that call specifying the correct S3 inheritance pattern. S4 classes can
be used for any S3 method selection; when an S4 object is detected, S3 method selection uses the
contents of extends(class(x)) as the equivalent of the S3 inheritance (the inheritance is cached
after the first call).

An existing S3 method may not behave as desired for an S4 subclass, in which case utilities such
as asS3 and S3Part may be useful. If the S3 method fails on the S4 object, asS3(x) may be
passed instead; if the object returned by the S3 method needs to be incorporated in the S4 object,
the replacement function for S3Part may be useful, as in the method for class "myFrame" in the
examples.

Here are details explaining the reasons for defining both S3 and S4 methods. Calls still accessing
the S3 generic function directly will not see S4 methods, except in the case of primitive functions.
This means that calls to the generic function from namespaces that import the S3 generic but not
the S4 version will only see S3 methods. On the other hand, S3 methods will only be selected from
the S4 generic function as part of its default ("ANY") method. If there are inherited S4 non-default
methods, these will be chosen in preference to any S3 method.

S3 generic functions implemented as primitive functions (including binary operators) are an excep-
tion to recognizing only S3 methods. These functions dispatch both S4 and S3 methods from the
internal C code. There is no explicit generic function, either S3 or S4. The internal code looks for
S4 methods if the first argument, or either of the arguments in the case of a binary operator, is an
S4 object. If no S4 method is found, a search is made for an S3 method.

Methods 1027

S4 methods can be defined for an S3 generic function and an S3 class, but if the function is a
primitive, such methods will not be selected if the object in question is not an S4 object. In the
examples below, for instance, an S4 method for signature "data.frame" for function f3() would
be called for the S3 object df1. A similar S4 method for primitive function ‘[‘ would be ignored for
that object, but would be called for the S4 object mydf1 that inherits from "data.frame". Defining
both an S3 and S4 method removes this inconsistency.

Method Selection and Dispatch: Details

When a call to a generic function is evaluated, a method is selected corresponding to the classes
of the actual arguments in the signature. First, the cached methods table is searched for an exact
match; that is, a method stored under the signature defined by the string value of class(x) for each
non-missing argument, and "missing" for each missing argument. If no method is found directly
for the actual arguments in a call to a generic function, an attempt is made to match the available
methods to the arguments by using the superclass information about the actual classes.

Each class definition may include a list of one or more superclasses of the new class. The simplest
and most common specification is by the contains= argument in the call to setClass. Each class
named in this argument is a superclass of the new class. Two additional mechanisms for defining
superclasses exist. A call to setClassUnion creates a union class that is a superclass of each of the
members of the union. A call to setIs can create an inheritance relationship that is not the simple
one of containing the superclass representation in the new class. Arguments coerce and replace
supply methods to convert to the superclass and to replace the part corresponding to the superclass.
(In addition, a test= argument allows conditional inheritance; conditional inheritance is not rec-
ommended and is not used in method selection.) All three mechanisms are treated equivalently for
purposes of method selection: they define the direct superclasses of a particular class. For more
details on the mechanisms, see Classes.

The direct superclasses themselves may have superclasses, defined by any of the same mechanisms,
and similarly through further generations. Putting all this information together produces the full
list of superclasses for this class. The superclass list is included in the definition of the class that
is cached during the R session. Each element of the list describes the nature of the relationship
(see SClassExtension for details). Included in the element is a distance slot containing the path
length for the relationship: 1 for direct superclasses (regardless of which mechanism defined them),
then 2 for the direct superclasses of those classes, and so on. In addition, any class implicitly has
class "ANY" as a superclass. The distance to "ANY" is treated as larger than the distance to any
actual class. The special class "missing" corresponding to missing arguments has only "ANY" as a
superclass, while "ANY" has no superclasses.

When a class definition is created or modified, the superclasses are ordered, first by a stable sort
of the all superclasses by distance. If the set of superclasses has duplicates (that is, if some class
is inherited through more than one relationship), these are removed, if possible, so that the list
of superclasses is consistent with the superclasses of all direct superclasses. See the reference on
inheritance for details.

The information about superclasses is summarized when a class definition is printed.

When a method is to be selected by inheritance, a search is made in the table for all methods
directly corresponding to a combination of either the direct class or one of its superclasses, for
each argument in the active signature. For an example, suppose there is only one argument in the
signature and that the class of the corresponding object was "dgeMatrix" (from the recommended
package Matrix). This class has two direct superclasses and through these 4 additional superclasses.
Method selection finds all the methods in the table of directly specified methods labeled by one of
these classes, or by "ANY".

When there are multiple arguments in the signature, each argument will generate a similar list of
inherited classes. The possible matches are now all the combinations of classes from each argument

1028 Methods

(think of the function outer generating an array of all possible combinations). The search now
finds all the methods matching any of this combination of classes. For each argument, the position
in the list of superclasses of that argument’s class defines which method or methods (if the same
class appears more than once) match best. When there is only one argument, the best match is
unambiguous. With more than one argument, there may be zero or one match that is among the best
matches for all arguments.

If there is no best match, the selection is ambiguous and a message is printed noting which method
was selected (the first method lexicographically in the ordering) and what other methods could
have been selected. Since the ambiguity is usually nothing the end user could control, this is not
a warning. Package authors should examine their package for possible ambiguous inheritance by
calling testInheritedMethods.

When the inherited method has been selected, the selection is cached in the generic function so that
future calls with the same class will not require repeating the search. Cached inherited selections are
not themselves used in future inheritance searches, since that could result in invalid selections. If
you want inheritance computations to be done again (for example, because a newly loaded package
has a more direct method than one that has already been used in this session), call resetGeneric.
Because classes and methods involving them tend to come from the same package, the current
implementation does not reset all generics every time a new package is loaded.

Besides being initiated through calls to the generic function, method selection can be done explicitly
by calling the function selectMethod.

Once a method has been selected, the evaluator creates a new context in which a call to the method
is evaluated. The context is initialized with the arguments from the call to the generic function.
These arguments are not rematched. All the arguments in the signature of the generic will have
been evaluated (including any that are currently inactive); arguments that are not in the signature
will obey the usual lazy evaluation rules of the language. If an argument was missing in the call,
its default expression if any will not have been evaluated, since method dispatch always uses class
missing for such arguments.

A call to a generic function therefore has two contexts: one for the function and a second for the
method. The argument objects will be copied to the second context, but not any local objects created
in a nonstandard generic function. The other important distinction is that the parent (“enclosing”)
environment of the second context is the environment of the method as a function, so that all R pro-
gramming techniques using such environments apply to method definitions as ordinary functions.

For further discussion of method selection and dispatch, see the first reference.

Generic Functions

In principle, a generic function could be any function that evaluates a call to standardGeneric(),
the internal function that selects a method and evaluates a call to the selected method. In practice,
generic functions are special objects that in addition to being from a subclass of class "function"
also extend the class genericFunction. Such objects have slots to define information needed to
deal with their methods. They also have specialized environments, containing the tables used in
method selection.

The slots "generic" and "package" in the object are the character string names of the generic
function itself and of the package from which the function is defined. As with classes, generic
functions are uniquely defined in R by the combination of the two names. There can be generic
functions of the same name associated with different packages (although inevitably keeping such
functions cleanly distinguished is not always easy). On the other hand, R will enforce that only
one definition of a generic function can be associated with a particular combination of function and
package name, in the current session or other active version of R.

Tables of methods for a particular generic function, in this sense, will often be spread over several
other packages. The total set of methods for a given generic function may change during a session,

Methods 1029

as additional packages are loaded. Each table must be consistent in the signature assumed for the
generic function.

R distinguishes standard and nonstandard generic functions, with the former having a function
body that does nothing but dispatch a method. For the most part, the distinction is just one of
simplicity: knowing that a generic function only dispatches a method call allows some efficiencies
and also removes some uncertainties.

In most cases, the generic function is the visible function corresponding to that name, in the corre-
sponding package. There are two exceptions, implicit generic functions and the special computa-
tions required to deal with R’s primitive functions. Packages can contain a table of implicit generic
versions of functions in the package, if the package wishes to leave a function non-generic but to
constrain what the function would be like if it were generic. Such implicit generic functions are
created during the installation of the package, essentially by defining the generic function and pos-
sibly methods for it, and then reverting the function to its non-generic form. (See implicitGeneric
for how this is done.) The mechanism is mainly used for functions in the older packages in R,
which may prefer to ignore S4 methods. Even in this case, the actual mechanism is only needed if
something special has to be specified. All functions have a corresponding implicit generic version
defined automatically (an implicit, implicit generic function one might say). This function is a stan-
dard generic with the same arguments as the non-generic function, with the non-generic version as
the default (and only) method, and with the generic signature being all the formal arguments except
. . . .

The implicit generic mechanism is needed only to override some aspect of the default definition.
One reason to do so would be to remove some arguments from the signature. Arguments that
may need to be interpreted literally, or for which the lazy evaluation mechanism of the language
is needed, must not be included in the signature of the generic function, since all arguments in the
signature will be evaluated in order to select a method. For example, the argument expr to the
function with is treated literally and must therefore be excluded from the signature.

One would also need to define an implicit generic if the existing non-generic function were not
suitable as the default method. Perhaps the function only applies to some classes of objects, and
the package designer prefers to have no general default method. In the other direction, the pack-
age designer might have some ideas about suitable methods for some classes, if the function were
generic. With reasonably modern packages, the simple approach in all these cases is just to define
the function as a generic. The implicit generic mechanism is mainly attractive for older packages
that do not want to require the methods package to be available.

Generic functions will also be defined but not obviously visible for functions implemented as prim-
itive functions in the base package. Primitive functions look like ordinary functions when printed
but are in fact not function objects but objects of two types interpreted by the R evaluator to call
underlying C code directly. Since their entire justification is efficiency, R refuses to hide primitives
behind a generic function object. Methods may be defined for most primitives, and corresponding
metadata objects will be created to store them. Calls to the primitive still go directly to the C code,
which will sometimes check for applicable methods. The definition of “sometimes” is that meth-
ods must have been detected for the function in some package loaded in the session and isS4(x)
is TRUE for the first argument (or for the second argument, in the case of binary operators). You
can test whether methods have been detected by calling isGeneric for the relevant function and
you can examine the generic function by calling getGeneric, whether or not methods have been
detected. For more on generic functions, see the first reference and also section 2 of R Internals.

Method Definitions

All method definitions are stored as objects from the MethodDefinition class. Like the class of
generic functions, this class extends ordinary R functions with some additional slots: "generic",
containing the name and package of the generic function, and two signature slots, "defined"

1030 Methods

and "target", the first being the signature supplied when the method was defined by a call to
setMethod. The "target" slot starts off equal to the "defined" slot. When an inherited method
is cached after being selected, as described above, a copy is made with the appropriate "target"
signature. Output from showMethods, for example, includes both signatures.

Method definitions are required to have the same formal arguments as the generic function, since
the method dispatch mechanism does not rematch arguments, for reasons of both efficiency and
consistency.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version: see section 10.6 for method selection and section 10.5 for generic functions).

Chambers, John M.(2009) Developments in Class Inheritance and Method Selection http://stat.
stanford.edu/~jmc4/classInheritance.pdf.

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

For more specific information, see setGeneric, setMethod, and setClass.

For the use of . . . in methods, see dotsMethods.

Examples

A class that extends a registered S3 class inherits that class’ S3
methods.

setClass("myFrame", contains = "data.frame",
representation(timestamps = "POSIXt"))

df1 <- data.frame(x = 1:10, y = rnorm(10), z = sample(letters,10))

mydf1 <- new("myFrame", df1, timestamps = Sys.time())

"myFrame" objects inherit "data.frame" S3 methods; e.g., for ‘[‘

mydf1[1:2,] # a data frame object (with extra attributes)

a method explicitly for "myFrame" class

setMethod("[",
signature(x = "myFrame"),
function (x, i, j, ..., drop = TRUE)
{

S3Part(x) <- callNextMethod()
x@timestamps <- c(Sys.time(), as.POSIXct(x@timestamps))
x

}
)

mydf1[1:2,]

setClass("myDateTime", contains = "POSIXt")

http://stat.stanford.edu/~jmc4/classInheritance.pdf
http://stat.stanford.edu/~jmc4/classInheritance.pdf

Methods 1031

now <- Sys.time() # class(now) is c("POSIXct", "POSIXt")
nowLt <- as.POSIXlt(now)# class(nowLt) is c("POSIXlt", "POSIXt")

mCt <- new("myDateTime", now)
mLt <- new("myDateTime", nowLt)

S3 methods for an S4 object will be selected using S4 inheritance
Objects mCt and mLt have different S3Class() values, but this is
not used.
f3 <- function(x)UseMethod("f3") # an S3 generic to illustrate inheritance

f3.POSIXct <- function(x) "The POSIXct result"
f3.POSIXlt <- function(x) "The POSIXlt result"
f3.POSIXt <- function(x) "The POSIXt result"

stopifnot(identical(f3(mCt), f3.POSIXt(mCt)))
stopifnot(identical(f3(mLt), f3.POSIXt(mLt)))

An S4 object selects S3 methods according to its S4 "inheritance"

setClass("classA", contains = "numeric",
representation(realData = "numeric"))

Math.classA <- function(x) {(getFunction(.Generic))(x@realData)}
setMethod("Math", "classA", Math.classA)

x <- new("classA", log(1:10), realData = 1:10)

stopifnot(identical(abs(x), 1:10))

setClass("classB", contains = "classA")

y <- new("classB", x)

stopifnot(identical(abs(y), 1:10)) # (version 2.9.0 or earlier fails here)

an S3 generic: just for demonstration purposes
f3 <- function(x, ...) UseMethod("f3")

f3.default <- function(x, ...) "Default f3"

S3 method (only) for classA
f3.classA <- function(x, ...) "Class classA for f3"

S3 and S4 method for numeric
f3.numeric <- function(x, ...) "Class numeric for f3"
setMethod("f3", "numeric", f3.numeric)

The S3 method for classA and the closest inherited S3 method for classB
are not found.

f3(x); f3(y) # both choose "numeric" method

1032 MethodsList-class

to obtain the natural inheritance, set identical S3 and S4 methods
setMethod("f3", "classA", f3.classA)

f3(x); f3(y) # now both choose "classA" method

Need to define an S3 as well as S4 method to use on an S3 object
or if called from a package without the S4 generic

MathFun <- function(x) { # a smarter "data.frame" method for Math group
for (i in seq(length = ncol(x))[sapply(x, is.numeric)])
x[, i] <- (getFunction(.Generic))(x[, i])

x
}
setMethod("Math", "data.frame", MathFun)

S4 method works for an S4 class containing data.frame,
but not for data.frame objects (not S4 objects)

try(logIris <- log(iris)) #gets an error from the old method

Define an S3 method with the same computation

Math.data.frame <- MathFun

logIris <- log(iris)

MethodsList-class Class MethodsList, Deprecated Representation of Methods

Description

This class of objects was used in the original implementation of the package to control method
dispatch. Its use is now deprecated, but object appear as the default method slot in generic functions.
This and any other remaining uses will be removed in the future.

For the modern alternative, see listOfMethods.

The details in this documentation are retained to allow analysis of old-style objects.

Details

Suppose a function f has formal arguments x and y. The methods list object for that function has the
object as.name("x") as its argument slot. An element of the methods named "track" is selected
if the actual argument corresponding to x is an object of class "track". If there is such an element,
it can generally be either a function or another methods list object.

In the first case, the function defines the method to use for any call in which x is of class "track".
In the second case, the new methods list object defines the available methods depending on the
remaining formal arguments, in this example, y.

MethodWithNext-class 1033

Each method corresponds conceptually to a signature; that is a named list of classes, with
names corresponding to some or all of the formal arguments. In the previous example,
if selecting class "track" for x, finding that the selection was another methods list and
then selecting class "numeric" for y would produce a method associated with the signature
x = "track", y = "numeric".

Slots

argument: Object of class "name". The name of the argument being used for dispatch at this level.

methods: A named list of the methods (and method lists) defined explicitly for this argument. The
names are the names of classes, and the corresponding element defines the method or methods
to be used if the corresponding argument has that class. See the details below.

allMethods: A named list, contains all the directly defined methods from the methods slot, plus
any inherited methods. Ignored when methods tables are used for dispatch (see Methods

Extends

Class "OptionalMethods", directly.

MethodWithNext-class Class MethodWithNext

Description

Class of method definitions set up for callNextMethod

Objects from the Class

Objects from this class are generated as a side-effect of calls to callNextMethod.

Slots

.Data: Object of class "function"; the actual function definition.

nextMethod: Object of class "PossibleMethod" the method to use in response to a
callNextMethod() call.

excluded: Object of class "list"; one or more signatures excluded in finding the next method.

target: Object of class "signature", from class "MethodDefinition"

defined: Object of class "signature", from class "MethodDefinition"

generic: Object of class "character"; the function for which the method was created.

Extends

Class "MethodDefinition", directly.
Class "function", from data part.
Class "PossibleMethod", by class "MethodDefinition".
Class "OptionalMethods", by class "MethodDefinition".

1034 new

Methods

findNextMethod signature(method = "MethodWithNext"): used internally by method dis-
patch.

loadMethod signature(method = "MethodWithNext"): used internally by method dispatch.

show signature(object = "MethodWithNext")

See Also

callNextMethod, and class MethodDefinition.

new Generate an Object from a Class

Description

Given the name or the definition of a class, plus optionally data to be included in the object, new
returns an object from that class.

Usage

new(Class, ...)

initialize(.Object, ...)

Arguments

Class either the name of a class, a character string, (the usual case) or the object
describing the class (e.g., the value returned by getClass).

... data to include in the new object. Named arguments correspond to slots in the
class definition. Unnamed arguments must be objects from classes that this class
extends.

.Object An object: see the Details section.

Details

The function new begins by copying the prototype object from the class definition. Then informa-
tion is inserted according to the ... arguments, if any. As of version 2.4 of R, the type of the
prototype object, and therefore of all objects returned by new(), is "S4" except for classes that ex-
tend one of the basic types, where the prototype has that basic type. User functions that depend on
typeof(object) should be careful to handle "S4" as a possible type.

Note that the name of the first argument, "Class" entails that "Class" is an undesirable slot name
in any formal class: new("myClass", Class = <value>) will not work.

The interpretation of the ... arguments can be specialized to particular classes, if an appro-
priate method has been defined for the generic function "initialize". The new function calls
initialize with the object generated from the prototype as the .Object argument to initialize.

By default, unnamed arguments in the ... are interpreted as objects from a superclass, and named
arguments are interpreted as objects to be assigned into the correspondingly named slots. Thus,
explicit slots override inherited information for the same slot, regardless of the order in which the
arguments appear.

new 1035

The initialize methods do not have to have ... as their second argument (see the examples).
Initialize methods are often written when the natural parameters describing the new object are not
the names of the slots. If you do define such a method, note the implications for future subclasses
of your class. If these have additional slots, and your initialize method has ... as a formal ar-
gument, then your method should pass such arguments along via callNextMethod. If your method
does not have this argument, then either a subclass must have its own method or else the added slots
must be specified by users in some way other than as arguments to new.

For examples of initialize methods, see initialize-methods for existing methods for classes
"traceable" and "environment", among others. See the comments there on subclasses of
"environment"; any initialize methods for these should be sure to allocate a new environment.

Methods for initialize can be inherited only by simple inheritance, since it is a requirement that
the method return an object from the target class. See the simpleInheritanceOnly argument to
setGeneric and the discussion in setIs for the general concept.

Note that the basic vector classes, "numeric", etc. are implicitly defined, so one can use new for
these classes.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

Classes for an overview of defining class, and setOldClass for the relation to S3 classes.

Examples

using the definition of class "track" from \link{setClass}

a new object with two slots specified
t1 <- new("track", x = seq_along(ydata), y = ydata)

a new object including an object from a superclass, plus a slot
t2 <- new("trackCurve", t1, smooth = ysmooth)

define a method for initialize, to ensure that new objects have
equal-length x and y slots.

setMethod("initialize",
"track",
function(.Object, x = numeric(0), y = numeric(0)) {

if(nargs() > 1) {
if(length(x) != length(y))

stop("specified x and y of different lengths")
.Object@x <- x
.Object@y <- y

}
.Object

})

the next example will cause an error (x will be numeric(0)),

1036 nonStructure-class

because we didn’t build in defaults for x,
although we could with a more elaborate method for initialize

try(new("track", y = sort(stats::rnorm(10))))

a better way to implement the previous initialize method.
Why? By using callNextMethod to call the default initialize method
we don’t inhibit classes that extend "track" from using the general
form of the new() function. In the previous version, they could only
use x and y as arguments to new, unless they wrote their own
initialize method.

setMethod("initialize", "track", function(.Object, ...) {
.Object <- callNextMethod()
if(length(.Object@x) != length(.Object@y))
stop("specified x and y of different lengths")
.Object

})

nonStructure-class A non-structure S4 Class for basic types

Description

S4 classes that are defined to extend one of the basic vector classes should contain the class
structure if they behave like structures; that is, if they should retain their class behavior under
math functions or operators, so long as their length is unchanged. On the other hand, if their class
depends on the values in the object, not just its structure, then they should lose that class under any
such transformations. In the latter case, they should be defined to contain nonStructure.

If neither of these strategies applies, the class likely needs some methods of its own for Ops, Math,
and/or other generic functions. What is not usually a good idea is to allow such computations to
drop down to the default, base code. This is inconsistent with most definitions of such classes.

Methods

Methods are defined for operators and math functions (groups Ops, Math and Math2. In all cases
the result is an ordinary vector of the appropriate type.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer.

See Also

structure

Examples

setClass("NumericNotStructure", contains = c("numeric","nonStructure"))
xx <- new("NumericNotStructure", 1:10)
xx + 1 # vector
log(xx) # vector

ObjectsWithPackage-class 1037

sample(xx) # vector

ObjectsWithPackage-class

A Vector of Object Names, with associated Package Names

Description

This class of objects is used to represent ordinary character string object names, extended with a
package slot naming the package associated with each object.

Objects from the Class

The function getGenerics returns an object of this class.

Slots

.Data: Object of class "character": the object names.

package: Object of class "character" the package names.

Extends

Class "character", from data part.
Class "vector", by class "character".

See Also

Methods for general background.

promptClass Generate a Shell for Documentation of a Formal Class

Description

Assembles all relevant slot and method information for a class, with minimal markup for Rd pro-
cessing; no QC facilities at present.

Usage

promptClass(clName, filename = NULL, type = "class",
keywords = "classes", where = topenv(parent.frame()),
generatorName = clName)

1038 promptClass

Arguments

clName a character string naming the class to be documented.
filename usually, a connection or a character string giving the name of the file to which

the documentation shell should be written. The default corresponds to a file
whose name is the topic name for the class documentation, followed by ".Rd".
Can also be NA (see below).

type the documentation type to be declared in the output file.
keywords the keywords to include in the shell of the documentation. The keyword

"classes" should be one of them.
where where to look for the definition of the class and of methods that use it.
generatorName the name for a generator function for this class; only required if a generator

function was created and saved under a name different from the class name.

Details

The class definition is found on the search list. Using that definition, information about classes
extended and slots is determined.

In addition, the currently available generics with methods for this class are found (using
getGenerics). Note that these methods need not be in the same environment as the class def-
inition; in particular, this part of the output may depend on which packages are currently in the
search list.

As with other prompt-style functions, unless filename is NA, the documentation shell is written to
a file, and a message about this is given. The file will need editing to give information about the
meaning of the class. The output of promptClass can only contain information from the metadata
about the formal definition and how it is used.

If filename is NA, a list-style representation of the documentation shell is created and returned.
Writing the shell to a file amounts to cat(unlist(x), file = filename, sep = "\n"), where
x is the list-style representation.

If a generator function is found assigned under the class name or the optional generatorName,
skeleton documentation for that function is added to the file.

Value

If filename is NA, a list-style representation of the documentation shell. Otherwise, the name of the
file written to is returned invisibly.

Author(s)

VJ Carey <stvjc@channing.harvard.edu> and John Chambers

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

prompt for documentation of functions, promptMethods for documentation of method definitions.

For processing of the edited documentation, either use R CMD Rdconv, or include the edited file in
the ‘man’ subdirectory of a package.

promptMethods 1039

Examples

Not run: > promptClass("track")
A shell of class documentation has been written to the
file "track-class.Rd".

End(Not run)

promptMethods Generate a Shell for Documentation of Formal Methods

Description

Generates a shell of documentation for the methods of a generic function.

Usage

promptMethods(f, filename = NULL, methods)

Arguments

f a character string naming the generic function whose methods are to be docu-
mented.

filename usually, a connection or a character string giving the name of the file to which
the documentation shell should be written. The default corresponds to the coded
topic name for these methods (currently, f followed by "-methods.Rd"). Can
also be FALSE or NA (see below).

methods Optional methods list object giving the methods to be documented. By default,
the first methods object for this generic is used (for example, if the current global
environment has some methods for f, these would be documented).
If this argument is supplied, it is likely to be getMethods(f, where), with
where some package containing methods for f.

Details

If filename is FALSE, the text created is returned, presumably to be inserted some other documen-
tation file, such as the documentation of the generic function itself (see prompt).

If filename is NA, a list-style representation of the documentation shell is created and returned.
Writing the shell to a file amounts to cat(unlist(x), file = filename, sep = "\n"), where
x is the list-style representation.

Otherwise, the documentation shell is written to the file specified by filename.

Value

If filename is FALSE, the text generated; if filename is NA, a list-style representation of the docu-
mentation shell. Otherwise, the name of the file written to is returned invisibly.

1040 ReferenceClasses

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

prompt and promptClass

ReferenceClasses Objects With Fields Treated by Reference (OOP-style)

Description

The software described here supports reference classes whose objects have fields accessed by ref-
erence in the style of “OOP” languages such as Java and C++. Computations with these objects
invoke methods on them and extract or set their fields. The field and method computations poten-
tially modify the object. All computations referring to the objects see the modifications, in contrast
to the usual functional programming model in R. Reference classes can be used to program in R
directly or in combination with an interface to an OOP-style language, allowing R-written methods
to extend the interface.

Usage

setRefClass(Class, fields = , contains = , methods =,
where =, ...)

getRefClass(Class, where =)

Arguments

Class character string name for the class.
In the call to getRefClass() this argument can also be any object from the
relevant class; note also the corresponding reference class methods documented
in the section on “Writing Reference Methods”.

fields either a character vector of field names or a named list of the fields. The resulting
fields will be accessed with reference semantics (see the section on “Reference
Objects”). If the argument is a list, the elements of the list can be the character
string name of a class, in which case the field must be from that class or a
subclass.
The element in the list can alternatively be an accessor function, a function of
one argument that returns the field if called with no argument or sets it to the
value of the argument otherwise. Accessor functions are used internally and for
inter-system interface applications. Their definition follows the rules for writing
methods for the class: they can refer to other fields and can call other methods
for this class or its superclasses. See the section on “Implementation” for the
internal mechanism used by accessor functions.
Note that fields are distinct from the slots, if any, in the object. Slots are, as
always, handled by standard R object management. Slots for the class can be
included (as the representation= argument) in the . . . argument.

ReferenceClasses 1041

contains optional vector of superclasses for this class. If a superclass is also a reference
class, the fields and class-based methods will be inherited.

methods a named list of function definitions that can be invoked on objects from this class.
These can also be created by invoking the $methods method on the generator
object returned. See the section on “Writing Reference Methods” for details.
Two optional method names are interpreted specially, initialize and
finalize. If an initialize method is defined, it will be invoked when an
object is generated from the class. See the discussion of method $new(...) in
the section “Reference Object Generators”.
If a finalize method is defined, a function will be registered to invoke it before
the environment in the object is discarded by the garbage collector. See the
matrix viewer example for both initialize and finalize methods.

where the environment in which to store the class definition. Defaults to the package
namespace or environment for code that is part of an R package, and to the
global environment for code sourced directly at the session top level.

... other arguments to be passed to setClass.

Value

setRefClass and getRefClass both return a generator object for the class. This is itself a reference
object, with methods to generate objects from the class and also for defining new methods and for
help-style documentation. See the section on “Reference Class Generator Objects” for details. Note
that Class in the call to getRefClass() can be an object from the corresponding class, and that a
similar reference class method $getRefClass() is available as well.

setRefClass defines the class and stores its class definition. getRefClass requires that the class
has been defined as a reference class.

Reference Objects

Normal objects in R are passed as arguments in function calls consistently with functional program-
ming semantics; that is, changes made to an object passed as an argument are local to the function
call. The object that supplied the argument is unchanged.

The functional model (sometimes called pass-by-value) is suitable for many statistical computations
and is implicit, for example, in the basic R software for fitting statistical models. In some other
situations, one would like all the code dealing with an object to see the exact same content, so that
changes made in any computation would be reflected everywhere. This is often suitable if the object
has some “objective” reality, such as a window in a user interface.

In addition, commonly used languages, including Java, C++ and many others, support a version of
classes and methods assuming reference semantics. The corresponding programming mechanism
is to invoke a method on an object. In the R syntax that we use "$" for this operation; one invokes
a method, m1 say, on an object x by the expression x$m1(...).

Methods in this paradigm are associated with the object, or more precisely with the class of the
object, as opposed to methods in a function-based class/method system, which are fundamentally
associated with the function (in R, for example, a generic function in an R session has a table of all
its currently known methods). In this document “methods for a class” as opposed to “methods for a
function” will make the distinction.

Objects in this paradigm usually have named fields on which the methods operate. In the R im-
plementation, the fields are defined when the class is created. The field itself can optionally have a
specified class, meaning that only objects from this class or one of its subclasses can be assigned to
the field. By default, fields have class "ANY". Fields may also be defined by supplying an accessor

1042 ReferenceClasses

function which will be called to get or set the field. Accessor functions are likely when reference
classes are part of an inter-system interface. The interface will usually supply the accessor functions
automatically based on the definition of the corresponding class in the other language.

Fields are accessed by reference. In particular, invoking a method may modify the content of the
fields.

Programming for such classes involves writing new methods for a particular class. In the R im-
plementation, these methods are R functions, with zero or more formal arguments. The object
on which the methods are invoked is not an explicit argument to the method. Instead, fields and
methods for the class can be referred to by name in the method definition. The implementation
uses R environments to make fields and methods available by name. Additional special fields allow
reference to the complete object and to the definition of the class. See the section on “Inheritance”.

The goal of the software described here is to provide a uniform programming style in R for software
dealing with reference classes, whether implemented directly in R or through an interface to one of
the OOP languages.

Writing Reference Methods

Reference methods are functions supplied as elements of a named list, either when invoking
g$methods() on a generator object g or as the argument methods in a call to setRefClass. They
are written as ordinary R functions but have some special features and restrictions. The body of
the function can contain calls to any other reference method, including those inherited from other
reference classes and may refer to fields in the object by name.

Fields may be modified in a method by using the non-local assignment operator, <<-, as in the
$edit and $undo methods in the example below. Note that non-local assignment is required: a
local assignment with the <- operator just creates a local object in the function call, as it would in
any R function. When methods are installed, a heuristic check is made for local assignments to field
names and a warning issued if any are detected.

Reference methods should be kept simple; if they need to do some specialized R computation, that
computation should use a separate R function that is called from the reference method. Specifically,
methods can not use special features of the enclosing environment mechanism, since the method’s
environment is used to access fields and other methods. In particular, methods should not use non-
exported entries in the package’s namespace, because the methods may be inherited by a reference
class in another package.

Reference methods can not themselves be generic functions; if you want additional function-based
method dispatch, write a separate generic function and call that from the method.

The entire object can be referred to in a method by the reserved name .self, as shown in the save=
method of the example. The special object .refClassDef contains the definition of the class of
the object. These fields are read-only (it makes no sense to modify these references), with one
exception. The .self field can be modified in the $initialize method, because the object is still
being created at this stage. (Assignments to this field, as to all fields, need to use the non-local
assignment operator.) This is the preferred way to assign S4-style attributes to the object, if you
need to do so; but remember that these attributes will not behave according to reference semantics,
unlike fields.

The methods available include methods inherited from superclasses, as discussed in the next section.

Only methods actually used will be included in the environment corresponding to an individual
object. If a method requires a particular other method, then the first method should include a call to
$usingMethods() with the name of the other method as an argument. Declaring the methods this
way is essential if the other method is used indirectly (e.g., via sapply() or do.call()). If it is
called directly, code analysis will find it. Declaring the method is harmless in any case, however,
and may aid readability of the source code.

ReferenceClasses 1043

Documentation for the methods can be obtained by the $help method for the generator object.
Methods for classes are not documented in the Rd format used for R functions. Instead, the $help
method prints the calling sequence of the method, followed by self-documentation from the method
definition, in the style of Python. If the first element of the body of the method is a literal character
string (possibly multi-line), that string is interpreted as documentation. See the method definitions
in the example.

Inheritance

Reference classes inherit from other reference classes by using the standard R inheritance; that
is, by including the superclasses in the contains= argument when creating the new class. Non-
reference classes can also be included in the contains= argument. The class definition mecha-
nism treats reference and non-reference superclasses slightly differently. If the contained reference
classes themselves have reference superclasses, these will be moved ahead of any non-reference
superclasses in the class definition (otherwise the ordering of superclasses may be ambiguous). The
names of the reference superclasses are in slot refSuperClasses of the class definition.

Class fields are inherited. A class definition can override a field of the same name in a superclass
only if the overriding class is a subclass of the class of the inherited field. This ensures that a valid
object in the field remains valid for the superclass as well.

Inherited methods are installed in the same way as directly specified methods. The code in a method
can refer to inherited methods in the same way as directly specified methods.

A method may override a method of the same name in a superclass. The overriding method can call
the superclass method by callSuper(...) as described below.

All reference classes inherit from the class "envRefClass", which provides the following methods.

$callSuper(...) Calls the method inherited from a reference superclass. The call is meaningful
only from within another method, and will be resolved to call the inherited method of the
same name. The arguments to $callSuper are passed to the superclass version. See the
matrix viewer class in the example.
Note that the intended arguments for the superclass method must be supplied explicitly; there
is no convention for supplying the arguments automatically, in contrast to the similar mecha-
nism for functional methods.

$copy(shallow = FALSE) Creates a copy of the object. With reference classes, unlike ordinary
R objects, merely assigning the object with a different name does not create an independent
copy. If shallow is FALSE, any field that is itself a reference object will also be copied, and
similarly recursively for its fields. Otherwise, while reassigning a field to a new reference
object will have no side effect, modifying such a field will still be reflected in both copies
of the object. The argument has no effect on non-reference objects in fields. When there
are reference objects in some fields but it is asserted that they will not be modified, using
shallow = TRUE will save some memory and time.

$field(name, value) With one argument, returns the field of the object with character string
name. With two arguments, the corresponding field is assigned value. Assignment checks
that name specifies a valid field, but the single-argument version will attempt to get anything
of that name from the object’s environment.
The $field() method replaces the direct use of a field name, when the name of the field must
be calculated, or for looping over several fields.

$export(Class) Returns the result of coercing the object to Class (typically one of the super-
classes of the object’s class). Calling the method has no side effect on the object itself.

$getRefClass(); $getClass() These return respectively the generator object and the formal
class definition for the reference class of this object, efficiently.

1044 ReferenceClasses

$import(value, Class = class(value)) Import the object value into the current object, re-
placing the corresponding fields in the current object. Object value must come from one of
the superclasses of the current object’s class. If argument Class is supplied, value is first
coerced to that class.

$initFields(...) Initialize the fields of the object from the supplied arguments. This method is
usually only called from a class with a $initialize() method. It corresponds to the default
initialization for reference classes. If there are slots and non-reference superclasses, these may
be supplied in the . . . argument as well.
Typically, a specialized $initialize() method carries out its own computations, then in-
vokes $initFields() to perform standard initialization, as shown in the matrixViewer class
in the example below.

$show() This method is called when the object is printed automatically, analogously to the show
function. A general method is defined for class "envRefClass". User-defined reference
classes will often define their own method: see the Example below.
Note two points in the example. As with any show() method, it is a good idea to print the class
explicitly to allow for subclasses using the method. Second, to call the function show() from
the method, as opposed to the $show() method itself, refer to methods::show() explicitly.

$trace(what, ...), $untrace(what) Apply the tracing and debugging facilities of the trace
function to the reference method what.
All the arguments of the trace function can be supplied, except for signature, which is not
meaningful.
The reference method can be invoked on either an object or the generator for the class. See
the section on Debugging below for details.

$usingMethods(...) Reference methods used by this method are named as the arguments either
quoted or unquoted. In the code analysis phase of installing the the present method, the
declared methods will be included. It is essential to declare any methods used in a nonstandard
way (e.g., via an apply function). Methods called directly do not need to be declared, but it is
harmless to do so. $usingMethods() does nothing at run time.

Objects also inherit two reserved fields:

.self a reference to the entire object;

.refClassDef the class definition.

The defined fields should not override these, and in general it is unwise to define a field whose name
begins with ".", since the implementation may use such names for special purposes.

Reference Class Generator Objects

The call to setRefClass defines the specified class and returns a “generator” object for that class.
The generator object is itself a reference object (of class "refObjectGenerator"). Its fields are
def, the class definition, and className, the character string name of the class.

Methods for generator objects exist to generate objects from the class, to access help on reference
methods, and to define new reference methods for the class. The currently available methods are:

$new(...) This method is equivalent to the function new with the class name as an argument.
The . . . arguments are values for the named fields. If the class has a method defined for
$initialize(), this method will be called once the reference object has been created. You
should write such a method for a class that needs to do some special initialization. In par-
ticular, a reference method is recommended rather than a method for the S4 generic function
initialize(), because some special initialization is required for reference objects before the

ReferenceClasses 1045

initialization of fields. As with S4 classes, methods are written for $initialize() and not
for $new(), both for the previous reason and also because $new() is invoked on the generator
object and would be a method for that class.
The default method for $initialize() is equivalent to invoking the method
$initFields(...). Named arguments assign initial values to the corresponding fields.
Unnamed arguments must be objects from this class or a reference superclass of this class.
Fields will be initialized to the contents of the fields in such objects, but named arguments
override the corresponding inherited fields. Note that fields are simply assigned. If the field
is itself a reference object, that object is not copied. The new and previous object will share
the reference. Also, a field assigned from an unnamed argument counts as an assignment for
locked fields. To override an inherited value for a locked field, the new value must be one of
the named arguments in the initializing call. A later assignment of the field will result in an
error.
For technical reasons, the default method does not currently appear explicitly, but can be
invoked by $callSuper(...) from a method for $initialize(). Initialization methods
need some care in design, as they do for S4 classes. In particular, remember that others
may subclass your class and pass through field assignments or other arguments. Therefore,
your method should normally include . . . as an argument, all other arguments should have
defaults or check for missingness, and your method should pass all initialized values on via
$callSuper() or $initFields() if you know that your superclasses have no initialization
methods.

$help(topic) Prints brief help on the topic. The topics recognized are reference method names,
quoted or not.
The information printed is the calling sequence for the method, plus self-documentation if
any. Reference methods can have an initial character string or vector as the first element in the
body of the function defining the method. If so, this string is taken as self-documentation for
the method (see the section on “Writing Reference Methods” for details).
If no topic is given or if the topic is not a method name, the definition of the class is printed.

$methods(...) With no arguments, returns a list of the reference methods for this class.
Named arguments are method definitions, which will be installed in the class, as if they had
been supplied in the methods argument to setRefClass(). Supplying methods in this way,
rather than in the call to setRefClass(), is largely for the sake of clearer source code when
many or large methods are being defined. All methods for a class should be defined in the
source code that defines the class, typically as part of a package. In particular, methods can
not be redefined in a class in an attached package with a namespace: The class method checks
for a locked binding of the class definition.
The new methods can refer to any currently defined method by name (including other methods
supplied in this call to $methods(). Note though that previously defined methods are not re-
analyzed meaning that they will not call the new method (unless it redefines an existing method
of the same name).
To remove a method, supply NULL as its new definition.

$fields() Returns a list of the fields, each with its corresponding class. Fields for which an
accessor function was supplied in the definition have class "activeBindingFunction".

$lock(...) The fields named in the arguments are locked; specifically, after the lock method is
called, the field may be set once. Any further attempt to set it will generate an error.
If called with no arguments, the method returns the names of the locked fields.
Fields that are defined by an explicit accessor function can not be locked (on the other hand,
the accessor function can be defined to generate an error if called with an argument).
All code to lock fields should normally be part of the definition of a class; that is, the read-only
nature of the fields is meant to be part of the class definition, not a dynamic property added

1046 ReferenceClasses

later. In particular, fields can not be locked in a class in an attached package with a namespace:
The class method checks for a locked binding of the class definition. Locked fields can not be
subsequently unlocked.

$trace(what, ..., classMethod = FALSE) Establish a traced version of method what for ob-
jects generated from this class. The generator object tracing works like the $trace() method
for objects from the class, with two differences. Since it changes the method definition in the
class object itself, tracing applies to all objects, not just the one on which the trace method is
invoked.
Second, the optional argument classMethod = TRUE allows tracing on the methods of the
generator object itself, such as $new(). By default, what is interpreted as the name of a
method in the class for which this object is the generator.

$accessors(...) A number of systems using the OOP programming paradigm recommend or
enforce getter and setter methods corresponding to each field, rather than direct access by
name. In the R version presented here (and fairly often elsewhere as well), a field named abc
of an object x would be extracted by x$getAbc() and assigned by x$setAbc(value). The
$accessors method is a convenience function that creates getter and setter methods for the
specified fields.

Implementation

Reference classes are implemented as S4 classes with a data part of type "environment". An object
generated from a reference class has this type. Fields correspond to named objects in the environ-
ment. A field associated with an accessor function is implemented as an active binding. In addition,
fields with a specified class are implemented as a special form of active binding to enforce valid
assignment to the field. A field, say data, can be accessed generally by an expression of the form
x$data for any object from the relevant class. In a method for this class, the field can be accessed by
the name data. A field that is not locked can be set by an expression of the form x$data <- value.
Inside a method, a field can be assigned by an expresion of the form x <<- value. Note the non-
local assignment operator. The standard R interpretation of this operator works to assign it in the
environment of the object. If the field has an accessor function defined, getting and setting will call
that function.

When a method is invoked on an object, the function defining the method is installed in the object’s
environment, with the same environment as the environment of the function.

Inter-System Interfaces

A number of languages use a similar reference-based programming model with classes and class-
based methods. Aside from differences in choice of terminology and other details, many of these
languages are compatible with the programming style described here. R interfaces to the languages
exist in a number of packages.

The reference class definitions here provide a hook for classes in the foreign language to be exposed
in R. Access to fields and/or methods in the class can be implemented by defining an R reference
class corresponding to classes made available through the interface. Typically, the inter-system
interface will take care of the details of creating the R class, given a description of the foreign class
(what fields and methods it has, the classes for the fields, whether any are read-only, etc.) The
specifics for the fields and methods can be implemented via reference methods for the R class. In
particular, the use of active bindings allows field access for getting and setting, with actual access
handled by the inter-system interface.

R methods and/or fields can be included in the class definition as for any reference class. The
methods can use or set fields and can call other methods transparently whether the field or method
comes from the interface or is defined directly in R.

ReferenceClasses 1047

For an inter-system interface using this approach, see the code for package Rcpp, version 0.8.7 or
later.

Debugging

The standard R debugging and tracing facilities can be applied to reference methods. Reference
methods can be passed to debug and its relatives from an object to debug further method invocations
on that object; for example, debug(xx$edit).

Somewhat more flexible use is available for a reference method version of the trace function.
A corresponding $trace() reference method is available for either an object or for the reference
class generator (xx$trace() or mEdit$trace() in the example below). Using $trace() on an
object sets up a tracing version for future invocations of the specified method for that object. Using
$trace() on the generator for the class sets up a tracing version for all future objects from that
class (and for all existing objects that have not yet invoked the traced method, because reference
methods are cached lazily in the object when first invoked).

In either case, all the arguments to the standard trace function are available, except for signature=
which is meaningless since reference methods can not be S4 generic functions. This includes the
typical style trace(what, browser) for interactive debugging and trace(what, edit = TRUE)
to edit the reference method interactively.

Author(s)

John Chambers

Examples

a simple editor for matrix objects. Method $edit() changes some
range of values; method $undo() undoes the last edit.
mEdit <- setRefClass("mEdit",

fields = list(data = "matrix",
edits = "list"),

methods = list(
edit = function(i, j, value) {

the following string documents the edit method
’Replaces the range [i, j] of the
object by value.
’
backup <-

list(i, j, data[i,j])
data[i,j] <<- value
edits <<- c(edits, list(backup))
invisible(value)

},
undo = function() {

’Undoes the last edit() operation
and update the edits field accordingly.
’
prev <- edits
if(length(prev)) prev <- prev[[length(prev)]]
else stop("No more edits to undo")
edit(prev[[1]], prev[[2]], prev[[3]])
trim the edits list
length(edits) <<- length(edits) - 2
invisible(prev)

},

1048 ReferenceClasses

show = function() {
’Method for automatically printing matrix editors’
cat("Reference matrix editor object of class",

classLabel(class(.self)), "\n")
cat("Data: \n")
methods::show(data)
cat("Undo list is of length", length(edits), "\n")

}
))

xMat <- matrix(1:12,4,3)
xx <- mEdit$new(data = xMat)
xx$edit(2, 2, 0)
xx
xx$undo()
mEdit$help("undo")
stopifnot(all.equal(xx$data, xMat))

utils::str(xx) # show fields and names of non-trivial methods

add a method to save the object
mEdit$methods(

save = function(file) {
’Save the current object on the file
in R external object format.
’

base::save(.self, file = file)
}

)

tf <- tempfile()
xx$save(tf)

Not run:
Inheriting a reference class: a matrix viewer
mv <- setRefClass("matrixViewer",

fields = c("viewerDevice", "viewerFile"),
contains = "mEdit",
methods = list(view = function() {

dd <- dev.cur(); dev.set(viewerDevice)
devAskNewPage(FALSE)
matplot(data, main = paste("After",length(edits),"edits"))
dev.set(dd)},
edit = # invoke previous method, then replot

function(i, j, value) {
callSuper(i, j, value)
view()

}))

initialize and finalize methods
mv$methods(initialize =

function(file = "./matrixView.pdf", ...) {
viewerFile <<- file
pdf(viewerFile)
viewerDevice <<- dev.cur()
dev.set(dev.prev())

representation 1049

callSuper(...)
},
finalize = function() {

dev.off(viewerDevice)
})

debugging an object: call browser() in method $edit()
xx$trace(edit, browser)

debugging all objects from class mEdit in method $undo()
mEdit$trace(undo, browser)

End(Not run)

representation Construct a Representation or a Prototype for a Class Definition

Description

In calls to setClass, these two functions construct, respectively, the representation and
prototype arguments. They do various checks and handle special cases. You’re encouraged to
use them when defining classes that, for example, extend other classes as a data part or have multi-
ple superclasses, or that combine extending a class and slots.

Usage

representation(...)
prototype(...)

Arguments

... The call to representation takes arguments that are single character strings. Un-
named arguments are classes that a newly defined class extends; named argu-
ments name the explicit slots in the new class, and specify what class each slot
should have.
In the call to prototype, if an unnamed argument is supplied, it unconditionally
forms the basis for the prototype object. Remaining arguments are taken to
correspond to slots of this object. It is an error to supply more than one unnamed
argument.

Details

The representation function applies tests for the validity of the arguments. Each must specify
the name of a class.

The classes named don’t have to exist when representation is called, but if they do, then the
function will check for any duplicate slot names introduced by each of the inherited classes.

The arguments to prototype are usually named initial values for slots, plus an optional first argu-
ment that gives the object itself. The unnamed argument is typically useful if there is a data part to
the definition (see the examples below).

1050 S3Part

Value

The value of representation is just the list of arguments, after these have been checked for valid-
ity.

The value of prototype is the object to be used as the prototype. Slots will have been set consis-
tently with the arguments, but the construction does not use the class definition to test validity of
the contents (it hardly can, since the prototype object is usually supplied to create the definition).

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

setClass

Examples

representation for a new class with a directly define slot "smooth"
which should be a "numeric" object, and extending class "track"
representation("track", smooth ="numeric")

setClass("Character",representation("character"))
setClass("TypedCharacter",representation("Character",type="character"),

prototype(character(0),type="plain"))
ttt <- new("TypedCharacter", "foo", type = "character")

setClass("num1", representation(comment = "character"),
contains = "numeric",
prototype = prototype(pi, comment = "Start with pi"))

S3Part S3-style Objects and S4-class Objects

Description

Old-style (S3) classes may be registered as S4 classes (by calling setOldClass, and many have
been. These classes can then be contained in (that is, superclasses of) regular S4 classes, allowing
formal methods and slots to be added to the S3 behavior. The function S3Part extracts or replaces
the S3 part of such an object. S3Class extracts or replaces the S3-style class. S3Class also applies
to object from an S4 class with S3methods=TRUE in the call to setClass.

See the details below. Also discussed are S3 <-> S4 coercion; see the section “S3 and S4 objects”

S3Part 1051

Usage

S3Part(object, strictS3 = FALSE, S3Class)

S3Part(object, strictS3 = FALSE, needClass =) <- value

S3Class(object)

S3Class(object) <- value

isXS3Class(classDef)

slotsFromS3(object)

Arguments

object An object from some class that extends a registered S3 class, usually because
the class has as one of its superclasses an S3 class registered by a call to
setOldClass, or from a class that extends a basic vector, matrix or array ob-
ject type. See the details.
For most of the functions, an S3 object can also be supplied, with the interpre-
tation that it is its own S3 part.

strictS3 If TRUE, the value returned by S3Part will be an S3 object, with all the S4 slots
removed. Otherwise, an S4 object will always be returned; for example, from
the S4 class created by setOldClass as a proxy for an S3 class, rather than the
underlying S3 object.

S3Class The character vector to be stored as the S3 class slot in the object. Usually, and
by default, retains the slot from object.

needClass Require that the replacement value be this class or a subclass of it.

value For S3Part<-, the replacement value for the S3 part of the object. This does
not need to be an S4 object; in fact, the usual way to create objects from these
classes is by giving an S3 object of the right class as an argument to new.
For S3Class<-, the character vector that will be used as a proxy for class(x)
in S3 method dispatch. This replacement function can be used to control S3
per-object method selection.

classDef A class definition object, as returned by getClass.

Details

Classes that register S3 classes by a call to setOldClass have slot ".S3Class" to hold the cor-
responding S3 vector of class strings. The prototype of such a class has the value for this slot
determined by the argument to setOldClass. Other S4 classes will have the same slot if the argu-
ment S3methods = TRUE is supplied to setClass; in this case, the slot is set to the S4 inheritance
of the class.

New S4 classes that extend (contain) such classes also have the same slot, and by default the pro-
totype has the value determined by the contains= argument to setClass. Individual objects from
the S4 class may have an S3 class corresponding to the value in the prototype or to an (S3) subclass
of that value. See the examples below.

1052 S3Part

S3Part() with strictS3 = TRUE constructs the underlying S3 object by eliminating all the for-
mally defined slots and turning off the S4 bit of the object. With strictS3 = FALSE the object
returned is from the corresponding S4 class. For consistency and generality, S3Part() works also
for classes that extend the basic vector, matrix and array classes. Since R is somewhat arbitrary
about what it treats as an S3 class ("ts" is, but "matrix" is not), S3Part() tries to return an S3
(that is, non-S4) object whenever the S4 class has a suitable superclass, of either S3 or basic object
type.

One general application that relies on this generality is to use S3Part() to get a superclass object
that is guaranteed not to be an S4 object. If you are calling some function that checks for S4
objects, you need to be careful not to end up in a closed loop (fooS4 calls fooS3, which checks for
an S4 object and calls fooS4 again, maybe indirectly). Using S3Part() with strictS3 = TRUE is
a mechanism to avoid such loops.

Because the contents of S3 class objects have no definition or guarantee, the computations involving
S3 parts do not check for slot validity. Slots are implemented internally in R as attributes, which
are copied when present in the S3 part. Grave problems can occur if an S4 class extending an S3
class uses the name of an S3 attribute as the name of an S4 slot, and S3 code sets the attribute to an
object from an invalid class according to the S4 definition.

Frequently, S3Part can and should be avoided by simply coercing objects to the desired class;
methods are automatically defined to deal correctly with the slots when as is called to extract or
replace superclass objects.

The function slotsFromS3() is a generic function used internally to access the slots associated with
the S3 part of the object. Methods for this function are created automatically when setOldClass is
called with the S4Class argument. Usually, there is only one S3 slot, containing the S3 class, but the
S4Class argument may provide additional slots, in the case that the S3 class has some guaranteed
attributes that can be used as formal S4 slots. See the corresponding section in the documentation
of setOldClass.

Value

S3Part: Returns or sets the S3 information (and possibly some S4 slots as well, depending on
arguments S3Class and keepSlots). See the discussion of argument strict above. If it is TRUE
the value returned is an S3 object.

S3Class: Returns or sets the character vector of S3 class(es) stored in the object, if the class has
the corresponding .S3Class slot. Currently, the function defaults to class otherwise.

isXS3Class: Returns TRUE or FALSE according to whether the class defined by ClassDef extends
S3 classes (specifically, whether it has the slot for holding the S3 class).

slotsFromS3: returns a list of the relevant slot classes, or an empty list for any other object.

S3 and S4 Objects: Conversion Mechanisms

Objects in R have an internal bit that indicates whether or not to treat the object as coming from an
S4 class. This bit is tested by isS4 and can be set on or off by asS4. The latter function, however,
does no checking or interpretation; you should only use it if you are very certain every detail has
been handled correctly.

As a friendlier alternative, methods have been defined for coercing to the virtual classes "S3" and
"S4". The expressions as(object, "S3") and as(object, "S4") return S3 and S4 objects, re-
spectively. In addition, they attempt to do conversions in a valid way, and also check validity when
coercing to S4.

The expression as(object, "S3") can be used in two ways. For objects from one of the registered
S3 classes, the expression will ensure that the class attribute is the full multi-string S3 class implied
by class(object). If the registered class has known attribute/slots, these will also be provided.

S3Part 1053

Another use of as(object, "S3") is to take an S4 object and turn it into an S3 object with corre-
sponding attributes. This is only meaningful with S4 classes that have a data part. If you want to
operate on the object without invoking S4 methods, this conversion is usually the safest way.

The expression as(object, "S4") will use the attributes in the object to create an object from
the S4 definition of class(object). This is a general mechanism to create partially defined ver-
sion of S4 objects via S3 computations (not much different from invoking new with corresponding
arguments, but usable in this form even if the S4 object has an initialize method with different
arguments).

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version).

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

setOldClass

Examples

two examples extending S3 class "lm", class "xlm" directly
and "ylm" indirectly
setClass("xlm", representation(eps = "numeric"), contains = "lm")
setClass("ylm", representation(header = "character"), contains = "xlm")

lm.D9 is as computed in the example for stats::lm
y1 = new("ylm", lm.D9, header = "test", eps = .1)
xx = new("xlm", lm.D9, eps =.1)
y2 = new("ylm", xx, header = "test")
stopifnot(inherits(y2, "lm"))
stopifnot(identical(y1, y2))
stopifnot(identical(S3Part(y1, strict = TRUE), lm.D9))

note the these classes can insert an S3 subclass of "lm" as the S3 part:
myData <- data.frame(time = 1:10, y = (1:10)^.5)
myLm <- lm(cbind(y, y^3) ~ time, myData) # S3 class: c("mlm", "lm")
ym1 = new("ylm", myLm, header = "Example", eps = 0.)

##similar classes to "xlm" and "ylm", but extending S3 class c("mlm", "lm")
setClass("xmm", representation(eps = "numeric"), contains = "mlm")
setClass("ymm", representation(header="character"), contains = "xmm")

ym2 <- new("ymm", myLm, header = "Example2", eps = .001)

but for class "ymm", an S3 part of class "lm" is an error:
try(new("ymm", lm.D9, header = "Example2", eps = .001))

setClass("dataFrameD", representation(date = "Date"),
contains = "data.frame")

myDD <- new("dataFrameD", myData, date = Sys.Date())

S3Part() applied to classes with a data part (.Data slot)

setClass("NumX", contains="numeric", representation(id="character"))

1054 S4groupGeneric

nn = new("NumX", 1:10, id="test")
stopifnot(identical(1:10, S3Part(nn, strict = TRUE)))

m1 = cbind(group, weight)
setClass("MatX", contains = "matrix", representation(date = "Date"))
mx1 = new("MatX", m1, date = Sys.Date())
stopifnot(identical(m1, S3Part(mx1, strict = TRUE)))

S4groupGeneric S4 Group Generic Functions

Description

Methods can be defined for group generic functions. Each group generic function has a number of
member generic functions associated with it.

Methods defined for a group generic function cause the same method to be defined for each member
of the group, but a method explicitly defined for a member of the group takes precedence over a
method defined, with the same signature, for the group generic.

The functions shown in this documentation page all reside in the methods package, but the mech-
anism is available to any programmer, by calling setGroupGeneric (provided package methods is
attached).

Usage

S4 group generics:
Arith(e1, e2)
Compare(e1, e2)
Ops(e1, e2)
Logic(e1, e2)
Math(x)
Math2(x, digits)
Summary(x, ..., na.rm = FALSE)
Complex(z)

Arguments

x, z, e1, e2 objects.

digits number of digits to be used in round or signif.

... further arguments passed to or from methods.

na.rm logical: should missing values be removed?

Details

Methods can be defined for the group generic functions by calls to setMethod in the usual way.
Note that the group generic functions should never be called directly – a suitable error message
will result if they are. When metadata for a group generic is loaded, the methods defined become
methods for the members of the group, but only if no method has been specified directly for the
member function for the same signature. The effect is that group generic definitions are selected

S4groupGeneric 1055

before inherited methods but after directly specified methods. For more on method selection, see
Methods.

There are also S3 groups Math, Ops, Summary and Complex, see ?S3groupGeneric, with no corre-
sponding R objects, but these are irrelevant for S4 group generic functions.

The members of the group defined by a particular generic can be obtained by calling
getGroupMembers. For the group generic functions currently defined in this package the mem-
bers are as follows:

Arith "+", "-", "*", "^", "%%", "%/%", "/"

Compare "==", ">", "<", "!=", "<=", ">="

Logic "&", "|".

Ops "Arith", "Compare", "Logic"

Math "abs", "sign", "sqrt", "ceiling", "floor", "trunc", "cummax", "cummin", "cumprod",
"cumsum", "log", "log10", "log2", "log1p", "acos", "acosh", "asin", "asinh", "atan",
"atanh", "exp", "expm1", "cos", "cosh", "sin", "sinh", "tan", "tanh", "gamma",
"lgamma", "digamma", "trigamma"

Math2 "round", "signif"

Summary "max", "min", "range", "prod", "sum", "any", "all"

Complex "Arg", "Conj", "Im", "Mod", "Re"

Note that Ops merely consists of three sub groups.

All the functions in these groups (other than the group generics themselves) are basic functions in R.
They are not by default S4 generic functions, and many of them are defined as primitives. However,
you can still define formal methods for them, both individually and via the group generics. It all
works more or less as you might expect, admittedly via a bit of trickery in the background. See
Methods for details.

Note that two members of the Math group, log and trunc, have . . . as an extra formal argument.
Since methods for Math will have only one formal argument, you must set a specific method for
these functions in order to call them with the extra argument(s).

For further details about group generic functions see section 10.5 of Software for Data Analysis.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version).

See Also

The function callGeneric is nearly always relevant when writing a method for a group generic.
See the examples below and in section 10.5 of Software for Data Analysis.

See S3groupGeneric for S3 group generics.

Examples

setClass("testComplex", representation(zz = "complex"))
method for whole group "Complex"
setMethod("Complex", "testComplex",

function(z) c("groupMethod", callGeneric(z@zz)))
exception for Arg() :

1056 SClassExtension-class

setMethod("Arg", "testComplex",
function(z) c("ArgMethod", Arg(z@zz)))

z1 <- 1+2i
z2 <- new("testComplex", zz = z1)
stopifnot(identical(Mod(z2), c("groupMethod", Mod(z1))))
stopifnot(identical(Arg(z2), c("ArgMethod", Arg(z1))))

SClassExtension-class Class to Represent Inheritance (Extension) Relations

Description

An object from this class represents a single ‘is’ relationship; lists of these objects are used to
represent all the extensions (superclasses) and subclasses for a given class. The object contains
information about how the relation is defined and methods to coerce, test, and replace correspond-
ingly.

Objects from the Class

Objects from this class are generated by setIs, from direct calls and from the contains= infor-
mation in a call to setClass, and from class unions created by setClassUnion. In the last case,
the information is stored in defining the subclasses of the union class (allowing unions to contain
sealed classes).

Slots

subClass,superClass: The classes being extended: corresponding to the from, and to arguments
to setIs.

package: The package to which that class belongs.
coerce: A function to carry out the as() computation implied by the relation. Note that these

functions should not be used directly. They only deal with the strict=TRUE calls to the as
function, with the full method constructed from this mechanically.

test: The function that would test whether the relation holds. Except for explicitly specified test
arguments to setIs, this function is trivial.

replace: The method used to implement as(x, Class) <- value.
simple: A "logical" flag, TRUE if this is a simple relation, either because one class is contained

in the definition of another, or because a class has been explicitly stated to extend a virtual
class. For simple extensions, the three methods are generated automatically.

by: If this relation has been constructed transitively, the first intermediate class from the subclass.
dataPart: A "logical" flag, TRUE if the extended class is in fact the data part of the subclass. In

this case the extended class is a basic class (i.e., a type).
distance: The distance between the two classes, 1 for directly contained classes, plus the number

of generations between otherwise.

Methods

No methods defined with class "SClassExtension" in the signature.

See Also

is, as, and the classRepresentation class.

selectSuperClasses 1057

selectSuperClasses Super Classes (of Specific Kinds) of a Class

Description

Return superclasses of ClassDef, possibly only non-virtual or direct or simple ones.

These functions are designed to be fast, and consequently only work with the contains slot of the
corresponding class definitions.

Usage

selectSuperClasses(Class, dropVirtual = FALSE, namesOnly = TRUE,
directOnly = TRUE, simpleOnly = directOnly,
where = topenv(parent.frame()))

.selectSuperClasses(ext, dropVirtual = FALSE, namesOnly = TRUE,
directOnly = TRUE, simpleOnly = directOnly)

Arguments

Class name of the class or (more efficiently) the class definition object (see getClass).

dropVirtual logical indicating if only non-virtual superclasses should be returned.

namesOnly logical indicating if only a vector names instead of a named list class-extensions
should be returned.

directOnly logical indicating if only a direct super classes should be returned.

simpleOnly logical indicating if only simple class extensions should be returned.

where (only used when Class is not a class definition) environment where the class
definition of Class is found.

ext for .selectSuperClasses() only, a list of class extensions, typically
getClassDef(..)@contains.

Value

a character vector (if namesOnly is true, as per default) or a list of class extensions (as the
contains slot in the result of getClass).

Note

The typical user level function is selectSuperClasses() which calls .selectSuperClasses();
i.e., the latter should only be used for efficiency reasons by experienced useRs.

See Also

is, getClass; further, the more technical class classRepresentation documentation.

1058 setClass

Examples

setClass("Root")
setClass("Base", contains = "Root", representation(length = "integer"))
setClass("A", contains = "Base", representation(x = "numeric"))
setClass("B", contains = "Base", representation(y = "character"))
setClass("C", contains = c("A", "B"))

extends("C") #--> "C" "A" "B" "Base" "Root"
selectSuperClasses("C") # "A" "B"
selectSuperClasses("C", direct=FALSE) # "A" "B" "Base" "Root"
selectSuperClasses("C", dropVirt = TRUE, direct=FALSE)# ditto w/o "Root"

setClass Create a Class Definition

Description

Create a class definition, specifying the representation (the slots) and/or the classes contained in
this one (the superclasses), plus other optional details. As a side effect, the class definition is stored
in the specified environment. A generator function is returned as the value of setClass(), suitable
for creating objects from the class if the class is not virtual. Of the many arguments to the function
only Class, representation and contains are usually needed.

Usage

setClass(Class, representation, prototype, contains=character(),
validity, access, where, version, sealed, package,
S3methods = FALSE)

Arguments

Class character string name for the class.

representation a named list of the slots that the new class should have, the names giving the
names of the slots and the corresponding elements being the character string
names of the corresponding classes. Usually a call to the representation func-
tion.
Backward compatibility and compatibility with S-Plus allows unnamed ele-
ments for superclasses, but the recommended style is to use the contains=
argument instead.

prototype an object providing the default data for the slots in this class. By default, each
will be the prototype object for the superclass. If provided, using a call to
prototype will carry out some checks.

contains the names (and optionally package slots) for the superclasses of this class.

where the environment in which to store the definition. Should not be supplied in stan-
dard use. For calls to setClass() appearing in the source code for a package,
will default to the namespace of the package. For calls typed or sourced at the
top level in a session, will default to the global environment.

validity if supplied, should be a validity-checking method for objects from this class (a
function that returns TRUE if its argument is a valid object of this class and one
or more strings describing the failures otherwise). See validObject for details.

setClass 1059

access, version

access and version, included for historical compatibility with S-Plus, but ig-
nored.

sealed if TRUE, the class definition will be sealed, so that another call to setClass will
fail on this class name.

package an optional package name for the class. Should very rarely be used. By default
the name of the package in which the class definition is assigned.

S3methods if TRUE, S3 methods may be written for this class. S3 generic functions and
primitives will dispatch an S3 method defined for this class, given an S4 object
from the class or from a subclass of it, provided no S4 method and no more direct
S3 method is found. This argument should rarely be used: It is not needed for
classes that are defined via setOldClass or for classes that extend such classes,
which will nearly always be the case when S3 methods are relevant.

Value

A generator function suitable for creating objects from the class is returned, invisibly. A call to this
function generates a call to new for the class. The call takes any number of arguments, which will
be passed on to the initialize method. If no initialize method is defined for the class or one of its
superclasses, the default method expects named arguments with the name of one of the slots.

Typically the generator function is assigned the name of the class, for programming clarity. This is
not a requirement and objects from the class can also be generated directly from new. The advan-
tages of the generator function are a slightly simpler and clearer call, and that the call will contain
the package name of the class (eliminating any ambiguity if two classes from different packages
have the same name).

If the class is virtual, an attempt to generate an object from either the generator or new() will result
in an error.

Basic Use: Slots and Inheritance

The two essential arguments other than the class name are representation and contains, defin-
ing the explicit slots and the inheritance (superclasses). Together, these arguments define all the
information in an object from this class; that is, the names of all the slots and the classes required
for each of them.

The name of the class determines which methods apply directly to objects from this class. The in-
heritance information specifies which methods apply indirectly, through inheritance. See Methods.

The slots in a class definition will be the union of all the slots specified directly by representation
and all the slots in all the contained classes. There can only be one slot with a given name; specifi-
cally, the direct and inherited slot names must be unique. That does not, however, prevent the same
class from being inherited via more than one path.

One kind of element in the contains= argument is special, specifying one of the R object types or
one of a few other special R types (matrix and array). See the section on inheriting from object
types, below.

Slot name "class" is not allowed in the current implementation but reserved. "Class" is valid, but
undesirable, as it cannot be used in new(<cl>, Class = <slot-value>) (because of argument
name matching). There are other slot names with a special meaning; these names start with the "."
character. To be safe, you should define all of your own slots with names starting with an alphabetic
character.

1060 setClass

Inheriting from Object Types

In addition to containing other S4 classes, a class definition can contain either an S3 class (see
the next section) or a built-in R pseudo-class—one of the R object types or one of the special R
pseudo-classes "matrix" and "array". A class can contain at most one of the object types, directly
or indirectly. When it does, that contained class determines the “data part” of the class.

Objects from the new class try to inherit the built in behavior of the contained type. In the case of
normal R data types, including vectors, functions and expressions, the implementation is relatively
straightforward. For any object x from the class, typeof(x) will be the contained basic type; and
a special pseudo-slot, .Data, will be shown with the corresponding class. See the "numWithId"
example below.

Classes may also inherit from "vector", "matrix" or "array". The data part of these objects can
be any vector data type.

For an object from any class that does not contain one of these types or classes, typeof(x) will be
"S4".

Some R data types do not behave normally, in the sense that they are non-local references or other
objects that are not duplicated. Examples include those corresponding to classes "environment",
"externalptr", and "name". These can not be the types for objects with user-defined classes
(either S4 or S3) because setting an attribute overwrites the object in all contexts. It is possible to
define a class that inherits from such types, through an indirect mechanism that stores the inherited
object in a reserved slot. See the example for class "stampedEnv" below. S3 method dispatch and
the relevant as.type() functions should behave correctly, but code that uses the type of the object
directly will not.

Also, keep in mind that the object passed to low-level computations will be the underlying object
type, without any of the slots defined in the class. To return the full information, you will usually
have to define a method that sets the data part.

Inheriting from S3 Classes

Old-style S3 classes have no formal definition. Objects are “from” the class when their class at-
tribute contains the character string considered to be the class name.

Using such classes with formal classes and methods is necessarily a risky business, since there are
no guarantees about the content of the objects or about consistency of inherited methods. Given
that, it is still possible to define a class that inherits from an S3 class, providing that class has been
registered as an old class (see setOldClass).

Broadly speaking, both S3 and S4 method dispatch try to behave sensibly with respect to inheritance
in either system. Given an S4 object, S3 method dispatch and the inherits function should use the
S4 inheritance information. Given an S3 object, an S4 generic function will dispatch S4 methods
using the S3 inheritance, provided that inheritance has been declared via setOldClass.

Classes and Packages

Class definitions normally belong to packages (but can be defined in the global environment
as well, by evaluating the expression on the command line or in a file sourced from the com-
mand line). The corresponding package name is part of the class definition; that is, part of the
classRepresentation object holding that definition. Thus, two classes with the same name can
exist in different packages, for most purposes.

When a class name is supplied for a slot or a superclass in a call to setClass, a corresponding class
definition will be found, looking from the namespace of the current package, assuming the call in
question appears directly in the source for the package, as it should to avoid ambiguity. The class
definition must be found in the namespace of the current package, in the imports for that namespace

setClass 1061

or in the basic classes defined by the methods package. (The methods package must be included in
the Depends directive of the package’s "DESCRIPTION" file in order for the "CMD check" utility to
find these classes.)

When this rule does not identify a class uniquely (because it appears in more than one imported
package) then the packageSlot of the character string name needs to be supplied with the name.
This should be a rare occurrence.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

Classes for a general discussion of classes, Methods for an analogous discussion of methods,
makeClassRepresentation

Examples

A simple class with two slots
track <- setClass("track",

representation(x="numeric", y="numeric"))
an object from the class
t1 <- track(x = 1:10, y = 1:10 + rnorm(10))

A class extending the previous, adding one more slot
trackCurve <- setClass("trackCurve",

representation(smooth = "numeric"),
contains = "track")

an object containing a superclass object
t1s <- trackCurve(t1, smooth = 1:10)

A class similar to "trackCurve", but with different structure
allowing matrices for the "y" and "smooth" slots
setClass("trackMultiCurve",

representation(x="numeric", y="matrix", smooth="matrix"),
prototype = list(x=numeric(), y=matrix(0,0,0),

smooth= matrix(0,0,0)))
See ?setIs for further examples using these classes

A class that extends the built-in data type "numeric"

numWithId <- setClass("numWithId", representation(id = "character"),
contains = "numeric")

numWithId(1:3, id = "An Example")

inherit from reference object of type "environment"
stampedEnv <-setClass("stampedEnv", contains = "environment",

representation(update = "POSIXct"))
setMethod("[[<-", c("stampedEnv", "character", "missing"),

function(x, i, j, ..., value) {

1062 setClassUnion

ev <- as(x, "environment")
ev[[i]] <- value #update the object in the environment
x@update <- Sys.time() # and the update time
x})

e1 <- stampedEnv(update = Sys.time())

e1[["noise"]] <- rnorm(10)

setClassUnion Classes Defined as the Union of Other Classes

Description

A class may be defined as the union of other classes; that is, as a virtual class defined as a superclass
of several other classes. Class unions are useful in method signatures or as slots in other classes,
when we want to allow one of several classes to be supplied.

Usage

setClassUnion(name, members, where)
isClassUnion(Class)

Arguments

name the name for the new union class.

members the classes that should be members of this union.

where where to save the new class definition; by default, the environment of the pack-
age in which the setClassUnion call appears, or the global environment if
called outside of the source of a package.

Class the name or definition of a class.

Details

The classes in members must be defined before creating the union. However, members can be added
later on to an existing union, as shown in the example below. Class unions can be members of other
class unions.

The prototype object in the class union definition will be NULL if class "NULL" is a member of the
union and the prototype object of the first member class otherwise (as of version 2.15.0 of R; earlier
versions had a NULL prototype even if that was not valid).

Class unions are the only way to create a class that is extended by a class whose definition is
sealed (for example, the basic datatypes or other classes defined in the base or methods package
in R are sealed). You cannot say setIs("function", "other") unless "other" is a class union.
In general, a setIs call of this form changes the definition of the first class mentioned (adding
"other" to the list of superclasses contained in the definition of "function").

Class unions get around this by not modifying the first class definition, relying instead on storing
information in the subclasses slot of the class union. In order for this technique to work, the in-
ternal computations for expressions such as extends(class1, class2) work differently for class

setGeneric 1063

unions than for regular classes; specifically, they test whether any class is in common between the
superclasses of class1 and the subclasses of class2.

The different behavior for class unions is made possible because the class definition object for
class unions has itself a special class, "ClassUnionRepresentation", an extension of class
classRepresentation.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

Examples

a class for either numeric or logical data
setClassUnion("maybeNumber", c("numeric", "logical"))

use the union as the data part of another class
setClass("withId", representation("maybeNumber", id = "character"))

w1 <- new("withId", 1:10, id = "test 1")
w2 <- new("withId", sqrt(w1)%%1 < .01, id = "Perfect squares")

add class "complex" to the union "maybeNumber"
setIs("complex", "maybeNumber")

w3 <- new("withId", complex(real = 1:10, imaginary = sqrt(1:10)))

a class union containing the existing class union "OptionalFunction"
setClassUnion("maybeCode",

c("expression", "language", "OptionalFunction"))

is(quote(sqrt(1:10)), "maybeCode") ## TRUE

setGeneric Define a New Generic Function

Description

Create a new generic function of the given name, that is, a function that dispatches methods accord-
ing to the classes of the arguments, from among the formal methods defined for this function.

Usage

setGeneric(name, def= , group=list(), valueClass=character(),
where= , package= , signature= , useAsDefault= ,
genericFunction= , simpleInheritanceOnly =)

setGroupGeneric(name, def= , group=list(), valueClass=character(),
knownMembers=list(), package= , where=)

1064 setGeneric

Arguments

name The character string name of the generic function. The simplest (and recom-
mended) call, setGeneric(name), looks for a function with this name and cre-
ates a corresponding generic function, if the function found was not generic. In
the latter case, the existing function becomes the default method.

def An optional function object, defining the generic. Don’t supply this argument if
you want to turn an existing non-generic function into a generic. In this case,
you usually want to use the simple call with one argument.
Do supply def if there is no current function of this name or for some reason you
do not want to use that function to define the generic. In that case, the formal
arguments and default values for the generic are taken from def. In most cases,
the body of def will then define the default method, as the existing function did
in the one-argument call.
If you want to create a new generic function with no default method, then def
should be only a call to standardGeneric with the same character string as
name.

group Optionally, a character string giving the name of the group generic function to
which this function belongs. See Methods for details of group generic functions
in method selection.

valueClass An optional character vector of one or more class names. The value returned
by the generic function must have (or extend) this class, or one of the classes;
otherwise, an error is generated.

package The name of the package with which this function is associated. Usually deter-
mined automatically (as the package containing the non-generic version if there
is one, or else the package where this generic is to be saved).

where Where to store the resulting initial methods definition, and possibly the generic
function; by default, stored into the top-level environment.

signature Optionally, the vector of names, from among the formal arguments to the func-
tion, that can appear in the signature of methods for this function, in calls to
setMethod. If . . . is one of the formal arguments, it is treated specially. Starting
with version 2.8.0 of R, . . . may be signature of the generic function. Methods
will then be selected if their signature matches all the . . . arguments. See the
documentation for topic dotsMethods for details. In the present version, it is not
possible to mix . . . and other arguments in the signature (this restriction may be
lifted in later versions).
By default, the signature is inferred from the implicit generic function corre-
sponding to a non-generic function. If no implicit generic function has been
defined, the default is all the formal arguments except . . . , in the order they ap-
pear in the function definition. In the case that . . . is the only formal argument,
that is also the default signature. To use . . . as the signature in a function that has
any other arguments, you must supply the signature argument explicitly. See the
“Implicit Generic” section below for more details.

useAsDefault Override the usual choice of default argument. Argument useAsDefault can be
supplied, either as a function to use for the default, or as a logical value. This
argument is now rarely needed. See the section on details.

simpleInheritanceOnly

Supply this argument as TRUE to require that methods selected be inherited
through simple inheritance only; that is, from superclasses specified in the
contains= argument to setClass, or by simple inheritance to a class union

setGeneric 1065

or other virtual class. Generic functions should require simple inheritance if
they need to be assured that they get the complete original object, not one that
has been transformed. Examples of functions requiring simple inheritance are
initialize, because by definition it must return an object from the same class
as its argument, and show, because it claims to give a full description of the
object provided as its argument.

genericFunction

Don’t use; for (possible) internal use only.

knownMembers (For setGroupGeneric only.) The names of functions that are known to be
members of this group. This information is used to reset cached definitions of
the member generics when information about the group generic is changed.

Value

The setGeneric function exists for its side effect: saving the generic function to allow methods to
be specified later. It returns name.

Basic Use

The setGeneric function is called to initialize a generic function as preparation for defining some
methods for that function.

The simplest and most common situation is that name is already an ordinary non-generic non-
primitive function, and you now want to turn this function into a generic. In this case you will most
often supply only name, for example:

setGeneric("colSums")

There must be an existing function of this name, on some attached package (in this case package
"base"). A generic version of this function will be created in the current package (or in the global
environment if the call to setGeneric() is from an ordinary source file or is entered on the com-
mand line). The existing function becomes the default method, and the package slot of the new
generic function is set to the location of the original function ("base" in the example). It’s an
important feature that the same generic function definition is created each time, depending in the
example only on the definition of print and where it is found. The signature of the generic func-
tion, defining which of the formal arguments can be used in specifying methods, is set by default to
all the formal arguments except

Note that calling setGeneric() in this form is not strictly necessary before calling setMethod()
for the same function. If the function specified in the call to setMethod is not generic, setMethod
will execute the call to setGeneric itself. Declaring explicitly that you want the function to be
generic can be considered better programming style; the only difference in the result, however, is
that not doing so produces a message noting the creation of the generic function.

You cannot (and never need to) create an explicit generic version of the primitive functions in
the base package. Those which can be treated as generic functions have methods selected and
dispatched from the internal C code, to satisfy concerns for efficiency, and the others cannot be
made generic. See the section on Primitive Functions below.

The description above is the effect when the package that owns the non-generic function has not
created an implicit generic version. Otherwise, it is this implicit generic function that is used. See
the section on Implicit Generic Functions below. Either way, the essential result is that the same
version of the generic function will be created each time.

The second common use of setGeneric() is to create a new generic function, unrelated to any
existing function, and frequently having no default method. In this case, you need to supply a
skeleton of the function definition, to define the arguments for the function. The body of a generic

1066 setGeneric

function is usually a standard form, standardGeneric(name) where name is the quoted name of
the generic function. When calling setGeneric in this form, you would normally supply the def
argument as a function of this form. See the second and third examples below.

The useAsDefault argument controls the default method for the new generic. If not told otherwise,
setGeneric will try to find a non-generic version of the function to use as a default. So, if you do
have a suitable default method, it is often simpler to first set this up as a non-generic function, and
then use the one-argument call to setGeneric at the beginning of this section. See the first example
in the Examples section below.

If you don’t want the existing function to be taken as default, supply the argument useAsDefault.
That argument can be the function you want to be the default method, or FALSE to force no default
(i.e., to cause an error if there is no direct or inherited method selected for a call to the function).

Details

The great majority of calls to setGeneric() should either have one argument to ensure that an
existing function can have methods, or arguments name and def to create a new generic function
and optionally a default method. If that’s not what you plan to do, read on.

If you want to change the behavior of an existing function (typically, one in another package) when
you create a generic version, you must supply arguments to setGeneric correspondingly. Whatever
changes are made, the new generic function will be assigned with a package slot set to the current
package, not the one in which the non-generic version of the function is found. This step is required
because the version you are creating is no longer the same as that implied by the function in the
other package. A message will be printed to indicate that this has taken place and noting one of the
differences between the two functions. It tends to be a bad idea, because the two versions are now
competing for methods, with many chances for mistakes in programming.

The body of a generic function usually does nothing except for dispatching methods by a call to
standardGeneric. Under some circumstances you might just want to do some additional compu-
tation in the generic function itself. As long as your function eventually calls standardGeneric
that is permissible (though perhaps not a good idea, in that it may make the behavior of your
function less easy to understand). If your explicit definition of the generic function does not call
standardGeneric you are in trouble, because none of the methods for the function will ever be
dispatched.

By default, the generic function can return any object. If valueClass is supplied, it should be a vec-
tor of class names; the value returned by a method is then required to satisfy is(object, Class)
for one of the specified classes. An empty (i.e., zero length) vector of classes means anything is
allowed. Note that more complicated requirements on the result can be specified explicitly, by
defining a non-standard generic function.

The setGroupGeneric function behaves like setGeneric except that it constructs a group generic
function, differing in two ways from an ordinary generic function. First, this function cannot be
called directly, and the body of the function created will contain a stop call with this information.
Second, the group generic function contains information about the known members of the group,
used to keep the members up to date when the group definition changes, through changes in the
search list or direct specification of methods, etc.

Implicit Generic Functions

Saying that a non-generic function “is converted to a generic” is more precisely state that the func-
tion is converted to the corresponding implicit generic function. If no special action has been taken,
any function corresponds implicitly to a generic function with the same arguments, in which all
arguments other than . . . can be used. The signature of this generic function is the vector of formal
arguments, in order, except for

setGeneric 1067

The source code for a package can define an implicit generic function version of any function in
that package (see implicitGeneric for the mechanism). You can not, generally, define an implicit
generic function in someone else’s package. The usual reason for defining an implicit generic is
to prevent certain arguments from appearing in the signature, which you must do if you want the
arguments to be used literally or if you want to enforce lazy evaluation for any reason. An implicit
generic can also contain some methods that you want to be predefined; in fact, the implicit generic
can be any generic version of the non-generic function. The implicit generic mechanism can also
be used to prohibit a generic version (see prohibitGeneric).

Whether defined or inferred automatically, the implicit generic will be compared with the generic
function that setGeneric creates, when the implicit generic is in another package. If the two
functions are identical, then the package slot of the created generic will have the name of the
package containing the implicit generic. Otherwise, the slot will be the name of the package in
which the generic is assigned.

The purpose of this rule is to ensure that all methods defined for a particular combination of generic
function and package names correspond to a single, consistent version of the generic function.
Calling setGeneric with only name and possibly package as arguments guarantees getting the
implicit generic version, if one exists.

Including any of the other arguments can force a new, local version of the generic function. If you
don’t want to create a new version, don’t use the extra arguments.

Generic Functions and Primitive Functions

A number of the basic R functions are specially implemented as primitive functions, to be evaluated
directly in the underlying C code rather than by evaluating an R language definition. Most have
implicit generics (see implicitGeneric), and become generic as soon as methods (including group
methods) are defined on them. Others cannot be made generic.

Even when methods are defined for such functions, the generic version is not visible on the search
list, in order that the C version continues to be called. Method selection will be initiated in the C
code. Note, however, that the result is to restrict methods for primitive functions to signatures in
which at least one of the classes in the signature is a formal S4 class.

To see the generic version of a primitive function, use getGeneric(name). The function isGeneric
will tell you whether methods are defined for the function in the current session.

Note that S4 methods can only be set on those primitives which are ‘internal generic’, plus %*%.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

Methods and the links there for a general discussion, dotsMethods for methods that dispatch on
“. . . ”, and setMethod for method definitions.

Examples

create a new generic function, with a default method
setGeneric("props", function(object) attributes(object))

1068 setLoadActions

A new generic function with no default method
setGeneric("increment",

function(object, step, ...)
standardGeneric("increment")

)

A non-standard generic function. It insists that the methods
return a non-empty character vector (a stronger requirement than
valueClass = "character" in the call to setGeneric)

setGeneric("authorNames",
function(text) {

value <- standardGeneric("authorNames")
if(!(is(value, "character") && any(nchar(value)>0)))

stop("authorNames methods must return non-empty strings")
value
})

An example of group generic methods, using the class
"track"; see the documentation of \link{setClass} for its definition

define a method for the Arith group

setMethod("Arith", c("track", "numeric"),
function(e1, e2) {
e1@y <- callGeneric(e1@y , e2)
e1

})

setMethod("Arith", c("numeric", "track"),
function(e1, e2) {
e2@y <- callGeneric(e1, e2@y)
e2

})

now arithmetic operators will dispatch methods:

t1 <- new("track", x=1:10, y=sort(stats::rnorm(10)))

t1 - 100
1/t1

setLoadActions Set Actions For Package Loading

Description

These functions provide a mechanism for packages to specify computations to be done during the
loading of the package namespace. Such actions are a flexible way to provide information only
available at load time (such as locations in a dynamically linked library).

setLoadActions 1069

A call to setLoadAction() or setLoadActions() specifies one or more functions to be called
when the corresponding package is loaded, with the . . . argument names being used as identifying
names for the actions.

getLoadActions reports the currently defined load actions, given a package’s namespace as its
argument.

hasLoadAction returns TRUE if a load action corresponding to the given name has previously been
set for the where namespace.

evalOnLoad() and evalqOnLoad() schedule a specific expression for evaluation at load time.

Usage

setLoadAction(action, aname=, where=)

setLoadActions(..., .where=)

getLoadActions(where=)

hasLoadAction(aname, where=)

evalOnLoad(expr, where=, aname=)

evalqOnLoad(expr, where=, aname=)

Arguments

action, ... functions of one or more arguments, to be called when this package is loaded.
The functions will be called with one argument (the package namespace) so all
following arguments must have default values.
If the elements of . . . are named, these names will be used for the corresponding
load metadata.

where, .where the namespace of the package for which the list of load actions are defined. This
argument is normally omitted if the call comes from the source code for the
package itself, but will be needed if a package supplies load actions for another
package.

aname the name for the action. If an action is set without supplying a name, the default
uses the position in the sequence of actions specified (".1", etc.).

expr an expression to be evaluated in a load action in environment where. In
the case of evalqOnLoad(), the expression is interpreted literally, in that
of evalOnLoad() it must be precomputed, typically as an object of type
"language".

Details

The evalOnLoad() and evalqOnLoad() functions are for convenience. They construct a function
to evaluate the expression and call setLoadAction() to schedule a call to that function.

Each of the functions supplied as an argument to setLoadAction() or setLoadActions()
is saved as metadata in the namespace, typically that of the package containing the call to
setLoadActions(). When this package’s namespace is loaded, each of these functions will be
called. Action functions are called in the order they are supplied to setLoadActions(). The

1070 setLoadActions

objects assigned have metadata names constructed from the names supplied in the call; unnamed
arguments are taken to be named by their position in the list of actions (".1", etc.).

Multiple calls to setLoadAction() or setLoadActions() can be used in a package’s code; the ac-
tions will be scheduled after any previously specified, except if the name given to setLoadAction()
is that of an existing action. In typical applications, setLoadActions() is more convenient when
calling from the package’s own code to set several actions. Calls to setLoadAction() are more
convenient if the action name is to be constructed, which is more typical when one package con-
structs load actions for another package.

Actions can be revised by assigning with the same name, actual or constructed, in a subsequent call.
The replacement must still be a valid function, but can of course do nothing if the intention was to
remove a previously specified action.

The functions must have at least one argument. They will be called with one argument, the names-
pace of the package. The functions will be called at the end of processing of S4 metadata, after
dynamically linking any libraries, the call to .onLoad(), if any, and caching method and class
definitions, but before the namespace is sealed.

Functions may therefore assign or modify objects in the namespace supplied as the argument in
the call. The mechanism allows packages to save information not available until load time, such as
values obtained from a dynamically linked library.

Load actions should be contrasted with user load hooks supplied by setHook(). User hooks are
generally provided from outside the package and are run after the namespace has been sealed. Load
actions are part of the package code, and the list of actions is normally established when the package
is installed.

Load actions can be supplied directly in the source code for a package. It is also possible and useful
to provide facilities in one package to create load actions in another package. The software needs
to be careful to assign the action functions in the correct environment, namely the namespace of the
target package.

Value

setLoadAction() and setLoadActions() are called for their side effect and return no useful
value.

getLoadActions() returns a named list of the actions in the supplied namespace.

hasLoadAction() returns TRUE if the specified action name appears in the actions for this package.

Examples

Not run:
in the code for some package

... somewhere else
setLoadActions(function(attach)

cat(c("Loaded", "Unloaded")[attach], "at", Sys.time(), "\n"),
setCount = function(ns) assign("myCount", 1, envir = ns),
function(ns) assign("myPointer", getMyExternalPointer(), envir = ns))
... somewhere later

if(countShouldBe0)
setLoadAction(function(ns) assign("myCount", 0, envir = ns), "setCount")

End(Not run)

setMethod 1071

setMethod Create and Save a Method

Description

Create and save a formal method for a given function and list of classes.

Usage

setMethod(f, signature=character(), definition,
where = topenv(parent.frame()),
valueClass = NULL, sealed = FALSE)

removeMethod(f, signature, where)

Arguments

f A generic function or the character-string name of the function.

signature A match of formal argument names for f with the character-string names of
corresponding classes. See the details below; however, if the signature is not
trivial, you should use method.skeleton to generate a valid call to setMethod.

definition A function definition, which will become the method called when the arguments
in a call to f match the classes in signature, directly or through inheritance.

where the environment in which to store the definition of the method. For setMethod,
it is recommended to omit this argument and to include the call in source code
that is evaluated at the top level; that is, either in an R session by something
equivalent to a call to source, or as part of the R source code for a package.
For removeMethod, the default is the location of the (first) instance of the
method for this signature.

valueClass Obsolete and unused, but see the same argument for setGeneric.

sealed If TRUE, the method so defined cannot be redefined by another call to setMethod
(although it can be removed and then re-assigned).

Details

The call to setMethod stores the supplied method definition in the metadata table for this generic
function in the environment, typically the global environment or the namespace of a package. In the
case of a package, the table object becomes part of the namespace or environment of the package.
When the package is loaded into a later session, the methods will be merged into the table of
methods in the corresponding generic function object.

Generic functions are referenced by the combination of the function name and the package name;
for example, the function "show" from the package "methods". Metadata for methods is identified
by the two strings; in particular, the generic function object itself has slots containing its name
and its package name. The package name of a generic is set according to the package from which
it originally comes; in particular, and frequently, the package where a non-generic version of the
function originated. For example, generic functions for all the functions in package base will have
"base" as the package name, although none of them is an S4 generic on that package. These include
most of the base functions that are primitives, rather than true functions; see the section on primitive
functions in the documentation for setGeneric for details.

1072 setMethod

Multiple packages can have methods for the same generic function; that is, for the same combination
of generic function name and package name. Even though the methods are stored in separate tables
in separate environments, loading the corresponding packages adds the methods to the table in the
generic function itself, for the duration of the session.

The class names in the signature can be any formal class, including basic classes such as "numeric",
"character", and "matrix". Two additional special class names can appear: "ANY", meaning that
this argument can have any class at all; and "missing", meaning that this argument must not appear
in the call in order to match this signature. Don’t confuse these two: if an argument isn’t mentioned
in a signature, it corresponds implicitly to class "ANY", not to "missing". See the example below.
Old-style (‘S3’) classes can also be used, if you need compatibility with these, but you should
definitely declare these classes by calling setOldClass if you want S3-style inheritance to work.

Method definitions can have default expressions for arguments, but a current limitation is that the
generic function must have some default expression for the same argument in order for the method’s
defaults to be used. If so, and if the corresponding argument is missing in the call to the generic
function, the default expression in the method is used. If the method definition has no default for
the argument, then the expression supplied in the definition of the generic function itself is used,
but note that this expression will be evaluated using the enclosing environment of the method, not
of the generic function. Note also that specifying class "missing" in the signature does not require
any default expressions, and method selection does not evaluate default expressions. All actual
(non-missing) arguments in the signature of the generic function will be evaluated when a method
is selected—when the call to standardGeneric(f) occurs.

It is possible to have some differences between the formal arguments to a method supplied to
setMethod and those of the generic. Roughly, if the generic has . . . as one of its arguments, then
the method may have extra formal arguments, which will be matched from the arguments matching
. . . in the call to f. (What actually happens is that a local function is created inside the method, with
the modified formal arguments, and the method is re-defined to call that local function.)

Method dispatch tries to match the class of the actual arguments in a call to the available methods
collected for f. If there is a method defined for the exact same classes as in this call, that method
is used. Otherwise, all possible signatures are considered corresponding to the actual classes or to
superclasses of the actual classes (including "ANY"). The method having the least distance from
the actual classes is chosen; if more than one method has minimal distance, one is chosen (the
lexicographically first in terms of superclasses) but a warning is issued. All inherited methods
chosen are stored in another table, so that the inheritance calculations only need to be done once
per session per sequence of actual classes. See Methods for more details.

The function removeMethod removes the specified method from the metadata table in the corre-
sponding environment. It’s not a function that is used much, since one normally wants to redefine a
method rather than leave no definition.

Value

These functions exist for their side-effect, in setting or removing a method in the object defining
methods for the specified generic.

The value returned by removeMethod is TRUE if a method was found to be removed.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

setMethod 1073

See Also

method.skeleton, which is the recommended way to generate a skeleton of the call to setMethod,
with the correct formal arguments and other details.

Methods and the links there for a general discussion, dotsMethods for methods that dispatch on
“. . . ”, and setGeneric for generic functions.

Examples

require(graphics)
methods for plotting track objects (see the example for \link{setClass})
##
First, with only one object as argument:
setMethod("plot", signature(x="track", y="missing"),

function(x, y, ...) plot(slot(x, "x"), slot(x, "y"), ...)
)
Second, plot the data from the track on the y-axis against anything
as the x data.
setMethod("plot", signature(y = "track"),
function(x, y, ...) plot(x, slot(y, "y"), ...)

)
and similarly with the track on the x-axis (using the short form of
specification for signatures)
setMethod("plot", "track",
function(x, y, ...) plot(slot(x, "y"), y, ...)

)
t1 <- new("track", x=1:20, y=(1:20)^2)
tc1 <- new("trackCurve", t1)
slot(tc1, "smooth") <- smooth.spline(slot(tc1, "x"), slot(tc1, "y"))$y #$
plot(t1)
plot(qnorm(ppoints(20)), t1)
An example of inherited methods, and of conforming method arguments
(note the dotCurve argument in the method, which will be pulled out
of ... in the generic.
setMethod("plot", c("trackCurve", "missing"),
function(x, y, dotCurve = FALSE, ...) {

plot(as(x, "track"))
if(length(slot(x, "smooth") > 0))

lines(slot(x, "x"), slot(x, "smooth"),
lty = if(dotCurve) 2 else 1)

}
)
the plot of tc1 alone has an added curve; other uses of tc1
are treated as if it were a "track" object.
plot(tc1, dotCurve = TRUE)
plot(qnorm(ppoints(20)), tc1)

defining methods for a special function.
Although "[" and "length" are not ordinary functions
methods can be defined for them.
setMethod("[", "track",

function(x, i, j, ..., drop) {
x@x <- x@x[i]; x@y <- x@y[i]
x

})

1074 setOldClass

plot(t1[1:15])

setMethod("length", "track", function(x)length(x@y))
length(t1)

methods can be defined for missing arguments as well
setGeneric("summary") ## make the function into a generic

A method for summary()
The method definition can include the arguments, but
if they’re omitted, class "missing" is assumed.

setMethod("summary", "missing", function() "<No Object>")

setOldClass Register Old-Style (S3) Classes and Inheritance

Description

Register an old-style (a.k.a. ‘S3’) class as a formally defined class. The Classes argument is the
character vector used as the class attribute; in particular, if there is more than one string, old-style
class inheritance is mimicked. Registering via setOldClass allows S3 classes to appear in method
signatures, as a slot in an S4 class, or as a superclass of an S4 class.

Usage

setOldClass(Classes, prototype, where, test = FALSE, S4Class)

Arguments

Classes A character vector, giving the names for S3 classes, as they would appear on the
right side of an assignment of the class attribute in S3 computations.
In addition to S3 classes, an object type or other valid data part can be specified,
if the S3 class is known to require its data to be of that form.

prototype An optional object to use as the prototype. This should be provided as the default
S3 object for the class. If omitted, the S4 class created to register the S3 class is
VIRTUAL. See the details.

where Where to store the class definitions, the global or top-level environment by de-
fault. (When either function is called in the source for a package, the class
definitions will be included in the package’s environment by default.)

test flag, if TRUE, arrange to test inheritance explicitly for each object, needed if the
S3 class can have a different set of class strings, with the same first string. This
is a different mechanism in implementation and should be specified separately
for each pair of classes that have an optional inheritance. See the ‘Details’.

S4Class optionally, the class definition or the class name of an S4 class. The new class
will have all the slots and other properties of this class, plus its S3 inheritance as
defined by the Classses argument. Arguments prototype and test must not
be supplied in this case. See the section on “S3 classes with known attributes”
below.

setOldClass 1075

Details

Each of the names will be defined as an S4 class, extending the remaining classes in Classes,
and the class oldClass, which is the ‘root’ of all old-style classes. S3 classes have no formal
definition, and therefore no formally defined slots. If a prototype argument is supplied in the call to
setOldClass(), objects from the class can be generated, by a call to new; however, this usually not
as relevant as generating objects from subclasses (see the section on extending S3 classes below).
If a prototype is not provided, the class will be created as a virtual S4 class. The main disadvantage
is that the prototype object in an S4 class that uses this class as a slot will have a NULL object in that
slot, which can sometimes lead to confusion.

Beginning with version 2.8.0 of R, support is provided for using a (registered) S3 class as a super-
class of a new S4 class. See the section on extending S3 classes below, and the examples.

See Methods for the details of method dispatch and inheritance.

Some S3 classes cannot be represented as an ordinary combination of S4 classes and superclasses,
because objects from the S3 class can have a variable set of strings in the class. It is still possible
to register such classes as S4 classes, but now the inheritance has to be verified for each object, and
you must call setOldClass with argument test=TRUE once for each superclass.

For example, ordered factors always have the S3 class c("ordered", "factor"). This is proper
behavior, and maps simply into two S4 classes, with "ordered" extending "factor".

But objects whose class attribute has "POSIXt" as the first string may have either (or neither) of
"POSIXct" or "POSIXlt" as the second string. This behavior can be mapped into S4 classes but
now to evaluate is(x, "POSIXlt"), for example, requires checking the S3 class attribute on each
object. Supplying the test=TRUE argument to setOldClass causes an explicit test to be included
in the class definitions. It’s never wrong to have this test, but since it adds significant overhead to
methods defined for the inherited classes, you should only supply this argument if it’s known that
object-specific tests are needed.

The list .OldClassesList contains the old-style classes that are defined by the methods package.
Each element of the list is a character vector, with multiple strings if inheritance is included. Each
element of the list was passed to setOldClass when creating the methods package; therefore, these
classes can be used in setMethod calls, with the inheritance as implied by the list.

Extending S3 classes

A call to setOldClass creates formal classes corresponding to S3 classes, allows these to be used
as slots in other classes or in a signature in setMethod, and mimics the S3 inheritance.

In documentation for the initial implementation of S4 classes in R, users were warned against
defining S4 classes that contained S3 classes, even if those had been registered. The warning was
based mainly on two points. 1: The S3 behavior of the objects would fail because the S3 class
would not be visible, for example, when S3 methods are dispatched. 2: Because S3 classes have
no formal definition, nothing can be asserted in general about the S3 part of an object from such a
class. (The warning was repeated as recently as the first reference below.)

Nevertheless, defining S4 classes to contain an S3 class and extend its behavior is attractive in many
applications. The alternative is to be stuck with S3 programming, without the flexibility and security
of formal class and method definitions.

Beginning with version 2.8.0, R provides support for extending registered S3 classes; that is, for
new classes defined by a call to setClass in which the contains= argument includes an S3 class.
See the examples below. The support is aimed primarily at providing the S3 class information for
all classes that extend class oldClass, in particular by ensuring that all objects from such classes
contain the S3 class in a special slot.

1076 setOldClass

There are three different ways to indicate an extension to an existing S3 class: setOldClass(),
setClass() and setIs(). In most cases, calling setOldClass is the best approach, but the alter-
natives may be preferred in the special circumstances described below.

Suppose "A" is any class extending "oldClass". then

setOldClass(c("B", "A"))

creates a new class "B" whose S3 class concatenates "B" with S3Class("A"). The new class
is a virtual class. If "A" was defined with known attribute/slots, then "B" has these slots also;
therefore, you must believe that the corresponding S3 objects from class "B" do indeed have the
claimed attributes. Notice that you can supply an S4 definition for the new class to specify additional
attributes (as described in the next section.) The first alternative call produces a non-virtual class.

setClass("B", contains = "A")

This creates a non-virtual class with the same slots and superclasses as class "A". However, class
"B" is not included in the S3 class slot of the new class, unless you provide it explicitly in the
prototype.

setClass("B"); setIs("B", "A",)

This creates a virtual class that extends "A", but does not contain the slots of "A". The additional
arguments to setIs should provide a coerce and replacement method. In order for the new class to
inherit S3 methods, the coerce method must ensure that the class "A" object produced has a suitable
S3 class. The only likely reason to prefer this third approach is that class "B" is not consistent with
known attributes in class "A".

Beginning with version 2.9.0 of R, objects from a class extending an S3 class will be converted to
the corresponding S3 class when being passed to an S3 method defined for that class (that is, for
one of the strings in the S3 class attribute). This is intended to ensure, as far as possible, that such
methods will work if they work for ordinary S3 objects. See Classes for details.

S3 Classes with known attributes

A further specification of an S3 class can be made if the class is guaranteed to have some attributes
of known class (where as with slots, “known” means that the attribute is an object of a specified
class, or a subclass of that class).

In this case, the call to setOldClass() can supply an S4 class definition representing the known
structure. Since S4 slots are implemented as attributes (largely for just this reason), the know
attributes can be specified in the representation of the S4 class. The usual technique will be to
create an S4 class with the desired structure, and then supply the class name or definition as the
argument S4Class to setOldClass().

See the definition of class "ts" in the examples below. The call to setClass to create the S4 class
can use the same class name, as here, so long as the class definition is not sealed. In the example,
we define "ts" as a vector structure with a numeric slot for "tsp". The validity of this definition
relies on an assertion that all the S3 code for this class is consistent with that definition; specifically,
that all "ts" objects will behave as vector structures and will have a numeric "tsp" attribute. We
believe this to be true of all the base code in R, but as always with S3 classes, no guarantee is
possible.

The S4 class definition can have virtual superclasses (as in the "ts" case) if the S3 class is asserted
to behave consistently with these (in the example, time-series objects are asserted to be consistent
with the structure class).

For another example, look at the S4 class definition for "data.frame".

Be warned that failures of the S3 class to live up to its asserted behavior will usually go uncorrected,
since S3 classes inherently have no definition, and the resulting invalid S4 objects can cause all sorts
of grief. Many S3 classes are not candidates for known slots, either because the presence or class of

setOldClass 1077

the attributes are not guaranteed (e.g., dimnames in arrays, although these are not even S3 classes),
or because the class uses named components of a list rather than attributes (e.g., "lm"). An attribute
that is sometimes missing cannot be represented as a slot, not even by pretending that it is present
with class "NULL", because attributes unlike slots can not have value NULL.

One irregularity that is usually tolerated, however, is to optionally add other attributes to those
guaranteed to exist (for example, "terms" in "data.frame" objects returned by model.frame).
As of version 2.8.0, validity checks by validObject ignore extra attributes; even if this check
is tightened in the future, classes extending S3 classes would likely be exempted because extra
attributes are so common.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version: see section 10.6 for method selection and section 13.4 for generic functions).

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

setClass, setMethod

Examples

require(stats)
setOldClass(c("mlm", "lm"))
setGeneric("dfResidual", function(model)standardGeneric("dfResidual"))
setMethod("dfResidual", "lm", function(model)model$df.residual)

dfResidual will work on mlm objects as well as lm objects
myData <- data.frame(time = 1:10, y = (1:10)^.5)
myLm <- lm(cbind(y, y^3) ~ time, myData)

showClass("data.frame")# to see the predefined S4 "oldClass"

two examples extending S3 class "lm", class "xlm" directly
and "ylm" indirectly
setClass("xlm", representation(eps = "numeric"), contains = "lm")
setClass("ylm", representation(header = "character"), contains = "xlm")
ym1 = new("ylm", myLm, header = "Example", eps = 0.)
for more examples, see ?\link{S3Class}.

utils::str(.OldClassesList)

Examples of S3 classes with guaranteed attributes
an S3 class "stamped" with a vector and a "date" attribute
Here is a generator function and an S3 print method.
NOTE: it’s essential that the generator checks the attribute classes
stamped <- function(x, date = Sys.time()) {

if(!inherits(date, "POSIXt"))
stop("bad date argument")

if(!is.vector(x))
stop("x must be a vector")

attr(x, "date") <- date
class(x) <- "stamped"

1078 show

x
}

print.stamped <- function(x, ...) {
print(as.vector(x))
cat("Date: ", format(attr(x,"date")), "\n")

}

Now, an S4 class with the same structure:
setClass("stamped4", contains = "vector", representation(date = "POSIXt"))

We can use the S4 class to register "stamped", with its attributes:
setOldClass("stamped", S4Class = "stamped4")
selectMethod("show", "stamped")
and then remove "stamped4" to clean up
removeClass("stamped4")

someLetters <- stamped(sample(letters, 10),
ISOdatetime(2008, 10, 15, 12, 0, 0))

st <- new("stamped", someLetters)
st
show() method prints the object’s class, then calls the S3 print method.

stopifnot(identical(S3Part(st, TRUE), someLetters))

creating the S4 object directly from its data part and slots
new("stamped", 1:10, date = ISOdatetime(1976, 5, 5, 15, 10, 0))

Not run:
The code in R that defines "ts" as an S4 class
setClass("ts", contains = "structure",

representation(tsp = "numeric"),
prototype(NA, tsp = rep(1,3)))

prototype to be a legal S3 time-series
and now registers it as an S3 class

setOldClass("ts", S4Class = "ts", where = envir)

End(Not run)

show Show an Object

Description

Display the object, by printing, plotting or whatever suits its class. This function exists to be
specialized by methods. The default method calls showDefault.

Formal methods for show will usually be invoked for automatic printing (see the details).

Usage

show(object)

show 1079

Arguments

object Any R object

Details

Objects from an S4 class (a class defined by a call to setClass) will be displayed automatically
is if by a call to show. S4 objects that occur as attributes of S3 objects will also be displayed in
this form; conversely, S3 objects encountered as slots in S4 objects will be printed using the S3
convention, as if by a call to print.

Methods defined for show will only be inherited by simple inheritance, since otherwise the
method would not receive the complete, original object, with misleading results. See the
simpleInheritanceOnly argument to setGeneric and the discussion in setIs for the general
concept.

Value

show returns an invisible NULL.

See Also

showMethods prints all the methods for one or more functions.

Examples

following the example shown in the setMethod documentation ...
setClass("track",

representation(x="numeric", y="numeric"))
setClass("trackCurve",

representation("track", smooth = "numeric"))

t1 <- new("track", x=1:20, y=(1:20)^2)

tc1 <- new("trackCurve", t1)

setMethod("show", "track",
function(object)print(rbind(x = object@x, y=object@y))

)
The method will now be used for automatic printing of t1

t1

Not run: [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
x 1 2 3 4 5 6 7 8 9 10 11 12
y 1 4 9 16 25 36 49 64 81 100 121 144

[,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]
x 13 14 15 16 17 18 19 20
y 169 196 225 256 289 324 361 400

End(Not run)
and also for tc1, an object of a class that extends "track"
tc1

Not run: [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
x 1 2 3 4 5 6 7 8 9 10 11 12
y 1 4 9 16 25 36 49 64 81 100 121 144

1080 showMethods

[,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]
x 13 14 15 16 17 18 19 20
y 169 196 225 256 289 324 361 400

End(Not run)

showMethods Show all the methods for the specified function(s)

Description

Show a summary of the methods for one or more generic functions, possibly restricted to those
involving specified classes.

Usage

showMethods(f = character(), where = topenv(parent.frame()),
classes = NULL, includeDefs = FALSE,
inherited = !includeDefs,
showEmpty, printTo = stdout(), fdef)

Arguments

f one or more function names. If omitted, all functions will be shown that match
the other arguments.
The argument can also be an expression that evaluates to a single generic func-
tion, in which case argument fdef is ignored. Providing an expression for the
function allows examination of hidden or anonymous functions; see the example
for isDiagonal().

where Where to find the generic function, if not supplied as an argument. When f is
missing, or length 0, this also determines which generic functions to examine. If
where is supplied, only the generic functions returned by getGenerics(where)
are eligible for printing. If where is also missing, all the cached generic func-
tions are considered.

classes If argument classes is supplied, it is a vector of class names that restricts the
displayed results to those methods whose signatures include one or more of
those classes.

includeDefs If includeDefs is TRUE, include the definitions of the individual methods in the
printout.

inherited logical indicating if methods that have been found by inheritance, so far in the
session, will be included and marked as inherited. Note that an inherited method
will not usually appear until it has been used in this session. See selectMethod
if you want to know what method would be dispatched for particular classes of
arguments.

showEmpty logical indicating whether methods with no defined methods matching the other
criteria should be shown at all. By default, TRUE if and only if argument f is not
missing.

printTo The connection on which the information will be shown; by default, on standard
output.

fdef Optionally, the generic function definition to use; if missing, one is found, look-
ing in where if that is specified. See also comment in ‘Details’.

showMethods 1081

Details

The name and package of the generic are followed by the list of signatures for which methods
are currently defined, according to the criteria determined by the various arguments. Note that the
package refers to the source of the generic function. Individual methods for that generic can come
from other packages as well.

When more than one generic function is involved, either as specified or because f was missing, the
functions are found and showMethods is recalled for each, including the generic as the argument
fdef. In complicated situations, this can avoid some anomalous results.

Value

If printTo is FALSE, the character vector that would have been printed is returned; otherwise the
value is the connection or filename, via invisible.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

setMethod, and GenericFunctions for other tools involving methods; selectMethod will show
you the method dispatched for a particular function and signature of classes for the arguments.

Examples

require(graphics)

Assuming the methods for plot
are set up as in the example of help(setMethod),
print (without definitions) the methods that involve class "track":
showMethods("plot", classes = "track")
Not run:
Function "plot":
x = ANY, y = track
x = track, y = missing
x = track, y = ANY

require("Matrix")
showMethods("%*%")# many!

methods(class = "Matrix")# nothing
showMethods(class = "Matrix")# everything
showMethods(Matrix:::isDiagonal) # a non-exported generic

End(Not run)

not.there <- !any("package:stats4" == search())
if(not.there) library(stats4)
showMethods(classes = "mle")
if(not.there) detach("package:stats4")

1082 slot

signature-class Class "signature" For Method Definitions

Description

This class represents the mapping of some of the formal arguments of a function onto the corre-
sponding classes. It is used for two slots in the MethodDefinition class.

Objects from the Class

Objects can be created by calls of the form new("signature", functionDef, ...). The
functionDef argument, if it is supplied as a function object, defines the formal names. The other
arguments define the classes. More typically, the objects are created as side effects of defining
methods. Either way, note that the classes are expected to be well defined, usually because the
corresponding class definitions exist. See the comment on the package slot.

Slots

.Data: Object of class "character" the class names.

names: Object of class "character" the corresponding argument names.

package: Object of class "character" the names of the packages corresponding to the class
names. The combination of class name and package uniquely defines the class. In princi-
ple, the same class name could appear in more than one package, in which case the package
information is required for the signature to be well defined.

Extends

Class "character", from data part. Class "vector", by class "character".

Methods

initialize signature(object = "signature"): see the discussion of objects from the class,
above.

See Also

class MethodDefinition for the use of this class.

slot The Slots in an Object from a Formal Class

Description

These functions return or set information about the individual slots in an object.

slot 1083

Usage

object@name
object@name <- value

slot(object, name)
slot(object, name, check = TRUE) <- value
.hasSlot(object, name)

slotNames(x)
getSlots(x)

Arguments

object An object from a formally defined class.

name The name of the slot. The operator takes a fixed name, which can be unquoted
if it is syntactically a name in the language. A slot name can be any non-empty
string, but if the name is not made up of letters, numbers, and ., it needs to be
quoted (by backticks or single or double quotes).
In the case of the slot function, name can be any expression that evaluates to
a valid slot in the class definition. Generally, the only reason to use the func-
tional form rather than the simpler operator is because the slot name has to be
computed.

value A new value for the named slot. The value must be valid for this slot in this
object’s class.

check In the replacement version of slot, a flag. If TRUE, check the assigned value for
validity as the value of this slot. User’s coded should not set this to FALSE in
normal use, since the resulting object can be invalid.

x either the name of a class (as character string), or a class definition. If given
an argument that is neither a character string nor a class definition, slotNames
(only) uses class(x) instead.

Details

The definition of the class specifies all slots directly and indirectly defined for that class. Each slot
has a name and an associated class. Extracting a slot returns an object from that class. Setting a slot
first coerces the value to the specified slot and then stores it.

Unlike general attributes, slots are not partially matched, and asking for (or trying to set) a slot with
an invalid name for that class generates an error.

The @ extraction operator and slot function themselves do no checking against the class definition,
simply matching the name in the object itself. The replacement forms do check (except for slot in
the case check=FALSE). So long as slots are set without cheating, the extracted slots will be valid.

Be aware that there are two ways to cheat, both to be avoided but with no guarantees. The obvious
way is to assign a slot with check=FALSE. Also, slots in R are implemented as attributes, for the sake
of some back compatibility. The current implementation does not prevent attributes being assigned,
via attr<-, and such assignments are not checked for legitimate slot names.

Value

The "@" operator and the slot function extract or replace the formally defined slots for the object.

1084 StructureClasses

Functions slotNames and getSlots return respectively the names of the slots and the classes as-
sociated with the slots in the specified class definition. Except for its extended interpretation of x
(above), slotNames(x) is just names(getSlots(x)).

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

@, Classes, Methods, getClass, names.

Examples

setClass("track", representation(x="numeric", y="numeric"))
myTrack <- new("track", x = -4:4, y = exp(-4:4))
slot(myTrack, "x")
slot(myTrack, "y") <- log(slot(myTrack, "y"))
utils::str(myTrack)

getSlots("track") # or
getSlots(getClass("track"))
slotNames(class(myTrack)) # is the same as
slotNames(myTrack)

StructureClasses Classes Corresponding to Basic Structures

Description

The virtual class structure and classes that extend it are formal classes analogous to S language
structures such as arrays and time-series.

Usage

The following class names can appear in method signatures,
as the class in as() and is() expressions, and, except for
the classes commented as VIRTUAL, in calls to new()

"matrix"
"array"
"ts"

"structure" ## VIRTUAL

StructureClasses 1085

Objects from the Classes

Objects can be created by calls of the form new(Class, ...), where Class is the quoted name of
the specific class (e.g., "matrix"), and the other arguments, if any, are interpreted as arguments to
the corresponding function, e.g., to function matrix(). There is no particular advantage over calling
those functions directly, unless you are writing software designed to work for multiple classes,
perhaps with the class name and the arguments passed in.

Objects created from the classes "matrix" and "array" are unusual, to put it mildly, and have been
for some time. Although they may appear to be objects from these classes, they do not have the
internal structure of either an S3 or S4 class object. In particular, they have no "class" attribute
and are not recognized as objects with classes (that is, both is.object and isS4 will return FALSE
for such objects). However, methods (both S4 and S3) can be defined for these pseudo-classes and
new classes (both S4 and S3) can inherit from them.

That the objects still behave as if they came from the corresponding class (most of the time, anyway)
results from special code recognizing such objects being built into the base code of R. For most
purposes, treating the classes in the usual way will work, fortunately. One consequence of the
special treatment is that these two classesmay be used as the data part of an S4 class; for example,
you can get away with contains = "matrix" in a call to setGeneric to create an S4 class that is
a subclass of "matrix". There is no guarantee that everything will work perfectly, but a number of
classes have been written in this form successfully.

Note that a class containing "matrix" or "array" will have a .Data slot with that class. This is
the only use of .Data other than as a pseudo-class indicating the type of the object. In this case
the type of the object will be the type of the contained matrix or array. See Classes for a general
discussion.

The class "ts" is basically an S3 class that has been registered with S4, using the setOldClass
mechanism. Versions of R through 2.7.0 treated this class as a pure S4 class, which was in principal
a good idea, but in practice did not allow subclasses to be defined and had other intrinsic problems.
(For example, setting the "tsp" parameters as a slot often fails because the built-in implementation
does not allow the slot to be temporarily inconsistent with the length of the data. Also, the S4 class
prevented the correct specification of the S3 inheritance for class "mts".)

Time-series objects, in contrast to matrices and arrays, have a valid S3 class, "ts", registered using
an S4-style definition (see the documentation for setOldClass in the examples section for an ab-
breviated listing of how this is done. The S3 inheritance of "mts" in package stats is also registered.
These classes, as well as "matrix" and "array" should be valid in most examples as superclasses
for new S4 class definitions.

All of these classes have special S4 methods for initialize that accept the same arguments as the
basic generator functions, matrix, array, and ts, in so far as possible. The limitation is that a class
that has more than one non-virtual superclass must accept objects from that superclass in the call to
new; therefore, a such a class (what is called a “mixin” in some languages) uses the default method
for initialize, with no special arguments.

Extends

The specific classes all extend class "structure", directly, and class "vector", by class
"structure".

Methods

coerce Methods are defined to coerce arbitrary objects to these classes, by calling the correspond-
ing basic function, for example, as(x, "matrix") calls as.matrix(x). If strict = TRUE
in the call to as(), the method goes on to delete all other slots and attributes other than the
dim and dimnames.

1086 testInheritedMethods

Ops Group methods (see, e.g., S4groupGeneric) are defined for combinations of structures and
vectors (including special cases for array and matrix), implementing the concept of vector
structures as in the reference. Essentially, structures combined with vectors retain the structure
as long as the resulting object has the same length. Structures combined with other structures
remove the structure, since there is no automatic way to determine what should happen to the
slots defining the structure.
Note that these methods will be activated when a package is loaded containing a class that
inherits from any of the structure classes or class "vector".

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (for the original vector structures).

See Also

Class nonStructure, which enforces the alternative model, in which all slots are dropped if any math
transformation or operation is applied to an object from a class extending one of the basic classes.

Examples

showClass("structure")

explore a bit :
showClass("ts")
(ts0 <- new("ts"))
str(ts0)

showMethods("Ops") # six methods from these classes, but maybe many more

testInheritedMethods Test for and Report about Selection of Inherited Methods

Description

A set of distinct inherited signatures is generated to test inheritance for all the methods of a specified
generic function. If method selection is ambiguous for some of these, a summary of the ambiguities
is attached to the returned object. This test should be performed by package authors before releasing
a package.

Usage

testInheritedMethods(f, signatures, test = TRUE, virtual = FALSE,
groupMethods = TRUE, where = .GlobalEnv)

testInheritedMethods 1087

Arguments

f a generic function or the character string name of one. By default, all currently
defined subclasses of all the method signatures for this generic will be examined.
The other arguments are mainly options to modify which inheritance patterns
will be examined.

signatures An optional set of subclass signatures to use instead of the relevant subclasses
computed by testInheritedMethods. See the Details for how this is done.
This argument might be supplied after a call with test = FALSE, to test selec-
tion in batches.

test optional flag to control whether method selection is actually tested. If FALSE,
returns just the list of relevant signatures for subclasses, without calling
selectMethod for each signature. If there are a very large number of signa-
tures, you may want to collect the full list and then test them in batches.

virtual should virtual classes be included in the relevant subclasses. Normally not, since
only the classes of actual arguments will trigger the inheritance calculation in a
call to the generic function. Including virtual classes may be useful if the class
has no current non-virtual subclasses but you anticipate your users may define
such classes in the future.

groupMethods should methods for the group generic function be included?

where the environment in which to look for class definitions. Nearly always, use the
default global environment after attaching all the packages with relevant meth-
ods and/or class definitions.

Details

The following description applies when the optional arguments are omitted, the usual case. First,
the defining signatures for all methods are computed by calls to findMethodSignatures. From
these all the known non-virtual subclasses are found for each class that appears in the signature of
some method. These subclasses are split into groups according to which class they inherit from,
and only one subclass from each group is retained (for each argument in the generic signature).
So if a method was defined with class "vector" for some argument, one actual vector class is
chosen arbitrarily. The case of "ANY" is dealt with specially, since all classes extend it. A dummy,
nonvirtual class, ".Other", is used to correspond to all classes that have no superclasses among
those being tested.

All combinations of retained subclasses for the arguments in the generic signature are then com-
puted. Each row of the resulting matrix is a signature to be tested by a call to selectMethod. To
collect information on ambiguous selections, testInheritedMethods establishes a calling handler
for the special signal "ambiguousMethodSelection", by setting the corresponding option.

Value

An object of class "methodSelectionReport". The details of this class are currently subject to
change. It has slots "target", "selected", "candidates", and "note", all referring to the am-
biguous cases (and so of length 0 if there were none). These slots are intended to be examined
by the programmer to detect and preferably fix ambiguous method selections. The object contains
in addition slots "generic", the name of the generic function, and "allSelections", giving the
vector of labels for all the signatures tested.

1088 TraceClasses

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (Section
10.6 for basics of method selection.)

Chambers, John M. (2009) Class Inheritance in R http://stat.stanford.edu/~jmc4/
classInheritance.pdf (to be submitted to the R Journal).

Examples

if no other attached packages have methods for ‘+‘ or its group
generic functions, this returns a 16 by 2 matrix of selection
patterns (in R 2.9.0)
testInheritedMethods("+")

TraceClasses Classes Used Internally to Control Tracing

Description

The classes described here are used by the R function trace to create versions of functions and
methods including browser calls, etc., and also to untrace the same objects.

Usage

Objects from the following classes are generated
by calling trace() on an object from the corresponding
class without the "WithTrace" in the name.

"functionWithTrace"
"MethodDefinitionWithTrace"
"MethodWithNextWithTrace"
"genericFunctionWithTrace"
"groupGenericFunctionWithTrace"

the following is a virtual class extended by each of the
classes above

"traceable"

Objects from the Class

Objects will be created from these classes by calls to trace. (There is an initialize method for
class "traceable", but you are unlikely to need it directly.)

Slots

.Data: The data part, which will be "function" for class "functionWithTrace", and similarly
for the other classes.

original: Object of the original class; e.g., "function" for class "functionWithTrace".

http://stat.stanford.edu/~jmc4/classInheritance.pdf
http://stat.stanford.edu/~jmc4/classInheritance.pdf

validObject 1089

Extends

Each of the classes extends the corresponding untraced class, from the data part; e.g.,
"functionWithTrace" extends "function". Each of the specific classes extends "traceable",
directly, and class "VIRTUAL", by class "traceable".

Methods

The point of the specific classes is that objects generated from them, by function trace(), remain
callable or dispatchable, in addition to their new trace information.

See Also

function trace

validObject Test the Validity of an Object

Description

The validity of object related to its class definition is tested. If the object is valid, TRUE is returned;
otherwise, either a vector of strings describing validity failures is returned, or an error is generated
(according to whether test is TRUE). Optionally, all slots in the object can also be validated.

The function setValidity sets the validity method of a class (but more normally, this method will
be supplied as the validity argument to setClass). The method should be a function of one object
that returns TRUE or a description of the non-validity.

Usage

validObject(object, test = FALSE, complete = FALSE)

setValidity(Class, method, where = topenv(parent.frame()))

getValidity(ClassDef)

Arguments

object any object, but not much will happen unless the object’s class has a formal defi-
nition.

test logical; if TRUE and validity fails, the function returns a vector of strings de-
scribing the problems. If test is FALSE (the default) validity failure generates
an error.

complete logical; if TRUE, validity methods will be applied recursively to any of the slots
that have such methods.

Class the name or class definition of the class whose validity method is to be set.

ClassDef a class definition object, as from getClassDef.

method a validity method; that is, either NULL or a function of one argument (object).
Like validObject, the function should return TRUE if the object is valid, and one
or more descriptive strings if any problems are found. Unlike validObject, it
should never generate an error.

1090 validObject

where the modified class definition will be stored in this environment.
Note that validity methods do not have to check validity of superclasses: the
logic of validObject ensures these tests are done once only. As a consequence,
if one validity method wants to use another, it should extract and call the method
from the other definition of the other class by calling getValidity(): it should
not call validObject.

Details

Validity testing takes place ‘bottom up’: Optionally, if complete=TRUE, the validity of the object’s
slots, if any, is tested. Then, in all cases, for each of the classes that this class extends (the ‘su-
perclasses’), the explicit validity method of that class is called, if one exists. Finally, the validity
method of object’s class is called, if there is one.

Testing generally stops at the first stage of finding an error, except that all the slots will be examined
even if a slot has failed its validity test.

The standard validity test (with complete=FALSE) is applied when an object is created via new with
any optional arguments (without the extra arguments the result is just the class prototype object).

An attempt is made to fix up the definition of a validity method if its argument is not object.

Value

validObject returns TRUE if the object is valid. Otherwise a vector of strings describing problems
found, except that if test is FALSE, validity failure generates an error, with the corresponding strings
in the error message.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

setClass; class classRepresentation.

Examples

setClass("track",
representation(x="numeric", y = "numeric"))

t1 <- new("track", x=1:10, y=sort(stats::rnorm(10)))
A valid "track" object has the same number of x, y values
validTrackObject <- function(object) {

if(length(object@x) == length(object@y)) TRUE
else paste("Unequal x,y lengths: ", length(object@x), ", ",

length(object@y), sep="")
}
assign the function as the validity method for the class
setValidity("track", validTrackObject)
t1 should be a valid "track" object
validObject(t1)
Now we do something bad
t2 <- t1
t2@x <- 1:20
This should generate an error

validObject 1091

Not run: try(validObject(t2))

setClass("trackCurve",
representation("track", smooth = "numeric"))

all superclass validity methods are used when validObject
is called from initialize() with arguments, so this fails
Not run: trynew("trackCurve", t2)

setClass("twoTrack", representation(tr1 = "track", tr2 ="track"))

validity tests are not applied recursively by default,
so this object is created (invalidly)
tT <- new("twoTrack", tr2 = t2)

A stricter test detects the problem
Not run: try(validObject(tT, complete = TRUE))

1092 validObject

Chapter 7

The splines package

splines-package Regression Spline Functions and Classes

Description

Regression spline functions and classes.

Details

This package provides functions for working with regression splines using the B-spline basis, bs,
and the natural cubic spline basis, ns.

For a complete list of functions, use library(help="splines").

Author(s)

Douglas M. Bates <bates@stat.wisc.edu> and William N. Venables
<Bill.Venables@csiro.au>

Maintainer: R Core Team <R-core@r-project.org>

asVector Coerce an Object to a Vector

Description

This is a generic function. Methods for this function coerce objects of given classes to vectors.

Usage

asVector(object)

Arguments

object An object.

1093

1094 backSpline

Details

Methods for vector coercion in new classes must be created for the asVector generic instead of
as.vector. The as.vector function is internal and not easily extended. Currently the only class
with an asVector method is the xyVector class.

Value

a vector

Author(s)

Douglas Bates and Bill Venables

See Also

xyVector

Examples

require(stats)
ispl <- interpSpline(weight ~ height, women)
pred <- predict(ispl)
class(pred)
utils::str(pred)
asVector(pred)

backSpline Monotone Inverse Spline

Description

Create a monotone inverse of a monotone natural spline.

Usage

backSpline(object)

Arguments

object an object that inherits from class nbSpline or npolySpline. That is, the object
must represent a natural interpolation spline but it can be either in the B-spline
representation or the piecewise polynomial one. The spline is checked to see if
it represents a monotone function.

Value

An object of class polySpline that contains the piecewise polynomial representation of a function
that has the appropriate values and derivatives at the knot positions to be an inverse of the spline
represented by object. Technically this object is not a spline because the second derivative is not
constrained to be continuous at the knot positions. However, it is often a much better approximation
to the inverse than fitting an interpolation spline to the y/x pairs.

bs 1095

Author(s)

Douglas Bates and Bill Venables

See Also

interpSpline

Examples

require(graphics)
ispl <- interpSpline(women$height, women$weight)
bspl <- backSpline(ispl)
plot(bspl) # plots over the range of the knots
points(women$weight, women$height)

bs B-Spline Basis for Polynomial Splines

Description

Generate the B-spline basis matrix for a polynomial spline.

Usage

bs(x, df = NULL, knots = NULL, degree = 3, intercept = FALSE,
Boundary.knots = range(x))

Arguments

x the predictor variable. Missing values are allowed.
df degrees of freedom; one can specify df rather than knots; bs() then chooses

df-degree (minus one if there is an intercept) knots at suitable quantiles of x
(which will ignore missing values). The default, NULL, corresponds to no inner
knots, i.e., degree - intercept.

knots the internal breakpoints that define the spline. The default is NULL, which results
in a basis for ordinary polynomial regression. Typical values are the mean or
median for one knot, quantiles for more knots. See also Boundary.knots.

degree degree of the piecewise polynomial—default is 3 for cubic splines.
intercept if TRUE, an intercept is included in the basis; default is FALSE.
Boundary.knots boundary points at which to anchor the B-spline basis (default the range of the

data). If both knots and Boundary.knots are supplied, the basis parameters do
not depend on x. Data can extend beyond Boundary.knots.

Value

A matrix of dimension c(length(x), df), where either df was supplied or if knots were supplied,
df = length(knots) + degree plus one if there is an intercept. Attributes are returned that
correspond to the arguments to bs, and explicitly give the knots, Boundary.knots etc for use by
predict.bs().

bs() is based on the function spline.des(). It generates a basis matrix for representing the family
of piecewise polynomials with the specified interior knots and degree, evaluated at the values of x.
A primary use is in modeling formulas to directly specify a piecewise polynomial term in a model.

1096 interpSpline

References

Hastie, T. J. (1992) Generalized additive models. Chapter 7 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

ns, poly, smooth.spline, predict.bs, SafePrediction

Examples

require(stats); require(graphics)
bs(women$height, df = 5)
summary(fm1 <- lm(weight ~ bs(height, df = 5), data = women))

example of safe prediction
plot(women, xlab = "Height (in)", ylab = "Weight (lb)")
ht <- seq(57, 73, length.out = 200)
lines(ht, predict(fm1, data.frame(height=ht)))

interpSpline Create an Interpolation Spline

Description

Create an interpolation spline, either from x and y vectors, or from a formula/data.frame combina-
tion.

Usage

interpSpline(obj1, obj2, bSpline = FALSE, period = NULL,
na.action = na.fail)

Arguments

obj1 Either a numeric vector of x values or a formula.
obj2 If obj1 is numeric this should be a numeric vector of the same length. If obj1

is a formula this can be an optional data frame in which to evaluate the names in
the formula.

bSpline If TRUE the b-spline representation is returned, otherwise the piecewise polyno-
mial representation is returned. Defaults to FALSE.

period An optional positive numeric value giving a period for a periodic interpolation
spline.

na.action a optional function which indicates what should happen when the data contain
NAs. The default action (na.omit) is to omit any incomplete observations. The
alternative action na.fail causes interpSpline to print an error message and
terminate if there are any incomplete observations.

Value

An object that inherits from class spline. The object can be in the B-spline representation, in which
case it will be of class nbSpline for natural B-spline, or in the piecewise polynomial representation,
in which case it will be of class npolySpline.

ns 1097

Author(s)

Douglas Bates and Bill Venables

See Also

splineKnots, splineOrder, periodicSpline.

Examples

require(graphics); require(stats)
ispl <- interpSpline(women$height, women$weight)
ispl2 <- interpSpline(weight ~ height, women)
ispl and ispl2 should be the same
plot(predict(ispl, seq(55, 75, length.out = 51)), type = "l")
points(women$height, women$weight)
plot(ispl) # plots over the range of the knots
points(women$height, women$weight)
splineKnots(ispl)

ns Generate a Basis Matrix for Natural Cubic Splines

Description

Generate the B-spline basis matrix for a natural cubic spline.

Usage

ns(x, df = NULL, knots = NULL, intercept = FALSE,
Boundary.knots = range(x))

Arguments

x the predictor variable. Missing values are allowed.

df degrees of freedom. One can supply df rather than knots; ns() then chooses
df - 1 - intercept knots at suitably chosen quantiles of x (which will ignore
missing values). The default, df = 1, corresponds to no knots.

knots breakpoints that define the spline. The default is no knots; together with the
natural boundary conditions this results in a basis for linear regression on x.
Typical values are the mean or median for one knot, quantiles for more knots.
See also Boundary.knots.

intercept if TRUE, an intercept is included in the basis; default is FALSE.

Boundary.knots boundary points at which to impose the natural boundary conditions and an-
chor the B-spline basis (default the range of the data). If both knots and
Boundary.knots are supplied, the basis parameters do not depend on x. Data
can extend beyond Boundary.knots

1098 periodicSpline

Value

A matrix of dimension length(x) * df where either df was supplied or if knots were supplied,
df = length(knots) + 1 + intercept. Attributes are returned that correspond to the arguments
to ns, and explicitly give the knots, Boundary.knots etc for use by predict.ns().

ns() is based on the function spline.des. It generates a basis matrix for representing the family
of piecewise-cubic splines with the specified sequence of interior knots, and the natural boundary
conditions. These enforce the constraint that the function is linear beyond the boundary knots,
which can either be supplied, else default to the extremes of the data. A primary use is in modeling
formula to directly specify a natural spline term in a model.

References

Hastie, T. J. (1992) Generalized additive models. Chapter 7 of Statistical Models in S eds J. M.
Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

bs, predict.ns, SafePrediction

Examples

require(stats); require(graphics)
ns(women$height, df = 5)
summary(fm1 <- lm(weight ~ ns(height, df = 5), data = women))

example of safe prediction
plot(women, xlab = "Height (in)", ylab = "Weight (lb)")
ht <- seq(57, 73, length.out = 200)
lines(ht, predict(fm1, data.frame(height=ht)))

periodicSpline Create a Periodic Interpolation Spline

Description

Create a periodic interpolation spline, either from x and y vectors, or from a formula/data.frame
combination.

Usage

periodicSpline(obj1, obj2, knots, period = 2*pi, ord = 4)

Arguments

obj1 either a numeric vector of x values or a formula.

obj2 if obj1 is numeric this should be a numeric vector of the same length. If obj1 is
a formula this can be an optional data frame in which to evaluate the names in
the formula.

knots optional numeric vector of knot positions.

polySpline 1099

period positive numeric value giving the period for the periodic spline. Defaults to
2 * pi.

ord integer giving the order of the spline, at least 2. Defaults to 4. See splineOrder
for a definition of the order of a spline.

Value

An object that inherits from class spline. The object can be in the B-spline representation, in which
case it will be a pbSpline object, or in the piecewise polynomial representation (a ppolySpline
object).

Author(s)

Douglas Bates and Bill Venables

See Also

splineKnots, interpSpline

Examples

require(graphics); require(stats)
xx <- seq(-pi, pi, length.out = 16)[-1]
yy <- sin(xx)
frm <- data.frame(xx, yy)
pispl <- periodicSpline(xx, yy, period = 2 * pi)
pispl
pispl2 <- periodicSpline(yy ~ xx, frm, period = 2 * pi)
stopifnot(all.equal(pispl, pispl2))# pispl and pispl2 are the same

plot(pispl) # displays over one period
points(yy ~ xx, col = "brown")
plot(predict(pispl, seq(-3*pi, 3*pi, length.out = 101)), type = "l")

polySpline Piecewise Polynomial Spline Representation

Description

Create the piecewise polynomial representation of a spline object.

Usage

polySpline(object, ...)
as.polySpline(object, ...)

Arguments

object An object that inherits from class spline.

... Optional additional arguments. At present no additional arguments are used.

1100 predict.bs

Value

An object that inherits from class polySpline. This is the piecewise polynomial representation of
a univariate spline function. It is defined by a set of distinct numeric values called knots. The spline
function is a polynomial function between each successive pair of knots. At each interior knot the
polynomial segments on each side are constrained to have the same value of the function and some
of its derivatives.

Author(s)

Douglas Bates and Bill Venables

See Also

interpSpline, periodicSpline, splineKnots, splineOrder

Examples

require(graphics)
ispl <- polySpline(interpSpline(weight ~ height, women, bSpline = TRUE))
print(ispl) # print the piecewise polynomial representation
plot(ispl) # plots over the range of the knots
points(women$height, women$weight)

predict.bs Evaluate a Spline Basis

Description

Evaluate a predefined spline basis at given values.

Usage

S3 method for class ’bs’
predict(object, newx, ...)

S3 method for class ’ns’
predict(object, newx, ...)

Arguments

object the result of a call to bs or ns having attributes describing knots, degree, etc.

newx the x values at which evaluations are required.

... Optional additional arguments. At present no additional arguments are used.

Value

An object just like object, except evaluated at the new values of x.

These are methods for the generic function predict for objects inheriting from classes "bs" or
"ns". See predict for the general behavior of this function.

predict.bSpline 1101

See Also

bs, ns, poly.

Examples

require(stats)
basis <- ns(women$height, df = 5)
newX <- seq(58, 72, length.out = 51)
evaluate the basis at the new data
predict(basis, newX)

predict.bSpline Evaluate a Spline at New Values of x

Description

The predict methods for the classes that inherit from the virtual classes bSpline and polySpline
are used to evaluate the spline or its derivatives. The plot method for a spline object first evaluates
predict with the x argument missing, then plots the resulting xyVector with type = "l".

Usage

S3 method for class ’bSpline’
predict(object, x, nseg=50, deriv=0, ...)
S3 method for class ’nbSpline’
predict(object, x, nseg=50, deriv=0, ...)
S3 method for class ’pbSpline’
predict(object, x, nseg=50, deriv=0, ...)
S3 method for class ’npolySpline’
predict(object, x, nseg=50, deriv=0, ...)
S3 method for class ’ppolySpline’
predict(object, x, nseg=50, deriv=0, ...)

Arguments

object An object that inherits from the bSpline or the polySpline class.
x A numeric vector of x values at which to evaluate the spline. If this argument is

missing a suitable set of x values is generated as a sequence of nseq segments
spanning the range of the knots.

nseg A positive integer giving the number of segments in a set of equally-spaced x
values spanning the range of the knots in object. This value is only used if x is
missing.

deriv An integer between 0 and splineOrder(object) - 1 specifying the derivative
to evaluate.

... further arguments passed to or from other methods.

Value

an xyVector with components

x the supplied or inferred numeric vector of x values
y the value of the spline (or its deriv’th derivative) at the x vector

1102 splineDesign

Author(s)

Douglas Bates and Bill Venables

See Also

xyVector, interpSpline, periodicSpline

Examples

require(graphics); require(stats)
ispl <- interpSpline(weight ~ height, women)
opar <- par(mfrow = c(2, 2), las = 1)
plot(predict(ispl, nseg = 201), # plots over the range of the knots

main = "Original data with interpolating spline", type = "l",
xlab = "height", ylab = "weight")

points(women$height, women$weight, col = 4)
plot(predict(ispl, nseg = 201, deriv = 1),

main = "First derivative of interpolating spline", type = "l",
xlab = "height", ylab = "weight")

plot(predict(ispl, nseg = 201, deriv = 2),
main = "Second derivative of interpolating spline", type = "l",
xlab = "height", ylab = "weight")

plot(predict(ispl, nseg = 401, deriv = 3),
main = "Third derivative of interpolating spline", type = "l",
xlab = "height", ylab = "weight")

par(opar)

splineDesign Design Matrix for B-splines

Description

Evaluate the design matrix for the B-splines defined by knots at the values in x.

Usage

splineDesign(knots, x, ord = 4, derivs, outer.ok = FALSE, sparse = FALSE)
spline.des (knots, x, ord = 4, derivs, outer.ok = FALSE, sparse = FALSE)

Arguments

knots a numeric vector of knot positions with non-decreasing values.

x a numeric vector of values at which to evaluate the B-spline functions or deriva-
tives. Unless outer.ok is true, the values in x must be between knots[ord]
and knots[length(knots) + 1 - ord].

ord a positive integer giving the order of the spline function. This is the number of
coefficients in each piecewise polynomial segment, thus a cubic spline has order
4. Defaults to 4.

derivs an integer vector of the same length as x and with values between 0 and ord - 1.
The derivative of the given order is evaluated at the x positions. Defaults to a
vector of zeroes of the same length as x.

splineKnots 1103

outer.ok logical indicating if x should be allowed outside the inner knots, see the x argu-
ment.

sparse logical indicating if the result should inherit from class sparseMatrix (package
Matrix).

Value

A matrix with length(x) rows and length(knots) - ord columns. The i’th row of the
matrix contains the coefficients of the B-splines (or the indicated derivative of the B-splines) defined
by the knot vector and evaluated at the i’th value of x. Each B-spline is defined by a set of ord
successive knots so the total number of B-splines is length(knots)-ord.

Note

The older spline.des function takes the same arguments but returns a list with several components
including knots, ord, derivs, and design. The design component is the same as the value of the
splineDesign function.

Author(s)

Douglas Bates and Bill Venables

Examples

require(graphics)
splineDesign(knots = 1:10, x = 4:7)
"visualize" band structure
Matrix::drop0(zapsmall(6*splineDesign(knots = 1:40, x = 4:37, sparse=TRUE)))

knots <- c(1,1.8,3:5,6.5,7,8.1,9.2,10)# 10 => 10-4 = 6 Basis splines
x <- seq(min(knots)-1, max(knots)+1, length.out=501)
bb <- splineDesign(knots, x=x, outer.ok = TRUE)

plot(range(x), c(0,1), type="n", xlab="x", ylab="",
main= "B-splines - sum to 1 inside inner knots")

mtext(expression(B[j](x) *" and "* sum(B[j](x), j==1, 6)), adj=0)
abline(v=knots, lty=3, col="light gray")
abline(v=knots[c(4,length(knots)-3)], lty=3, col="gray10")
lines(x, rowSums(bb), col="gray", lwd=2)
matlines(x, bb, ylim = c(0,1), lty=1)

splineKnots Knot Vector from a Spline

Description

Return the knot vector corresponding to a spline object.

Usage

splineKnots(object)

1104 splineOrder

Arguments

object an object that inherits from class "spline".

Value

A non-decreasing numeric vector of knot positions.

Author(s)

Douglas Bates and Bill Venables

Examples

ispl <- interpSpline(weight ~ height, women)
splineKnots(ispl)

splineOrder Determine the Order of a Spline

Description

Return the order of a spline object.

Usage

splineOrder(object)

Arguments

object An object that inherits from class "spline".

Details

The order of a spline is the number of coefficients in each piece of the piecewise polynomial repre-
sentation. Thus a cubic spline has order 4.

Value

A positive integer.

Author(s)

Douglas Bates and Bill Venables

See Also

splineKnots, interpSpline, periodicSpline

Examples

splineOrder(interpSpline(weight ~ height, women))

xyVector 1105

xyVector Construct an xyVector Object

Description

Create an object to represent a set of x-y pairs. The resulting object can be treated as a matrix or as
a data frame or as a vector. When treated as a vector it reduces to the y component only.

The result of functions such as predict.spline is returned as an xyVector object so the x-values
used to generate the y-positions are retained, say for purposes of generating plots.

Usage

xyVector(x, y)

Arguments

x a numeric vector

y a numeric vector of the same length as x

Value

An object of class xyVector with components

x a numeric vector

y a numeric vector of the same length as x

Author(s)

Douglas Bates and Bill Venables

Examples

require(stats); require(graphics)
ispl <- interpSpline(weight ~ height, women)
weights <- predict(ispl, seq(55, 75, length.out = 51))
class(weights)
plot(weights, type = "l", xlab = "height", ylab = "weight")
points(women$height, women$weight)
weights

1106 xyVector

Chapter 8

The stats package

stats-package The R Stats Package

Description

R statistical functions

Details

This package contains functions for statistical calculations and random number generation.

For a complete list of functions, use library(help="stats").

Author(s)

R Core Team and contributors worldwide

Maintainer: R Core Team <R-core@r-project.org>

.checkMFClasses Functions to Check the Type of Variables passed to Model Frames

Description

.checkMFClasses checks if the variables used in a predict method agree in type with those used
for fitting.

.MFclass categorizes variables for this purpose.

Usage

.checkMFClasses(cl, m, ordNotOK = FALSE)

.MFclass(x)

.getXlevels(Terms, m)

1107

1108 acf

Arguments

cl a character vector of class descriptions to match.

m a model frame.

x any R object.

ordNotOK logical: are ordered factors different?

Terms a terms object.

Details

For applications involving model.matrix such as linear models we do not need to differentiate
between ordered factors and factors as although these affect the coding, the coding used in the fit
is already recorded and imposed during prediction. However, other applications may treat ordered
factors differently: rpart does, for example.

Value

.MFclass returns a character string, one of "logical", "ordered", "factor", "numeric",
"nmatrix.*" (a numeric matrix with a number of columns appended) or "other".

.getXlevels returns a named character vector, or NULL.

acf Auto- and Cross- Covariance and -Correlation Function Estimation

Description

The function acf computes (and by default plots) estimates of the autocovariance or autocorrelation
function. Function pacf is the function used for the partial autocorrelations. Function ccf computes
the cross-correlation or cross-covariance of two univariate series.

Usage

acf(x, lag.max = NULL,
type = c("correlation", "covariance", "partial"),
plot = TRUE, na.action = na.fail, demean = TRUE, ...)

pacf(x, lag.max, plot, na.action, ...)

Default S3 method:
pacf(x, lag.max = NULL, plot = TRUE, na.action = na.fail,

...)

ccf(x, y, lag.max = NULL, type = c("correlation", "covariance"),
plot = TRUE, na.action = na.fail, ...)

S3 method for class ’acf’
x[i, j]

acf 1109

Arguments

x, y a univariate or multivariate (not ccf) numeric time series object or a numeric
vector or matrix, or an "acf" object.

lag.max maximum lag at which to calculate the acf. Default is 10 log10(N/m) where N
is the number of observations andm the number of series. Will be automatically
limited to one less than the number of observations in the series.

type character string giving the type of acf to be computed. Allowed values are
"correlation" (the default), "covariance" or "partial".

plot logical. If TRUE (the default) the acf is plotted.

na.action function to be called to handle missing values. na.pass can be used.

demean logical. Should the covariances be about the sample means?

... further arguments to be passed to plot.acf.

i a set of lags (time differences) to retain.

j a set of series (names or numbers) to retain.

Details

For type = "correlation" and "covariance", the estimates are based on the sample covariance.
(The lag 0 autocorrelation is fixed at 1 by convention.)

By default, no missing values are allowed. If the na.action function passes through missing
values (as na.pass does), the covariances are computed from the complete cases. This means that
the estimate computed may well not be a valid autocorrelation sequence, and may contain missing
values. Missing values are not allowed when computing the PACF of a multivariate time series.

The partial correlation coefficient is estimated by fitting autoregressive models of successively
higher orders up to lag.max.

The generic function plot has a method for objects of class "acf".

The lag is returned and plotted in units of time, and not numbers of observations.

There are print and subsetting methods for objects of class "acf".

Value

An object of class "acf", which is a list with the following elements:

lag A three dimensional array containing the lags at which the acf is estimated.

acf An array with the same dimensions as lag containing the estimated acf.

type The type of correlation (same as the type argument).

n.used The number of observations in the time series.

series The name of the series x.

snames The series names for a multivariate time series.

The lag k value returned by ccf(x,y) estimates the correlation between x[t+k] and y[t].

The result is returned invisibly if plot is TRUE.

Author(s)

Original: Paul Gilbert, Martyn Plummer. Extensive modifications and univariate case of pacf by
B. D. Ripley.

1110 acf2AR

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition.
Springer-Verlag.

(This contains the exact definitions used.)

See Also

plot.acf, ARMAacf for the exact autocorrelations of a given ARMA process.

Examples

require(graphics)

Examples from Venables & Ripley
acf(lh)
acf(lh, type = "covariance")
pacf(lh)

acf(ldeaths)
acf(ldeaths, ci.type = "ma")
acf(ts.union(mdeaths, fdeaths))
ccf(mdeaths, fdeaths, ylab = "cross-correlation")
(just the cross-correlations)

presidents # contains missing values
acf(presidents, na.action = na.pass)
pacf(presidents, na.action = na.pass)

acf2AR Compute an AR Process Exactly Fitting an ACF

Description

Compute an AR process exactly fitting an autocorrelation function.

Usage

acf2AR(acf)

Arguments

acf An autocorrelation or autocovariance sequence.

Value

A matrix, with one row for the computed AR(p) coefficients for 1 <= p <= length(acf).

See Also

ARMAacf, ar.yw which does this from an empirical ACF.

add1 1111

Examples

(Acf <- ARMAacf(c(0.6, 0.3, -0.2)))
acf2AR(Acf)

add1 Add or Drop All Possible Single Terms to a Model

Description

Compute all the single terms in the scope argument that can be added to or dropped from the model,
fit those models and compute a table of the changes in fit.

Usage

add1(object, scope, ...)

Default S3 method:
add1(object, scope, scale = 0, test = c("none", "Chisq"),

k = 2, trace = FALSE, ...)

S3 method for class ’lm’
add1(object, scope, scale = 0, test = c("none", "Chisq", "F"),

x = NULL, k = 2, ...)

S3 method for class ’glm’
add1(object, scope, scale = 0, test = c("none", "Rao", "LRT", "Chisq", "F"),

x = NULL, k = 2, ...)

drop1(object, scope, ...)

Default S3 method:
drop1(object, scope, scale = 0, test = c("none", "Chisq"),

k = 2, trace = FALSE, ...)

S3 method for class ’lm’
drop1(object, scope, scale = 0, all.cols = TRUE,

test = c("none", "Chisq", "F"), k = 2, ...)

S3 method for class ’glm’
drop1(object, scope, scale = 0, test = c("none", "Rao", "LRT", "Chisq", "F"),

k = 2, ...)

Arguments

object a fitted model object.

scope a formula giving the terms to be considered for adding or dropping.

scale an estimate of the residual mean square to be used in computing Cp. Ignored if
0 or NULL.

1112 add1

test should the results include a test statistic relative to the original model? The F test
is only appropriate for lm and aov models or perhaps for glm fits with estimated
dispersion. The χ2 test can be an exact test (lm models with known scale) or a
likelihood-ratio test or a test of the reduction in scaled deviance depending on the
method. For glm fits, you can also choose "LRT" and "Rao" for likelihood ratio
tests and Rao’s efficient score test. The former is synonymous with "Chisq"
(although both have an asymptotic chi-square distribution).

k the penalty constant in AIC / Cp.

trace if TRUE, print out progress reports.

x a model matrix containing columns for the fitted model and all terms in the upper
scope. Useful if add1 is to be called repeatedly. Warning: no checks are done
on its validity.

all.cols (Provided for compatibility with S.) Logical to specify whether all columns of
the design matrix should be used. If FALSE then non-estimable columns are
dropped, but the result is not usually statistically meaningful.

... further arguments passed to or from other methods.

Details

For drop1 methods, a missing scope is taken to be all terms in the model. The hierarchy is respected
when considering terms to be added or dropped: all main effects contained in a second-order inter-
action must remain, and so on.

In a scope formula . means ‘what is already there’.

The methods for lm and glm are more efficient in that they do not recompute the model matrix and
call the fit methods directly.

The default output table gives AIC, defined as minus twice log likelihood plus 2pwhere p is the rank
of the model (the number of effective parameters). This is only defined up to an additive constant
(like log-likelihoods). For linear Gaussian models with fixed scale, the constant is chosen to give
Mallows’ Cp, RSS/scale + 2p − n. Where Cp is used, the column is labelled as Cp rather than
AIC.

The F tests for the "glm" methods are based on analysis of deviance tests, so if the dispersion is
estimated it is based on the residual deviance, unlike the F tests of anova.glm.

Value

An object of class "anova" summarizing the differences in fit between the models.

Warning

The model fitting must apply the models to the same dataset. Most methods will attempt to use a
subset of the data with no missing values for any of the variables if na.action=na.omit, but this
may give biased results. Only use these functions with data containing missing values with great
care.

The default methods make calls to the function nobs to check that the number of observations
involved in the fitting process remained unchanged.

addmargins 1113

Note

These are not fully equivalent to the functions in S. There is no keep argument, and the methods
used are not quite so computationally efficient.

Their authors’ definitions of Mallows’ Cp and Akaike’s AIC are used, not those of the authors of
the models chapter of S.

Author(s)

The design was inspired by the S functions of the same names described in Chambers (1992).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

step, aov, lm, extractAIC, anova

Examples

require(graphics); require(utils)
following example(swiss)
lm1 <- lm(Fertility ~ ., data = swiss)
add1(lm1, ~ I(Education^2) + .^2)
drop1(lm1, test="F") # So called ’type II’ anova

following example(glm)

drop1(glm.D93, test="Chisq")
drop1(glm.D93, test="F")
add1(glm.D93, scope=~outcome*treatment, test="Rao") ## Pearson Chi-square

addmargins Puts Arbitrary Margins on Multidimensional Tables or Arrays

Description

For a given table one can specify which of the classifying factors to expand by one or more levels to
hold margins to be calculated. One may for example form sums and means over the first dimension
and medians over the second. The resulting table will then have two extra levels for the first dimen-
sion and one extra level for the second. The default is to sum over all margins in the table. Other
possibilities may give results that depend on the order in which the margins are computed. This is
flagged in the printed output from the function.

Usage

addmargins(A, margin = seq_along(dim(A)), FUN = sum, quiet = FALSE)

1114 addmargins

Arguments

A table or array. The function uses the presence of the "dim" and "dimnames"
attributes of A.

margin vector of dimensions over which to form margins. Margins are formed in the
order in which dimensions are specified in margin.

FUN list of the same length as margin, each element of the list being either a function
or a list of functions. Names of the list elements will appear as levels in dim-
names of the result. Unnamed list elements will have names constructed: the
name of a function or a constructed name based on the position in the table.

quiet logical which suppresses the message telling the order in which the margins
were computed.

Details

If the functions used to form margins are not commutative the result depends on the order in which
margins are computed. Annotation of margins is done via naming the FUN list.

Value

A table or array with the same number of dimensions as A, but with extra levels of the dimensions
mentioned in margin. The number of levels added to each dimension is the length of the entries in
FUN. A message with the order of computation of margins is printed.

Author(s)

Bendix Carstensen, Steno Diabetes Center & Department of Biostatistics, University of Copen-
hagen, http://www.biostat.ku.dk/~bxc, autumn 2003. Margin naming enhanced by Duncan
Murdoch.

See Also

table, ftable, margin.table.

Examples

Aye <- sample(c("Yes", "Si", "Oui"), 177, replace = TRUE)
Bee <- sample(c("Hum", "Buzz"), 177, replace = TRUE)
Sea <- sample(c("White", "Black", "Red", "Dead"), 177, replace = TRUE)
(A <- table(Aye, Bee, Sea))
addmargins(A)

ftable(A)
ftable(addmargins(A))

Non-commutative functions - note differences between resulting tables:
ftable(addmargins(A, c(1,3),

FUN = list(Sum = sum, list(Min = min, Max = max))))
ftable(addmargins(A, c(3,1),

FUN = list(list(Min = min, Max = max), Sum = sum)))

Weird function needed to return the N when computing percentages
sqsm <- function(x) sum(x)^2/100
B <- table(Sea, Bee)
round(sweep(addmargins(B, 1, list(list(All = sum, N = sqsm))), 2,

http://www.biostat.ku.dk/~bxc

aggregate 1115

apply(B, 2, sum)/100, "/"), 1)
round(sweep(addmargins(B, 2, list(list(All = sum, N = sqsm))), 1,

apply(B, 1, sum)/100, "/"), 1)

A total over Bee requires formation of the Bee-margin first:
mB <- addmargins(B, 2, FUN = list(list(Total = sum)))
round(ftable(sweep(addmargins(mB, 1, list(list(All = sum, N = sqsm))), 2,

apply(mB,2,sum)/100, "/")), 1)

Zero.Printing table+margins:
set.seed(1)
x <- sample(1:7, 20, replace=TRUE)
y <- sample(1:7, 20, replace=TRUE)
tx <- addmargins(table(x, y))
print(tx, zero.print = ".")

aggregate Compute Summary Statistics of Data Subsets

Description

Splits the data into subsets, computes summary statistics for each, and returns the result in a conve-
nient form.

Usage

aggregate(x, ...)

Default S3 method:
aggregate(x, ...)

S3 method for class ’data.frame’
aggregate(x, by, FUN, ..., simplify = TRUE)

S3 method for class ’formula’
aggregate(formula, data, FUN, ...,

subset, na.action = na.omit)

S3 method for class ’ts’
aggregate(x, nfrequency = 1, FUN = sum, ndeltat = 1,

ts.eps = getOption("ts.eps"), ...)

Arguments

x an R object.

by a list of grouping elements, each as long as the variables in x.

FUN a function to compute the summary statistics which can be applied to all data
subsets.

simplify a logical indicating whether results should be simplified to a vector or matrix if
possible.

1116 aggregate

formula a formula, such as y ~ x or cbind(y1, y2) ~ x1 + x2, where the y variables
are numeric data to be split into groups according to the grouping x variables
(usually factors).

data a data frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NA values.
The default is to ignore missing values in the given variables.

nfrequency new number of observations per unit of time; must be a divisor of the frequency
of x.

ndeltat new fraction of the sampling period between successive observations; must be a
divisor of the sampling interval of x.

ts.eps tolerance used to decide if nfrequency is a sub-multiple of the original fre-
quency.

... further arguments passed to or used by methods.

Details

aggregate is a generic function with methods for data frames and time series.

The default method aggregate.default uses the time series method if x is a time series, and
otherwise coerces x to a data frame and calls the data frame method.

aggregate.data.frame is the data frame method. If x is not a data frame, it is coerced to one,
which must have a non-zero number of rows. Then, each of the variables (columns) in x is split
into subsets of cases (rows) of identical combinations of the components of by, and FUN is applied
to each such subset with further arguments in ... passed to it. The result is reformatted into
a data frame containing the variables in by and x. The ones arising from by contain the unique
combinations of grouping values used for determining the subsets, and the ones arising from x
the corresponding summaries for the subset of the respective variables in x. If simplify is true,
summaries are simplified to vectors or matrices if they have a common length of one or greater than
one, respectively; otherwise, lists of summary results according to subsets are obtained. Rows with
missing values in any of the by variables will be omitted from the result. (Note that versions of R
prior to 2.11.0 required FUN to be a scalar function.)

aggregate.formula is a standard formula interface to aggregate.data.frame.

aggregate.ts is the time series method, and requires FUN to be a scalar function. If x is not
a time series, it is coerced to one. Then, the variables in x are split into appropriate blocks of
length frequency(x) / nfrequency, and FUN is applied to each such block, with further (named)
arguments in ... passed to it. The result returned is a time series with frequency nfrequency
holding the aggregated values. Note that this make most sense for a quarterly or yearly result when
the original series covers a whole number of quarters or years: in particular aggregating a monthly
series to quarters starting in February does not give a conventional quarterly series.

FUN is passed to match.fun, and hence it can be a function or a symbol or character string naming
a function.

Value

For the time series method, a time series of class "ts" or class c("mts", "ts").

For the data frame method, a data frame with columns corresponding to the grouping variables in by
followed by aggregated columns from x. If the by has names, the non-empty times are used to label
the columns in the results, with unnamed grouping variables being named Group.i for by[[i]].

aggregate 1117

Author(s)

Kurt Hornik, with contributions by Arni Magnusson.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

apply, lapply, tapply.

Examples

Compute the averages for the variables in ’state.x77’, grouped
according to the region (Northeast, South, North Central, West) that
each state belongs to.
aggregate(state.x77, list(Region = state.region), mean)

Compute the averages according to region and the occurrence of more
than 130 days of frost.
aggregate(state.x77,

list(Region = state.region,
Cold = state.x77[,"Frost"] > 130),

mean)
(Note that no state in ’South’ is THAT cold.)

example with character variables and NAs
testDF <- data.frame(v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),

v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99))
by1 <- c("red","blue",1,2,NA,"big",1,2,"red",1,NA,12)
by2 <- c("wet","dry",99,95,NA,"damp",95,99,"red",99,NA,NA)
aggregate(x = testDF, by = list(by1, by2), FUN = "mean")

and if you want to treat NAs as a group
fby1 <- factor(by1, exclude = "")
fby2 <- factor(by2, exclude = "")
aggregate(x = testDF, by = list(fby1, fby2), FUN = "mean")

Formulas, one ~ one, one ~ many, many ~ one, and many ~ many:
aggregate(weight ~ feed, data = chickwts, mean)
aggregate(breaks ~ wool + tension, data = warpbreaks, mean)
aggregate(cbind(Ozone, Temp) ~ Month, data = airquality, mean)
aggregate(cbind(ncases, ncontrols) ~ alcgp + tobgp, data = esoph, sum)

Dot notation:
aggregate(. ~ Species, data = iris, mean)
aggregate(len ~ ., data = ToothGrowth, mean)

Often followed by xtabs():
ag <- aggregate(len ~ ., data = ToothGrowth, mean)
xtabs(len ~ ., data = ag)

1118 AIC

Compute the average annual approval ratings for American presidents.
aggregate(presidents, nfrequency = 1, FUN = mean)
Give the summer less weight.
aggregate(presidents, nfrequency = 1,

FUN = weighted.mean, w = c(1, 1, 0.5, 1))

AIC Akaike’s An Information Criterion

Description

Generic function calculating Akaike’s ‘An Information Criterion’ for one or several fitted model ob-
jects for which a log-likelihood value can be obtained, according to the formula−2log-likelihood+
knpar, where npar represents the number of parameters in the fitted model, and k = 2 for the usual
AIC, or k = log(n) (n being the number of observations) for the so-called BIC or SBC (Schwarz’s
Bayesian criterion).

Usage

AIC(object, ..., k = 2)

BIC(object, ...)

Arguments

object a fitted model object for which there exists a logLik method to extract the cor-
responding log-likelihood, or an object inheriting from class logLik.

... optionally more fitted model objects.
k numeric, the penalty per parameter to be used; the default k = 2 is the classical

AIC.

Details

These are generic functions (with S4 generics defined in package stats4): however methods should
be defined for the log-likelihood function logLik rather than these functions: the action of their
default methods is to call logLik on all the supplied objects and assemble the results.

When comparing fitted objects, the smaller the AIC or BIC, the better the fit.

The log-likelihood and hence the AIC/BIC is only defined up to an additive constant. Different
constants have conventionally be used for different purposes and so extractAIC and AIC may give
different values (and do for models of class "lm": see the help for extractAIC). Particular care is
needed when comparing fits of different classes (with, for example, a comparison of a Poisson and
gamma GLM being meaningless since one has a discrete response, the other continuous).

BIC is defined as AIC(object, ..., k = log(nobs(object))). This needs the number of ob-
servations to be known: the default method looks first for a "nobs" attribute on the return value
from the logLik method, then tries the nobs generic, and if neither succeed returns BIC as NA.

Value

If just one object is provided, a numeric value with the corresponding AIC (or BIC, or . . . , depend-
ing on k).

If multiple objects are provided, a data.frame with rows corresponding to the objects and columns
representing the number of parameters in the model (df) and the AIC or BIC.

alias 1119

Author(s)

Originally by José Pinheiro and Douglas Bates, more recent revisions by R-core.

References

Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986). Akaike Information Criterion Statistics. D.
Reidel Publishing Company.

See Also

extractAIC, logLik, nobs.

Examples

lm1 <- lm(Fertility ~ . , data = swiss)
AIC(lm1)
stopifnot(all.equal(AIC(lm1),

AIC(logLik(lm1))))
BIC(lm1)

lm2 <- update(lm1, . ~ . -Examination)
AIC(lm1, lm2)
BIC(lm1, lm2)

alias Find Aliases (Dependencies) in a Model

Description

Find aliases (linearly dependent terms) in a linear model specified by a formula.

Usage

alias(object, ...)

S3 method for class ’formula’
alias(object, data, ...)

S3 method for class ’lm’
alias(object, complete = TRUE, partial = FALSE,

partial.pattern = FALSE, ...)

Arguments

object A fitted model object, for example from lm or aov, or a formula for
alias.formula.

data Optionally, a data frame to search for the objects in the formula.

complete Should information on complete aliasing be included?

partial Should information on partial aliasing be included?

1120 alias

partial.pattern

Should partial aliasing be presented in a schematic way? If this is done, the
results are presented in a more compact way, usually giving the deciles of the
coefficients.

... further arguments passed to or from other methods.

Details

Although the main method is for class "lm", alias is most useful for experimental designs and
so is used with fits from aov. Complete aliasing refers to effects in linear models that cannot be
estimated independently of the terms which occur earlier in the model and so have their coefficients
omitted from the fit. Partial aliasing refers to effects that can be estimated less precisely because of
correlations induced by the design.

Value

A list (of class "listof") containing components

Model Description of the model; usually the formula.

Complete A matrix with columns corresponding to effects that are linearly dependent on
the rows.

Partial The correlations of the estimable effects, with a zero diagonal. An object of
class "mtable" which has its own print method.

Note

The aliasing pattern may depend on the contrasts in use: Helmert contrasts are probably most useful.

The defaults are different from those in S.

Author(s)

The design was inspired by the S function of the same name described in Chambers et al. (1992).

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed experi-
ments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth &
Brooks/Cole.

Examples

From Venables and Ripley (2002) p.165.
utils::data(npk, package="MASS")

op <- options(contrasts=c("contr.helmert", "contr.poly"))
npk.aov <- aov(yield ~ block + N*P*K, npk)
alias(npk.aov)
options(op)# reset

anova 1121

anova Anova Tables

Description

Compute analysis of variance (or deviance) tables for one or more fitted model objects.

Usage

anova(object, ...)

Arguments

object an object containing the results returned by a model fitting function (e.g., lm or
glm).

... additional objects of the same type.

Value

This (generic) function returns an object of class anova. These objects represent analysis-of-
variance and analysis-of-deviance tables. When given a single argument it produces a table which
tests whether the model terms are significant.

When given a sequence of objects, anova tests the models against one another in the order specified.

The print method for anova objects prints tables in a ‘pretty’ form.

Warning

The comparison between two or more models will only be valid if they are fitted to the same dataset.
This may be a problem if there are missing values and R’s default of na.action = na.omit is used.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S, Wadsworth & Brooks/Cole.

See Also

coefficients, effects, fitted.values, residuals, summary, drop1, add1.

anova.glm Analysis of Deviance for Generalized Linear Model Fits

Description

Compute an analysis of deviance table for one or more generalized linear model fits.

Usage

S3 method for class ’glm’
anova(object, ..., dispersion = NULL, test = NULL)

1122 anova.glm

Arguments

object, ... objects of class glm, typically the result of a call to glm, or a list of objects for
the "glmlist" method.

dispersion the dispersion parameter for the fitting family. By default it is obtained from the
object(s).

test a character string, (partially) matching one of "Chisq", "LRT", "Rao", "F" or
"Cp". See stat.anova.

Details

Specifying a single object gives a sequential analysis of deviance table for that fit. That is, the
reductions in the residual deviance as each term of the formula is added in turn are given in as the
rows of a table, plus the residual deviances themselves.

If more than one object is specified, the table has a row for the residual degrees of freedom and
deviance for each model. For all but the first model, the change in degrees of freedom and deviance
is also given. (This only makes statistical sense if the models are nested.) It is conventional to list
the models from smallest to largest, but this is up to the user.

The table will optionally contain test statistics (and P values) comparing the reduction in deviance
for the row to the residuals. For models with known dispersion (e.g., binomial and Poisson fits)
the chi-squared test is most appropriate, and for those with dispersion estimated by moments (e.g.,
gaussian, quasibinomial and quasipoisson fits) the F test is most appropriate. Mallows’ Cp
statistic is the residual deviance plus twice the estimate of σ2 times the residual degrees of freedom,
which is closely related to AIC (and a multiple of it if the dispersion is known). You can also choose
"LRT" and "Rao" for likelihood ratio tests and Rao’s efficient score test. The former is synonymous
with "Chisq" (although both have an asymptotic chi-square distribution).

The dispersion estimate will be taken from the largest model, using the value returned by
summary.glm. As this will in most cases use a Chisquared-based estimate, the F tests are not
based on the residual deviance in the analysis of deviance table shown.

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models by anova or anova.glmlist will only be valid if they
are fitted to the same dataset. This may be a problem if there are missing values and R’s default of
na.action = na.omit is used, and anova.glmlist will detect this with an error.

References

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in
S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

glm, anova.

drop1 for so-called ‘type II’ anova where each term is dropped one at a time respecting their hier-
archy.

anova.lm 1123

Examples

--- Continuing the Example from ’?glm’:

anova(glm.D93)
anova(glm.D93, test = "Cp")
anova(glm.D93, test = "Chisq")
glm.D93a <- update(glm.D93, ~treatment*outcome) ## equivalent to Pearson Chi-square
anova(glm.D93, glm.D93a, test = "Rao")

anova.lm ANOVA for Linear Model Fits

Description

Compute an analysis of variance table for one or more linear model fits.

Usage

S3 method for class ’lm’
anova(object, ...)

anova.lmlist(object, ..., scale = 0, test = "F")

Arguments

object, ... objects of class lm, usually, a result of a call to lm.

test a character string specifying the test statistic to be used. Can be one of "F",
"Chisq" or "Cp", with partial matching allowed, or NULL for no test.

scale numeric. An estimate of the noise variance σ2. If zero this will be estimated
from the largest model considered.

Details

Specifying a single object gives a sequential analysis of variance table for that fit. That is, the
reductions in the residual sum of squares as each term of the formula is added in turn are given in
as the rows of a table, plus the residual sum of squares.

The table will contain F statistics (and P values) comparing the mean square for the row to the
residual mean square.

If more than one object is specified, the table has a row for the residual degrees of freedom and sum
of squares for each model. For all but the first model, the change in degrees of freedom and sum of
squares is also given. (This only make statistical sense if the models are nested.) It is conventional
to list the models from smallest to largest, but this is up to the user.

Optionally the table can include test statistics. Normally the F statistic is most appropriate, which
compares the mean square for a row to the residual sum of squares for the largest model considered.
If scale is specified chi-squared tests can be used. Mallows’ Cp statistic is the residual sum of
squares plus twice the estimate of σ2 times the residual degrees of freedom.

Value

An object of class "anova" inheriting from class "data.frame".

1124 anova.mlm

Warning

The comparison between two or more models will only be valid if they are fitted to the same dataset.
This may be a problem if there are missing values and R’s default of na.action = na.omit is used,
and anova.lmlist will detect this with an error.

Note

Versions of R prior to 1.2.0 based F tests on pairwise comparisons, and this behaviour can still be
obtained by a direct call to anovalist.lm.

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

The model fitting function lm, anova.

drop1 for so-called ‘type II’ anova where each term is dropped one at a time respecting their hier-
archy.

Examples

sequential table
fit <- lm(sr ~ ., data = LifeCycleSavings)
anova(fit)

same effect via separate models
fit0 <- lm(sr ~ 1, data = LifeCycleSavings)
fit1 <- update(fit0, . ~ . + pop15)
fit2 <- update(fit1, . ~ . + pop75)
fit3 <- update(fit2, . ~ . + dpi)
fit4 <- update(fit3, . ~ . + ddpi)
anova(fit0, fit1, fit2, fit3, fit4, test="F")

anova(fit4, fit2, fit0, test="F") # unconventional order

anova.mlm Comparisons between Multivariate Linear Models

Description

Compute a (generalized) analysis of variance table for one or more multivariate linear models.

Usage

S3 method for class ’mlm’
anova(object, ...,

test = c("Pillai", "Wilks", "Hotelling-Lawley", "Roy", "Spherical"),
Sigma = diag(nrow = p), T = Thin.row(proj(M) - proj(X)),
M = diag(nrow = p), X = ~0,

idata = data.frame(index = seq_len(p)), tol = 1e-7)

anova.mlm 1125

Arguments

object an object of class "mlm".

... further objects of class "mlm".

test choice of test statistic (see below).

Sigma (only relevant if test == "Spherical"). Covariance matrix assumed propor-
tional to Sigma.

T transformation matrix. By default computed from M and X.

M formula or matrix describing the outer projection (see below).

X formula or matrix describing the inner projection (see below).

idata data frame describing intra-block design.

tol tolerance to be used in deciding if the residuals are rank-deficient: see qr.

Details

The anova.mlm method uses either a multivariate test statistic for the summary table, or a test based
on sphericity assumptions (i.e. that the covariance is proportional to a given matrix).

For the multivariate test, Wilks’ statistic is most popular in the literature, but the default Pillai–
Bartlett statistic is recommended by Hand and Taylor (1987). See summary.manova for further
details.

For the "Spherical" test, proportionality is usually with the identity matrix but a different ma-
trix can be specified using Sigma). Corrections for asphericity known as the Greenhouse–Geisser,
respectively Huynh–Feldt, epsilons are given and adjusted F tests are performed.

It is common to transform the observations prior to testing. This typically involves transformation
to intra-block differences, but more complicated within-block designs can be encountered, making
more elaborate transformations necessary. A transformation matrix T can be given directly or spec-
ified as the difference between two projections onto the spaces spanned by M and X, which in turn
can be given as matrices or as model formulas with respect to idata (the tests will be invariant to
parametrization of the quotient space M/X).

As with anova.lm, all test statistics use the SSD matrix from the largest model considered as the
(generalized) denominator.

Contrary to other anova methods, the intercept is not excluded from the display in the single-model
case. When contrast transformations are involved, it often makes good sense to test for a zero
intercept.

Value

An object of class "anova" inheriting from class "data.frame"

Note

The Huynh–Feldt epsilon differs from that calculated by SAS (as of v. 8.2) except when the DF is
equal to the number of observations minus one. This is believed to be a bug in SAS, not in R.

References

Hand, D. J. and Taylor, C. C. (1987) Multivariate Analysis of Variance and Repeated Measures.
Chapman and Hall.

1126 ansari.test

See Also

summary.manova

Examples

require(graphics)
utils::example(SSD) # Brings in the mlmfit and reacttime objects

mlmfit0 <- update(mlmfit, ~0)

Traditional tests of intrasubj. contrasts
Using MANOVA techniques on contrasts:
anova(mlmfit, mlmfit0, X=~1)

Assuming sphericity
anova(mlmfit, mlmfit0, X=~1, test="Spherical")

tests using intra-subject 3x2 design
idata <- data.frame(deg=gl(3,1,6,labels=c(0,4,8)),

noise=gl(2,3,6,labels=c("A","P")))

anova(mlmfit, mlmfit0, X = ~ deg + noise,
idata = idata, test = "Spherical")

anova(mlmfit, mlmfit0, M = ~ deg + noise, X = ~ noise,
idata = idata, test="Spherical")

anova(mlmfit, mlmfit0, M = ~ deg + noise, X = ~ deg,
idata = idata, test="Spherical")

f <- factor(rep(1:2,5)) # bogus, just for illustration
mlmfit2 <- update(mlmfit, ~f)
anova(mlmfit2, mlmfit, mlmfit0, X = ~1, test = "Spherical")
anova(mlmfit2, X = ~1, test = "Spherical")
one-model form, eqiv. to previous

There seems to be a strong interaction in these data
plot(colMeans(reacttime))

ansari.test Ansari-Bradley Test

Description

Performs the Ansari-Bradley two-sample test for a difference in scale parameters.

Usage

ansari.test(x, ...)

Default S3 method:
ansari.test(x, y,

alternative = c("two.sided", "less", "greater"),
exact = NULL, conf.int = FALSE, conf.level = 0.95,

ansari.test 1127

...)

S3 method for class ’formula’
ansari.test(formula, data, subset, na.action, ...)

Arguments

x numeric vector of data values.

y numeric vector of data values.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter.

exact a logical indicating whether an exact p-value should be computed.

conf.int a logical,indicating whether a confidence interval should be computed.

conf.level confidence level of the interval.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the
data values and rhs a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

Suppose that x and y are independent samples from distributions with densities f((t − m)/s)/s
and f(t −m), respectively, where m is an unknown nuisance parameter and s, the ratio of scales,
is the parameter of interest. The Ansari-Bradley test is used for testing the null that s equals 1, the
two-sided alternative being that s 6= 1 (the distributions differ only in variance), and the one-sided
alternatives being s > 1 (the distribution underlying x has a larger variance, "greater") or s < 1
("less").

By default (if exact is not specified), an exact p-value is computed if both samples contain less
than 50 finite values and there are no ties. Otherwise, a normal approximation is used.

Optionally, a nonparametric confidence interval and an estimator for s are computed. If exact p-
values are available, an exact confidence interval is obtained by the algorithm described in Bauer
(1972), and the Hodges-Lehmann estimator is employed. Otherwise, the returned confidence inter-
val and point estimate are based on normal approximations.

Note that mid-ranks are used in the case of ties rather than average scores as employed in Hollander
& Wolfe (1973). See, e.g., Hajek, Sidak and Sen (1999), pages 131ff, for more information.

Value

A list with class "htest" containing the following components:

statistic the value of the Ansari-Bradley test statistic.

p.value the p-value of the test.

null.value the ratio of scales s under the null, 1.

alternative a character string describing the alternative hypothesis.

1128 ansari.test

method the string "Ansari-Bradley test".

data.name a character string giving the names of the data.

conf.int a confidence interval for the scale parameter. (Only present if argument
conf.int = TRUE.)

estimate an estimate of the ratio of scales. (Only present if argument conf.int = TRUE.)

Note

To compare results of the Ansari-Bradley test to those of the F test to compare two variances (under
the assumption of normality), observe that s is the ratio of scales and hence s2 is the ratio of
variances (provided they exist), whereas for the F test the ratio of variances itself is the parameter
of interest. In particular, confidence intervals are for s in the Ansari-Bradley test but for s2 in the F
test.

References

David F. Bauer (1972), Constructing confidence sets using rank statistics. Journal of the American
Statistical Association 67, 687–690.

Jaroslav Hajek, Zbynek Sidak and Pranab K. Sen (1999), Theory of Rank Tests. San Diego, London:
Academic Press.

Myles Hollander and Douglas A. Wolfe (1973), Nonparametric Statistical Methods. New York:
John Wiley & Sons. Pages 83–92.

See Also

fligner.test for a rank-based (nonparametric) k-sample test for homogeneity of variances;
mood.test for another rank-based two-sample test for a difference in scale parameters; var.test
and bartlett.test for parametric tests for the homogeneity in variance.

ansari_test in package coin for exact and approximate conditional p-values for the Ansari-
Bradley test, as well as different methods for handling ties.

Examples

Hollander & Wolfe (1973, p. 86f):
Serum iron determination using Hyland control sera
ramsay <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,

101, 96, 97, 102, 107, 113, 116, 113, 110, 98)
jung.parekh <- c(107, 108, 106, 98, 105, 103, 110, 105, 104,

100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)
ansari.test(ramsay, jung.parekh)

ansari.test(rnorm(10), rnorm(10, 0, 2), conf.int = TRUE)

try more points - failed in 2.4.1
ansari.test(rnorm(100), rnorm(100, 0, 2), conf.int = TRUE)

http://CRAN.R-project.org/package=coin

aov 1129

aov Fit an Analysis of Variance Model

Description

Fit an analysis of variance model by a call to lm for each stratum.

Usage

aov(formula, data = NULL, projections = FALSE, qr = TRUE,
contrasts = NULL, ...)

Arguments

formula A formula specifying the model.

data A data frame in which the variables specified in the formula will be found. If
missing, the variables are searched for in the standard way.

projections Logical flag: should the projections be returned?

qr Logical flag: should the QR decomposition be returned?

contrasts A list of contrasts to be used for some of the factors in the formula. These are not
used for any Error term, and supplying contrasts for factors only in the Error
term will give a warning.

... Arguments to be passed to lm, such as subset or na.action. See ‘Details’
about weights.

Details

This provides a wrapper to lm for fitting linear models to balanced or unbalanced experimental
designs.

The main difference from lm is in the way print, summary and so on handle the fit: this is expressed
in the traditional language of the analysis of variance rather than that of linear models.

If the formula contains a single Error term, this is used to specify error strata, and appropriate
models are fitted within each error stratum.

The formula can specify multiple responses.

Weights can be specified by a weights argument, but should not be used with an Error term, and
are incompletely supported (e.g., not by model.tables).

Value

An object of class c("aov", "lm") or for multiple responses of class
c("maov", "aov", "mlm", "lm") or for multiple error strata of class "aovlist". There
are print and summary methods available for these.

1130 approxfun

Note

aov is designed for balanced designs, and the results can be hard to interpret without balance:
beware that missing values in the response(s) will likely lose the balance. If there are two or more
error strata, the methods used are statistically inefficient without balance, and it may be better to
use lme in package nlme.

Balance can be checked with the replications function.

The default ‘contrasts’ in R are not orthogonal contrasts, and aov and its helper functions will work
better with such contrasts: see the examples for how to select these.

Author(s)

The design was inspired by the S function of the same name described in Chambers et al. (1992).

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed experi-
ments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth &
Brooks/Cole.

See Also

lm, summary.aov, replications, alias, proj, model.tables, TukeyHSD

Examples

From Venables and Ripley (2002) p.165.
utils::data(npk, package="MASS")

Set orthogonal contrasts.
op <- options(contrasts=c("contr.helmert", "contr.poly"))
(npk.aov <- aov(yield ~ block + N*P*K, npk))
summary(npk.aov)
coefficients(npk.aov)

to show the effects of re-ordering terms contrast the two fits
aov(yield ~ block + N * P + K, npk)
aov(terms(yield ~ block + N * P + K, keep.order=TRUE), npk)

as a test, not particularly sensible statistically
npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
npk.aovE
summary(npk.aovE)
options(op)# reset to previous

approxfun Interpolation Functions

Description

Return a list of points which linearly interpolate given data points, or a function performing the
linear (or constant) interpolation.

http://CRAN.R-project.org/package=nlme

approxfun 1131

Usage

approx (x, y = NULL, xout, method = "linear", n=50,
yleft, yright, rule = 1, f = 0, ties = mean)

approxfun(x, y = NULL, method ="linear",
yleft, yright, rule = 1, f = 0, ties = mean)

Arguments

x, y numeric vectors giving the coordinates of the points to be interpolated. Alterna-
tively a single plotting structure can be specified: see xy.coords.

xout an optional set of numeric values specifying where interpolation is to take place.

method specifies the interpolation method to be used. Choices are "linear" or
"constant".

n If xout is not specified, interpolation takes place at n equally spaced points
spanning the interval [min(x), max(x)].

yleft the value to be returned when input x values are less than min(x). The default
is defined by the value of rule given below.

yright the value to be returned when input x values are greater than max(x). The default
is defined by the value of rule given below.

rule an integer (of length 1 or 2) describing how interpolation is to take place outside
the interval [min(x), max(x)]. If rule is 1 then NAs are returned for such points
and if it is 2, the value at the closest data extreme is used. Use, e.g., rule = 2:1,
if the left and right side extrapolation should differ.

f for method = "constant" a number between 0 and 1 inclusive, indicating a
compromise between left- and right-continuous step functions. If y0 and y1 are
the values to the left and right of the point then the value is y0*(1-f)+y1*f so
that f = 0 is right-continuous and f = 1 is left-continuous.

ties Handling of tied x values. Either a function with a single vector argument re-
turning a single number result or the string "ordered".

Details

The inputs can contain missing values which are deleted, so at least two complete (x, y) pairs are
required (for method = "linear", one otherwise). If there are duplicated (tied) x values and
ties is a function it is applied to the y values for each distinct x value. Useful functions in this
context include mean, min, and max. If ties = "ordered" the x values are assumed to be already
ordered. The first y value will be used for interpolation to the left and the last one for interpolation
to the right.

Value

approx returns a list with components x and y, containing n coordinates which interpolate the given
data points according to the method (and rule) desired.

The function approxfun returns a function performing (linear or constant) interpolation of the given
data points. For a given set of x values, this function will return the corresponding interpolated
values. This is often more useful than approx.

1132 ar

Warning

The value returned by approxfun contains references to the code in the current version of R: it is
not intended to be saved and loaded into a different R session.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

spline and splinefun for spline interpolation.

Examples

require(graphics)

x <- 1:10
y <- rnorm(10)
par(mfrow = c(2,1))
plot(x, y, main = "approx(.) and approxfun(.)")
points(approx(x, y), col = 2, pch = "*")
points(approx(x, y, method = "constant"), col = 4, pch = "*")

f <- approxfun(x, y)
curve(f(x), 0, 11, col = "green2")
points(x, y)
is.function(fc <- approxfun(x, y, method = "const")) # TRUE
curve(fc(x), 0, 10, col = "darkblue", add = TRUE)
different extrapolation on left and right side :
plot(approxfun(x, y, rule = 2:1), 0, 11,

col = "tomato", add = TRUE, lty = 3, lwd = 2)

Show treatment of ’ties’ :

x <- c(2,2:4,4,4,5,5,7,7,7)
y <- c(1:6, 5:4, 3:1)
approx(x,y, xout=x)$y # warning
(ay <- approx(x,y, xout=x, ties = "ordered")$y)
stopifnot(ay == c(2,2,3,6,6,6,4,4,1,1,1))
approx(x,y, xout=x, ties = min)$y
approx(x,y, xout=x, ties = max)$y

ar Fit Autoregressive Models to Time Series

Description

Fit an autoregressive time series model to the data, by default selecting the complexity by AIC.

ar 1133

Usage

ar(x, aic = TRUE, order.max = NULL,
method=c("yule-walker", "burg", "ols", "mle", "yw"),
na.action, series, ...)

ar.burg(x, ...)
Default S3 method:
ar.burg(x, aic = TRUE, order.max = NULL,

na.action = na.fail, demean = TRUE, series,
var.method = 1, ...)

S3 method for class ’mts’
ar.burg(x, aic = TRUE, order.max = NULL,

na.action = na.fail, demean = TRUE, series,
var.method = 1, ...)

ar.yw(x, ...)
Default S3 method:
ar.yw(x, aic = TRUE, order.max = NULL,

na.action = na.fail, demean = TRUE, series, ...)
S3 method for class ’mts’
ar.yw(x, aic = TRUE, order.max = NULL,

na.action = na.fail, demean = TRUE, series,
var.method = 1, ...)

ar.mle(x, aic = TRUE, order.max = NULL, na.action = na.fail,
demean = TRUE, series, ...)

S3 method for class ’ar’
predict(object, newdata, n.ahead = 1, se.fit = TRUE, ...)

Arguments

x A univariate or multivariate time series.

aic Logical flag. If TRUE then the Akaike Information Criterion is used to choose
the order of the autoregressive model. If FALSE, the model of order order.max
is fitted.

order.max Maximum order (or order) of model to fit. Defaults to the smaller of N − 1 and
10 log10(N) where N is the number of observations except for method="mle"
where it is the minimum of this quantity and 12.

method Character string giving the method used to fit the model. Must be one of the
strings in the default argument (the first few characters are sufficient). Defaults
to "yule-walker".

na.action function to be called to handle missing values.

demean should a mean be estimated during fitting?

series names for the series. Defaults to deparse(substitute(x)).

var.method the method to estimate the innovations variance (see ‘Details’).

... additional arguments for specific methods.

object a fit from ar.

newdata data to which to apply the prediction.

1134 ar

n.ahead number of steps ahead at which to predict.
se.fit logical: return estimated standard errors of the prediction error?

Details

For definiteness, note that the AR coefficients have the sign in

xt − µ = a1(xt−1 − µ) + · · ·+ ap(xt−p − µ) + et

ar is just a wrapper for the functions ar.yw, ar.burg, ar.ols and ar.mle.

Order selection is done by AIC if aic is true. This is problematic, as of the methods here only
ar.mle performs true maximum likelihood estimation. The AIC is computed as if the variance
estimate were the MLE, omitting the determinant term from the likelihood. Note that this is not the
same as the Gaussian likelihood evaluated at the estimated parameter values. In ar.yw the variance
matrix of the innovations is computed from the fitted coefficients and the autocovariance of x.

ar.burg allows two methods to estimate the innovations variance and hence AIC. Method 1 is
to use the update given by the Levinson-Durbin recursion (Brockwell and Davis, 1991, (8.2.6) on
page 242), and follows S-PLUS. Method 2 is the mean of the sum of squares of the forward and
backward prediction errors (as in Brockwell and Davis, 1996, page 145). Percival and Walden
(1998) discuss both. In the multivariate case the estimated coefficients will depend (slightly) on the
variance estimation method.

Remember that ar includes by default a constant in the model, by removing the overall mean of x
before fitting the AR model, or (ar.mle) estimating a constant to subtract.

Value

For ar and its methods a list of class "ar" with the following elements:

order The order of the fitted model. This is chosen by minimizing the AIC if
aic=TRUE, otherwise it is order.max.

ar Estimated autoregression coefficients for the fitted model.
var.pred The prediction variance: an estimate of the portion of the variance of the time

series that is not explained by the autoregressive model.
x.mean The estimated mean of the series used in fitting and for use in prediction.
x.intercept (ar.ols only.) The intercept in the model for x - x.mean.
aic The differences in AIC between each model and the best-fitting model. Note

that the latter can have an AIC of -Inf.
n.used The number of observations in the time series.
order.max The value of the order.max argument.
partialacf The estimate of the partial autocorrelation function up to lag order.max.
resid residuals from the fitted model, conditioning on the first order observations.

The first order residuals are set to NA. If x is a time series, so is resid.
method The value of the method argument.
series The name(s) of the time series.
frequency The frequency of the time series.
call The matched call.
asy.var.coef (univariate case, order > 0.) The asymptotic-theory variance matrix of the

coefficient estimates.

For predict.ar, a time series of predictions, or if se.fit = TRUE, a list with components pred,
the predictions, and se, the estimated standard errors. Both components are time series.

ar.ols 1135

Note

Only the univariate case of ar.mle is implemented.

Fitting by method="mle" to long series can be very slow.

Author(s)

Martyn Plummer. Univariate case of ar.yw, ar.mle and C code for univariate case of ar.burg by
B. D. Ripley.

References

Brockwell, P. J. and Davis, R. A. (1991) Time Series and Forecasting Methods. Second edition.
Springer, New York. Section 11.4.

Brockwell, P. J. and Davis, R. A. (1996) Introduction to Time Series and Forecasting. Springer,
New York. Sections 5.1 and 7.6.

Percival, D. P. and Walden, A. T. (1998) Spectral Analysis for Physical Applications. Cambridge
University Press.

Whittle, P. (1963) On the fitting of multivariate autoregressions and the approximate canonical
factorization of a spectral density matrix. Biometrika 40, 129–134.

See Also

ar.ols, arima for ARMA models; acf2AR, for AR construction from the ACF.

arima.sim for simulation of AR processes.

Examples

ar(lh)
ar(lh, method="burg")
ar(lh, method="ols")
ar(lh, FALSE, 4) # fit ar(4)

(sunspot.ar <- ar(sunspot.year))
predict(sunspot.ar, n.ahead=25)
try the other methods too

ar(ts.union(BJsales, BJsales.lead))
Burg is quite different here, as is OLS (see ar.ols)
ar(ts.union(BJsales, BJsales.lead), method="burg")

ar.ols Fit Autoregressive Models to Time Series by OLS

Description

Fit an autoregressive time series model to the data by ordinary least squares, by default selecting
the complexity by AIC.

1136 ar.ols

Usage

ar.ols(x, aic = TRUE, order.max = NULL, na.action = na.fail,
demean = TRUE, intercept = demean, series, ...)

Arguments

x A univariate or multivariate time series.

aic Logical flag. If TRUE then the Akaike Information Criterion is used to choose
the order of the autoregressive model. If FALSE, the model of order order.max
is fitted.

order.max Maximum order (or order) of model to fit. Defaults to 10 log10(N) where N is
the number of observations.

na.action function to be called to handle missing values.

demean should the AR model be for x minus its mean?

intercept should a separate intercept term be fitted?

series names for the series. Defaults to deparse(substitute(x)).

... further arguments to be passed to or from methods.

Details

ar.ols fits the general AR model to a possibly non-stationary and/or multivariate system of series
x. The resulting unconstrained least squares estimates are consistent, even if some of the series are
non-stationary and/or co-integrated. For definiteness, note that the AR coefficients have the sign in

xt − µ = a0 + a1(xt−1 − µ) + · · ·+ ap(xt−p − µ) + et

where a0 is zero unless intercept is true, and µ is the sample mean if demean is true, zero other-
wise.

Order selection is done by AIC if aic is true. This is problematic, as ar.ols does not perform
true maximum likelihood estimation. The AIC is computed as if the variance estimate (computed
from the variance matrix of the residuals) were the MLE, omitting the determinant term from the
likelihood. Note that this is not the same as the Gaussian likelihood evaluated at the estimated
parameter values.

Some care is needed if intercept is true and demean is false. Only use this is the series are roughly
centred on zero. Otherwise the computations may be inaccurate or fail entirely.

Value

A list of class "ar" with the following elements:

order The order of the fitted model. This is chosen by minimizing the AIC if
aic=TRUE, otherwise it is order.max.

ar Estimated autoregression coefficients for the fitted model.

var.pred The prediction variance: an estimate of the portion of the variance of the time
series that is not explained by the autoregressive model.

x.mean The estimated mean (or zero if demean is false) of the series used in fitting and
for use in prediction.

x.intercept The intercept in the model for x - x.mean, or zero if intercept is false.

arima 1137

aic The differences in AIC between each model and the best-fitting model. Note
that the latter can have an AIC of -Inf.

n.used The number of observations in the time series.

order.max The value of the order.max argument.

partialacf NULL. For compatibility with ar.

resid residuals from the fitted model, conditioning on the first order observations.
The first order residuals are set to NA. If x is a time series, so is resid.

method The character string "Unconstrained LS".

series The name(s) of the time series.

frequency The frequency of the time series.

call The matched call.

asy.se.coef The asymptotic-theory standard errors of the coefficient estimates.

Author(s)

Adrian Trapletti, Brian Ripley.

References

Luetkepohl, H. (1991): Introduction to Multiple Time Series Analysis. Springer Verlag, NY, pp.
368–370.

See Also

ar

Examples

ar(lh, method="burg")
ar.ols(lh)
ar.ols(lh, FALSE, 4) # fit ar(4)

ar.ols(ts.union(BJsales, BJsales.lead))

x <- diff(log(EuStockMarkets))
ar.ols(x, order.max=6, demean=FALSE, intercept=TRUE)

arima ARIMA Modelling of Time Series

Description

Fit an ARIMA model to a univariate time series.

1138 arima

Usage

arima(x, order = c(0, 0, 0),
seasonal = list(order = c(0, 0, 0), period = NA),
xreg = NULL, include.mean = TRUE,
transform.pars = TRUE,
fixed = NULL, init = NULL,
method = c("CSS-ML", "ML", "CSS"),
n.cond, optim.method = "BFGS",
optim.control = list(), kappa = 1e6)

Arguments

x a univariate time series

order A specification of the non-seasonal part of the ARIMA model: the three com-
ponents (p, d, q) are the AR order, the degree of differencing, and the MA order.

seasonal A specification of the seasonal part of the ARIMA model, plus the period (which
defaults to frequency(x)). This should be a list with components order and
period, but a specification of just a numeric vector of length 3 will be turned
into a suitable list with the specification as the order.

xreg Optionally, a vector or matrix of external regressors, which must have the same
number of rows as x.

include.mean Should the ARMA model include a mean/intercept term? The default is TRUE
for undifferenced series, and it is ignored for ARIMA models with differencing.

transform.pars Logical. If true, the AR parameters are transformed to ensure that they remain
in the region of stationarity. Not used for method = "CSS".

fixed optional numeric vector of the same length as the total number of parameters.
If supplied, only NA entries in fixed will be varied. transform.pars = TRUE
will be overridden (with a warning) if any AR parameters are fixed. It may be
wise to set transform.pars = FALSE when fixing MA parameters, especially
near non-invertibility.

init optional numeric vector of initial parameter values. Missing values will be filled
in, by zeroes except for regression coefficients. Values already specified in
fixed will be ignored.

method Fitting method: maximum likelihood or minimize conditional sum-of-squares.
The default (unless there are missing values) is to use conditional-sum-of-
squares to find starting values, then maximum likelihood.

n.cond Only used if fitting by conditional-sum-of-squares: the number of initial obser-
vations to ignore. It will be ignored if less than the maximum lag of an AR
term.

optim.method The value passed as the method argument to optim.

optim.control List of control parameters for optim.

kappa the prior variance (as a multiple of the innovations variance) for the past obser-
vations in a differenced model. Do not reduce this.

Details

Different definitions of ARMA models have different signs for the AR and/or MA coefficients. The
definition used here has

arima 1139

Xt = a1Xt−1 + · · ·+ apXt−p + et + b1et−1 + . . .+ bqet−q

and so the MA coefficients differ in sign from those of S-PLUS. Further, if include.mean is true
(the default for an ARMA model), this formula applies to X − m rather than X . For ARIMA
models with differencing, the differenced series follows a zero-mean ARMA model. If am xreg
term is included, a linear regression (with a constant term if include.mean is true and there is no
differencing) is fitted with an ARMA model for the error term.

The variance matrix of the estimates is found from the Hessian of the log-likelihood, and so may
only be a rough guide.

Optimization is done by optim. It will work best if the columns in xreg are roughly scaled to zero
mean and unit variance, but does attempt to estimate suitable scalings.

Value

A list of class "Arima" with components:

coef a vector of AR, MA and regression coefficients, which can be extracted by the
coef method.

sigma2 the MLE of the innovations variance.

var.coef the estimated variance matrix of the coefficients coef, which can be extracted
by the vcov method.

loglik the maximized log-likelihood (of the differenced data), or the approximation to
it used.

arma A compact form of the specification, as a vector giving the number of AR, MA,
seasonal AR and seasonal MA coefficients, plus the period and the number of
non-seasonal and seasonal differences.

aic the AIC value corresponding to the log-likelihood. Only valid for
method = "ML" fits.

residuals the fitted innovations.

call the matched call.

series the name of the series x.

code the convergence value returned by optim.

n.cond the number of initial observations not used in the fitting.

model A list representing the Kalman Filter used in the fitting. See KalmanLike.

Fitting methods

The exact likelihood is computed via a state-space representation of the ARIMA process, and the
innovations and their variance found by a Kalman filter. The initialization of the differenced ARMA
process uses stationarity and is based on Gardner et al. (1980). For a differenced process the non-
stationary components are given a diffuse prior (controlled by kappa). Observations which are still
controlled by the diffuse prior (determined by having a Kalman gain of at least 1e4) are excluded
from the likelihood calculations. (This gives comparable results to arima0 in the absence of missing
values, when the observations excluded are precisely those dropped by the differencing.)

Missing values are allowed, and are handled exactly in method "ML".

If transform.pars is true, the optimization is done using an alternative parametrization which is a
variation on that suggested by Jones (1980) and ensures that the model is stationary. For an AR(p)

1140 arima

model the parametrization is via the inverse tanh of the partial autocorrelations: the same procedure
is applied (separately) to the AR and seasonal AR terms. The MA terms are not constrained to be
invertible during optimization, but they will be converted to invertible form after optimization if
transform.pars is true.

Conditional sum-of-squares is provided mainly for expositional purposes. This computes the sum
of squares of the fitted innovations from observation n.cond on, (where n.cond is at least the
maximum lag of an AR term), treating all earlier innovations to be zero. Argument n.cond can
be used to allow comparability between different fits. The ‘part log-likelihood’ is the first term,
half the log of the estimated mean square. Missing values are allowed, but will cause many of the
innovations to be missing.

When regressors are specified, they are orthogonalized prior to fitting unless any of the coefficients
is fixed. It can be helpful to roughly scale the regressors to zero mean and unit variance.

Note

The results are likely to be different from S-PLUS’s arima.mle, which computes a conditional
likelihood and does not include a mean in the model. Further, the convention used by arima.mle
reverses the signs of the MA coefficients.

arima is very similar to arima0 for ARMA models or for differenced models without missing
values, but handles differenced models with missing values exactly. It is somewhat slower than
arima0, particularly for seasonally differenced models.

References

Brockwell, P. J. and Davis, R. A. (1996) Introduction to Time Series and Forecasting. Springer,
New York. Sections 3.3 and 8.3.

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

Gardner, G, Harvey, A. C. and Phillips, G. D. A. (1980) Algorithm AS154. An algorithm for exact
maximum likelihood estimation of autoregressive-moving average models by means of Kalman
filtering. Applied Statistics 29, 311–322.

Harvey, A. C. (1993) Time Series Models, 2nd Edition, Harvester Wheatsheaf, sections 3.3 and 4.4.

Jones, R. H. (1980) Maximum likelihood fitting of ARMA models to time series with missing
observations. Technometrics 20 389–395.

Ripley, B. D. (2002) Time series in R 1.5.0. R News, 2/2, 2–7. http://www.r-project.org/doc/
Rnews/Rnews_2002-2.pdf

See Also

predict.Arima, arima.sim for simulating from an ARIMA model, tsdiag, arima0, ar

Examples

arima(lh, order = c(1,0,0))
arima(lh, order = c(3,0,0))
arima(lh, order = c(1,0,1))

arima(lh, order = c(3,0,0), method = "CSS")

arima(USAccDeaths, order = c(0,1,1), seasonal = list(order=c(0,1,1)))
arima(USAccDeaths, order = c(0,1,1), seasonal = list(order=c(0,1,1)),

method = "CSS") # drops first 13 observations.

http://www.r-project.org/doc/Rnews/Rnews_2002-2.pdf
http://www.r-project.org/doc/Rnews/Rnews_2002-2.pdf

arima.sim 1141

for a model with as few years as this, we want full ML

arima(LakeHuron, order = c(2,0,0), xreg = time(LakeHuron)-1920)

presidents contains NAs
graphs in example(acf) suggest order 1 or 3
require(graphics)
(fit1 <- arima(presidents, c(1, 0, 0)))
tsdiag(fit1)
(fit3 <- arima(presidents, c(3, 0, 0))) # smaller AIC
tsdiag(fit3)

arima.sim Simulate from an ARIMA Model

Description

Simulate from an ARIMA model.

Usage

arima.sim(model, n, rand.gen = rnorm, innov = rand.gen(n, ...),
n.start = NA, start.innov = rand.gen(n.start, ...),
...)

Arguments

model A list with component ar and/or ma giving the AR and MA coefficients respec-
tively. Optionally a component order can be used. An empty list gives an
ARIMA(0, 0, 0) model, that is white noise.

n length of output series, before un-differencing. A strictly positive integer.

rand.gen optional: a function to generate the innovations.

innov an optional times series of innovations. If not provided, rand.gen is used.

n.start length of ‘burn-in’ period. If NA, the default, a reasonable value is computed.

start.innov an optional times series of innovations to be used for the burn-in period. If sup-
plied there must be at least n.start values (and n.start is by default computed
inside the function).

... additional arguments for rand.gen. Most usefully, the standard deviation of the
innovations generated by rnorm can be specified by sd.

Details

See arima for the precise definition of an ARIMA model.

The ARMA model is checked for stationarity.

ARIMA models are specified via the order component of model, in the same way as for arima.
Other aspects of the order component are ignored, but inconsistent specifications of the MA and
AR orders are detected. The un-differencing assumes previous values of zero, and to remind the
user of this, those values are returned.

Random inputs for the ‘burn-in’ period are generated by calling rand.gen.

1142 arima0

Value

A time-series object of class "ts".

See Also

arima

Examples

require(graphics)

arima.sim(n = 63, list(ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488)),
sd = sqrt(0.1796))

mildly long-tailed
arima.sim(n = 63, list(ar=c(0.8897, -0.4858), ma=c(-0.2279, 0.2488)),

rand.gen = function(n, ...) sqrt(0.1796) * rt(n, df = 5))

An ARIMA simulation
ts.sim <- arima.sim(list(order = c(1,1,0), ar = 0.7), n = 200)
ts.plot(ts.sim)

arima0 ARIMA Modelling of Time Series – Preliminary Version

Description

Fit an ARIMA model to a univariate time series, and forecast from the fitted model.

Usage

arima0(x, order = c(0, 0, 0),
seasonal = list(order = c(0, 0, 0), period = NA),
xreg = NULL, include.mean = TRUE, delta = 0.01,
transform.pars = TRUE, fixed = NULL, init = NULL,
method = c("ML", "CSS"), n.cond, optim.control = list())

S3 method for class ’arima0’
predict(object, n.ahead = 1, newxreg, se.fit = TRUE, ...)

Arguments

x a univariate time series

order A specification of the non-seasonal part of the ARIMA model: the three com-
ponents (p, d, q) are the AR order, the degree of differencing, and the MA order.

seasonal A specification of the seasonal part of the ARIMA model, plus the period (which
defaults to frequency(x)). This should be a list with components order and
period, but a specification of just a numeric vector of length 3 will be turned
into a suitable list with the specification as the order.

xreg Optionally, a vector or matrix of external regressors, which must have the same
number of rows as x.

arima0 1143

include.mean Should the ARIMA model include a mean term? The default is TRUE for undif-
ferenced series, FALSE for differenced ones (where a mean would not affect the
fit nor predictions).

delta A value to indicate at which point ‘fast recursions’ should be used. See the
‘Details’ section.

transform.pars Logical. If true, the AR parameters are transformed to ensure that they remain
in the region of stationarity. Not used for method = "CSS".

fixed optional numeric vector of the same length as the total number of parameters.
If supplied, only NA entries in fixed will be varied. transform.pars = TRUE
will be overridden (with a warning) if any ARMA parameters are fixed.

init optional numeric vector of initial parameter values. Missing values will be filled
in, by zeroes except for regression coefficients. Values already specified in
fixed will be ignored.

method Fitting method: maximum likelihood or minimize conditional sum-of-squares.

n.cond Only used if fitting by conditional-sum-of-squares: the number of initial obser-
vations to ignore. It will be ignored if less than the maximum lag of an AR
term.

optim.control List of control parameters for optim.

object The result of an arima0 fit.

newxreg New values of xreg to be used for prediction. Must have at least n.ahead rows.

n.ahead The number of steps ahead for which prediction is required.

se.fit Logical: should standard errors of prediction be returned?

... arguments passed to or from other methods.

Details

Different definitions of ARMA models have different signs for the AR and/or MA coefficients. The
definition here has

Xt = a1Xt−1 + · · ·+ apXt−p + et + b1et−1 + . . .+ bqet−q

and so the MA coefficients differ in sign from those of S-PLUS. Further, if include.mean is true,
this formula applies toX−m rather thanX . For ARIMA models with differencing, the differenced
series follows a zero-mean ARMA model.

The variance matrix of the estimates is found from the Hessian of the log-likelihood, and so may
only be a rough guide, especially for fits close to the boundary of invertibility.

Optimization is done by optim. It will work best if the columns in xreg are roughly scaled to zero
mean and unit variance, but does attempt to estimate suitable scalings.

Finite-history prediction is used. This is only statistically efficient if the MA part of the fit is
invertible, so predict.arima0 will give a warning for non-invertible MA models.

Value

For arima0, a list of class "arima0" with components:

coef a vector of AR, MA and regression coefficients,

sigma2 the MLE of the innovations variance.

var.coef the estimated variance matrix of the coefficients coef.

1144 arima0

loglik the maximized log-likelihood (of the differenced data), or the approximation to
it used.

arma A compact form of the specification, as a vector giving the number of AR, MA,
seasonal AR and seasonal MA coefficients, plus the period and the number of
non-seasonal and seasonal differences.

aic the AIC value corresponding to the log-likelihood. Only valid for
method = "ML" fits.

residuals the fitted innovations.

call the matched call.

series the name of the series x.

convergence the value returned by optim.

n.cond the number of initial observations not used in the fitting.

For predict.arima0, a time series of predictions, or if se.fit = TRUE, a list with components
pred, the predictions, and se, the estimated standard errors. Both components are time series.

Fitting methods

The exact likelihood is computed via a state-space representation of the ARMA process, and the
innovations and their variance found by a Kalman filter based on Gardner et al. (1980). This has the
option to switch to ‘fast recursions’ (assume an effectively infinite past) if the innovations variance
is close enough to its asymptotic bound. The argument delta sets the tolerance: at its default value
the approximation is normally negligible and the speed-up considerable. Exact computations can
be ensured by setting delta to a negative value.

If transform.pars is true, the optimization is done using an alternative parametrization which is a
variation on that suggested by Jones (1980) and ensures that the model is stationary. For an AR(p)
model the parametrization is via the inverse tanh of the partial autocorrelations: the same procedure
is applied (separately) to the AR and seasonal AR terms. The MA terms are also constrained to
be invertible during optimization by the same transformation if transform.pars is true. Note that
the MLE for MA terms does sometimes occur for MA polynomials with unit roots: such models
can be fitted by using transform.pars = FALSE and specifying a good set of initial values (often
obtainable from a fit with transform.pars = TRUE).

Missing values are allowed, but any missing values will force delta to be ignored and full recur-
sions used. Note that missing values will be propagated by differencing, so the procedure used in
this function is not fully efficient in that case.

Conditional sum-of-squares is provided mainly for expositional purposes. This computes the sum
of squares of the fitted innovations from observation n.cond on, (where n.cond is at least the
maximum lag of an AR term), treating all earlier innovations to be zero. Argument n.cond can
be used to allow comparability between different fits. The ‘part log-likelihood’ is the first term,
half the log of the estimated mean square. Missing values are allowed, but will cause many of the
innovations to be missing.

When regressors are specified, they are orthogonalized prior to fitting unless any of the coefficients
is fixed. It can be helpful to roughly scale the regressors to zero mean and unit variance.

Note

This is a preliminary version, and will be replaced by arima.

The standard errors of prediction exclude the uncertainty in the estimation of the ARMA model and
the regression coefficients.

ARMAacf 1145

The results are likely to be different from S-PLUS’s arima.mle, which computes a conditional
likelihood and does not include a mean in the model. Further, the convention used by arima.mle
reverses the signs of the MA coefficients.

References

Brockwell, P. J. and Davis, R. A. (1996) Introduction to Time Series and Forecasting. Springer,
New York. Sections 3.3 and 8.3.

Gardner, G, Harvey, A. C. and Phillips, G. D. A. (1980) Algorithm AS154. An algorithm for exact
maximum likelihood estimation of autoregressive-moving average models by means of Kalman
filtering. Applied Statistics 29, 311–322.

Harvey, A. C. (1993) Time Series Models, 2nd Edition, Harvester Wheatsheaf, sections 3.3 and 4.4.

Harvey, A. C. and McKenzie, C. R. (1982) Algorithm AS182. An algorithm for finite sample
prediction from ARIMA processes. Applied Statistics 31, 180–187.

Jones, R. H. (1980) Maximum likelihood fitting of ARMA models to time series with missing
observations. Technometrics 20 389–395.

See Also

arima, ar, tsdiag

Examples

Not run: arima0(lh, order = c(1,0,0))
arima0(lh, order = c(3,0,0))
arima0(lh, order = c(1,0,1))
predict(arima0(lh, order = c(3,0,0)), n.ahead = 12)

arima0(lh, order = c(3,0,0), method = "CSS")

for a model with as few years as this, we want full ML
(fit <- arima0(USAccDeaths, order = c(0,1,1),

seasonal = list(order=c(0,1,1)), delta = -1))
predict(fit, n.ahead = 6)

arima0(LakeHuron, order = c(2,0,0), xreg = time(LakeHuron)-1920)
Not run:
presidents contains NAs
graphs in example(acf) suggest order 1 or 3
(fit1 <- arima0(presidents, c(1, 0, 0), delta = -1)) # avoid warning
tsdiag(fit1)
(fit3 <- arima0(presidents, c(3, 0, 0), delta = -1)) # smaller AIC
tsdiag(fit3)
End(Not run)

ARMAacf Compute Theoretical ACF for an ARMA Process

Description

Compute the theoretical autocorrelation function or partial autocorrelation function for an ARMA
process.

1146 ARMAacf

Usage

ARMAacf(ar = numeric(), ma = numeric(), lag.max = r, pacf = FALSE)

Arguments

ar numeric vector of AR coefficients

ma numeric vector of MA coefficients

lag.max integer. Maximum lag required. Defaults to max(p, q+1), where p, q are the
numbers of AR and MA terms respectively.

pacf logical. Should the partial autocorrelations be returned?

Details

The methods used follow Brockwell & Davis (1991, section 3.3). Their equations (3.3.8) are solved
for the autocovariances at lags 0, . . . ,max(p, q + 1), and the remaining autocorrelations are given
by a recursive filter.

Value

A vector of (partial) autocorrelations, named by the lags.

References

Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods, Second Edition.
Springer.

See Also

arima, ARMAtoMA, acf2AR for inverting part of ARMAacf; further filter.

Examples

ARMAacf(c(1.0, -0.25), 1.0, lag.max = 10)

Example from Brockwell & Davis (1991, pp.92-4)
answer 2^(-n) * (32/3 + 8 * n) /(32/3)
n <- 1:10; 2^(-n) * (32/3 + 8 * n) /(32/3)
ARMAacf(c(1.0, -0.25), 1.0, lag.max = 10, pacf = TRUE)
zapsmall(ARMAacf(c(1.0, -0.25), lag.max = 10, pacf = TRUE))

Cov-Matrix of length-7 sub-sample of AR(1) example:
toeplitz(ARMAacf(0.8, lag.max = 7))

ARMAtoMA 1147

ARMAtoMA Convert ARMA Process to Infinite MA Process

Description

Convert ARMA process to infinite MA process.

Usage

ARMAtoMA(ar = numeric(), ma = numeric(), lag.max)

Arguments

ar numeric vector of AR coefficients

ma numeric vector of MA coefficients

lag.max Largest MA(Inf) coefficient required.

Value

A vector of coefficients.

References

Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods, Second Edition.
Springer.

See Also

arima, ARMAacf.

Examples

ARMAtoMA(c(1.0, -0.25), 1.0, 10)
Example from Brockwell & Davis (1991, p.92)
answer (1 + 3*n)*2^(-n)
n <- 1:10; (1 + 3*n)*2^(-n)

as.hclust Convert Objects to Class hclust

Description

Converts objects from other hierarchical clustering functions to class "hclust".

Usage

as.hclust(x, ...)

1148 asOneSidedFormula

Arguments

x Hierarchical clustering object

... further arguments passed to or from other methods.

Details

Currently there is only support for converting objects of class "twins" as produced by the functions
diana and agnes from the package cluster. The default method throws an error unless passed an
"hclust" object.

Value

An object of class "hclust".

See Also

hclust, and from package cluster, diana and agnes

Examples

x <- matrix(rnorm(30), ncol=3)
hc <- hclust(dist(x), method="complete")

if(require("cluster", quietly=TRUE)) {# is a recommended package
ag <- agnes(x, method="complete")
hcag <- as.hclust(ag)
The dendrograms order slightly differently:
op <- par(mfrow=c(1,2))
plot(hc) ; mtext("hclust", side=1)
plot(hcag); mtext("agnes", side=1)

}

asOneSidedFormula Convert to One-Sided Formula

Description

Names, expressions, numeric values, and character strings are converted to one-sided formulae. If
object is a formula, it must be one-sided, in which case it is returned unaltered.

Usage

asOneSidedFormula(object)

Arguments

object a one-sided formula, an expression, a numeric value, or a character string.

Value

a one-sided formula representing object

http://CRAN.R-project.org/package=cluster
http://CRAN.R-project.org/package=cluster

ave 1149

Author(s)

José Pinheiro and Douglas Bates

See Also

formula

Examples

asOneSidedFormula("age")
asOneSidedFormula(~ age)

ave Group Averages Over Level Combinations of Factors

Description

Subsets of x[] are averaged, where each subset consist of those observations with the same factor
levels.

Usage

ave(x, ..., FUN = mean)

Arguments

x A numeric.

... Grouping variables, typically factors, all of the same length as x.

FUN Function to apply for each factor level combination.

Value

A numeric vector, say y of length length(x). If ... is g1,g2, e.g., y[i] is equal to FUN(x[j], for
all j with g1[j] == g1[i] and g2[j] == g2[i]).

See Also

mean, median.

Examples

require(graphics)

ave(1:3)# no grouping -> grand mean

attach(warpbreaks)
ave(breaks, wool)
ave(breaks, tension)
ave(breaks, tension, FUN = function(x)mean(x, trim=.1))
plot(breaks, main =

"ave(Warpbreaks) for wool x tension combinations")
lines(ave(breaks, wool, tension), type=’s’, col = "blue")

1150 bandwidth

lines(ave(breaks, wool, tension, FUN=median), type=’s’, col = "green")
legend(40,70, c("mean","median"), lty=1,col=c("blue","green"), bg="gray90")
detach()

bandwidth Bandwidth Selectors for Kernel Density Estimation

Description

Bandwidth selectors for Gaussian kernels in density.

Usage

bw.nrd0(x)

bw.nrd(x)

bw.ucv(x, nb = 1000, lower = 0.1 * hmax, upper = hmax, tol = 0.1 * lower)

bw.bcv(x, nb = 1000, lower = 0.1 * hmax, upper = hmax, tol = 0.1 * lower)

bw.SJ(x, nb = 1000, lower = 0.1 * hmax, upper = hmax,
method = c("ste", "dpi"), tol = 0.1 * lower)

Arguments

x numeric vector.

nb number of bins to use.

lower, upper range over which to minimize. The default is almost always satisfactory. hmax
is calculated internally from a normal reference bandwidth.

method either "ste" ("solve-the-equation") or "dpi" ("direct plug-in").

tol for method "ste", the convergence tolerance for uniroot. The default leads to
bandwidth estimates with only slightly more than one digit accuracy, which is
sufficient for practical density estimation, but possibly not for theoretical simu-
lation studies.

Details

bw.nrd0 implements a rule-of-thumb for choosing the bandwidth of a Gaussian kernel density
estimator. It defaults to 0.9 times the minimum of the standard deviation and the interquartile range
divided by 1.34 times the sample size to the negative one-fifth power (= Silverman’s ‘rule of thumb’,
Silverman (1986, page 48, eqn (3.31)) unless the quartiles coincide when a positive result will be
guaranteed.

bw.nrd is the more common variation given by Scott (1992), using factor 1.06.

bw.ucv and bw.bcv implement unbiased and biased cross-validation respectively.

bw.SJ implements the methods of Sheather & Jones (1991) to select the bandwidth using pilot
estimation of derivatives.
The algorithm for method "ste" solves an equation (via uniroot) and because of that, enlarges the
interval c(lower,upper) when the boundaries were not user-specified and do not bracket the root.

bartlett.test 1151

Value

A bandwidth on a scale suitable for the bw argument of density.

References

Scott, D. W. (1992) Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley.

Sheather, S. J. and Jones, M. C. (1991) A reliable data-based bandwidth selection method for kernel
density estimation. Journal of the Royal Statistical Society series B, 53, 683–690.

Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Springer.

See Also

density.

bandwidth.nrd, ucv, bcv and width.SJ in package MASS, which are all scaled to the width
argument of density and so give answers four times as large.

Examples

require(graphics)

plot(density(precip, n = 1000))
rug(precip)
lines(density(precip, bw="nrd"), col = 2)
lines(density(precip, bw="ucv"), col = 3)
lines(density(precip, bw="bcv"), col = 4)
lines(density(precip, bw="SJ-ste"), col = 5)
lines(density(precip, bw="SJ-dpi"), col = 6)
legend(55, 0.035,

legend = c("nrd0", "nrd", "ucv", "bcv", "SJ-ste", "SJ-dpi"),
col = 1:6, lty = 1)

bartlett.test Bartlett Test of Homogeneity of Variances

Description

Performs Bartlett’s test of the null that the variances in each of the groups (samples) are the same.

Usage

bartlett.test(x, ...)

Default S3 method:
bartlett.test(x, g, ...)

S3 method for class ’formula’
bartlett.test(formula, data, subset, na.action, ...)

http://CRAN.R-project.org/package=MASS

1152 bartlett.test

Arguments

x a numeric vector of data values, or a list of numeric data vectors representing the
respective samples, or fitted linear model objects (inheriting from class "lm").

g a vector or factor object giving the group for the corresponding elements of x.
Ignored if x is a list.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

If x is a list, its elements are taken as the samples or fitted linear models to be compared for ho-
mogeneity of variances. In this case, the elements must either all be numeric data vectors or fitted
linear model objects, g is ignored, and one can simply use bartlett.test(x) to perform the test.
If the samples are not yet contained in a list, use bartlett.test(list(x, ...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the same
length as x giving the group for the corresponding elements of x.

Value

A list of class "htest" containing the following components:

statistic Bartlett’s K-squared test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

method the character string "Bartlett test of homogeneity of variances".

data.name a character string giving the names of the data.

References

Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal
Society of London Series A 160, 268–282.

See Also

var.test for the special case of comparing variances in two samples from normal distributions;
fligner.test for a rank-based (nonparametric) k-sample test for homogeneity of variances;
ansari.test and mood.test for two rank based two-sample tests for difference in scale.

Beta 1153

Examples

require(graphics)

plot(count ~ spray, data = InsectSprays)
bartlett.test(InsectSprays$count, InsectSprays$spray)
bartlett.test(count ~ spray, data = InsectSprays)

Beta The Beta Distribution

Description

Density, distribution function, quantile function and random generation for the Beta distribution
with parameters shape1 and shape2 (and optional non-centrality parameter ncp).

Usage

dbeta(x, shape1, shape2, ncp = 0, log = FALSE)
pbeta(q, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qbeta(p, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE)
rbeta(n, shape1, shape2, ncp = 0)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number

required.
shape1, shape2 positive parameters of the Beta distribution.
ncp non-centrality parameter.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The Beta distribution with parameters shape1 = a and shape2 = b has density

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)

b−1

for a > 0, b > 0 and 0 ≤ x ≤ 1 where the boundary values at x = 0 or x = 1 are defined as by
continuity (as limits).
The mean is a/(a+ b) and the variance is ab/((a+ b)2(a+ b+ 1)).

pbeta is closely related to the incomplete beta function. As defined by Abramowitz and Stegun
6.6.1

Bx(a, b) =

∫ x

0

ta−1(1− t)b−1dt,

and 6.6.2 Ix(a, b) = Bx(a, b)/B(a, b) where B(a, b) = B1(a, b) is the Beta function (beta).

Ix(a, b) is pbeta(x,a,b).

The noncentral Beta distribution (with ncp = λ) is defined (Johnson et al, 1995, pp. 502) as the
distribution of X/(X + Y) where X ∼ χ2

2a(λ) and Y ∼ χ2
2b.

1154 Beta

Value

dbeta gives the density, pbeta the distribution function, qbeta the quantile function, and rbeta
generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

Note

Supplying ncp = 0 uses the algorithm for the non-central distribution, which is not the same algo-
rithm used if ncp is omitted. This is to give consistent behaviour in extreme cases with values of
ncp very near zero.

Source

The central dbeta is based on a binomial probability, using code contributed by Catherine Loader
(see dbinom) if either shape parameter is larger than one, otherwise directly from the definition.
The non-central case is based on the derivation as a Poisson mixture of betas (Johnson et al, 1995,
pp. 502–3).

The central pbeta uses a C translation (and enhancement for log_p=TRUE) of

Didonato, A. and Morris, A., Jr, (1992) Algorithm 708: Significant digit computation of the incom-
plete beta function ratios, ACM Transactions on Mathematical Software, 18, 360–373. (See also
Brown, B. and Lawrence Levy, L. (1994) Certification of algorithm 708: Significant digit compu-
tation of the incomplete beta, ACM Transactions on Mathematical Software, 20, 393–397.)

The non-central pbeta uses a C translation of

Lenth, R. V. (1987) Algorithm AS226: Computing noncentral beta probabilities. Appl. Statist, 36,
241–244, incorporating
Frick, H. (1990)’s AS R84, Appl. Statist, 39, 311–2, and
Lam, M.L. (1995)’s AS R95, Appl. Statist, 44, 551–2.

This computes the lower tail only, so the upper tail suffers from cancellation and a warning will be
given when this is likely to be significant.

The central case of qbeta is based on a C translation of

Cran, G. W., K. J. Martin and G. E. Thomas (1977). Remark AS R19 and Algorithm AS 109,
Applied Statistics, 26, 111–114, and subsequent remarks (AS83 and correction).

The central case of rbeta is based on a C translation of

R. C. H. Cheng (1978). Generating beta variates with nonintegral shape parameters. Communica-
tions of the ACM, 21, 317–322.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 6: Gamma and Related Functions.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
2, especially chapter 25. Wiley, New York.

See Also

Distributions for other standard distributions.

beta for the Beta function.

binom.test 1155

Examples

x <- seq(0, 1, length=21)
dbeta(x, 1, 1)
pbeta(x, 1, 1)

binom.test Exact Binomial Test

Description

Performs an exact test of a simple null hypothesis about the probability of success in a Bernoulli
experiment.

Usage

binom.test(x, n, p = 0.5,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95)

Arguments

x number of successes, or a vector of length 2 giving the numbers of successes
and failures, respectively.

n number of trials; ignored if x has length 2.

p hypothesized probability of success.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter.

conf.level confidence level for the returned confidence interval.

Details

Confidence intervals are obtained by a procedure first given in Clopper and Pearson (1934). This
guarantees that the confidence level is at least conf.level, but in general does not give the shortest-
length confidence intervals.

Value

A list with class "htest" containing the following components:

statistic the number of successes.

parameter the number of trials.

p.value the p-value of the test.

conf.int a confidence interval for the probability of success.

estimate the estimated probability of success.

null.value the probability of success under the null, p.

alternative a character string describing the alternative hypothesis.

method the character string "Exact binomial test".

data.name a character string giving the names of the data.

1156 Binomial

References

Clopper, C. J. & Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the
case of the binomial. Biometrika, 26, 404–413.

William J. Conover (1971), Practical nonparametric statistics. New York: John Wiley & Sons.
Pages 97–104.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric Statistical Methods. New York: John
Wiley & Sons. Pages 15–22.

See Also

prop.test for a general (approximate) test for equal or given proportions.

Examples

Conover (1971), p. 97f.
Under (the assumption of) simple Mendelian inheritance, a cross
between plants of two particular genotypes produces progeny 1/4 of
which are "dwarf" and 3/4 of which are "giant", respectively.
In an experiment to determine if this assumption is reasonable, a
cross results in progeny having 243 dwarf and 682 giant plants.
If "giant" is taken as success, the null hypothesis is that p =
3/4 and the alternative that p != 3/4.
binom.test(c(682, 243), p = 3/4)
binom.test(682, 682 + 243, p = 3/4) # The same.
=> Data are in agreement with the null hypothesis.

Binomial The Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the binomial distribution
with parameters size and prob.

Usage

dbinom(x, size, prob, log = FALSE)
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom(n, size, prob)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number

required.
size number of trials (zero or more).
prob probability of success on each trial.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Binomial 1157

Details

The binomial distribution with size = n and prob = p has density

p(x) =

(
n

x

)
px(1− p)n−x

for x = 0, . . . , n. Note that binomial coefficients can be computed by choose in R.

If an element of x is not integer, the result of dbinom is zero, with a warning. p(x) is computed
using Loader’s algorithm, see the reference below.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distribution
function.

Value

dbinom gives the density, pbinom gives the distribution function, qbinom gives the quantile function
and rbinom generates random deviates.

If size is not an integer, NaN is returned.

Source

For dbinom a saddle-point expansion is used: see

Catherine Loader (2000). Fast and Accurate Computation of Binomial Probabilities; available from
http://www.herine.net/stat/software/dbinom.html.

pbinom uses pbeta.

qbinom uses the Cornish–Fisher Expansion to include a skewness correction to a normal approxi-
mation, followed by a search.

rbinom (for size < .Machine$integer.max) is based on

Kachitvichyanukul, V. and Schmeiser, B. W. (1988) Binomial random variate generation. Commu-
nications of the ACM, 31, 216–222.

For larger values it uses inversion.

See Also

Distributions for other standard distributions, including dnbinom for the negative binomial, and
dpois for the Poisson distribution.

Examples

require(graphics)
Compute P(45 < X < 55) for X Binomial(100,0.5)
sum(dbinom(46:54, 100, 0.5))

Using "log = TRUE" for an extended range :
n <- 2000
k <- seq(0, n, by = 20)
plot (k, dbinom(k, n, pi/10, log=TRUE), type=’l’, ylab="log density",

main = "dbinom(*, log=TRUE) is better than log(dbinom(*))")
lines(k, log(dbinom(k, n, pi/10)), col=’red’, lwd=2)
extreme points are omitted since dbinom gives 0.
mtext("dbinom(k, log=TRUE)", adj=0)
mtext("extended range", adj=0, line = -1, font=4)
mtext("log(dbinom(k))", col="red", adj=1)

http://www.herine.net/stat/software/dbinom.html

1158 biplot

biplot Biplot of Multivariate Data

Description

Plot a biplot on the current graphics device.

Usage

biplot(x, ...)

Default S3 method:
biplot(x, y, var.axes = TRUE, col, cex = rep(par("cex"), 2),

xlabs = NULL, ylabs = NULL, expand = 1,
xlim = NULL, ylim = NULL, arrow.len = 0.1,
main = NULL, sub = NULL, xlab = NULL, ylab = NULL, ...)

Arguments

x The biplot, a fitted object. For biplot.default, the first set of points (a two-
column matrix), usually associated with observations.

y The second set of points (a two-column matrix), usually associated with vari-
ables.

var.axes If TRUE the second set of points have arrows representing them as (unscaled)
axes.

col A vector of length 2 giving the colours for the first and second set of points
respectively (and the corresponding axes). If a single colour is specified it will
be used for both sets. If missing the default colour is looked for in the palette:
if there it and the next colour as used, otherwise the first two colours of the
palette are used.

cex The character expansion factor used for labelling the points. The labels can be
of different sizes for the two sets by supplying a vector of length two.

xlabs A vector of character strings to label the first set of points: the default is to use
the row dimname of x, or 1:n if the dimname is NULL.

ylabs A vector of character strings to label the second set of points: the default is to
use the row dimname of y, or 1:n if the dimname is NULL.

expand An expansion factor to apply when plotting the second set of points relative to
the first. This can be used to tweak the scaling of the two sets to a physically
comparable scale.

arrow.len The length of the arrow heads on the axes plotted in var.axes is true. The arrow
head can be suppressed by arrow.len = 0.

xlim, ylim Limits for the x and y axes in the units of the first set of variables.

main, sub, xlab, ylab, ...

graphical parameters.

biplot.princomp 1159

Details

A biplot is plot which aims to represent both the observations and variables of a matrix of multi-
variate data on the same plot. There are many variations on biplots (see the references) and perhaps
the most widely used one is implemented by biplot.princomp. The function biplot.default
merely provides the underlying code to plot two sets of variables on the same figure.

Graphical parameters can also be given to biplot: the size of xlabs and ylabs is controlled by
cex.

Side Effects

a plot is produced on the current graphics device.

References

K. R. Gabriel (1971). The biplot graphical display of matrices with application to principal compo-
nent analysis. Biometrika 58, 453–467.

J.C. Gower and D. J. Hand (1996). Biplots. Chapman & Hall.

See Also

biplot.princomp, also for examples.

biplot.princomp Biplot for Principal Components

Description

Produces a biplot (in the strict sense) from the output of princomp or prcomp

Usage

S3 method for class ’prcomp’
biplot(x, choices = 1:2, scale = 1, pc.biplot = FALSE, ...)

S3 method for class ’princomp’
biplot(x, choices = 1:2, scale = 1, pc.biplot = FALSE, ...)

Arguments

x an object of class "princomp".
choices length 2 vector specifying the components to plot. Only the default is a biplot in

the strict sense.
scale The variables are scaled by lambda ^ scale and the observations are scaled

by lambda ^ (1-scale) where lambda are the singular values as computed by
princomp. Normally 0 <= scale <= 1, and a warning will be issued if the
specified scale is outside this range.

pc.biplot If true, use what Gabriel (1971) refers to as a "principal component biplot", with
lambda = 1 and observations scaled up by sqrt(n) and variables scaled down
by sqrt(n). Then inner products between variables approximate covariances and
distances between observations approximate Mahalanobis distance.

... optional arguments to be passed to biplot.default.

1160 birthday

Details

This is a method for the generic function biplot. There is considerable confusion over the precise
definitions: those of the original paper, Gabriel (1971), are followed here. Gabriel and Odoroff
(1990) use the same definitions, but their plots actually correspond to pc.biplot = TRUE.

Side Effects

a plot is produced on the current graphics device.

References

Gabriel, K. R. (1971). The biplot graphical display of matrices with applications to principal com-
ponent analysis. Biometrika, 58, 453–467.

Gabriel, K. R. and Odoroff, C. L. (1990). Biplots in biomedical research. Statistics in Medicine, 9,
469–485.

See Also

biplot, princomp.

Examples

require(graphics)
biplot(princomp(USArrests))

birthday Probability of coincidences

Description

Computes answers to a generalised birthday paradox problem. pbirthday computes the probability
of a coincidence and qbirthday computes the smallest number of observations needed to have at
least a specified probability of coincidence.

Usage

qbirthday(prob = 0.5, classes = 365, coincident = 2)
pbirthday(n, classes = 365, coincident = 2)

Arguments

classes How many distinct categories the people could fall into

prob The desired probability of coincidence

n The number of people

coincident The number of people to fall in the same category

birthday 1161

Details

The birthday paradox is that a very small number of people, 23, suffices to have a 50–50 chance
that two or more of them have the same birthday. This function generalises the calculation to
probabilities other than 0.5, numbers of coincident events other than 2, and numbers of classes
other than 365.

The formula used is approximate for coincident > 2. The approximation is very good for mod-
erate values of prob but less good for very small probabilities.

Value

qbirthday Minimum number of people needed for a probability of at least prob that k or
more of them have the same one out of classes equiprobable labels.

pbirthday Probability of the specified coincidence.

Note

Prior to R 2.14.0 the approximate formula was used even for coincident = 2.

References

Diaconis, P. and Mosteller F. (1989) Methods for studying coincidences. J. American Statistical
Association, 84, 853–861.

Examples

require(graphics)

the standard version
qbirthday() # 23
probability of > 2 people with the same birthday
pbirthday(23, coincident = 3)

examples from Diaconis & Mosteller p. 858.
’coincidence’ is that husband, wife, daughter all born on the 16th
qbirthday(classes = 30, coincident = 3) # approximately 18
qbirthday(coincident = 4) # exact value 187
qbirthday(coincident = 10) # exact value 1181

same 4-digit PIN number
qbirthday(classes = 10^4)

0.9 probability of three or more coincident birthdays
qbirthday(coincident = 3, prob = 0.9)

Chance of 4 or more coincident birthdays in 150 people
pbirthday(150, coincident = 4)

100 or more coincident birthdays in 1000 people: very rare
pbirthday(1000, coincident = 100)

1162 Box.test

Box.test Box-Pierce and Ljung-Box Tests

Description

Compute the Box–Pierce or Ljung–Box test statistic for examining the null hypothesis of indepen-
dence in a given time series. These are sometimes known as ‘portmanteau’ tests.

Usage

Box.test(x, lag = 1, type = c("Box-Pierce", "Ljung-Box"), fitdf = 0)

Arguments

x a numeric vector or univariate time series.
lag the statistic will be based on lag autocorrelation coefficients.
type test to be performed: partial matching is used.
fitdf number of degrees of freedom to be subtracted if x is a series of residuals.

Details

These tests are sometimes applied to the residuals from an ARMA(p, q) fit, in which case the ref-
erences suggest a better approximation to the null-hypothesis distribution is obtained by setting
fitdf = p+q, provided of course that lag > fitdf.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.
parameter the degrees of freedom of the approximate chi-squared distribution of the test

statistic (taking fitdf into account.
p.value the p-value of the test.
method a character string indicating which type of test was performed.
data.name a character string giving the name of the data.

Note

Missing values are not handled.

Author(s)

A. Trapletti

References

Box, G. E. P. and Pierce, D. A. (1970), Distribution of residual correlations in autoregressive-
integrated moving average time series models. Journal of the American Statistical Association, 65,
1509–1526.
Ljung, G. M. and Box, G. E. P. (1978), On a measure of lack of fit in time series models. Biometrika
65, 297–303.
Harvey, A. C. (1993) Time Series Models. 2nd Edition, Harvester Wheatsheaf, NY, pp. 44, 45.

C 1163

Examples

x <- rnorm (100)
Box.test (x, lag = 1)
Box.test (x, lag = 1, type="Ljung")

C Sets Contrasts for a Factor

Description

Sets the "contrasts" attribute for the factor.

Usage

C(object, contr, how.many, ...)

Arguments

object a factor or ordered factor

contr which contrasts to use. Can be a matrix with one row for each level of the factor
or a suitable function like contr.poly or a character string giving the name of
the function

how.many the number of contrasts to set, by default one less than nlevels(object).

... additional arguments for the function contr.

Details

For compatibility with S, contr can be treatment, helmert, sum or poly (without quotes) as
shorthand for contr.treatment and so on.

Value

The factor object with the "contrasts" attribute set.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models in S eds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

contrasts, contr.sum, etc.

1164 cancor

Examples

reset contrasts to defaults
options(contrasts=c("contr.treatment", "contr.poly"))
tens <- with(warpbreaks, C(tension, poly, 1))
attributes(tens)
tension SHOULD be an ordered factor, but as it is not we can use
aov(breaks ~ wool + tens + tension, data=warpbreaks)

show the use of ... The default contrast is contr.treatment here
summary(lm(breaks ~ wool + C(tension, base=2), data=warpbreaks))

following on from help(esoph)
model3 <- glm(cbind(ncases, ncontrols) ~ agegp + C(tobgp, , 1) +

C(alcgp, , 1), data = esoph, family = binomial())
summary(model3)

cancor Canonical Correlations

Description

Compute the canonical correlations between two data matrices.

Usage

cancor(x, y, xcenter = TRUE, ycenter = TRUE)

Arguments

x numeric matrix (n× p1), containing the x coordinates.
y numeric matrix (n× p2), containing the y coordinates.
xcenter logical or numeric vector of length p1, describing any centering to be done on

the x values before the analysis. If TRUE (default), subtract the column means. If
FALSE, do not adjust the columns. Otherwise, a vector of values to be subtracted
from the columns.

ycenter analogous to xcenter, but for the y values.

Details

The canonical correlation analysis seeks linear combinations of the y variables which are well ex-
plained by linear combinations of the x variables. The relationship is symmetric as ‘well explained’
is measured by correlations.

Value

A list containing the following components:

cor correlations.
xcoef estimated coefficients for the x variables.
ycoef estimated coefficients for the y variables.
xcenter the values used to adjust the x variables.
ycenter the values used to adjust the x variables.

case+variable.names 1165

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Hotelling H. (1936). Relations between two sets of variables. Biometrika, 28, 321–327.

Seber, G. A. F. (1984). Multivariate Observations. New York: Wiley, p. 506f.

See Also

qr, svd.

Examples

signs of results are random
pop <- LifeCycleSavings[, 2:3]
oec <- LifeCycleSavings[, -(2:3)]
cancor(pop, oec)

x <- matrix(rnorm(150), 50, 3)
y <- matrix(rnorm(250), 50, 5)
(cxy <- cancor(x, y))
all(abs(cor(x %*% cxy$xcoef,

y %*% cxy$ycoef)[,1:3] - diag(cxy $ cor)) < 1e-15)
all(abs(cor(x %*% cxy$xcoef) - diag(3)) < 1e-15)
all(abs(cor(y %*% cxy$ycoef) - diag(5)) < 1e-15)

case+variable.names Case and Variable Names of Fitted Models

Description

Simple utilities returning (non-missing) case names, and (non-eliminated) variable names.

Usage

case.names(object, ...)
S3 method for class ’lm’
case.names(object, full = FALSE, ...)

variable.names(object, ...)
S3 method for class ’lm’
variable.names(object, full = FALSE, ...)

Arguments

object an R object, typically a fitted model.

full logical; if TRUE, all names (including zero weights, . . .) are returned.

... further arguments passed to or from other methods.

Value

A character vector.

1166 Cauchy

See Also

lm; further, all.names, all.vars for functions with a similar name but only slightly related pur-
pose.

Examples

x <- 1:20
y <- x + (x/4 - 2)^3 + rnorm(20, sd=3)
names(y) <- paste("O",x,sep=".")
ww <- rep(1,20); ww[13] <- 0
summary(lmxy <- lm(y ~ x + I(x^2)+I(x^3) + I((x-10)^2),

weights = ww), cor = TRUE)
variable.names(lmxy)
variable.names(lmxy, full= TRUE)# includes the last
case.names(lmxy)
case.names(lmxy, full = TRUE)# includes the 0-weight case

Cauchy The Cauchy Distribution

Description

Density, distribution function, quantile function and random generation for the Cauchy distribution
with location parameter location and scale parameter scale.

Usage

dcauchy(x, location = 0, scale = 1, log = FALSE)
pcauchy(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qcauchy(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rcauchy(n, location = 0, scale = 1)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number

required.
location, scale

location and scale parameters.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

If location or scale are not specified, they assume the default values of 0 and 1 respectively.

The Cauchy distribution with location l and scale s has density

f(x) =
1

πs

(
1 +

(
x− l
s

)2
)−1

for all x.

chisq.test 1167

Value

dcauchy, pcauchy, and qcauchy are respectively the density, distribution function and quantile
function of the Cauchy distribution. rcauchy generates random deviates from the Cauchy.

Source

dcauchy, pcauchy and qcauchy are all calculated from numerically stable versions of the defini-
tions.

rcauchy uses inversion.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
1, chapter 16. Wiley, New York.

See Also

Distributions for other standard distributions, including dt for the t distribution which generalizes
dcauchy(*, l = 0, s = 1).

Examples

dcauchy(-1:4)

chisq.test Pearson’s Chi-squared Test for Count Data

Description

chisq.test performs chi-squared contingency table tests and goodness-of-fit tests.

Usage

chisq.test(x, y = NULL, correct = TRUE,
p = rep(1/length(x), length(x)), rescale.p = FALSE,
simulate.p.value = FALSE, B = 2000)

Arguments

x a numeric vector or matrix. x and y can also both be factors.

y a numeric vector; ignored if x is a matrix. If x is a factor, y should be a factor of
the same length.

correct a logical indicating whether to apply continuity correction when computing the
test statistic for 2 by 2 tables: one half is subtracted from all |O−E| differences;
however, the correction will not be bigger than the differences themselves. No
correction is done if simulate.p.value = TRUE.

p a vector of probabilities of the same length of x. An error is given if any entry
of p is negative.

1168 chisq.test

rescale.p a logical scalar; if TRUE then p is rescaled (if necessary) to sum to 1. If
rescale.p is FALSE, and p does not sum to 1, an error is given.

simulate.p.value

a logical indicating whether to compute p-values by Monte Carlo simulation.

B an integer specifying the number of replicates used in the Monte Carlo test.

Details

If x is a matrix with one row or column, or if x is a vector and y is not given, then a goodness-of-fit
test is performed (x is treated as a one-dimensional contingency table). The entries of x must be
non-negative integers. In this case, the hypothesis tested is whether the population probabilities
equal those in p, or are all equal if p is not given.

If x is a matrix with at least two rows and columns, it is taken as a two-dimensional contingency
table: the entries of x must be non-negative integers. Otherwise, x and y must be vectors or factors
of the same length; cases with missing values are removed, the objects are coerced to factors, and
the contingency table is computed from these. Then Pearson’s chi-squared test is performed of the
null hypothesis that the joint distribution of the cell counts in a 2-dimensional contingency table is
the product of the row and column marginals.

If simulate.p.value is FALSE, the p-value is computed from the asymptotic chi-squared distribu-
tion of the test statistic; continuity correction is only used in the 2-by-2 case (if correct is TRUE, the
default). Otherwise the p-value is computed for a Monte Carlo test (Hope, 1968) with B replicates.

In the contingency table case simulation is done by random sampling from the set of all contingency
tables with given marginals, and works only if the marginals are strictly positive. Continuity cor-
rection is never used, and the statistic is quoted without it. Note that this is not the usual sampling
situation assumed for the chi-squared test but rather that for Fisher’s exact test.

In the goodness-of-fit case simulation is done by random sampling from the discrete distribution
specified by p, each sample being of size n = sum(x). This simulation is done in R and may be
slow.

Value

A list with class "htest" containing the following components:

statistic the value the chi-squared test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic, NA if the p-value is computed by Monte Carlo simulation.

p.value the p-value for the test.

method a character string indicating the type of test performed, and whether Monte Carlo
simulation or continuity correction was used.

data.name a character string giving the name(s) of the data.

observed the observed counts.

expected the expected counts under the null hypothesis.

residuals the Pearson residuals, (observed - expected) / sqrt(expected).

stdres standardized residuals, (observed - expected) / sqrt(V), where V is the
residual cell variance (Agresti, 2007, section 2.4.5 for the case where x is a
matrix, n * p * (1 - p) otherwise).

Source

The code for Monte Carlo simulation is a C translation of the Fortran algorithm of Patefield (1981).

chisq.test 1169

References

Hope, A. C. A. (1968) A simplified Monte Carlo significance test procedure. J. Roy, Statist. Soc. B
30, 582–598.

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables with given
row and column totals. Applied Statistics 30, 91–97.

Agresti, A. (2007) An Introduction to Categorical Data Analysis, 2nd ed., New York: John Wiley
& Sons. Page 38.

See Also

For goodness-of-fit testing, notably of continuous distributions, ks.test.

Examples

From Agresti(2007) p.39
M <- as.table(rbind(c(762, 327, 468), c(484,239,477)))
dimnames(M) <- list(gender=c("M","F"),

party=c("Democrat","Independent", "Republican"))
(Xsq <- chisq.test(M)) # Prints test summary
Xsq$observed # observed counts (same as M)
Xsq$expected # expected counts under the null
Xsq$residuals # Pearson residuals
Xsq$stdres # standardized residuals

Effect of simulating p-values
x <- matrix(c(12, 5, 7, 7), ncol = 2)
chisq.test(x)$p.value # 0.4233
chisq.test(x, simulate.p.value = TRUE, B = 10000)$p.value

around 0.29!

Testing for population probabilities
Case A. Tabulated data
x <- c(A = 20, B = 15, C = 25)
chisq.test(x)
chisq.test(as.table(x)) # the same
x <- c(89,37,30,28,2)
p <- c(40,20,20,15,5)
try(
chisq.test(x, p = p) # gives an error
)
chisq.test(x, p = p, rescale.p = TRUE)

works
p <- c(0.40,0.20,0.20,0.19,0.01)

Expected count in category 5
is 1.86 < 5 ==> chi square approx.

chisq.test(x, p = p) # maybe doubtful, but is ok!
chisq.test(x, p = p, simulate.p.value = TRUE)

Case B. Raw data
x <- trunc(5 * runif(100))
chisq.test(table(x)) # NOT ’chisq.test(x)’!

1170 Chisquare

Chisquare The (non-central) Chi-Squared Distribution

Description

Density, distribution function, quantile function and random generation for the chi-squared (χ2)
distribution with df degrees of freedom and optional non-centrality parameter ncp.

Usage

dchisq(x, df, ncp=0, log = FALSE)
pchisq(q, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
qchisq(p, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
rchisq(n, df, ncp=0)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

df degrees of freedom (non-negative, but can be non-integer).

ncp non-centrality parameter (non-negative).

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The chi-squared distribution with df= n ≥ 0 degrees of freedom has density

fn(x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2

for x > 0. The mean and variance are n and 2n.

The non-central chi-squared distribution with df= n degrees of freedom and non-centrality param-
eter ncp = λ has density

f(x) = e−λ/2
∞∑
r=0

(λ/2)r

r!
fn+2r(x)

for x ≥ 0. For integer n, this is the distribution of the sum of squares of n normals each with
variance one, λ being the sum of squares of the normal means; further,
E(X) = n+ λ, V ar(X) = 2(n+ 2 ∗ λ), and E((X − E(X))3) = 8(n+ 3 ∗ λ).

Note that the degrees of freedom df= n, can be non-integer, and also n = 0 which is relevant for
non-centrality λ > 0, see Johnson et al. (1995, chapter 29).

Note that ncp values larger than about 1e5 may give inaccurate results with many warnings for
pchisq and qchisq.

Chisquare 1171

Value

dchisq gives the density, pchisq gives the distribution function, qchisq gives the quantile function,
and rchisq generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

Note

Supplying ncp = 0 uses the algorithm for the non-central distribution, which is not the same algo-
rithm used if ncp is omitted. This is to give consistent behaviour in extreme cases with values of
ncp very near zero.

The code for non-zero ncp is principally intended to be used for moderate values of ncp: it will not
be highly accurate, especially in the tails, for large values.

Source

The central cases are computed via the gamma distribution.

The non-central dchisq and rchisq are computed as a Poisson mixture central of chi-squares
(Johnson et al, 1995, p.436).

The non-central pchisq is for ncp < 80 computed from the Poisson mixture of central chi-squares
and for larger ncp via a C translation of

Ding, C. G. (1992) Algorithm AS275: Computing the non-central chi-squared distribution function.
Appl.Statist., 41 478–482.

which computes the lower tail only (so the upper tail suffers from cancellation and a warning will
be given when this is likely to be significant).

The non-central qchisq is based on inversion of pchisq.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, chapters
18 (volume 1) and 29 (volume 2). Wiley, New York.

See Also

Distributions for other standard distributions.

A central chi-squared distribution with n degrees of freedom is the same as a Gamma distribution
with shape α = n/2 and scale σ = 2. Hence, see dgamma for the Gamma distribution.

Examples

require(graphics)

dchisq(1, df=1:3)
pchisq(1, df= 3)
pchisq(1, df= 3, ncp = 0:4)# includes the above

x <- 1:10
Chi-squared(df = 2) is a special exponential distribution
all.equal(dchisq(x, df=2), dexp(x, 1/2))
all.equal(pchisq(x, df=2), pexp(x, 1/2))

1172 cmdscale

non-central RNG -- df=0 with ncp > 0: Z0 has point mass at 0!
Z0 <- rchisq(100, df = 0, ncp = 2.)
graphics::stem(Z0)

Not run: ## visual testing
do P-P plots for 1000 points at various degrees of freedom
L <- 1.2; n <- 1000; pp <- ppoints(n)
op <- par(mfrow = c(3,3), mar= c(3,3,1,1)+.1, mgp= c(1.5,.6,0),

oma = c(0,0,3,0))
for(df in 2^(4*rnorm(9))) {

plot(pp, sort(pchisq(rr <- rchisq(n,df=df, ncp=L), df=df, ncp=L)),
ylab="pchisq(rchisq(.),.)", pch=".")

mtext(paste("df = ",formatC(df, digits = 4)), line= -2, adj=0.05)
abline(0,1,col=2)

}
mtext(expression("P-P plots : Noncentral "*

chi^2 *"(n=1000, df=X, ncp= 1.2)"),
cex = 1.5, font = 2, outer=TRUE)

par(op)
End(Not run)

"analytical" test
lam <- seq(0,100, by=.25)
p00 <- pchisq(0, df=0, ncp=lam)
p.0 <- pchisq(1e-300, df=0, ncp=lam)
stopifnot(all.equal(p00, exp(-lam/2)),

all.equal(p.0, exp(-lam/2)))

cmdscale Classical (Metric) Multidimensional Scaling

Description

Classical multidimensional scaling of a data matrix. Also known as principal coordinates analysis
(Gower, 1966).

Usage

cmdscale(d, k = 2, eig = FALSE, add = FALSE, x.ret = FALSE)

Arguments

d a distance structure such as that returned by dist or a full symmetric matrix
containing the dissimilarities.

k the maximum dimension of the space which the data are to be represented in;
must be in {1, 2, . . . , n− 1}.

eig indicates whether eigenvalues should be returned.

add logical indicating if an additive constant c∗ should be computed, and added to
the non-diagonal dissimilarities such that the modified dissimilarities are Eu-
clidean.

x.ret indicates whether the doubly centred symmetric distance matrix should be re-
turned.

cmdscale 1173

Details

Multidimensional scaling takes a set of dissimilarities and returns a set of points such that the
distances between the points are approximately equal to the dissimilarities. (It is a major part of
what ecologists call ‘ordination’.)

A set of Euclidean distances on n points can be represented exactly in at most n − 1 dimensions.
cmdscale follows the analysis of Mardia (1978), and returns the best-fitting k-dimensional repre-
sentation, where k may be less than the argument k.

The representation is only determined up to location (cmdscale takes the column means of the
configuration to be at the origin), rotations and reflections. The configuration returned is given in
principal-component axes, so the reflection chosen may differ between R platforms (see prcomp).

When add = TRUE, a minimal additive constant c∗ is computed such that the the dissimilarities
dij+c∗ are Euclidean and hence can be represented in n - 1 dimensions. Whereas S (Becker et al.,
1988) computes this constant using an approximation suggested by Torgerson, R uses the analytical
solution of Cailliez (1983), see also Cox and Cox (2001). Note that because of numerical errors the
computed eigenvalues need not all be non-negative, and even theoretically the representation could
be in fewer than n - 1 dimensions.

Value

If eig = FALSE, add = FALSE and x.ret = FALSE (default), a matrix with k columns whose rows
give the coordinates of the points chosen to represent the dissimilarities.

Otherwise, a list containing the following components.

points a matrix with up to k columns whose rows give the coordinates of the points
chosen to represent the dissimilarities.

eig the n eigenvalues computed during the scaling process if eig is true. NB: ver-
sions of R before 2.12.1 returned only k but were documented to return n− 1.

x the doubly centered distance matrix if x.ret is true.

ac the additive constant c∗, 0 if add = FALSE.

GOF a numeric vector of length 2, equal to say (g1, g2), where gi =

(
∑k
j=1 λj)/(

∑n
j=1 Ti(λj)), where λj are the eigenvalues (sorted in decreasing

order), T1(v) = |v|, and T2(v) = max(v, 0).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Cailliez, F. (1983) The analytical solution of the additive constant problem. Psychometrika 48,
343–349.

Cox, T. F. and Cox, M. A. A. (2001) Multidimensional Scaling. Second edition. Chapman and Hall.

Gower, J. C. (1966) Some distance properties of latent root and vector methods used in multivariate
analysis. Biometrika 53, 325–328.

Krzanowski, W. J. and Marriott, F. H. C. (1994) Multivariate Analysis. Part I. Distributions, Ordi-
nation and Inference. London: Edward Arnold. (Especially pp. 108–111.)

Mardia, K.V. (1978) Some properties of classical multidimensional scaling. Communications on
Statistics – Theory and Methods, A7, 1233–41.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 of Multivariate Analysis, London:
Academic Press.

1174 coef

Seber, G. A. F. (1984). Multivariate Observations. New York: Wiley.

Torgerson, W. S. (1958). Theory and Methods of Scaling. New York: Wiley.

See Also

dist.

isoMDS and sammon in package MASS provide alternative methods of multidimensional scaling.

Examples

require(graphics)

loc <- cmdscale(eurodist)
x <- loc[, 1]
y <- -loc[, 2] # reflect so North is at the top
note asp = 1, to ensure Euclidean distances are represented correctly
plot(x, y, type = "n", xlab = "", ylab = "", asp = 1, axes = FALSE,

main = "cmdscale(eurodist)")
text(x, y, rownames(loc), cex = 0.6)

coef Extract Model Coefficients

Description

coef is a generic function which extracts model coefficients from objects returned by modeling
functions. coefficients is an alias for it.

Usage

coef(object, ...)
coefficients(object, ...)

Arguments

object an object for which the extraction of model coefficients is meaningful.

... other arguments.

Details

All object classes which are returned by model fitting functions should provide a coef method or
use the default one. (Note that the method is for coef and not coefficients.)

Class "aov" has a coef method that does not report aliased coefficients (see alias).

Value

Coefficients extracted from the model object object.

For standard model fitting classes this will be a named numeric vector.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

http://CRAN.R-project.org/package=MASS

complete.cases 1175

See Also

fitted.values and residuals for related methods; glm, lm for model fitting.

Examples

x <- 1:5; coef(lm(c(1:3,7,6) ~ x))

complete.cases Find Complete Cases

Description

Return a logical vector indicating which cases are complete, i.e., have no missing values.

Usage

complete.cases(...)

Arguments

... a sequence of vectors, matrices and data frames.

Value

A logical vector specifying which observations/rows have no missing values across the entire se-
quence.

See Also

is.na, na.omit, na.fail.

Examples

x <- airquality[, -1] # x is a regression design matrix
y <- airquality[, 1] # y is the corresponding response

stopifnot(complete.cases(y) != is.na(y))
ok <- complete.cases(x,y)
sum(!ok) # how many are not "ok" ?
x <- x[ok,]
y <- y[ok]

1176 confint

confint Confidence Intervals for Model Parameters

Description

Computes confidence intervals for one or more parameters in a fitted model. There is a default and
a method for objects inheriting from class "lm".

Usage

confint(object, parm, level = 0.95, ...)

Arguments

object a fitted model object.

parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level the confidence level required.

... additional argument(s) for methods.

Details

confint is a generic function. The default method assumes asymptotic normality, and needs suit-
able coef and vcov methods to be available. The default method can be called directly for compar-
ison with other methods.

For objects of class "lm" the direct formulae based on t values are used.

There are stub methods for classes "glm" and "nls" which invoke those in package MASS which
are based on profile likelihoods.

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each parameter.
These will be labelled as (1-level)/2 and 1 - (1-level)/2 in % (by default 2.5% and 97.5%).

See Also

confint.glm and confint.nls in package MASS.

Examples

fit <- lm(100/mpg ~ disp + hp + wt + am, data=mtcars)
confint(fit)
confint(fit, "wt")

from example(glm) (needs MASS to be present on the system)
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9); treatment <- gl(3,3)
glm.D93 <- glm(counts ~ outcome + treatment, family=poisson())
confint(glm.D93)
confint.default(glm.D93) # based on asymptotic normality

http://CRAN.R-project.org/package=MASS
http://CRAN.R-project.org/package=MASS

constrOptim 1177

constrOptim Linearly Constrained Optimization

Description

Minimise a function subject to linear inequality constraints using an adaptive barrier algorithm.

Usage

constrOptim(theta, f, grad, ui, ci, mu = 1e-04, control = list(),
method = if(is.null(grad)) "Nelder-Mead" else "BFGS",
outer.iterations = 100, outer.eps = 1e-05, ...,
hessian = FALSE)

Arguments

theta numeric (vector) starting value (of length p): must be in the feasible region.

f function to minimise (see below).

grad gradient of f (a function as well), or NULL (see below).

ui constraint matrix (k × p), see below.

ci constraint vector of length k (see below).

mu (Small) tuning parameter.
control, method, hessian

passed to optim.
outer.iterations

iterations of the barrier algorithm.

outer.eps non-negative number; the relative convergence tolerance of the barrier algo-
rithm.

... Other named arguments to be passed to f and grad: needs to be passed through
optim so should not match its argument names.

Details

The feasible region is defined by ui %*% theta - ci >= 0. The starting value must be in the
interior of the feasible region, but the minimum may be on the boundary.

A logarithmic barrier is added to enforce the constraints and then optim is called. The barrier
function is chosen so that the objective function should decrease at each outer iteration. Minima
in the interior of the feasible region are typically found quite quickly, but a substantial number of
outer iterations may be needed for a minimum on the boundary.

The tuning parameter mu multiplies the barrier term. Its precise value is often relatively unimportant.
As mu increases the augmented objective function becomes closer to the original objective function
but also less smooth near the boundary of the feasible region.

Any optim method that permits infinite values for the objective function may be used (currently all
but "L-BFGS-B").

The objective function f takes as first argument the vector of parameters over which minimisation
is to take place. It should return a scalar result. Optional arguments ... will be passed to optim

1178 constrOptim

and then (if not used by optim) to f. As with optim, the default is to minimise, but maximisation
can be performed by setting control$fnscale to a negative value.

The gradient function grad must be supplied except with method="Nelder-Mead". It should take
arguments matching those of f and return a vector containing the gradient.

Value

As for optim, but with two extra components: barrier.value giving the value of the barrier func-
tion at the optimum and outer.iterations gives the number of outer iterations (calls to optim).
The counts component contains the sum of all optim()$counts.

References

K. Lange Numerical Analysis for Statisticians. Springer 2001, p185ff

See Also

optim, especially method="L-BFGS-B" which does box-constrained optimisation.

Examples

from optim
fr <- function(x) { ## Rosenbrock Banana function

x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
grr <- function(x) { ## Gradient of ’fr’

x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))
}

optim(c(-1.2,1), fr, grr)
#Box-constraint, optimum on the boundary
constrOptim(c(-1.2,0.9), fr, grr, ui=rbind(c(-1,0),c(0,-1)), ci=c(-1,-1))
x<=0.9, y-x>0.1
constrOptim(c(.5,0), fr, grr, ui=rbind(c(-1,0),c(1,-1)), ci=c(-0.9,0.1))

Solves linear and quadratic programming problems
but needs a feasible starting value
#
from example(solve.QP) in ’quadprog’
no derivative
fQP <- function(b) {-sum(c(0,5,0)*b)+0.5*sum(b*b)}
Amat <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3)
bvec <- c(-8,2,0)
constrOptim(c(2,-1,-1), fQP, NULL, ui=t(Amat),ci=bvec)
derivative
gQP <- function(b) {-c(0,5,0)+b}
constrOptim(c(2,-1,-1), fQP, gQP, ui=t(Amat), ci=bvec)

Now with maximisation instead of minimisation

contrast 1179

hQP <- function(b) {sum(c(0,5,0)*b)-0.5*sum(b*b)}
constrOptim(c(2,-1,-1), hQP, NULL, ui=t(Amat), ci=bvec,

control=list(fnscale=-1))

contrast (Possibly Sparse) Contrast Matrices

Description

Return a matrix of contrasts.

Usage

contr.helmert(n, contrasts = TRUE, sparse = FALSE)
contr.poly(n, scores = 1:n, contrasts = TRUE, sparse = FALSE)
contr.sum(n, contrasts = TRUE, sparse = FALSE)
contr.treatment(n, base = 1, contrasts = TRUE, sparse = FALSE)
contr.SAS(n, contrasts = TRUE, sparse = FALSE)

Arguments

n a vector of levels for a factor, or the number of levels.

contrasts a logical indicating whether contrasts should be computed.

sparse logical indicating if the result should be sparse (of class dgCMatrix), using pack-
age Matrix.

scores the set of values over which orthogonal polynomials are to be computed.

base an integer specifying which group is considered the baseline group. Ignored if
contrasts is FALSE.

Details

These functions are used for creating contrast matrices for use in fitting analysis of variance and
regression models. The columns of the resulting matrices contain contrasts which can be used for
coding a factor with n levels. The returned value contains the computed contrasts. If the argu-
ment contrasts is FALSE a square indicator matrix (the dummy coding) is returned except for
contr.poly (which includes the 0-degree, i.e. constant, polynomial when contrasts = FALSE).

contr.helmert returns Helmert contrasts, which contrast the second level with the first, the third
with the average of the first two, and so on. contr.poly returns contrasts based on orthogonal
polynomials. contr.sum uses ‘sum to zero contrasts’.

contr.treatment contrasts each level with the baseline level (specified by base): the baseline
level is omitted. Note that this does not produce ‘contrasts’ as defined in the standard theory for
linear models as they are not orthogonal to the intercept.

contr.SAS is a wrapper for contr.treatment that sets the base level to be the last level of the
factor. The coefficients produced when using these contrasts should be equivalent to those produced
by many (but not all) SAS procedures.

For consistency, sparse is an argument to all these contrast functions, however sparse = TRUE for
contr.poly is typically pointless and is rarely useful for contr.helmert.

http://CRAN.R-project.org/package=Matrix

1180 contrasts

Value

A matrix with n rows and k columns, with k=n-1 if contrasts is TRUE and k=n if contrasts is
FALSE.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models in S eds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

contrasts, C, and aov, glm, lm.

Examples

(cH <- contr.helmert(4))
apply(cH, 2,sum) # column sums are 0
crossprod(cH) # diagonal -- columns are orthogonal
contr.helmert(4, contrasts = FALSE) # just the 4 x 4 identity matrix

(cT <- contr.treatment(5))
all(crossprod(cT) == diag(4)) # TRUE: even orthonormal

(cT. <- contr.SAS(5))
all(crossprod(cT.) == diag(4)) # TRUE

zapsmall(cP <- contr.poly(3)) # Linear and Quadratic
zapsmall(crossprod(cP), digits=15) # orthonormal up to fuzz

contrasts Get and Set Contrast Matrices

Description

Set and view the contrasts associated with a factor.

Usage

contrasts(x, contrasts = TRUE, sparse = FALSE)
contrasts(x, how.many) <- value

Arguments

x a factor or a logical variable.

contrasts logical. See ‘Details’.

sparse logical indicating if the result should be sparse (of class dgCMatrix), using pack-
age Matrix.

how.many How many contrasts should be made. Defaults to one less than the number of
levels of x. This need not be the same as the number of columns of value.

value either a numeric matrix (or a sparse or dense matrix of a class extending dMatrix
from package Matrix) whose columns give coefficients for contrasts in the lev-
els of x, or the (quoted) name of a function which computes such matrices.

http://CRAN.R-project.org/package=Matrix
http://CRAN.R-project.org/package=Matrix

convolve 1181

Details

If contrasts are not set for a factor the default functions from options("contrasts") are used.

A logical vector x is converted into a two-level factor with levels c(FALSE, TRUE) (regardless of
which levels occur in the variable).

The argument contrasts is ignored if x has a matrix contrasts attribute set. Otherwise
if contrasts = TRUE it is passed to a contrasts function such as contr.treatment and if
contrasts = FALSE an identity matrix is returned. Suitable functions have a first argument
which is the character vector of levels, a named argument contrasts (always called with
contrasts = TRUE) and optionally from R 2.10.0 a logical argument sparse.

If value supplies more than how.many contrasts, the first how.many are used. If too few are sup-
plied, a suitable contrast matrix is created by extending value after ensuring its columns are con-
trasts (orthogonal to the constant term) and not collinear.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models in S eds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

C, contr.helmert, contr.poly, contr.sum, contr.treatment; glm, aov, lm.

Examples

utils::example(factor)
fff <- ff[, drop=TRUE] # reduce to 5 levels.
contrasts(fff) # treatment contrasts by default
contrasts(C(fff, sum))
contrasts(fff, contrasts = FALSE) # the 5x5 identity matrix

contrasts(fff) <- contr.sum(5); contrasts(fff) # set sum contrasts
contrasts(fff, 2) <- contr.sum(5); contrasts(fff) # set 2 contrasts
supply 2 contrasts, compute 2 more to make full set of 4.
contrasts(fff) <- contr.sum(5)[,1:2]; contrasts(fff)

using sparse contrasts: % useful, once model.matrix() works with these :
ffs <- fff
contrasts(ffs) <- contr.sum(5, sparse=TRUE)[,1:2]; contrasts(ffs)
stopifnot(all.equal(ffs, fff))
contrasts(ffs) <- contr.sum(5, sparse=TRUE); contrasts(ffs)

convolve Convolution of Sequences via FFT

Description

Use the Fast Fourier Transform to compute the several kinds of convolutions of two sequences.

Usage

convolve(x, y, conj = TRUE, type = c("circular", "open", "filter"))

1182 convolve

Arguments

x,y numeric sequences of the same length to be convolved.

conj logical; if TRUE, take the complex conjugate before back-transforming (default,
and used for usual convolution).

type character; one of "circular", "open", "filter" (beginning of word is ok).
For circular, the two sequences are treated as circular, i.e., periodic.
For open and filter, the sequences are padded with 0s (from left and right)
first; "filter" returns the middle sub-vector of "open", namely, the result of
running a weighted mean of x with weights y.

Details

The Fast Fourier Transform, fft, is used for efficiency.

The input sequences x and y must have the same length if circular is true.

Note that the usual definition of convolution of two sequences x and y is given by
convolve(x, rev(y), type = "o").

Value

If r <- convolve(x,y, type = "open") and n <- length(x), m <- length(y), then

rk =
∑
i

xk−m+iyi

where the sum is over all valid indices i, for k = 1, . . . , n+m− 1.

If type == "circular", n = m is required, and the above is true for i, k = 1, . . . , n when
xj := xn+j for j < 1.

References

Brillinger, D. R. (1981) Time Series: Data Analysis and Theory, Second Edition. San Francisco:
Holden-Day.

See Also

fft, nextn, and particularly filter (from the stats package) which may be more appropriate.

Examples

require(graphics)

x <- c(0,0,0,100,0,0,0)
y <- c(0,0,1, 2 ,1,0,0)/4
zapsmall(convolve(x,y)) # *NOT* what you first thought.
zapsmall(convolve(x, y[3:5], type="f")) # rather
x <- rnorm(50)
y <- rnorm(50)
Circular convolution *has* this symmetry:
all.equal(convolve(x,y, conj = FALSE), rev(convolve(rev(y),x)))

n <- length(x <- -20:24)
y <- (x-10)^2/1000 + rnorm(x)/8

cophenetic 1183

Han <- function(y) # Hanning
convolve(y, c(1,2,1)/4, type = "filter")

plot(x,y, main="Using convolve(.) for Hanning filters")
lines(x[-c(1 , n)], Han(y), col="red")
lines(x[-c(1:2, (n-1):n)], Han(Han(y)), lwd=2, col="dark blue")

cophenetic Cophenetic Distances for a Hierarchical Clustering

Description

Computes the cophenetic distances for a hierarchical clustering.

Usage

cophenetic(x)
Default S3 method:
cophenetic(x)
S3 method for class ’dendrogram’
cophenetic(x)

Arguments

x an R object representing a hierarchical clustering. For the default method, an
object of class "hclust" or with a method for as.hclust() such as "agnes"
in package cluster.

Details

The cophenetic distance between two observations that have been clustered is defined to be the
intergroup dissimilarity at which the two observations are first combined into a single cluster. Note
that this distance has many ties and restrictions.

It can be argued that a dendrogram is an appropriate summary of some data if the correlation be-
tween the original distances and the cophenetic distances is high. Otherwise, it should simply be
viewed as the description of the output of the clustering algorithm.

cophenetic is a generic function. Support for classes which represent hierarchical clusterings (total
indexed hierarchies) can be added by providing an as.hclust() or, more directly, a cophenetic()
method for such a class.

The method for objects of class "dendrogram" requires that all leaves of the dendrogram object
have non-null labels.

Value

An object of class "dist".

Author(s)

Robert Gentleman

http://CRAN.R-project.org/package=cluster

1184 cor

References

Sneath, P.H.A. and Sokal, R.R. (1973) Numerical Taxonomy: The Principles and Practice of Nu-
merical Classification, p. 278 ff; Freeman, San Francisco.

See Also

dist, hclust

Examples

require(graphics)

d1 <- dist(USArrests)
hc <- hclust(d1, "ave")
d2 <- cophenetic(hc)
cor(d1,d2) # 0.7659

Example from Sneath & Sokal, Fig. 5-29, p.279
d0 <- c(1,3.8,4.4,5.1, 4,4.2,5, 2.6,5.3, 5.4)
attributes(d0) <- list(Size = 5, diag=TRUE)
class(d0) <- "dist"
names(d0) <- letters[1:5]
d0
utils::str(upgma <- hclust(d0, method = "average"))
plot(upgma, hang = -1)
#
(d.coph <- cophenetic(upgma))
cor(d0, d.coph) # 0.9911

cor Correlation, Variance and Covariance (Matrices)

Description

var, cov and cor compute the variance of x and the covariance or correlation of x and y if these are
vectors. If x and y are matrices then the covariances (or correlations) between the columns of x and
the columns of y are computed.

cov2cor scales a covariance matrix into the corresponding correlation matrix efficiently.

Usage

var(x, y = NULL, na.rm = FALSE, use)

cov(x, y = NULL, use = "everything",
method = c("pearson", "kendall", "spearman"))

cor(x, y = NULL, use = "everything",
method = c("pearson", "kendall", "spearman"))

cov2cor(V)

cor 1185

Arguments

x a numeric vector, matrix or data frame.

y NULL (default) or a vector, matrix or data frame with compatible dimensions to
x. The default is equivalent to y = x (but more efficient).

na.rm logical. Should missing values be removed?

use an optional character string giving a method for computing covariances in the
presence of missing values. This must be (an abbreviation of) one of the
strings "everything", "all.obs", "complete.obs", "na.or.complete", or
"pairwise.complete.obs".

method a character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman", can be
abbreviated.

V symmetric numeric matrix, usually positive definite such as a covariance matrix.

Details

For cov and cor one must either give a matrix or data frame for x or give both x and y.

The inputs must be numeric (as determined by is.numeric: logical values are also allowed for
historical compatibility): the "kendall" and "spearman" methods make sense for ordered inputs
but xtfrm can be used to find a suitable prior transformation to numbers.

var is just another interface to cov, where na.rm is used to determine the default for
use when that is unspecified. If na.rm is TRUE then the complete observations (rows)
are used (use = "na.or.complete") to compute the variance. Otherwise, by default
use = "everything".

If use is "everything", NAs will propagate conceptually, i.e., a resulting value will be NA whenever
one of its contributing observations is NA.
If use is "all.obs", then the presence of missing observations will produce an error. If use is
"complete.obs" then missing values are handled by casewise deletion (and if there are no complete
cases, that gives an error).
"na.or.complete" is the same unless there are no complete cases, that gives NA. Finally, if use
has the value "pairwise.complete.obs" then the correlation or covariance between each pair of
variables is computed using all complete pairs of observations on those variables. This can result in
covariance or correlation matrices which are not positive semi-definite, as well as NA entries if there
are no complete pairs for that pair of variables. For cov and var, "pairwise.complete.obs" only
works with the "pearson" method. Note that (the equivalent of) var(double(0), use=*) gives
NA for use = "everything" and "na.or.complete", and gives an error in the other cases.

The denominator n − 1 is used which gives an unbiased estimator of the (co)variance for i.i.d.
observations. These functions return NA when there is only one observation (whereas S-PLUS has
been returning NaN), and fail if x has length zero.

For cor(), if method is "kendall" or "spearman", Kendall’s τ or Spearman’s ρ statistic is used to
estimate a rank-based measure of association. These are more robust and have been recommended
if the data do not necessarily come from a bivariate normal distribution.
For cov(), a non-Pearson method is unusual but available for the sake of complete-
ness. Note that "spearman" basically computes cor(R(x), R(y)) (or cov(.,.)) where
R(u) := rank(u, na.last="keep"). In the case of missing values, the ranks are calculated de-
pending on the value of use, either based on complete observations, or based on pairwise complete-
ness with reranking for each pair.

Scaling a covariance matrix into a correlation one can be achieved in many ways, mathematically
most appealing by multiplication with a diagonal matrix from left and right, or more efficiently

1186 cor

by using sweep(.., FUN = "/") twice. The cov2cor function is even a bit more efficient, and
provided mostly for didactical reasons.

Value

For r <- cor(*, use = "all.obs"), it is now guaranteed that all(r <= 1).

Note

Some people have noted that the code for Kendall’s tau is slow for very large datasets (many more
than 1000 cases). It rarely makes sense to do such a computation, but see function cor.fk in
package pcaPP.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

cor.test for confidence intervals (and tests).

cov.wt for weighted covariance computation.

sd for standard deviation (vectors).

Examples

var(1:10)# 9.166667

var(1:5,1:5)# 2.5

Two simple vectors
cor(1:10,2:11)# == 1

Correlation Matrix of Multivariate sample:
(Cl <- cor(longley))
Graphical Correlation Matrix:
symnum(Cl) # highly correlated

Spearman’s rho and Kendall’s tau
symnum(clS <- cor(longley, method = "spearman"))
symnum(clK <- cor(longley, method = "kendall"))
How much do they differ?
i <- lower.tri(Cl)
cor(cbind(P = Cl[i], S = clS[i], K = clK[i]))

cov2cor() scales a covariance matrix by its diagonal
to become the correlation matrix.
cov2cor # see the function definition {and learn ..}
stopifnot(all.equal(Cl, cov2cor(cov(longley))),

all.equal(cor(longley, method="kendall"),
cov2cor(cov(longley, method="kendall"))))

##--- Missing value treatment:
C1 <- cov(swiss)

http://CRAN.R-project.org/package=pcaPP

cor.test 1187

range(eigen(C1, only.values=TRUE)$values) # 6.19 1921
swM <- swiss
swM[1,2] <- swM[7,3] <- swM[25,5] <- NA # create 3 "missing"
try(cov(swM)) # Error: missing obs...
C2 <- cov(swM, use = "complete")
range(eigen(C2, only.values=TRUE)$values) # 6.46 1930
C3 <- cov(swM, use = "pairwise")
range(eigen(C3, only.values=TRUE)$values) # 6.19 1938

symnum(cor(swM, method = "kendall", use = "complete"))
Kendall’s tau doesn’t change much:
symnum(cor(swiss, method = "kendall"))

cor.test Test for Association/Correlation Between Paired Samples

Description

Test for association between paired samples, using one of Pearson’s product moment correlation
coefficient, Kendall’s τ or Spearman’s ρ.

Usage

cor.test(x, ...)

Default S3 method:
cor.test(x, y,

alternative = c("two.sided", "less", "greater"),
method = c("pearson", "kendall", "spearman"),
exact = NULL, conf.level = 0.95, continuity = FALSE, ...)

S3 method for class ’formula’
cor.test(formula, data, subset, na.action, ...)

Arguments

x, y numeric vectors of data values. x and y must have the same length.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter. "greater" corre-
sponds to positive association, "less" to negative association.

method a character string indicating which correlation coefficient is to be used for the
test. One of "pearson", "kendall", or "spearman", can be abbreviated.

exact a logical indicating whether an exact p-value should be computed. Used for
Kendall’s τ and Spearman’s ρ. See ‘Details’ for the meaning of NULL (the de-
fault).

conf.level confidence level for the returned confidence interval. Currently only used for the
Pearson product moment correlation coefficient if there are at least 4 complete
pairs of observations.

continuity logical: if true, a continuity correction is used for Kendall’s τ and Spearman’s ρ
when not computed exactly.

1188 cor.test

formula a formula of the form ~ u + v, where each of u and v are numeric variables
giving the data values for one sample. The samples must be of the same length.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

The three methods each estimate the association between paired samples and compute a test of
the value being zero. They use different measures of association, all in the range [−1, 1] with 0
indicating no association. These are sometimes referred to as tests of no correlation, but that term
is often confined to the default method.

If method is "pearson", the test statistic is based on Pearson’s product moment correlation coeffi-
cient cor(x, y) and follows a t distribution with length(x)-2 degrees of freedom if the samples
follow independent normal distributions. If there are at least 4 complete pairs of observation, an
asymptotic confidence interval is given based on Fisher’s Z transform.

If method is "kendall" or "spearman", Kendall’s τ or Spearman’s ρ statistic is used to estimate
a rank-based measure of association. These tests may be used if the data do not necessarily come
from a bivariate normal distribution.

For Kendall’s test, by default (if exact is NULL), an exact p-value is computed if there are less
than 50 paired samples containing finite values and there are no ties. Otherwise, the test statistic is
the estimate scaled to zero mean and unit variance, and is approximately normally distributed.

For Spearman’s test, p-values are computed using algorithm AS 89 for n < 1290 and
exact = TRUE, otherwise via the asymptotic t approximation. Note that these are ‘exact’ for
n < 10, and use an Edgeworth series approximation for larger sample sizes (the cutoff has been
changed from the original paper).

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

parameter the degrees of freedom of the test statistic in the case that it follows a t distribu-
tion.

p.value the p-value of the test.

estimate the estimated measure of association, with name "cor", "tau", or "rho" corre-
sponding to the method employed.

null.value the value of the association measure under the null hypothesis, always 0.

alternative a character string describing the alternative hypothesis.

method a character string indicating how the association was measured.

data.name a character string giving the names of the data.

conf.int a confidence interval for the measure of association. Currently only given for
Pearson’s product moment correlation coefficient in case of at least 4 complete
pairs of observations.

cov.wt 1189

References

D. J. Best & D. E. Roberts (1975), Algorithm AS 89: The Upper Tail Probabilities of Spearman’s
ρ. Applied Statistics, 24, 377–379.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric Statistical Methods. New York: John
Wiley & Sons. Pages 185–194 (Kendall and Spearman tests).

See Also

Kendall in package Kendall.

pKendall and pSpearman in package SuppDists, spearman.test in package pspearman, which
supply different (and often more accurate) approximations.

Examples

Hollander & Wolfe (1973), p. 187f.
Assessment of tuna quality. We compare the Hunter L measure of
lightness to the averages of consumer panel scores (recoded as
integer values from 1 to 6 and averaged over 80 such values) in
9 lots of canned tuna.

x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
y <- c(2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)

The alternative hypothesis of interest is that the
Hunter L value is positively associated with the panel score.

cor.test(x, y, method = "kendall", alternative = "greater")
=> p=0.05972

cor.test(x, y, method = "kendall", alternative = "greater",
exact = FALSE) # using large sample approximation

=> p=0.04765

Compare this to
cor.test(x, y, method = "spearm", alternative = "g")
cor.test(x, y, alternative = "g")

Formula interface.
require(graphics)
pairs(USJudgeRatings)
cor.test(~ CONT + INTG, data = USJudgeRatings)

cov.wt Weighted Covariance Matrices

Description

Returns a list containing estimates of the weighted covariance matrix and the mean of the data, and
optionally of the (weighted) correlation matrix.

http://CRAN.R-project.org/package=Kendall
http://CRAN.R-project.org/package=SuppDists
http://CRAN.R-project.org/package=pspearman

1190 cov.wt

Usage

cov.wt(x, wt = rep(1/nrow(x), nrow(x)), cor = FALSE, center = TRUE,
method = c("unbiased", "ML"))

Arguments

x a matrix or data frame. As usual, rows are observations and columns are vari-
ables.

wt a non-negative and non-zero vector of weights for each observation. Its length
must equal the number of rows of x.

cor a logical indicating whether the estimated correlation weighted matrix will be
returned as well.

center either a logical or a numeric vector specifying the centers to be used when com-
puting covariances. If TRUE, the (weighted) mean of each variable is used, if
FALSE, zero is used. If center is numeric, its length must equal the number of
columns of x.

method string specifying how the result is scaled, see ‘Details’ below.

Details

By default, method = "unbiased", The covariance matrix is divided by one minus the sum of
squares of the weights, so if the weights are the default (1/n) the conventional unbiased estimate of
the covariance matrix with divisor (n− 1) is obtained. This differs from the behaviour in S-PLUS
which corresponds to method = "ML" and does not divide.

Value

A list containing the following named components:

cov the estimated (weighted) covariance matrix

center an estimate for the center (mean) of the data.

n.obs the number of observations (rows) in x.

wt the weights used in the estimation. Only returned if given as an argument.

cor the estimated correlation matrix. Only returned if cor is TRUE.

See Also

cov and var.

Examples

(xy <- cbind(x = 1:10, y = c(1:3, 8:5, 8:10)))
w1 <- c(0,0,0,1,1,1,1,1,0,0)
cov.wt(xy, wt = w1) # i.e. method = "unbiased"
cov.wt(xy, wt = w1, method = "ML", cor = TRUE)

cpgram 1191

cpgram Plot Cumulative Periodogram

Description

Plots a cumulative periodogram.

Usage

cpgram(ts, taper = 0.1,
main = paste("Series: ", deparse(substitute(ts))),
ci.col = "blue")

Arguments

ts a univariate time series

taper proportion tapered in forming the periodogram

main main title

ci.col colour for confidence band.

Value

None.

Side Effects

Plots the cumulative periodogram in a square plot.

Note

From package MASS.

Author(s)

B.D. Ripley

Examples

require(graphics)

par(pty = "s", mfrow = c(1,2))
cpgram(lh)
lh.ar <- ar(lh, order.max = 9)
cpgram(lh.ar$resid, main = "AR(3) fit to lh")

cpgram(ldeaths)

http://CRAN.R-project.org/package=MASS

1192 cutree

cutree Cut a Tree into Groups of Data

Description

Cuts a tree, e.g., as resulting from hclust, into several groups either by specifying the desired
number(s) of groups or the cut height(s).

Usage

cutree(tree, k = NULL, h = NULL)

Arguments

tree a tree as produced by hclust. cutree() only expects a list with components
merge, height, and labels, of appropriate content each.

k an integer scalar or vector with the desired number of groups

h numeric scalar or vector with heights where the tree should be cut. At least one
of k or h must be specified, k overrides h if both are given.

Details

Cutting trees at a given height is only possible for ultrametric trees (with monotone clustering
heights).

Value

cutree returns a vector with group memberships if k or h are scalar, otherwise a matrix with group
memberships is returned where each column corresponds to the elements of k or h, respectively
(which are also used as column names).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

hclust, dendrogram for cutting trees themselves.

Examples

hc <- hclust(dist(USArrests))

cutree(hc, k=1:5) #k = 1 is trivial
cutree(hc, h=250)

Compare the 2 and 4 grouping:
g24 <- cutree(hc, k = c(2,4))
table(grp2=g24[,"2"], grp4=g24[,"4"])

decompose 1193

decompose Classical Seasonal Decomposition by Moving Averages

Description

Decompose a time series into seasonal, trend and irregular components using moving averages.
Deals with additive or multiplicative seasonal component.

Usage

decompose(x, type = c("additive", "multiplicative"), filter = NULL)

Arguments

x A time series.

type The type of seasonal component. Can be abbreviated.

filter A vector of filter coefficients in reverse time order (as for AR or MA coeffi-
cients), used for filtering out the seasonal component. If NULL, a moving average
with symmetric window is performed.

Details

The additive model used is:
Yt = Tt + St + et

The multiplicative model used is:
Yt = Tt St et

The function first determines the trend component using a moving average (if filter is NULL, a
symmetric window with equal weights is used), and removes it from the time series. Then, the
seasonal figure is computed by averaging, for each time unit, over all periods. The seasonal figure
is then centered. Finally, the error component is determined by removing trend and seasonal figure
(recycled as needed) from the original time series.

This only works well if x covers an integer number of complete periods.

Value

An object of class "decomposed.ts" with following components:

x The original series. (Only since R 2.14.0.)

seasonal The seasonal component (i.e., the repeated seasonal figure).

figure The estimated seasonal figure only.

trend The trend component.

random The remainder part.

type The value of type.

Note

The function stl provides a much more sophisticated decomposition.

1194 delete.response

Author(s)

David Meyer <David.Meyer@wu.ac.at>

References

M. Kendall and A. Stuart (1983) The Advanced Theory of Statistics, Vol.3, Griffin. pp. 410–414.

See Also

stl

Examples

require(graphics)

m <- decompose(co2)
m$figure
plot(m)

example taken from Kendall/Stuart
x <- c(-50, 175, 149, 214, 247, 237, 225, 329, 729, 809,

530, 489, 540, 457, 195, 176, 337, 239, 128, 102, 232, 429, 3,
98, 43, -141, -77, -13, 125, 361, -45, 184)

x <- ts(x, start = c(1951, 1), end = c(1958, 4), frequency = 4)
m <- decompose(x)
seasonal figure: 6.25, 8.62, -8.84, -6.03
round(decompose(x)$figure / 10, 2)

delete.response Modify Terms Objects

Description

delete.response returns a terms object for the same model but with no response variable.

drop.terms removes variables from the right-hand side of the model. There is also a "[.terms"
method to perform the same function (with keep.response=TRUE).

reformulate creates a formula from a character vector.

Usage

delete.response(termobj)

reformulate(termlabels, response = NULL, intercept = TRUE)

drop.terms(termobj, dropx = NULL, keep.response = FALSE)

dendrapply 1195

Arguments

termobj A terms object

termlabels character vector giving the right-hand side of a model formula. Cannot be zero-
length.

response character string, symbol or call giving the left-hand side of a model formula, or
NULL.

intercept logical: should the formula have an intercept? New in R 2.13.0.

dropx vector of positions of variables to drop from the right-hand side of the model.

keep.response Keep the response in the resulting object?

Value

delete.response and drop.terms return a terms object.

reformulate returns a formula.

See Also

terms

Examples

ff <- y ~ z + x + w
tt <- terms(ff)
tt
delete.response(tt)
drop.terms(tt, 2:3, keep.response = TRUE)
tt[-1]
tt[2:3]
reformulate(attr(tt, "term.labels"))

keep LHS :
reformulate("x*w", ff[[2]])
fS <- surv(ft, case) ~ a + b
reformulate(c("a", "b*f"), fS[[2]])

stopifnot(identical(~ var, reformulate("var")),
identical(~ a + b + c, reformulate(letters[1:3])),
identical(y ~ a + b, reformulate(letters[1:2], "y"))
)

dendrapply Apply a Function to All Nodes of a Dendrogram

Description

Apply function FUN to each node of a dendrogram recursively. When y <- dendrapply(x, fn),
then y is a dendrogram of the same graph structure as x and for each node,
y.node[j] <- FUN(x.node[j], ...) (where y.node[j] is an (invalid!) notation for the j-th
node of y.

1196 dendrapply

Usage

dendrapply(X, FUN, ...)

Arguments

X an object of class "dendrogram".

FUN an R function to be applied to each dendrogram node, typically working on its
attributes alone, returning an altered version of the same node.

... potential further arguments passed to FUN.

Value

Usually a dendrogram of the same (graph) structure as X. For that, the function must be conceptually
of the form FUN <- function(X) { attributes(X) <-; X }, i.e. returning the node
with some attributes added or changed.

Note

this is still somewhat experimental, and suggestions for enhancements (or nice examples of usage)
are very welcome.

Author(s)

Martin Maechler

See Also

as.dendrogram, lapply for applying a function to each component of a list, rapply for doing
so to each non-list component of a nested list.

Examples

require(graphics)

a smallish simple dendrogram
dhc <- as.dendrogram(hc <- hclust(dist(USArrests), "ave"))
(dhc21 <- dhc[[2]][[1]])

too simple:
dendrapply(dhc21, function(n) utils::str(attributes(n)))

toy example to set colored leaf labels :
local({

colLab <<- function(n) {
if(is.leaf(n)) {

a <- attributes(n)
i <<- i+1
attr(n, "nodePar") <-

c(a$nodePar, list(lab.col = mycols[i], lab.font= i%%3))
}
n

}
mycols <- grDevices::rainbow(attr(dhc21,"members"))
i <- 0

})

dendrogram 1197

dL <- dendrapply(dhc21, colLab)
op <- par(mfrow=2:1)
plot(dhc21)
plot(dL) ## --> colored labels!

par(op)

dendrogram General Tree Structures

Description

Class "dendrogram" provides general functions for handling tree-like structures. It is intended as a
replacement for similar functions in hierarchical clustering and classification/regression trees, such
that all of these can use the same engine for plotting or cutting trees.

Usage

as.dendrogram(object, ...)
S3 method for class ’hclust’
as.dendrogram(object, hang = -1, ...)

S3 method for class ’dendrogram’
as.hclust(x, ...)

S3 method for class ’dendrogram’
plot(x, type = c("rectangle", "triangle"),

center = FALSE,
edge.root = is.leaf(x) || !is.null(attr(x,"edgetext")),
nodePar = NULL, edgePar = list(),
leaflab = c("perpendicular", "textlike", "none"),
dLeaf = NULL, xlab = "", ylab = "", xaxt = "n", yaxt = "s",
horiz = FALSE, frame.plot = FALSE, xlim, ylim, ...)

S3 method for class ’dendrogram’
cut(x, h, ...)

S3 method for class ’dendrogram’
merge(x, y, ..., height)

S3 method for class ’dendrogram’
print(x, digits, ...)

S3 method for class ’dendrogram’
rev(x)

S3 method for class ’dendrogram’
str(object, max.level = NA, digits.d = 3,

give.attr = FALSE, wid = getOption("width"),
nest.lev = 0, indent.str = "",
last.str = getOption("str.dendrogram.last"), stem = "--",
...)

1198 dendrogram

is.leaf(object)

Arguments

object any R object that can be made into one of class "dendrogram".

x, y object(s) of class "dendrogram".

hang numeric scalar indicating how the height of leaves should be computed from the
heights of their parents; see plot.hclust.

type type of plot.

center logical; if TRUE, nodes are plotted centered with respect to the leaves in the
branch. Otherwise (default), plot them in the middle of all direct child nodes.

edge.root logical; if true, draw an edge to the root node.

nodePar a list of plotting parameters to use for the nodes (see points) or NULL by
default which does not draw symbols at the nodes. The list may contain com-
ponents named pch, cex, col, xpd, and/or bg each of which can have length
two for specifying separate attributes for inner nodes and leaves. Note that the
default of pch is 1:2, so you may want to use pch = NA if you specify nodePar.

edgePar a list of plotting parameters to use for the edge segments and labels (if there’s
an edgetext). The list may contain components named col, lty and lwd (for
the segments), p.col, p.lwd, and p.lty (for the polygon around the text) and
t.col for the text color. As with nodePar, each can have length two for differ-
entiating leaves and inner nodes.

leaflab a string specifying how leaves are labeled. The default "perpendicular" write
text vertically (by default).
"textlike" writes text horizontally (in a rectangle), and
"none" suppresses leaf labels.

dLeaf a number specifying the distance in user coordinates between the tip of a leaf
and its label. If NULL as per default, 3/4 of a letter width or height is used.

horiz logical indicating if the dendrogram should be drawn horizontally or not.

frame.plot logical indicating if a box around the plot should be drawn, see plot.default.

h height at which the tree is cut.

height height at which the two dendrogram should be merged. If not specified (or
NULL), the default is ten percent larger than the (larger of the) two component
heights.

xlim, ylim optional x- and y-limits of the plot, passed to plot.default. The defaults for
these show the full dendrogram.

..., xlab, ylab, xaxt, yaxt

graphical parameters, or arguments for other methods.

digits integer specifying the precision for printing, see print.default.
max.level, digits.d, give.attr, wid, nest.lev, indent.str

arguments to str, see str.default(). Note that give.attr = FALSE still
shows height and members attributes for each node.

last.str, stem strings used for str() specifying how the last branch (at each level) should start
and the stem to use for each dendrogram branch. In some environments, using
last.str = "’" will provide much nicer looking output, than the historical
default last.str = "‘".

dendrogram 1199

Details

The dendrogram is directly represented as a nested list where each component corresponds to a
branch of the tree. Hence, the first branch of tree z is z[[1]], the second branch of the corre-
sponding subtree is z[[1]][[2]], or shorter z[[c(1,2)]], etc.. Each node of the tree carries some
information needed for efficient plotting or cutting as attributes, of which only members, height
and leaf for leaves are compulsory:

members total number of leaves in the branch

height numeric non-negative height at which the node is plotted.

midpoint numeric horizontal distance of the node from the left border (the leftmost leaf) of the
branch (unit 1 between all leaves). This is used for plot(*, center=FALSE).

label character; the label of the node

x.member for cut()$upper, the number of former members; more generally a substitute for the
members component used for ‘horizontal’ (when horiz = FALSE, else ‘vertical’) alignment.

edgetext character; the label for the edge leading to the node

nodePar a named list (of length-1 components) specifying node-specific attributes for points plot-
ting, see the nodePar argument above.

edgePar a named list (of length-1 components) specifying attributes for segments plotting of the
edge leading to the node, and drawing of the edgetext if available, see the edgePar argument
above.

leaf logical, if TRUE, the node is a leaf of the tree.

cut.dendrogram() returns a list with components $upper and $lower, the first is a truncated
version of the original tree, also of class dendrogram, the latter a list with the branches obtained
from cutting the tree, each a dendrogram.

There are [[, print, and str methods for "dendrogram" objects where the first one (extraction)
ensures that selecting sub-branches keeps the class.

Objects of class "hclust" can be converted to class "dendrogram" using method
as.dendrogram(), and since R 2.13.0, there is also a as.hclust() method as an inverse.

rev.dendrogram simply returns the dendrogram x with reversed nodes, see also
reorder.dendrogram.

The merge(x, y, ...) method which merges two or more dendrograms into a new one which has
x and y (and optional further arguments) as branches.

is.leaf(object) returns logical indicating if object is a leaf (the most simple dendrogram).

plotNode() and plotNodeLimit() are helper functions.

Warning

Some operations on dendrograms (including plotting) make use of recursion. For very deep trees It
may be necessary to increase options("expressions"): if you do you are likely to need to set the
C stack size larger than the default where possible.

Note

plot(): When using type = "triangle", center = TRUE often looks better.

str(d): If you really want to see the internal structure, use str(unclass(d)) instead.

1200 dendrogram

See Also

dendrapply for applying a function to each node. order.dendrogram and reorder.dendrogram;
further, the labels method.

Examples

require(graphics); require(utils)

hc <- hclust(dist(USArrests), "ave")
(dend1 <- as.dendrogram(hc)) # "print()" method
str(dend1) # "str()" method
str(dend1, max = 2, last.str= "’") # only the first two sub-levels
oo <- options(str.dendrogram.last = "\\") # yet another possibility
str(dend1, max = 2) # only the first two sub-levels
options(oo)# .. resetting them

op <- par(mfrow= c(2,2), mar = c(5,2,1,4))
plot(dend1)
"triangle" type and show inner nodes:
plot(dend1, nodePar=list(pch = c(1,NA), cex=0.8, lab.cex = 0.8),

type = "t", center=TRUE)
plot(dend1, edgePar=list(col = 1:2, lty = 2:3),

dLeaf=1, edge.root = TRUE)
plot(dend1, nodePar=list(pch = 2:1,cex=.4*2:1, col = 2:3),

horiz=TRUE)

simple test for as.hclust() as the inverse of as.dendrogram():
stopifnot(identical(as.hclust(dend1)[1:4], hc[1:4]))

dend2 <- cut(dend1, h=70)
plot(dend2$upper)
leaves are wrong horizontally:
plot(dend2$upper, nodePar=list(pch = c(1,7), col = 2:1))
dend2$lower is *NOT* a dendrogram, but a list of .. :
plot(dend2$lower[[3]], nodePar=list(col=4), horiz = TRUE, type = "tr")
"inner" and "leaf" edges in different type & color :
plot(dend2$lower[[2]], nodePar=list(col=1),# non empty list

edgePar = list(lty=1:2, col=2:1), edge.root=TRUE)
par(op)
d3 <- dend2$lower[[2]][[2]][[1]]
stopifnot(identical(d3, dend2$lower[[2]][[c(2,1)]]))
str(d3, last.str="’")

merge() to join dendrograms:
(d13 <- merge(dend2$lower[[1]], dend2$lower[[3]]))
merge() all parts back (using default ’height’ instead of original one):
den.1 <- Reduce(merge, dend2$lower)
or merge() all four parts at same height --> 4 branches (!)
d. <- merge(dend2$lower[[1]], dend2$lower[[2]], dend2$lower[[3]],

dend2$lower[[4]])
(with a warning) or the same using do.call :
stopifnot(identical(d., do.call(merge, dend2$lower)))
plot(d., main="merge(d1, d2, d3, d4) |-> dendrogram with a 4-split")

"Zoom" in to the first dendrogram :
plot(dend1, xlim = c(1,20), ylim = c(1,50))

density 1201

nP <- list(col=3:2, cex=c(2.0, 0.75), pch= 21:22,
bg= c("light blue", "pink"),
lab.cex = 0.75, lab.col = "tomato")

plot(d3, nodePar= nP, edgePar = list(col="gray", lwd=2), horiz = TRUE)

addE <- function(n) {
if(!is.leaf(n)) {

attr(n, "edgePar") <- list(p.col="plum")
attr(n, "edgetext") <- paste(attr(n,"members"),"members")

}
n

}
d3e <- dendrapply(d3, addE)
plot(d3e, nodePar= nP)
plot(d3e, nodePar= nP, leaflab = "textlike")

density Kernel Density Estimation

Description

The (S3) generic function density computes kernel density estimates. Its default method does so
with the given kernel and bandwidth for univariate observations.

Usage

density(x, ...)
Default S3 method:
density(x, bw = "nrd0", adjust = 1,

kernel = c("gaussian", "epanechnikov", "rectangular",
"triangular", "biweight",
"cosine", "optcosine"),

weights = NULL, window = kernel, width,
give.Rkern = FALSE,
n = 512, from, to, cut = 3, na.rm = FALSE, ...)

Arguments

x the data from which the estimate is to be computed.

bw the smoothing bandwidth to be used. The kernels are scaled such that this is the
standard deviation of the smoothing kernel. (Note this differs from the reference
books cited below, and from S-PLUS.)
bw can also be a character string giving a rule to choose the bandwidth. See
bw.nrd.
The default, "nrd0", has remained the default for historical and compatibility
reasons, rather than as a general recommendation, where e.g., "SJ" would rather
fit, see also V&R (2002).
The specified (or computed) value of bw is multiplied by adjust.

1202 density

adjust the bandwidth used is actually adjust*bw. This makes it easy to specify values
like ‘half the default’ bandwidth.

kernel, window a character string giving the smoothing kernel to be used. This must be one of
"gaussian", "rectangular", "triangular", "epanechnikov", "biweight",
"cosine" or "optcosine", with default "gaussian", and may be abbreviated
to a unique prefix (single letter).
"cosine" is smoother than "optcosine", which is the usual ‘cosine’ kernel in
the literature and almost MSE-efficient. However, "cosine" is the version used
by S.

weights numeric vector of non-negative observation weights, hence of same length as x.
The default NULL is equivalent to weights = rep(1/nx, nx) where nx is the
length of (the finite entries of) x[].

width this exists for compatibility with S; if given, and bw is not, will set bw to width
if this is a character string, or to a kernel-dependent multiple of width if this is
numeric.

give.Rkern logical; if true, no density is estimated, and the ‘canonical bandwidth’ of the
chosen kernel is returned instead.

n the number of equally spaced points at which the density is to be estimated.
When n > 512, it is rounded up to a power of 2 during the calculations (as fft
is used) and the final result is interpolated by approx. So it almost always makes
sense to specify n as a power of two.

from,to the left and right-most points of the grid at which the density is to be estimated;
the defaults are cut * bw outside of range(x).

cut by default, the values of from and to are cut bandwidths beyond the extremes
of the data. This allows the estimated density to drop to approximately zero at
the extremes.

na.rm logical; if TRUE, missing values are removed from x. If FALSE any missing values
cause an error.

... further arguments for (non-default) methods.

Details

The algorithm used in density.default disperses the mass of the empirical distribution function
over a regular grid of at least 512 points and then uses the fast Fourier transform to convolve this ap-
proximation with a discretized version of the kernel and then uses linear approximation to evaluate
the density at the specified points.

The statistical properties of a kernel are determined by σ2
K =

∫
t2K(t)dt which is always

= 1 for our kernels (and hence the bandwidth bw is the standard deviation of the kernel) and
R(K) =

∫
K2(t)dt.

MSE-equivalent bandwidths (for different kernels) are proportional to σKR(K) which is scale in-
variant and for our kernels equal to R(K). This value is returned when give.Rkern = TRUE. See
the examples for using exact equivalent bandwidths.

Infinite values in x are assumed to correspond to a point mass at +/-Inf and the density estimate is
of the sub-density on (-Inf, +Inf).

Value

If give.Rkern is true, the number R(K), otherwise an object with class "density" whose under-
lying structure is a list containing the following components.

density 1203

x the n coordinates of the points where the density is estimated.

y the estimated density values. These will be non-negative, but can be zero.

bw the bandwidth used.

n the sample size after elimination of missing values.

call the call which produced the result.

data.name the deparsed name of the x argument.

has.na logical, for compatibility (always FALSE).

The print method reports summary values on the x and y components.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (for S version).

Scott, D. W. (1992) Multivariate Density Estimation. Theory, Practice and Visualization. New
York: Wiley.

Sheather, S. J. and Jones M. C. (1991) A reliable data-based bandwidth selection method for kernel
density estimation. J. Roy. Statist. Soc. B, 683–690.

Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer.

See Also

bw.nrd, plot.density, hist.

Examples

require(graphics)

plot(density(c(-20,rep(0,98),20)), xlim = c(-4,4))# IQR = 0

The Old Faithful geyser data
d <- density(faithful$eruptions, bw = "sj")
d
plot(d)

plot(d, type = "n")
polygon(d, col = "wheat")

Missing values:
x <- xx <- faithful$eruptions
x[i.out <- sample(length(x), 10)] <- NA
doR <- density(x, bw = 0.15, na.rm = TRUE)
lines(doR, col = "blue")
points(xx[i.out], rep(0.01, 10))

Weighted observations:
fe <- sort(faithful$eruptions) # has quite a few non-unique values
use ’counts / n’ as weights:
dw <- density(unique(fe), weights = table(fe)/length(fe), bw = d$bw)
utils::str(dw) ## smaller n: only 126, but identical estimate:
stopifnot(all.equal(d[1:3], dw[1:3]))

1204 deriv

simulation from a density() fit:
a kernel density fit is an equally-weighted mixture.
fit <- density(xx)
N <- 1e6
x.new <- rnorm(N, sample(xx, size = N, replace = TRUE), fit$bw)
plot(fit)
lines(density(x.new), col="blue")

(kernels <- eval(formals(density.default)$kernel))

show the kernels in the R parametrization
plot (density(0, bw = 1), xlab = "",

main="R’s density() kernels with bw = 1")
for(i in 2:length(kernels))

lines(density(0, bw = 1, kernel = kernels[i]), col = i)
legend(1.5,.4, legend = kernels, col = seq(kernels),

lty = 1, cex = .8, y.intersp = 1)

show the kernels in the S parametrization
plot(density(0, from=-1.2, to=1.2, width=2, kernel="gaussian"), type="l",

ylim = c(0, 1), xlab="", main="R’s density() kernels with width = 1")
for(i in 2:length(kernels))

lines(density(0, width = 2, kernel = kernels[i]), col = i)
legend(0.6, 1.0, legend = kernels, col = seq(kernels), lty = 1)

##-------- Semi-advanced theoretic from here on -------------

(RKs <- cbind(sapply(kernels,
function(k) density(kernel = k, give.Rkern = TRUE))))

100*round(RKs["epanechnikov",]/RKs, 4) ## Efficiencies

bw <- bw.SJ(precip) ## sensible automatic choice
plot(density(precip, bw = bw),

main = "same sd bandwidths, 7 different kernels")
for(i in 2:length(kernels))

lines(density(precip, bw = bw, kernel = kernels[i]), col = i)

Bandwidth Adjustment for "Exactly Equivalent Kernels"
h.f <- sapply(kernels, function(k)density(kernel = k, give.Rkern = TRUE))
(h.f <- (h.f["gaussian"] / h.f)^ .2)
-> 1, 1.01, .995, 1.007,... close to 1 => adjustment barely visible..

plot(density(precip, bw = bw),
main = "equivalent bandwidths, 7 different kernels")

for(i in 2:length(kernels))
lines(density(precip, bw = bw, adjust = h.f[i], kernel = kernels[i]),

col = i)
legend(55, 0.035, legend = kernels, col = seq(kernels), lty = 1)

deriv Symbolic and Algorithmic Derivatives of Simple Expressions

deriv 1205

Description

Compute derivatives of simple expressions, symbolically.

Usage

D (expr, name)
deriv(expr, ...)

deriv3(expr, ...)

Default S3 method:
deriv(expr, namevec, function.arg = NULL, tag = ".expr",

hessian = FALSE, ...)
S3 method for class ’formula’

deriv(expr, namevec, function.arg = NULL, tag = ".expr",
hessian = FALSE, ...)

Default S3 method:
deriv3(expr, namevec, function.arg = NULL, tag = ".expr",

hessian = TRUE, ...)
S3 method for class ’formula’
deriv3(expr, namevec, function.arg = NULL, tag = ".expr",

hessian = TRUE, ...)

Arguments

expr A expression or call or (except D) a formula with no lhs.

name,namevec character vector, giving the variable names (only one for D()) with respect to
which derivatives will be computed.

function.arg If specified and non-NULL, a character vector of arguments for a function return,
or a function (with empty body) or TRUE, the latter indicating that a function
with argument names namevec should be used.

tag character; the prefix to be used for the locally created variables in result.

hessian a logical value indicating whether the second derivatives should be calculated
and incorporated in the return value.

... arguments to be passed to or from methods.

Details

D is modelled after its S namesake for taking simple symbolic derivatives.

deriv is a generic function with a default and a formula method. It returns a call for computing
the expr and its (partial) derivatives, simultaneously. It uses so-called algorithmic derivatives. If
function.arg is a function, its arguments can have default values, see the fx example below.

Currently, deriv.formula just calls deriv.default after extracting the expression to the right of
~.

deriv3 and its methods are equivalent to deriv and its methods except that hessian defaults to
TRUE for deriv3.

The internal code knows about the arithmetic operators +, -, *, / and ^, and the single-variable
functions exp, log, sin, cos, tan, sinh, cosh, sqrt, pnorm, dnorm, asin, acos, atan, gamma,
lgamma, digamma and trigamma, as well as psigamma for one or two arguments (but derivative only
with respect to the first). (Note that only the standard normal distribution is considered.)

1206 deriv

Value

D returns a call and therefore can easily be iterated for higher derivatives.

deriv and deriv3 normally return an expression object whose evaluation returns the function val-
ues with a "gradient" attribute containing the gradient matrix. If hessian is TRUE the evaluation
also returns a "hessian" attribute containing the Hessian array.

If function.arg is not NULL, deriv and deriv3 return a function with those arguments rather than
an expression.

References

Griewank, A. and Corliss, G. F. (1991) Automatic Differentiation of Algorithms: Theory, Implemen-
tation, and Application. SIAM proceedings, Philadelphia.

Bates, D. M. and Chambers, J. M. (1992) Nonlinear models. Chapter 10 of Statistical Models in S
eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

nlm and optim for numeric minimization which could make use of derivatives,

Examples

formula argument :
dx2x <- deriv(~ x^2, "x") ; dx2x
Not run: expression({

.value <- x^2

.grad <- array(0, c(length(.value), 1), list(NULL, c("x")))

.grad[, "x"] <- 2 * x
attr(.value, "gradient") <- .grad
.value

})
End(Not run)
mode(dx2x)
x <- -1:2
eval(dx2x)

Something ’tougher’:
trig.exp <- expression(sin(cos(x + y^2)))
(D.sc <- D(trig.exp, "x"))
all.equal(D(trig.exp[[1]], "x"), D.sc)

(dxy <- deriv(trig.exp, c("x", "y")))
y <- 1
eval(dxy)
eval(D.sc)

function returned:
deriv((y ~ sin(cos(x) * y)), c("x","y"), func = TRUE)

function with defaulted arguments:
(fx <- deriv(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),

function(b0, b1, th, x = 1:7){}))
fx(2,3,4)

Higher derivatives

deviance 1207

deriv3(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),
c("b0", "b1", "th", "x"))

Higher derivatives:
DD <- function(expr,name, order = 1) {

if(order < 1) stop("’order’ must be >= 1")
if(order == 1) D(expr,name)
else DD(D(expr, name), name, order - 1)

}
DD(expression(sin(x^2)), "x", 3)
showing the limits of the internal "simplify()" :
Not run:
-sin(x^2) * (2 * x) * 2 + ((cos(x^2) * (2 * x) * (2 * x) + sin(x^2) *

2) * (2 * x) + sin(x^2) * (2 * x) * 2)

End(Not run)

deviance Model Deviance

Description

Returns the deviance of a fitted model object.

Usage

deviance(object, ...)

Arguments

object an object for which the deviance is desired.

... additional optional argument.

Details

This is a generic function which can be used to extract deviances for fitted models. Consult the
individual modeling functions for details on how to use this function.

Value

The value of the deviance extracted from the object object.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

df.residual, extractAIC, glm, lm.

1208 diffinv

df.residual Residual Degrees-of-Freedom

Description

Returns the residual degrees-of-freedom extracted from a fitted model object.

Usage

df.residual(object, ...)

Arguments

object an object for which the degrees-of-freedom are desired.

... additional optional arguments.

Details

This is a generic function which can be used to extract residual degrees-of-freedom for fitted models.
Consult the individual modeling functions for details on how to use this function.

The default method just extracts the df.residual component.

Value

The value of the residual degrees-of-freedom extracted from the object x.

See Also

deviance, glm, lm.

diffinv Discrete Integration: Inverse of Differencing

Description

Computes the inverse function of the lagged differences function diff.

Usage

diffinv(x, ...)

Default S3 method:
diffinv(x, lag = 1, differences = 1, xi, ...)
S3 method for class ’ts’
diffinv(x, lag = 1, differences = 1, xi, ...)

dist 1209

Arguments

x a numeric vector, matrix, or time series.

lag a scalar lag parameter.

differences an integer representing the order of the difference.

xi a numeric vector, matrix, or time series containing the initial values for the inte-
grals. If missing, zeros are used.

... arguments passed to or from other methods.

Details

diffinv is a generic function with methods for class "ts" and default for vectors and matrices.

Missing values are not handled.

Value

A numeric vector, matrix, or time series (the latter for the "ts" method) representing the discrete
integral of x.

Author(s)

A. Trapletti

See Also

diff

Examples

s <- 1:10
d <- diff(s)
diffinv(d, xi = 1)

dist Distance Matrix Computation

Description

This function computes and returns the distance matrix computed by using the specified distance
measure to compute the distances between the rows of a data matrix.

Usage

dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)

as.dist(m, diag = FALSE, upper = FALSE)
Default S3 method:
as.dist(m, diag = FALSE, upper = FALSE)

S3 method for class ’dist’
print(x, diag = NULL, upper = NULL,

1210 dist

digits = getOption("digits"), justify = "none",
right = TRUE, ...)

S3 method for class ’dist’
as.matrix(x, ...)

Arguments

x a numeric matrix, data frame or "dist" object.

method the distance measure to be used. This must be one of "euclidean", "maximum",
"manhattan", "canberra", "binary" or "minkowski". Any unambiguous
substring can be given.

diag logical value indicating whether the diagonal of the distance matrix should be
printed by print.dist.

upper logical value indicating whether the upper triangle of the distance matrix should
be printed by print.dist.

p The power of the Minkowski distance.

m An object with distance information to be converted to a "dist" object. For the
default method, a "dist" object, or a matrix (of distances) or an object which
can be coerced to such a matrix using as.matrix(). (Only the lower triangle of
the matrix is used, the rest is ignored).

digits, justify

passed to format inside of print().

right, ... further arguments, passed to other methods.

Details

Available distance measures are (written for two vectors x and y):

euclidean: Usual square distance between the two vectors (2 norm).

maximum: Maximum distance between two components of x and y (supremum norm)

manhattan: Absolute distance between the two vectors (1 norm).

canberra:
∑
i |xi − yi|/|xi + yi|. Terms with zero numerator and denominator are omitted from

the sum and treated as if the values were missing.
This is intended for non-negative values (e.g. counts): taking the absolute value of the denom-
inator is a 1998 R modification to avoid negative distances.

binary: (aka asymmetric binary): The vectors are regarded as binary bits, so non-zero elements
are ‘on’ and zero elements are ‘off’. The distance is the proportion of bits in which only one
is on amongst those in which at least one is on.

minkowski: The p norm, the pth root of the sum of the pth powers of the differences of the com-
ponents.

Missing values are allowed, and are excluded from all computations involving the rows within
which they occur. Further, when Inf values are involved, all pairs of values are excluded when
their contribution to the distance gave NaN or NA. If some columns are excluded in calculating a
Euclidean, Manhattan, Canberra or Minkowski distance, the sum is scaled up proportionally to the
number of columns used. If all pairs are excluded when calculating a particular distance, the value
is NA.

The "dist" method of as.matrix() and as.dist() can be used for conversion between objects
of class "dist" and conventional distance matrices.

dist 1211

as.dist() is a generic function. Its default method handles objects inheriting from class "dist",
or coercible to matrices using as.matrix(). Support for classes representing distances (also known
as dissimilarities) can be added by providing an as.matrix() or, more directly, an as.dist method
for such a class.

Value

dist returns an object of class "dist".

The lower triangle of the distance matrix stored by columns in a vector, say do. If n is the number of
observations, i.e., n <- attr(do, "Size"), then for i < j ≤ n, the dissimilarity between (row) i
and j is do[n*(i-1) - i*(i-1)/2 + j-i]. The length of the vector is n ∗ (n− 1)/2, i.e., of order
n2.

The object has the following attributes (besides "class" equal to "dist"):

Size integer, the number of observations in the dataset.

Labels optionally, contains the labels, if any, of the observations of the dataset.

Diag, Upper logicals corresponding to the arguments diag and upper above, specifying how
the object should be printed.

call optionally, the call used to create the object.

method optionally, the distance method used; resulting from dist(), the
(match.arg()ed) method argument.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979) Multivariate Analysis. Academic Press.

Borg, I. and Groenen, P. (1997) Modern Multidimensional Scaling. Theory and Applications.
Springer.

See Also

daisy in the cluster package with more possibilities in the case of mixed (continuous / categorical)
variables. hclust.

Examples

require(graphics)

x <- matrix(rnorm(100), nrow=5)
dist(x)
dist(x, diag = TRUE)
dist(x, upper = TRUE)
m <- as.matrix(dist(x))
d <- as.dist(m)
stopifnot(d == dist(x))

Use correlations between variables "as distance"
dd <- as.dist((1 - cor(USJudgeRatings))/2)
round(1000 * dd) # (prints more nicely)
plot(hclust(dd)) # to see a dendrogram of clustered variables

http://CRAN.R-project.org/package=cluster

1212 Distributions

example of binary and canberra distances.
x <- c(0, 0, 1, 1, 1, 1)
y <- c(1, 0, 1, 1, 0, 1)
dist(rbind(x,y), method= "binary")
answer 0.4 = 2/5
dist(rbind(x,y), method= "canberra")
answer 2 * (6/5)

To find the names
labels(eurodist)

Examples involving "Inf" :
1)
x[6] <- Inf
(m2 <- rbind(x,y))
dist(m2, method="binary")# warning, answer 0.5 = 2/4
These all give "Inf":
stopifnot(Inf == dist(m2, method= "euclidean"),

Inf == dist(m2, method= "maximum"),
Inf == dist(m2, method= "manhattan"))

"Inf" is same as very large number:
x1 <- x; x1[6] <- 1e100
stopifnot(dist(cbind(x ,y), method="canberra") ==

print(dist(cbind(x1,y), method="canberra")))

2)
y[6] <- Inf #-> 6-th pair is excluded
dist(rbind(x,y), method="binary") # warning; 0.5
dist(rbind(x,y), method="canberra") # 3
dist(rbind(x,y), method="maximum") # 1
dist(rbind(x,y), method="manhattan")# 2.4

Distributions Distributions in the stats package

Description

Density, cumulative distribution function, quantile function and random variate generation for many
standard probability distributions are available in the stats package.

Details

The functions for the density/mass function, cumulative distribution function, quantile function and
random variate generation are named in the form dxxx, pxxx, qxxx and rxxx respectively.

For the beta distribution see dbeta.

For the binomial (including Bernoulli) distribution see dbinom.

For the Cauchy distribution see dcauchy.

For the chi-squared distribution see dchisq.

For the exponential distribution see dexp.

For the F distribution see df.

For the gamma distribution see dgamma.

dummy.coef 1213

For the geometric distribution see dgeom. (This is also a special case of the negative binomial.)

For the hypergeometric distribution see dhyper.

For the log-normal distribution see dlnorm.

For the multinomial distribution see dmultinom.

For the negative binomial distribution see dnbinom.

For the normal distribution see dnorm.

For the Poisson distribution see dpois.

For the Student’s t distribution see dt.

For the uniform distribution see dunif.

For the Weibull distribution see dweibull.

For less common distributions of test statistics see pbirthday, dsignrank, ptukey and dwilcox
(and see the ‘See Also’ section of cor.test).

See Also

RNG about random number generation in R.

The CRAN task view on distributions, http://cran.r-project.org/web/views/
Distributions.html, mentioning several CRAN packages for additional distributions.

dummy.coef Extract Coefficients in Original Coding

Description

This extracts coefficients in terms of the original levels of the coefficients rather than the coded
variables.

Usage

dummy.coef(object, ...)

S3 method for class ’lm’
dummy.coef(object, use.na = FALSE, ...)

S3 method for class ’aovlist’
dummy.coef(object, use.na = FALSE, ...)

Arguments

object a linear model fit.

use.na logical flag for coefficients in a singular model. If use.na is true, undetermined
coefficients will be missing; if false they will get one possible value.

... arguments passed to or from other methods.

http://cran.r-project.org/web/views/Distributions.html
http://cran.r-project.org/web/views/Distributions.html

1214 ecdf

Details

A fitted linear model has coefficients for the contrasts of the factor terms, usually one less in number
than the number of levels. This function re-expresses the coefficients in the original coding; as the
coefficients will have been fitted in the reduced basis, any implied constraints (e.g., zero sum for
contr.helmert or contr.sum) will be respected. There will be little point in using dummy.coef
for contr.treatment contrasts, as the missing coefficients are by definition zero.

The method used has some limitations, and will give incomplete results for terms such as
poly(x, 2). However, it is adequate for its main purpose, aov models.

Value

A list giving for each term the values of the coefficients. For a multistratum aov model, such a list
for each stratum.

Warning

This function is intended for human inspection of the output: it should not be used for calculations.
Use coded variables for all calculations.

The results differ from S for singular values, where S can be incorrect.

See Also

aov, model.tables

Examples

options(contrasts=c("contr.helmert", "contr.poly"))
From Venables and Ripley (2002) p.165.
utils::data(npk, package="MASS")
npk.aov <- aov(yield ~ block + N*P*K, npk)
dummy.coef(npk.aov)

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
dummy.coef(npk.aovE)

ecdf Empirical Cumulative Distribution Function

Description

Compute an empirical cumulative distribution function, with several methods for plotting, printing
and computing with such an “ecdf” object.

Usage

ecdf(x)

S3 method for class ’ecdf’
plot(x, ..., ylab="Fn(x)", verticals = FALSE,

col.01line = "gray70", pch = 19)

ecdf 1215

S3 method for class ’ecdf’
print(x, digits= getOption("digits") - 2, ...)

S3 method for class ’ecdf’
summary(object, ...)
S3 method for class ’ecdf’
quantile(x, ...)

Arguments

x, object numeric vector of the observations for ecdf; for the methods, an object inherit-
ing from class "ecdf".

... arguments to be passed to subsequent methods, e.g., plot.stepfun for the plot
method.

ylab label for the y-axis.

verticals see plot.stepfun.

col.01line numeric or character specifying the color of the horizontal lines at y = 0 and 1,
see colors.

pch plotting character.

digits number of significant digits to use, see print.

Details

The e.c.d.f. (empirical cumulative distribution function) Fn is a step function with jumps i/n at
observation values, where i is the number of tied observations at that value. Missing values are
ignored.

For observations x= (x1, x2, . . .xn), Fn is the fraction of observations less or equal to t, i.e.,

Fn(t) = #{xi ≤ t} /n =
1

n

n∑
i=1

1[xi≤t].

The function plot.ecdf which implements the plot method for ecdf objects, is implemented via
a call to plot.stepfun; see its documentation.

Value

For ecdf, a function of class "ecdf", inheriting from the "stepfun" class, and hence inheriting a
knots() method.

For the summary method, a summary of the knots of object with a "header" attribute.

The quantile(obj, ...) method computes the same quantiles as quantile(x, ...) would
where x is the original sample.

Author(s)

Martin Maechler, <maechler@stat.math.ethz.ch>.
Corrections by R-core.

See Also

stepfun, the more general class of step functions, approxfun and splinefun.

1216 ecdf

Examples

##-- Simple didactical ecdf example :
x <- rnorm(12)
Fn <- ecdf(x)
Fn # a *function*
Fn(x) # returns the percentiles for x
tt <- seq(-2,2, by = 0.1)
12 * Fn(tt) # Fn is a ’simple’ function {with values k/12}
summary(Fn)
##--> see below for graphics
knots(Fn)# the unique data values {12 of them if there were no ties}

y <- round(rnorm(12),1); y[3] <- y[1]
Fn12 <- ecdf(y)
Fn12
knots(Fn12)# unique values (always less than 12!)
summary(Fn12)
summary.stepfun(Fn12)

Advanced: What’s inside the function closure?
print(ls.Fn12 <- ls(environment(Fn12)))
##[1] "f" "method" "n" "x" "y" "yleft" "yright"
utils::ls.str(environment(Fn12))
stopifnot(all.equal(quantile(Fn12), quantile(y)))

###----------------- Plotting --------------------------
require(graphics)

op <- par(mfrow=c(3,1), mgp=c(1.5, 0.8,0), mar= .1+c(3,3,2,1))

F10 <- ecdf(rnorm(10))
summary(F10)

plot(F10)
plot(F10, verticals= TRUE, do.points = FALSE)

plot(Fn12 , lwd = 2) ; mtext("lwd = 2", adj=1)
xx <- unique(sort(c(seq(-3, 2, length=201), knots(Fn12))))
lines(xx, Fn12(xx), col=’blue’)
abline(v=knots(Fn12),lty=2,col=’gray70’)

plot(xx, Fn12(xx), type=’o’, cex=.1)#- plot.default {ugly}
plot(Fn12, col.hor=’red’, add= TRUE) #- plot method
abline(v=knots(Fn12),lty=2,col=’gray70’)
luxury plot
plot(Fn12, verticals=TRUE, col.points=’blue’,

col.hor=’red’, col.vert=’bisque’)

##-- this works too (automatic call to ecdf(.)):
plot.ecdf(rnorm(24))
title("via simple plot.ecdf(x)", adj=1)

par(op)

eff.aovlist 1217

eff.aovlist Compute Efficiencies of Multistratum Analysis of Variance

Description

Computes the efficiencies of fixed-effect terms in an analysis of variance model with multiple strata.

Usage

eff.aovlist(aovlist)

Arguments

aovlist The result of a call to aov with an Error term.

Details

Fixed-effect terms in an analysis of variance model with multiple strata may be estimable in more
than one stratum, in which case there is less than complete information in each. The efficiency for a
term is the fraction of the maximum possible precision (inverse variance) obtainable by estimating
in just that stratum. Under the assumption of balance, this is the same for all contrasts involving
that term.

This function is used to pick strata in which to estimate terms in model.tables.aovlist and
se.contrast.aovlist.

In many cases terms will only occur in one stratum, when all the efficiencies will be one: this is
detected and no further calculations are done.

The calculation used requires orthogonal contrasts for each term, and will throw an error if non-
orthogonal contrasts (e.g. treatment contrasts or an unbalanced design) are detected.

Value

A matrix giving for each non-pure-error stratum (row) the efficiencies for each fixed-effect term in
the model.

References

Heiberger, R. M. (1989) Computation for the Analysis of Designed Experiments. Wiley.

See Also

aov, model.tables.aovlist, se.contrast.aovlist

Examples

An example from Yates (1932),
a 2^3 design in 2 blocks replicated 4 times

Block <- gl(8, 4)
A <- factor(c(0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,

0,1,0,1,0,1,0,1,0,1,0,1))
B <- factor(c(0,0,1,1,0,0,1,1,0,1,0,1,1,0,1,0,0,0,1,1,

0,0,1,1,0,0,1,1,0,0,1,1))

1218 effects

C <- factor(c(0,1,1,0,1,0,0,1,0,0,1,1,0,0,1,1,0,1,0,1,
1,0,1,0,0,0,1,1,1,1,0,0))

Yield <- c(101, 373, 398, 291, 312, 106, 265, 450, 106, 306, 324, 449,
272, 89, 407, 338, 87, 324, 279, 471, 323, 128, 423, 334,
131, 103, 445, 437, 324, 361, 302, 272)

aovdat <- data.frame(Block, A, B, C, Yield)

old <- getOption("contrasts")
options(contrasts=c("contr.helmert", "contr.poly"))
(fit <- aov(Yield ~ A*B*C + Error(Block), data = aovdat))
eff.aovlist(fit)
options(contrasts = old)

effects Effects from Fitted Model

Description

Returns (orthogonal) effects from a fitted model, usually a linear model. This is a generic function,
but currently only has a methods for objects inheriting from classes "lm" and "glm".

Usage

effects(object, ...)

S3 method for class ’lm’
effects(object, set.sign = FALSE, ...)

Arguments

object an R object; typically, the result of a model fitting function such as lm.

set.sign logical. If TRUE, the sign of the effects corresponding to coefficients in the model
will be set to agree with the signs of the corresponding coefficients, otherwise
the sign is arbitrary.

... arguments passed to or from other methods.

Details

For a linear model fitted by lm or aov, the effects are the uncorrelated single-degree-of-freedom
values obtained by projecting the data onto the successive orthogonal subspaces generated by the
QR decomposition during the fitting process. The first r (the rank of the model) are associated with
coefficients and the remainder span the space of residuals (but are not associated with particular
residuals).

Empty models do not have effects.

Value

A (named) numeric vector of the same length as residuals, or a matrix if there were multiple
responses in the fitted model, in either case of class "coef".

The first r rows are labelled by the corresponding coefficients, and the remaining rows are unla-
belled. Note that in rank-deficient models the corresponding coefficients will be in a different order
if pivoting occurred.

embed 1219

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

coef

Examples

y <- c(1:3,7,5)
x <- c(1:3,6:7)
(ee <- effects(lm(y ~ x)))
c(round(ee - effects(lm(y+10 ~ I(x-3.8))), 3))
just the first is different

embed Embedding a Time Series

Description

Embeds the time series x into a low-dimensional Euclidean space.

Usage

embed (x, dimension = 1)

Arguments

x a numeric vector, matrix, or time series.

dimension a scalar representing the embedding dimension.

Details

Each row of the resulting matrix consists of sequences x[t], x[t-1], . . . , x[t-dimension+1],
where t is the original index of x. If x is a matrix, i.e., x contains more than one variable, then x[t]
consists of the tth observation on each variable.

Value

A matrix containing the embedded time series x.

Author(s)

A. Trapletti, B.D. Ripley

Examples

x <- 1:10
embed (x, 3)

1220 expand.model.frame

expand.model.frame Add new variables to a model frame

Description

Evaluates new variables as if they had been part of the formula of the specified model. This en-
sures that the same na.action and subset arguments are applied and allows, for example, x to be
recovered for a model using sin(x) as a predictor.

Usage

expand.model.frame(model, extras,
envir = environment(formula(model)),
na.expand = FALSE)

Arguments

model a fitted model

extras one-sided formula or vector of character strings describing new variables to be
added

envir an environment to evaluate things in

na.expand logical; see below

Details

If na.expand=FALSE then NA values in the extra variables will be passed to the na.action func-
tion used in model. This may result in a shorter data frame (with na.omit) or an error (with
na.fail). If na.expand=TRUE the returned data frame will have precisely the same rows as
model.frame(model), but the columns corresponding to the extra variables may contain NA.

Value

A data frame.

See Also

model.frame,predict

Examples

model <- lm(log(Volume) ~ log(Girth) + log(Height), data=trees)
expand.model.frame(model, ~ Girth) # prints data.frame like

dd <- data.frame(x=1:5, y=rnorm(5), z=c(1,2,NA,4,5))
model <- glm(y ~ x, data=dd, subset=1:4, na.action=na.omit)
expand.model.frame(model, "z", na.expand=FALSE) # = default
expand.model.frame(model, "z", na.expand=TRUE)

Exponential 1221

Exponential The Exponential Distribution

Description

Density, distribution function, quantile function and random generation for the exponential distri-
bution with rate rate (i.e., mean 1/rate).

Usage

dexp(x, rate = 1, log = FALSE)
pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE)
rexp(n, rate = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

rate vector of rates.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

If rate is not specified, it assumes the default value of 1.

The exponential distribution with rate λ has density

f(x) = λe−λx

for x ≥ 0.

Value

dexp gives the density, pexp gives the distribution function, qexp gives the quantile function, and
rexp generates random deviates.

Note

The cumulative hazardH(t) = − log(1−F (t)) is -pexp(t, r, lower = FALSE, log = TRUE).

Source

dexp, pexp and qexp are all calculated from numerically stable versions of the definitions.

rexp uses

Ahrens, J. H. and Dieter, U. (1972). Computer methods for sampling from the exponential and
normal distributions. Communications of the ACM, 15, 873–882.

1222 extractAIC

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
1, chapter 19. Wiley, New York.

See Also

exp for the exponential function.

Distributions for other standard distributions, including dgamma for the gamma distribution and
dweibull for the Weibull distribution, both of which generalize the exponential.

Examples

dexp(1) - exp(-1) #-> 0

extractAIC Extract AIC from a Fitted Model

Description

Computes the (generalized) Akaike An Information Criterion for a fitted parametric model.

Usage

extractAIC(fit, scale, k = 2, ...)

Arguments

fit fitted model, usually the result of a fitter like lm.

scale optional numeric specifying the scale parameter of the model, see scale in
step. Currently only used in the "lm" method, where scale specifies the esti-
mate of the error variance, and scale = 0 indicates that it is to be estimated by
maximum likelihood.

k numeric specifying the ‘weight’ of the equivalent degrees of freedom (≡ edf)
part in the AIC formula.

... further arguments (currently unused in base R).

Details

This is a generic function, with methods in base R for classes "aov", "glm" and "lm" as well as for
"negbin" (package MASS) and "coxph" and "survreg" (package survival).
The criterion used is

AIC = −2 logL+ k × edf,

where L is the likelihood and edf the equivalent degrees of freedom (i.e., the number of free pa-
rameters for usual parametric models) of fit.

For linear models with unknown scale (i.e., for lm and aov),−2 logL is computed from the deviance
and uses a different additive constant to logLik and hence AIC. If RSS denotes the (weighted)
residual sum of squares then extractAIC uses for−2 logL the formulaeRSS/s−n (corresponding

http://CRAN.R-project.org/package=MASS
http://CRAN.R-project.org/package=survival

extractAIC 1223

to Mallows’ Cp) in the case of known scale s and n log(RSS/n) for unknown scale. AIC only
handles unknown scale and uses the formula n log(RSS/n) + n + n log 2π −

∑
logw where w

are the weights. Further AIC counts the scale estimation as a parameter in the edf and extractAIC
does not.

For glm fits the family’s aic() function is used to compute the AIC: see the note under logLik
about the assumptions this makes.

k = 2 corresponds to the traditional AIC, using k = log(n) provides the BIC (Bayesian IC)
instead.

Note that the methods for this function may differ in their assumptions from those of methods
for AIC (usually via a method for logLik). We have already mentioned the case of "lm" models
with estimated scale, and there are similar issues in the "glm" and "negbin" methods where the
dispersion parameter may or may not be taken as ‘free’. This is immaterial as extractAIC is only
used to compare models of the same class (where only differences in AIC values are considered).

Value

A numeric vector of length 2, with first and second elements giving

edf the ‘equivalent degrees of freedom’ for the fitted model fit.

AIC the (generalized) Akaike Information Criterion for fit.

Note

This function is used in add1, drop1 and step and the similar functions in package MASS from
which it was adopted.

Author(s)

B. D. Ripley

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer
(4th ed).

See Also

AIC, deviance, add1, step

Examples

utils::example(glm)
extractAIC(glm.D93) #>> 5 15.129

http://CRAN.R-project.org/package=MASS

1224 factanal

factanal Factor Analysis

Description

Perform maximum-likelihood factor analysis on a covariance matrix or data matrix.

Usage

factanal(x, factors, data = NULL, covmat = NULL, n.obs = NA,
subset, na.action, start = NULL,
scores = c("none", "regression", "Bartlett"),
rotation = "varimax", control = NULL, ...)

Arguments

x A formula or a numeric matrix or an object that can be coerced to a numeric
matrix.

factors The number of factors to be fitted.

data An optional data frame (or similar: see model.frame), used only if x is a for-
mula. By default the variables are taken from environment(formula).

covmat A covariance matrix, or a covariance list as returned by cov.wt. Of course,
correlation matrices are covariance matrices.

n.obs The number of observations, used if covmat is a covariance matrix.

subset A specification of the cases to be used, if x is used as a matrix or formula.

na.action The na.action to be used if x is used as a formula.

start NULL or a matrix of starting values, each column giving an initial set of unique-
nesses.

scores Type of scores to produce, if any. The default is none, "regression" gives
Thompson’s scores, "Bartlett" given Bartlett’s weighted least-squares scores.
Partial matching allows these names to be abbreviated.

rotation character. "none" or the name of a function to be used to rotate the factors:
it will be called with first argument the loadings matrix, and should return a
list with component loadings giving the rotated loadings, or just the rotated
loadings.

control A list of control values,

nstart The number of starting values to be tried if start = NULL. Default 1.
trace logical. Output tracing information? Default FALSE.
lower The lower bound for uniquenesses during optimization. Should be > 0.

Default 0.005.
opt A list of control values to be passed to optim’s control argument.
rotate a list of additional arguments for the rotation function.

... Components of control can also be supplied as named arguments to factanal.

factanal 1225

Details

The factor analysis model is
x = Λf + e

for a p–element row-vector x, a p × k matrix Λ of loadings, a k–element vector f of scores and
a p–element vector eof errors. None of the components other than x is observed, but the major
restriction is that the scores be uncorrelated and of unit variance, and that the errors be independent
with variances Ψ, the uniquenesses. It is also common to scale the observed variables to unit
variance, and done in this function.

Thus factor analysis is in essence a model for the correlation matrix of x,

Σ = Λ′Λ + Ψ

There is still some indeterminacy in the model for it is unchanged if Λ is replaced by GΛ for any
orthogonal matrix G. Such matrices G are known as rotations (although the term is applied also to
non-orthogonal invertible matrices).

If covmat is supplied it is used. Otherwise x is used if it is a matrix, or a formula x is used with data
to construct a model matrix, and that is used to construct a covariance matrix. (It makes no sense for
the formula to have a response, and all the variables must be numeric.) Once a covariance matrix
is found or calculated from x, it is converted to a correlation matrix for analysis. The correlation
matrix is returned as component correlation of the result.

The fit is done by optimizing the log likelihood assuming multivariate normality over the unique-
nesses. (The maximizing loadings for given uniquenesses can be found analytically: Lawley &
Maxwell (1971, p. 27).) All the starting values supplied in start are tried in turn and the best fit
obtained is used. If start = NULL then the first fit is started at the value suggested by Jöreskog
(1963) and given by Lawley & Maxwell (1971, p. 31), and then control$nstart - 1 other values
are tried, randomly selected as equal values of the uniquenesses.

The uniquenesses are technically constrained to lie in [0, 1], but near-zero values are problematical,
and the optimization is done with a lower bound of control$lower, default 0.005 (Lawley &
Maxwell, 1971, p. 32).

Scores can only be produced if a data matrix is supplied and used. The first method is the regression
method of Thomson (1951), the second the weighted least squares method of Bartlett (1937, 8).
Both are estimates of the unobserved scores f . Thomson’s method regresses (in the population) the
unknown f on x to yield

f̂ = Λ′Σ−1x

and then substitutes the sample estimates of the quantities on the right-hand side. Bartlett’s method
minimizes the sum of squares of standardized errors over the choice of f , given (the fitted) Λ.

If x is a formula then the standard NA-handling is applied to the scores (if requested): see napredict.

The print method (documented under loadings) follows the factor analysis convention of drawing
attention to the patterns of the results, so the default precision is three decimal places, and small
loadings are suppressed.

Value

An object of class "factanal" with components

loadings A matrix of loadings, one column for each factor. The factors are ordered in de-
creasing order of sums of squares of loadings, and given the sign that will make
the sum of the loadings positive. This is of class "loadings": see loadings for
its print method.

uniquenesses The uniquenesses computed.

1226 factanal

correlation The correlation matrix used.

criteria The results of the optimization: the value of the negative log-likelihood and
information on the iterations used.

factors The argument factors.

dof The number of degrees of freedom of the factor analysis model.

method The method: always "mle".

rotmat The rotation matrix if relevant.

scores If requested, a matrix of scores. napredict is applied to handle the treatment
of values omitted by the na.action.

n.obs The number of observations if available, or NA.

call The matched call.

na.action If relevant.
STATISTIC, PVAL

The significance-test statistic and P value, if it can be computed.

Note

There are so many variations on factor analysis that it is hard to compare output from different
programs. Further, the optimization in maximum likelihood factor analysis is hard, and many other
examples we compared had less good fits than produced by this function. In particular, solutions
which are ‘Heywood cases’ (with one or more uniquenesses essentially zero) are much more com-
mon than most texts and some other programs would lead one to believe.

References

Bartlett, M. S. (1937) The statistical conception of mental factors. British Journal of Psychology,
28, 97–104.

Bartlett, M. S. (1938) Methods of estimating mental factors. Nature, 141, 609–610.

Jöreskog, K. G. (1963) Statistical Estimation in Factor Analysis. Almqvist and Wicksell.

Lawley, D. N. and Maxwell, A. E. (1971) Factor Analysis as a Statistical Method. Second edition.
Butterworths.

Thomson, G. H. (1951) The Factorial Analysis of Human Ability. London University Press.

See Also

loadings (which explains some details of the print method), varimax, princomp, ability.cov,
Harman23.cor, Harman74.cor.

Other rotation methods are available in various contributed packages, including GPArotation and
psych.

Examples

A little demonstration, v2 is just v1 with noise,
and same for v4 vs. v3 and v6 vs. v5
Last four cases are there to add noise
and introduce a positive manifold (g factor)
v1 <- c(1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,5,6)
v2 <- c(1,2,1,1,1,1,2,1,2,1,3,4,3,3,3,4,6,5)
v3 <- c(3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,5,4,6)
v4 <- c(3,3,4,3,3,1,1,2,1,1,1,1,2,1,1,5,6,4)

http://CRAN.R-project.org/package=GPArotation
http://CRAN.R-project.org/package=psych

factor.scope 1227

v5 <- c(1,1,1,1,1,3,3,3,3,3,1,1,1,1,1,6,4,5)
v6 <- c(1,1,1,2,1,3,3,3,4,3,1,1,1,2,1,6,5,4)
m1 <- cbind(v1,v2,v3,v4,v5,v6)
cor(m1)
factanal(m1, factors = 3) # varimax is the default
factanal(m1, factors = 3, rotation = "promax")
The following shows the g factor as PC1
prcomp(m1) # signs may depend on platform

formula interface
factanal(~v1+v2+v3+v4+v5+v6, factors = 3,

scores = "Bartlett")$scores

a realistic example from Bartholomew (1987, pp. 61-65)
utils::example(ability.cov)

factor.scope Compute Allowed Changes in Adding to or Dropping from a Formula

Description

add.scope and drop.scope compute those terms that can be individually added to or dropped from
a model while respecting the hierarchy of terms.

Usage

add.scope(terms1, terms2)

drop.scope(terms1, terms2)

factor.scope(factor, scope)

Arguments

terms1 the terms or formula for the base model.

terms2 the terms or formula for the upper (add.scope) or lower (drop.scope) scope.
If missing for drop.scope it is taken to be the null formula, so all terms (except
any intercept) are candidates to be dropped.

factor the "factor" attribute of the terms of the base object.

scope a list with one or both components drop and add giving the "factor" attribute
of the lower and upper scopes respectively.

Details

factor.scope is not intended to be called directly by users.

Value

For add.scope and drop.scope a character vector of terms labels. For factor.scope, a list with
components drop and add, character vectors of terms labels.

1228 family

See Also

add1, drop1, aov, lm

Examples

add.scope(~ a + b + c + a:b, ~ (a + b + c)^3)
[1] "a:c" "b:c"
drop.scope(~ a + b + c + a:b)
[1] "c" "a:b"

family Family Objects for Models

Description

Family objects provide a convenient way to specify the details of the models used by functions such
as glm. See the documentation for glm for the details on how such model fitting takes place.

Usage

family(object, ...)

binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")

Arguments

link a specification for the model link function. This can be a name/expression,
a literal character string, a length-one character vector or an object of class
"link-glm" (such as generated by make.link) provided it is not specified via
one of the standard names given next.
The gaussian family accepts the links (as names) identity, log and inverse;
the binomial family the links logit, probit, cauchit, (corresponding to logis-
tic, normal and Cauchy CDFs respectively) log and cloglog (complementary
log-log); the Gamma family the links inverse, identity and log; the poisson
family the links log, identity, and sqrt and the inverse.gaussian family
the links 1/mu^2, inverse, identity and log.
The quasi family accepts the links logit, probit, cloglog, identity,
inverse, log, 1/mu^2 and sqrt, and the function power can be used to cre-
ate a power link function.

variance for all families other than quasi, the variance function is determined by the
family. The quasi family will accept the literal character string (or unquoted
as a name/expression) specifications "constant", "mu(1-mu)", "mu", "mu^2"
and "mu^3", a length-one character vector taking one of those values, or a list
containing components varfun, validmu, dev.resids, initialize and name.

family 1229

object the function family accesses the family objects which are stored within objects
created by modelling functions (e.g., glm).

... further arguments passed to methods.

Details

family is a generic function with methods for classes "glm" and "lm" (the latter returning
gaussian()).

The quasibinomial and quasipoisson families differ from the binomial and poisson families
only in that the dispersion parameter is not fixed at one, so they can model over-dispersion. For
the binomial case see McCullagh and Nelder (1989, pp. 124–8). Although they show that there
is (under some restrictions) a model with variance proportional to mean as in the quasi-binomial
model, note that glm does not compute maximum-likelihood estimates in that model. The behaviour
of S is closer to the quasi- variants.

Value

An object of class "family" (which has a concise print method). This is a list with elements

family character: the family name.

link character: the link name.

linkfun function: the link.

linkinv function: the inverse of the link function.

variance function: the variance as a function of the mean.

dev.resids function giving the deviance residuals as a function of (y, mu, wt).

aic function giving the AIC value if appropriate (but NA for the quasi- families). See
logLik for the assumptions made about the dispersion parameter.

mu.eta function: derivative function(eta) dµ/dη.

initialize expression. This needs to set up whatever data objects are needed for the family
as well as n (needed for AIC in the binomial family) and mustart (see glm.

valid.mu logical function. Returns TRUE if a mean vector mu is within the domain of
variance.

valid.eta logical function. Returns TRUE if a linear predictor eta is within the domain of
linkinv.

simulate (optional) function simulate(object, nsim) to be called by the "lm" method
of simulate. It will normally return a matrix with nsim columns and one row
for each fitted value, but it can also return a list of length nsim. Clearly this will
be missing for ‘quasi-’ families.

Note

The link and variance arguments have rather awkward semantics for back-compatibility. The
recommended way is to supply them is as quoted character strings, but they can also be supplied
unquoted (as names or expressions). In addition, they can also be supplied as a length-one character
vector giving the name of one of the options, or as a list (for link, of class "link-glm"). The
restrictions apply only to links given as names: when given as a character string all the links known
to make.link are accepted.

This is potentially ambiguous: supplying link=logit could mean the unquoted name of a link or
the value of object logit. It is interpreted if possible as the name of an allowed link, then as an
object. (You can force the interpretation to always be the value of an object via logit[1].)

1230 family

Author(s)

The design was inspired by S functions of the same names described in Hastie & Pregibon (1992)
(except quasibinomial and quasipoisson).

References

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.

Dobson, A. J. (1983) An Introduction to Statistical Modelling. London: Chapman and Hall.

Cox, D. R. and Snell, E. J. (1981). Applied Statistics; Principles and Examples. London: Chapman
and Hall.

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in
S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

glm, power, make.link.

For binomial coefficients, choose; the binomial and negative binomial distributions, Binomial, and
NegBinomial.

Examples

require(utils) # for str

nf <- gaussian()# Normal family
nf
str(nf)# internal STRucture

gf <- Gamma()
gf
str(gf)
gf$linkinv
gf$variance(-3:4) #- == (.)^2

quasipoisson. compare with example(glm)
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
d.AD <- data.frame(treatment, outcome, counts)
glm.qD93 <- glm(counts ~ outcome + treatment, family=quasipoisson())

glm.qD93
anova(glm.qD93, test="F")
summary(glm.qD93)
for Poisson results use
anova(glm.qD93, dispersion = 1, test="Chisq")
summary(glm.qD93, dispersion = 1)

Example of user-specified link, a logit model for p^days
See Shaffer, T. 2004. Auk 121(2): 526-540.
logexp <- function(days = 1)
{

linkfun <- function(mu) qlogis(mu^(1/days))

FDist 1231

linkinv <- function(eta) plogis(eta)^days
mu.eta <- function(eta) days * plogis(eta)^(days-1) * binomial()$mu_eta
valideta <- function(eta) TRUE
link <- paste0("logexp(", days, ")")
structure(list(linkfun = linkfun, linkinv = linkinv,

mu.eta = mu.eta, valideta = valideta, name = link),
class = "link-glm")

}
binomial(logexp(3))
in practice this would be used with a vector of ’days’, in
which case use an offset of 0 in the corresponding formula
to get the null deviance right.

Binomial with identity link: often not a good idea.
Not run: binomial(link=make.link("identity"))

tests of quasi
x <- rnorm(100)
y <- rpois(100, exp(1+x))
glm(y ~x, family=quasi(variance="mu", link="log"))
which is the same as
glm(y ~x, family=poisson)
glm(y ~x, family=quasi(variance="mu^2", link="log"))
Not run: glm(y ~x, family=quasi(variance="mu^3", link="log")) # fails
y <- rbinom(100, 1, plogis(x))
needs to set a starting value for the next fit
glm(y ~x, family=quasi(variance="mu(1-mu)", link="logit"), start=c(0,1))

FDist The F Distribution

Description

Density, distribution function, quantile function and random generation for the F distribution with
df1 and df2 degrees of freedom (and optional non-centrality parameter ncp).

Usage

df(x, df1, df2, ncp, log = FALSE)
pf(q, df1, df2, ncp, lower.tail = TRUE, log.p = FALSE)
qf(p, df1, df2, ncp, lower.tail = TRUE, log.p = FALSE)
rf(n, df1, df2, ncp)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number

required.
df1, df2 degrees of freedom. Inf is allowed.
ncp non-centrality parameter. If omitted the central F is assumed.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

1232 FDist

Details

The F distribution with df1 = n1 and df2 = n2 degrees of freedom has density

f(x) =
Γ(n1/2 + n2/2)

Γ(n1/2)Γ(n2/2)

(
n1

n2

)n1/2

xn1/2−1

(
1 +

n1x

n2

)−(n1+n2)/2

for x > 0.

It is the distribution of the ratio of the mean squares of n1 and n2 independent standard normals, and
hence of the ratio of two independent chi-squared variates each divided by its degrees of freedom.
Since the ratio of a normal and the root mean-square of m independent normals has a Student’s tm
distribution, the square of a tm variate has a F distribution on 1 and m degrees of freedom.

The non-central F distribution is again the ratio of mean squares of independent normals of unit
variance, but those in the numerator are allowed to have non-zero means and ncp is the sum of
squares of the means. See Chisquare for further details on non-central distributions.

Value

df gives the density, pf gives the distribution function qf gives the quantile function, and rf gener-
ates random deviates.

Invalid arguments will result in return value NaN, with a warning.

Note

Supplying ncp = 0 uses the algorithm for the non-central distribution, which is not the same algo-
rithm used if ncp is omitted. This is to give consistent behaviour in extreme cases with values of
ncp very near zero.

The code for non-zero ncp is principally intended to be used for moderate values of ncp: it will not
be highly accurate, especially in the tails, for large values.

Source

For the central case of df, computed via a binomial probability, code contributed by Catherine
Loader (see dbinom); for the non-central case computed via dbeta, code contributed by Peter Ruck-
deschel.

For pf, via pbeta (or for large df2, via pchisq).

For qf, via qchisq for large df2, else via qbeta.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
2, chapters 27 and 30. Wiley, New York.

See Also

Distributions for other standard distributions, including dchisq for chi-squared and dt for Student’s
t distributions.

fft 1233

Examples

the density of the square of a t_m is 2*dt(x, m)/(2*x)
check this is the same as the density of F_{1,m}
x <- seq(0.001, 5, len=100)
all.equal(df(x^2, 1, 5), dt(x, 5)/x)

Identity: qf(2*p - 1, 1, df)) == qt(p, df)^2) for p >= 1/2
p <- seq(1/2, .99, length=50); df <- 10
rel.err <- function(x,y) ifelse(x==y,0, abs(x-y)/mean(abs(c(x,y))))
quantile(rel.err(qf(2*p - 1, df1=1, df2=df), qt(p, df)^2), .90)# ~= 7e-9

fft Fast Discrete Fourier Transform

Description

Performs the Fast Fourier Transform of an array.

Usage

fft(z, inverse = FALSE)
mvfft(z, inverse = FALSE)

Arguments

z a real or complex array containing the values to be transformed.

inverse if TRUE, the unnormalized inverse transform is computed (the inverse has a + in
the exponent of e, but here, we do not divide by 1/length(x)).

Value

When z is a vector, the value computed and returned by fft is the unnormalized univariate Fourier
transform of the sequence of values in z.

When z contains an array, fft computes and returns the multivariate (spatial) transform. If inverse
is TRUE, the (unnormalized) inverse Fourier transform is returned, i.e., if y <- fft(z), then z is
fft(y, inverse = TRUE) / length(y).

By contrast, mvfft takes a real or complex matrix as argument, and returns a similar shaped matrix,
but with each column replaced by its discrete Fourier transform. This is useful for analyzing vector-
valued series.

The FFT is fastest when the length of the series being transformed is highly composite (i.e., has
many factors). If this is not the case, the transform may take a long time to compute and will use a
large amount of memory.

Source

Uses C translation of Fortran code in Singleton (1979).

1234 filter

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Singleton, R. C. (1979) Mixed Radix Fast Fourier Transforms, in Programs for Digital Signal Pro-
cessing, IEEE Digital Signal Processing Committee eds. IEEE Press.

See Also

convolve, nextn.

Examples

x <- 1:4
fft(x)
fft(fft(x), inverse = TRUE)/length(x)

filter Linear Filtering on a Time Series

Description

Applies linear filtering to a univariate time series or to each series separately of a multivariate time
series.

Usage

filter(x, filter, method = c("convolution", "recursive"),
sides = 2, circular = FALSE, init)

Arguments

x a univariate or multivariate time series.

filter a vector of filter coefficients in reverse time order (as for AR or MA coefficients).

method Either "convolution" or "recursive" (and can be abbreviated). If
"convolution" a moving average is used: if "recursive" an autoregression
is used.

sides for convolution filters only. If sides = 1 the filter coefficients are for past val-
ues only; if sides = 2 they are centred around lag 0. In this case the length of
the filter should be odd, but if it is even, more of the filter is forward in time than
backward.

circular for convolution filters only. If TRUE, wrap the filter around the ends of the series,
otherwise assume external values are missing (NA).

init for recursive filters only. Specifies the initial values of the time series just prior
to the start value, in reverse time order. The default is a set of zeros.

fisher.test 1235

Details

Missing values are allowed in x but not in filter (where they would lead to missing values every-
where in the output).

Note that there is an implied coefficient 1 at lag 0 in the recursive filter, which gives

yi = xi + f1yi−1 + · · ·+ fpyi−p

No check is made to see if recursive filter is invertible: the output may diverge if it is not.

The convolution filter is
yi = f1xi+o + · · ·+ fpxi+o−(p−1)

where o is the offset: see sides for how it is determined.

Value

A time series object.

Note

convolve(, type="filter") uses the FFT for computations and so may be faster for long filters
on univariate series, but it does not return a time series (and so the time alignment is unclear), nor
does it handle missing values. filter is faster for a filter of length 100 on a series of length 1000,
for example.

See Also

convolve, arima.sim

Examples

x <- 1:100
filter(x, rep(1, 3))
filter(x, rep(1, 3), sides = 1)
filter(x, rep(1, 3), sides = 1, circular = TRUE)

filter(presidents, rep(1,3))

fisher.test Fisher’s Exact Test for Count Data

Description

Performs Fisher’s exact test for testing the null of independence of rows and columns in a contin-
gency table with fixed marginals.

Usage

fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
control = list(), or = 1, alternative = "two.sided",
conf.int = TRUE, conf.level = 0.95,
simulate.p.value = FALSE, B = 2000)

1236 fisher.test

Arguments

x either a two-dimensional contingency table in matrix form, or a factor object.

y a factor object; ignored if x is a matrix.

workspace an integer specifying the size of the workspace used in the network algorithm. In
units of 4 bytes. Only used for non-simulated p-values larger than 2× 2 tables.

hybrid a logical. Only used for larger than 2 × 2 tables, in which cases it indi-
cates whether the exact probabilities (default) or a hybrid approximation thereof
should be computed. See ‘Details’.

control a list with named components for low level algorithm control. At present the
only one used is "mult", a positive integer ≥ 2 with default 30 used only for
larger than 2 × 2 tables. This says how many times as much space should be
allocated to paths as to keys: see file ‘fexact.c’ in the sources of this package.

or the hypothesized odds ratio. Only used in the 2× 2 case.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter. Only used in the
2× 2 case.

conf.int logical indicating if a confidence interval for the odds ratio in a 2×2 table should
be computed (and returned).

conf.level confidence level for the returned confidence interval. Only used in the 2×2 case
and if conf.int = TRUE.

simulate.p.value

a logical indicating whether to compute p-values by Monte Carlo simulation, in
larger than 2× 2 tables.

B an integer specifying the number of replicates used in the Monte Carlo test.

Details

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries should be
nonnegative integers. Otherwise, both x and y must be vectors of the same length. Incomplete cases
are removed, the vectors are coerced into factor objects, and the contingency table is computed from
these.

For 2 × 2 cases, p-values are obtained directly using the (central or non-central) hypergeomet-
ric distribution. Otherwise, computations are based on a C version of the FORTRAN subrou-
tine FEXACT which implements the network developed by Mehta and Patel (1986) and im-
proved by Clarkson, Fan and Joe (1993). The FORTRAN code can be obtained from http:
//www.netlib.org/toms/643. Note this fails (with an error message) when the entries of the
table are too large. (It transposes the table if necessary so it has no more rows than columns. One
constraint is that the product of the row marginals be less than 231 − 1.)

For 2 × 2 tables, the null of conditional independence is equivalent to the hypothesis that the odds
ratio equals one. ‘Exact’ inference can be based on observing that in general, given all marginal
totals fixed, the first element of the contingency table has a non-central hypergeometric distribution
with non-centrality parameter given by the odds ratio (Fisher, 1935). The alternative for a one-sided
test is based on the odds ratio, so alternative = "greater" is a test of the odds ratio being bigger
than or.

Two-sided tests are based on the probabilities of the tables, and take as ‘more extreme’ all tables
with probabilities less than or equal to that of the observed table, the p-value being the sum of such
probabilities.

http://www.netlib.org/toms/643
http://www.netlib.org/toms/643

fisher.test 1237

For larger than 2×2 tables and hybrid = TRUE, asymptotic chi-squared probabilities are only
used if the ‘Cochran conditions’ are satisfied, that is if no cell has count zero, and more than 80%
of the cells have counts at least 5: otherwise the exact calculation is used.

Simulation is done conditional on the row and column marginals, and works only if the marginals
are strictly positive. (A C translation of the algorithm of Patefield (1981) is used.)

Value

A list with class "htest" containing the following components:

p.value the p-value of the test.

conf.int a confidence interval for the odds ratio. Only present in the 2 × 2 case and if
argument conf.int = TRUE.

estimate an estimate of the odds ratio. Note that the conditional Maximum Likelihood
Estimate (MLE) rather than the unconditional MLE (the sample odds ratio) is
used. Only present in the 2× 2 case.

null.value the odds ratio under the null, or. Only present in the 2× 2 case.

alternative a character string describing the alternative hypothesis.

method the character string "Fisher’s Exact Test for Count Data".

data.name a character string giving the names of the data.

References

Agresti, A. (1990) Categorical data analysis. New York: Wiley. Pages 59–66.

Agresti, A. (2002) Categorical data analysis. Second edition. New York: Wiley. Pages 91–101.

Fisher, R. A. (1935) The logic of inductive inference. Journal of the Royal Statistical Society Series
A 98, 39–54.

Fisher, R. A. (1962) Confidence limits for a cross-product ratio. Australian Journal of Statistics 4,
41.

Fisher, R. A. (1970) Statistical Methods for Research Workers. Oliver & Boyd.

Mehta, C. R. and Patel, N. R. (1986) Algorithm 643. FEXACT: A Fortran subroutine for Fisher’s
exact test on unordered r ∗ c contingency tables. ACM Transactions on Mathematical Software, 12,
154–161.

Clarkson, D. B., Fan, Y. and Joe, H. (1993) A Remark on Algorithm 643: FEXACT: An Algorithm
for Performing Fisher’s Exact Test in r×cContingency Tables. ACM Transactions on Mathematical
Software, 19, 484–488.

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables with given
row and column totals. Applied Statistics 30, 91–97.

See Also

chisq.test

fisher.exact in package exact2x2 for alternative interpretations of two-sided tests and confidence
intervals for 2× 2 tables.

http://CRAN.R-project.org/package=exact2x2

1238 fitted

Examples

Agresti (1990, p. 61f; 2002, p. 91) Fisher’s Tea Drinker
A British woman claimed to be able to distinguish whether milk or
tea was added to the cup first. To test, she was given 8 cups of
tea, in four of which milk was added first. The null hypothesis
is that there is no association between the true order of pouring
and the woman’s guess, the alternative that there is a positive
association (that the odds ratio is greater than 1).
TeaTasting <-
matrix(c(3, 1, 1, 3),

nrow = 2,
dimnames = list(Guess = c("Milk", "Tea"),

Truth = c("Milk", "Tea")))
fisher.test(TeaTasting, alternative = "greater")
=> p=0.2429, association could not be established

Fisher (1962, 1970), Criminal convictions of like-sex twins
Convictions <-
matrix(c(2, 10, 15, 3),

nrow = 2,
dimnames =
list(c("Dizygotic", "Monozygotic"),

c("Convicted", "Not convicted")))
Convictions
fisher.test(Convictions, alternative = "less")
fisher.test(Convictions, conf.int = FALSE)
fisher.test(Convictions, conf.level = 0.95)$conf.int
fisher.test(Convictions, conf.level = 0.99)$conf.int

A r x c table Agresti (2002, p. 57) Job Satisfaction
Job <- matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), 4, 4,
dimnames = list(income=c("< 15k", "15-25k", "25-40k", "> 40k"),

satisfaction=c("VeryD", "LittleD", "ModerateS", "VeryS")))
fisher.test(Job)
fisher.test(Job, simulate.p.value=TRUE, B=1e5)

fitted Extract Model Fitted Values

Description

fitted is a generic function which extracts fitted values from objects returned by modeling func-
tions. fitted.values is an alias for it.

All object classes which are returned by model fitting functions should provide a fitted method.
(Note that the generic is fitted and not fitted.values.)

Methods can make use of napredict methods to compensate for the omission of missing values.
The default and nls methods do.

Usage

fitted(object, ...)
fitted.values(object, ...)

fivenum 1239

Arguments

object an object for which the extraction of model fitted values is meaningful.

... other arguments.

Value

Fitted values extracted from the object object.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

coefficients, glm, lm, residuals.

fivenum Tukey Five-Number Summaries

Description

Returns Tukey’s five number summary (minimum, lower-hinge, median, upper-hinge, maximum)
for the input data.

Usage

fivenum(x, na.rm = TRUE)

Arguments

x numeric, maybe including NAs and ±Infs.

na.rm logical; if TRUE, all NA and NaNs are dropped, before the statistics are computed.

Value

A numeric vector of length 5 containing the summary information. See boxplot.stats for more
details.

See Also

IQR, boxplot.stats, median, quantile, range.

Examples

fivenum(c(rnorm(100),-1:1/0))

1240 fligner.test

fligner.test Fligner-Killeen Test of Homogeneity of Variances

Description

Performs a Fligner-Killeen (median) test of the null that the variances in each of the groups (sam-
ples) are the same.

Usage

fligner.test(x, ...)

Default S3 method:
fligner.test(x, g, ...)

S3 method for class ’formula’
fligner.test(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

g a vector or factor object giving the group for the corresponding elements of x.
Ignored if x is a list.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

If x is a list, its elements are taken as the samples to be compared for homogeneity of vari-
ances, and hence have to be numeric data vectors. In this case, g is ignored, and one can sim-
ply use fligner.test(x) to perform the test. If the samples are not yet contained in a list, use
fligner.test(list(x, ...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the same
length as x giving the group for the corresponding elements of x.

The Fligner-Killeen (median) test has been determined in a simulation study as one of the many
tests for homogeneity of variances which is most robust against departures from normality, see
Conover, Johnson & Johnson (1981). It is a k-sample simple linear rank which uses the ranks of the
absolute values of the centered samples and weights a(i) = qnorm((1+i/(n+1))/2). The version
implemented here uses median centering in each of the samples (F-K:med X2 in the reference).

formula 1241

Value

A list of class "htest" containing the following components:

statistic the Fligner-Killeen:med X2 test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

method the character string "Fligner-Killeen test of homogeneity of variances".

data.name a character string giving the names of the data.

References

William J. Conover, Mark E. Johnson and Myrle M. Johnson (1981). A comparative study of
tests for homogeneity of variances, with applications to the outer continental shelf bidding data.
Technometrics 23, 351–361.

See Also

ansari.test and mood.test for rank-based two-sample test for a difference in scale parameters;
var.test and bartlett.test for parametric tests for the homogeneity of variances.

Examples

require(graphics)

plot(count ~ spray, data = InsectSprays)
fligner.test(InsectSprays$count, InsectSprays$spray)
fligner.test(count ~ spray, data = InsectSprays)
Compare this to bartlett.test()

formula Model Formulae

Description

The generic function formula and its specific methods provide a way of extracting formulae which
have been included in other objects.

as.formula is almost identical, additionally preserving attributes when object already inherits
from "formula". The default value of the env argument is used only when the formula would
otherwise lack an environment.

Usage

formula(x, ...)
as.formula(object, env = parent.frame())

S3 method for class ’formula’
print(x, showEnv = !identical(e, .GlobalEnv), ...)

1242 formula

Arguments

x, object R object.

... further arguments passed to or from other methods.

env the environment to associate with the result.

showEnv logical indicating if the environment should be printed as well.

Details

The models fit by, e.g., the lm and glm functions are specified in a compact symbolic form. The ~
operator is basic in the formation of such models. An expression of the form y ~ model is inter-
preted as a specification that the response y is modelled by a linear predictor specified symbolically
by model. Such a model consists of a series of terms separated by + operators. The terms them-
selves consist of variable and factor names separated by : operators. Such a term is interpreted as
the interaction of all the variables and factors appearing in the term.

In addition to + and :, a number of other operators are useful in model formulae. The * operator
denotes factor crossing: a*b interpreted as a+b+a:b. The ^ operator indicates crossing to the spec-
ified degree. For example (a+b+c)^2 is identical to (a+b+c)*(a+b+c) which in turn expands to a
formula containing the main effects for a, b and c together with their second-order interactions. The
%in% operator indicates that the terms on its left are nested within those on the right. For example
a + b %in% a expands to the formula a + a:b. The - operator removes the specified terms, so
that (a+b+c)^2 - a:b is identical to a + b + c + b:c + a:c. It can also used to remove the
intercept term: when fitting a linear model y ~ x - 1 specifies a line through the origin. A model
with no intercept can be also specified as y ~ x + 0 or y ~ 0 + x.

While formulae usually involve just variable and factor names, they can also involve arithmetic
expressions. The formula log(y) ~ a + log(x) is quite legal. When such arithmetic expressions
involve operators which are also used symbolically in model formulae, there can be confusion
between arithmetic and symbolic operator use.

To avoid this confusion, the function I() can be used to bracket those portions of a model
formula where the operators are used in their arithmetic sense. For example, in the formula
y ~ a + I(b+c), the term b+c is to be interpreted as the sum of b and c.

Variable names can be quoted by backticks ‘like this‘ in formulae, although there is no guaran-
tee that all code using formulae will accept such non-syntactic names.

Most model-fitting functions accept formulae with right-hand-side including the function offset
to indicate terms with a fixed coefficient of one. Some functions accept other ‘specials’ such as
strata or cluster (see the specials argument of terms.formula).

There are two special interpretations of . in a formula. The usual one is in the context of a data
argument of model fitting functions and means ‘all columns not otherwise in the formula’: see
terms.formula. In the context of update.formula, only, it means ‘what was previously in this
part of the formula’.

When formula is called on a fitted model object, either a specific method is used (such as that for
class "nls") or the default method. The default first looks for a "formula" component of the object
(and evaluates it), then a "terms" component, then a formula parameter of the call (and evaluates
its value) and finally a "formula" attribute.

There is a formula method for data frames. If there is only one column this forms the RHS with
an empty LHS. For more columns, the first column is the LHS of the formula and the remaining
columns separated by + form the RHS.

formula.nls 1243

Value

All the functions above produce an object of class "formula" which contains a symbolic model
formula.

Environments

A formula object has an associated environment, and this environment (rather than the parent en-
vironment) is used by model.frame to evaluate variables that are not found in the supplied data
argument.

Formulas created with the ~ operator use the environment in which they were created. Formulas
created with as.formula will use the env argument for their environment. Pre-existing formulas
extracted with as.formula will only have their environment changed if env is given explicitly.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models in S eds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

I, offset.

For formula manipulation: terms, and all.vars; for typical use: lm, glm, and coplot.

Examples

class(fo <- y ~ x1*x2) # "formula"
fo
typeof(fo)# R internal : "language"
terms(fo)

environment(fo)
environment(as.formula("y ~ x"))
environment(as.formula("y ~ x", env=new.env()))

Create a formula for a model with a large number of variables:
xnam <- paste0("x", 1:25)
(fmla <- as.formula(paste("y ~ ", paste(xnam, collapse= "+"))))

formula.nls Extract Model Formula from nls Object

Description

Returns the model used to fit object.

Usage

S3 method for class ’nls’
formula(x, ...)

1244 friedman.test

Arguments

x an object inheriting from class "nls", representing a nonlinear least squares fit.

... further arguments passed to or from other methods.

Value

a formula representing the model used to obtain object.

Author(s)

José Pinheiro and Douglas Bates

See Also

nls, formula

Examples

fm1 <- nls(circumference ~ A/(1+exp((B-age)/C)), Orange,
start = list(A=160, B=700, C = 350))

formula(fm1)

friedman.test Friedman Rank Sum Test

Description

Performs a Friedman rank sum test with unreplicated blocked data.

Usage

friedman.test(y, ...)

Default S3 method:
friedman.test(y, groups, blocks, ...)

S3 method for class ’formula’
friedman.test(formula, data, subset, na.action, ...)

Arguments

y either a numeric vector of data values, or a data matrix.

groups a vector giving the group for the corresponding elements of y if this is a vector;
ignored if y is a matrix. If not a factor object, it is coerced to one.

blocks a vector giving the block for the corresponding elements of y if this is a vector;
ignored if y is a matrix. If not a factor object, it is coerced to one.

formula a formula of the form a ~ b | c, where a, b and c give the data values and
corresponding groups and blocks, respectively.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

friedman.test 1245

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

friedman.test can be used for analyzing unreplicated complete block designs (i.e., there is exactly
one observation in y for each combination of levels of groups and blocks) where the normality
assumption may be violated.

The null hypothesis is that apart from an effect of blocks, the location parameter of y is the same
in each of the groups.

If y is a matrix, groups and blocks are obtained from the column and row indices, respectively.
NA’s are not allowed in groups or blocks; if y contains NA’s, corresponding blocks are removed.

Value

A list with class "htest" containing the following components:

statistic the value of Friedman’s chi-squared statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

method the character string "Friedman rank sum test".

data.name a character string giving the names of the data.

References

Myles Hollander and Douglas A. Wolfe (1973), Nonparametric Statistical Methods. New York:
John Wiley & Sons. Pages 139–146.

See Also

quade.test.

Examples

Hollander & Wolfe (1973), p. 140ff.
Comparison of three methods ("round out", "narrow angle", and
"wide angle") for rounding first base. For each of 18 players
and the three method, the average time of two runs from a point on
the first base line 35ft from home plate to a point 15ft short of
second base is recorded.
RoundingTimes <-
matrix(c(5.40, 5.50, 5.55,

5.85, 5.70, 5.75,
5.20, 5.60, 5.50,
5.55, 5.50, 5.40,
5.90, 5.85, 5.70,
5.45, 5.55, 5.60,
5.40, 5.40, 5.35,
5.45, 5.50, 5.35,
5.25, 5.15, 5.00,

1246 ftable

5.85, 5.80, 5.70,
5.25, 5.20, 5.10,
5.65, 5.55, 5.45,
5.60, 5.35, 5.45,
5.05, 5.00, 4.95,
5.50, 5.50, 5.40,
5.45, 5.55, 5.50,
5.55, 5.55, 5.35,
5.45, 5.50, 5.55,
5.50, 5.45, 5.25,
5.65, 5.60, 5.40,
5.70, 5.65, 5.55,
6.30, 6.30, 6.25),

nrow = 22,
byrow = TRUE,
dimnames = list(1 : 22,

c("Round Out", "Narrow Angle", "Wide Angle")))
friedman.test(RoundingTimes)
=> strong evidence against the null that the methods are equivalent
with respect to speed

wb <- aggregate(warpbreaks$breaks,
by = list(w = warpbreaks$wool,

t = warpbreaks$tension),
FUN = mean)

wb
friedman.test(wbx, wbw, wb$t)
friedman.test(x ~ w | t, data = wb)

ftable Flat Contingency Tables

Description

Create ‘flat’ contingency tables.

Usage

ftable(x, ...)

Default S3 method:
ftable(..., exclude = c(NA, NaN), row.vars = NULL,

col.vars = NULL)

Arguments

x, ... R objects which can be interpreted as factors (including character strings), or a
list (or data frame) whose components can be so interpreted, or a contingency
table object of class "table" or "ftable".

exclude values to use in the exclude argument of factor when interpreting non-factor
objects.

row.vars a vector of integers giving the numbers of the variables, or a character vector
giving the names of the variables to be used for the rows of the flat contingency
table.

ftable 1247

col.vars a vector of integers giving the numbers of the variables, or a character vector giv-
ing the names of the variables to be used for the columns of the flat contingency
table.

Details

ftable creates ‘flat’ contingency tables. Similar to the usual contingency tables, these contain the
counts of each combination of the levels of the variables (factors) involved. This information is
then re-arranged as a matrix whose rows and columns correspond to unique combinations of the
levels of the row and column variables (as specified by row.vars and col.vars, respectively). The
combinations are created by looping over the variables in reverse order (so that the levels of the
left-most variable vary the slowest). Displaying a contingency table in this flat matrix form (via
print.ftable, the print method for objects of class "ftable") is often preferable to showing it as
a higher-dimensional array.

ftable is a generic function. Its default method, ftable.default, first creates a contingency table
in array form from all arguments except row.vars and col.vars. If the first argument is of class
"table", it represents a contingency table and is used as is; if it is a flat table of class "ftable", the
information it contains is converted to the usual array representation using as.ftable. Otherwise,
the arguments should be R objects which can be interpreted as factors (including character strings),
or a list (or data frame) whose components can be so interpreted, which are cross-tabulated using
table. Then, the arguments row.vars and col.vars are used to collapse the contingency table
into flat form. If neither of these two is given, the last variable is used for the columns. If both are
given and their union is a proper subset of all variables involved, the other variables are summed
out.

When the arguments are R expressions interpreted as factors, additional arguments will be passed
to table to control how the variable names are displayed; see the last example below.

Function ftable.formula provides a formula method for creating flat contingency tables.

There are methods for as.table and as.data.frame.

Value

ftable returns an object of class "ftable", which is a matrix with counts of each combination of
the levels of variables with information on the names and levels of the (row and columns) variables
stored as attributes "row.vars" and "col.vars".

See Also

ftable.formula for the formula interface (which allows a data = . argument); read.ftable
for information on reading, writing and coercing flat contingency tables; table for ordinary cross-
tabulation; xtabs for formula-based cross-tabulation.

Examples

Start with a contingency table.
ftable(Titanic, row.vars = 1:3)
ftable(Titanic, row.vars = 1:2, col.vars = "Survived")
ftable(Titanic, row.vars = 2:1, col.vars = "Survived")

Start with a data frame.
x <- ftable(mtcars[c("cyl", "vs", "am", "gear")])
x
ftable(x, row.vars = c(2, 4))

1248 ftable.formula

Start with expressions, use table()’s "dnn" to change labels
ftable(mtcars$cyl, mtcars$vs, mtcars$am, mtcars$gear, row.vars = c(2, 4),

dnn = c("Cylinders", "V/S", "Transmission", "Gears"))

ftable.formula Formula Notation for Flat Contingency Tables

Description

Produce or manipulate a flat contingency table using formula notation.

Usage

S3 method for class ’formula’
ftable(formula, data = NULL, subset, na.action, ...)

Arguments

formula a formula object with both left and right hand sides specifying the column and
row variables of the flat table.

data a data frame, list or environment (or similar: see model.frame) containing the
variables to be cross-tabulated, or a contingency table (see below).

subset an optional vector specifying a subset of observations to be used. Ignored if
data is a contingency table.

na.action a function which indicates what should happen when the data contain NAs. Ig-
nored if data is a contingency table.

... further arguments to the default ftable method may also be passed as arguments,
see ftable.default.

Details

This is a method of the generic function ftable.

The left and right hand side of formula specify the column and row variables, respectively, of the
flat contingency table to be created. Only the + operator is allowed for combining the variables. A
. may be used once in the formula to indicate inclusion of all the remaining variables.

If data is an object of class "table" or an array with more than 2 dimensions, it is taken as
a contingency table, and hence all entries should be nonnegative. Otherwise, if it is not a flat
contingency table (i.e., an object of class "ftable"), it should be a data frame or matrix, list or
environment containing the variables to be cross-tabulated. In this case, na.action is applied to
the data to handle missing values, and, after possibly selecting a subset of the data as specified by
the subset argument, a contingency table is computed from the variables.

The contingency table is then collapsed to a flat table, according to the row and column variables
specified by formula.

Value

A flat contingency table which contains the counts of each combination of the levels of the variables,
collapsed into a matrix for suitably displaying the counts.

GammaDist 1249

See Also

ftable, ftable.default; table.

Examples

Titanic
x <- ftable(Survived ~ ., data = Titanic)
x
ftable(Sex ~ Class + Age, data = x)

GammaDist The Gamma Distribution

Description

Density, distribution function, quantile function and random generation for the Gamma distribution
with parameters shape and scale.

Usage

dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,

log.p = FALSE)
qgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,

log.p = FALSE)
rgamma(n, shape, rate = 1, scale = 1/rate)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

rate an alternative way to specify the scale.

shape, scale shape and scale parameters. Must be positive, scale strictly.

log, log.p logical; if TRUE, probabilities/densities p are returned as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

If scale is omitted, it assumes the default value of 1.

The Gamma distribution with parameters shape = α and scale = σ has density

f(x) =
1

σαΓ(α)
xα−1e−x/σ

for x ≥ 0, α > 0 and σ > 0. (Here Γ(α) is the function implemented by R’s gamma() and defined
in its help. Note that a = 0 corresponds to the trivial distribution with all mass at point 0.)

The mean and variance are E(X) = ασ and V ar(X) = ασ2.

1250 GammaDist

The cumulative hazardH(t) = − log(1−F (t)) is -pgamma(t, ..., lower = FALSE, log = TRUE).

Note that for smallish values of shape (and moderate scale) a large parts of the mass of the Gamma
distribution is on values of x so near zero that they will be represented as zero in computer arith-
metic. So rgamma can well return values which will be represented as zero. (This will also happen
for very large values of scale since the actual generation is done for scale=1.)

Value

dgamma gives the density, pgamma gives the distribution function, qgamma gives the quantile function,
and rgamma generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

Note

The S parametrization is via shape and rate: S has no scale parameter. In R, scale takes prece-
dence over rate if both are supplied.

pgamma is closely related to the incomplete gamma function. As defined by Abramowitz and Stegun
6.5.1 (and by ‘Numerical Recipes’) this is

P (a, x) =
1

Γ(a)

∫ x

0

ta−1e−tdt

P (a, x) is pgamma(x, a). Other authors (for example Karl Pearson in his 1922 tables) omit the
normalizing factor, defining the incomplete gamma function as pgamma(x, a) * gamma(a). A
few use the ‘upper’ incomplete gamma function, the integral from x to∞ which can be computed
by pgamma(x, a, lower=FALSE) * gamma(a), or its normalized version. See also http://en.
wikipedia.org/wiki/Incomplete_gamma_function.

Source

dgamma is computed via the Poisson density, using code contributed by Catherine Loader (see
dbinom).

pgamma uses an unpublished (and not otherwise documented) algorithm ‘mainly by Morten Welin-
der’.

qgamma is based on a C translation of

Best, D. J. and D. E. Roberts (1975). Algorithm AS91. Percentage points of the chi-squared
distribution. Applied Statistics, 24, 385–388.

plus a final Newton step to improve the approximation.

rgamma for shape >= 1 uses

Ahrens, J. H. and Dieter, U. (1982). Generating gamma variates by a modified rejection technique.
Communications of the ACM, 25, 47–54,

and for 0 < shape < 1 uses

Ahrens, J. H. and Dieter, U. (1974). Computer methods for sampling from gamma, beta, Poisson
and binomial distributions. Computing, 12, 223–246.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

http://en.wikipedia.org/wiki/Incomplete_gamma_function
http://en.wikipedia.org/wiki/Incomplete_gamma_function

Geometric 1251

Shea, B. L. (1988) Algorithm AS 239, Chi-squared and incomplete Gamma integral, Applied Statis-
tics (JRSS C) 37, 466–473.

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 6: Gamma and Related Functions.

See Also

gamma for the gamma function.

Distributions for other standard distributions, including dbeta for the Beta distribution and dchisq
for the chi-squared distribution which is a special case of the Gamma distribution.

Examples

-log(dgamma(1:4, shape=1))
p <- (1:9)/10
pgamma(qgamma(p,shape=2), shape=2)
1 - 1/exp(qgamma(p, shape=1))

even for shape = 0.001 about half the mass is on numbers
that cannot be represented accurately (and most of those as zero)
pgamma(.Machine$double.xmin, 0.001)
pgamma(5e-324, 0.001) # on most machines 5e-324 is the smallest

representable non-zero number
table(rgamma(1e4, 0.001) == 0)/1e4

Geometric The Geometric Distribution

Description

Density, distribution function, quantile function and random generation for the geometric distribu-
tion with parameter prob.

Usage

dgeom(x, prob, log = FALSE)
pgeom(q, prob, lower.tail = TRUE, log.p = FALSE)
qgeom(p, prob, lower.tail = TRUE, log.p = FALSE)
rgeom(n, prob)

Arguments

x, q vector of quantiles representing the number of failures in a sequence of Bernoulli
trials before success occurs.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

prob probability of success in each trial. 0 < prob <= 1.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

1252 getInitial

Details

The geometric distribution with prob = p has density

p(x) = p(1− p)x

for x = 0, 1, 2, . . ., 0 < p ≤ 1.

If an element of x is not integer, the result of dgeom is zero, with a warning.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distribution
function.

Value

dgeom gives the density, pgeom gives the distribution function, qgeom gives the quantile function,
and rgeom generates random deviates.

Invalid prob will result in return value NaN, with a warning.

Source

dgeom computes via dbinom, using code contributed by Catherine Loader (see dbinom).

pgeom and qgeom are based on the closed-form formulae.

rgeom uses the derivation as an exponential mixture of Poissons, see

Devroye, L. (1986) Non-Uniform Random Variate Generation. Springer-Verlag, New York. Page
480.

See Also

Distributions for other standard distributions, including dnbinom for the negative binomial which
generalizes the geometric distribution.

Examples

qgeom((1:9)/10, prob = .2)
Ni <- rgeom(20, prob = 1/4); table(factor(Ni, 0:max(Ni)))

getInitial Get Initial Parameter Estimates

Description

This function evaluates initial parameter estimates for a nonlinear regression model. If data is a
parameterized data frame or pframe object, its parameters attribute is returned. Otherwise the
object is examined to see if it contains a call to a selfStart object whose initial attribute can be
evaluated.

Usage

getInitial(object, data, ...)

glm 1253

Arguments

object a formula or a selfStart model that defines a nonlinear regression model

data a data frame in which the expressions in the formula or arguments to the
selfStart model can be evaluated

... optional additional arguments

Value

A named numeric vector or list of starting estimates for the parameters. The construction of many
selfStart models is such that these "starting" estimates are, in fact, the converged parameter
estimates.

Author(s)

José Pinheiro and Douglas Bates

See Also

nls, selfStart, selfStart.default, selfStart.formula

Examples

PurTrt <- Puromycin[Puromycin$state == "treated",]
print(getInitial(rate ~ SSmicmen(conc, Vm, K), PurTrt), digits = 3)

glm Fitting Generalized Linear Models

Description

glm is used to fit generalized linear models, specified by giving a symbolic description of the linear
predictor and a description of the error distribution.

Usage

glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart, offset,
control = list(...), model = TRUE, method = "glm.fit",
x = FALSE, y = TRUE, contrasts = NULL, ...)

glm.fit(x, y, weights = rep(1, nobs),
start = NULL, etastart = NULL, mustart = NULL,
offset = rep(0, nobs), family = gaussian(),
control = list(), intercept = TRUE)

S3 method for class ’glm’
weights(object, type = c("prior", "working"), ...)

1254 glm

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted. The details of model specification are
given under ‘Details’.

family a description of the error distribution and link function to be used in the model.
This can be a character string naming a family function, a family function or the
result of a call to a family function. (See family for details of family functions.)

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model. If not
found in data, the variables are taken from environment(formula), typically
the environment from which glm is called.

weights an optional vector of ‘prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The ‘factory-fresh’ default is na.omit. Another possible value is NULL,
no action. Value na.exclude can be useful.

start starting values for the parameters in the linear predictor.

etastart starting values for the linear predictor.

mustart starting values for the vector of means.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector of length
equal to the number of cases. One or more offset terms can be included in the
formula instead or as well, and if more than one is specified their sum is used.
See model.offset.

control a list of parameters for controlling the fitting process. For glm.fit this is passed
to glm.control.

model a logical value indicating whether model frame should be included as a compo-
nent of the returned value.

method the method to be used in fitting the model. The default method "glm.fit" uses
iteratively reweighted least squares (IWLS): the alternative "model.frame" re-
turns the model frame and does no fitting.
User-supplied fitting functions can be supplied either as a function or a character
string naming a function, with a function which takes the same arguments as
glm.fit. If specified as a character string it is looked up from within the stats
namespace.

x, y For glm: logical values indicating whether the response vector and model matrix
used in the fitting process should be returned as components of the returned
value.
For glm.fit: x is a design matrix of dimension n * p, and y is a vector of
observations of length n.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

intercept logical. Should an intercept be included in the null model?

object an object inheriting from class "glm".

glm 1255

type character, partial matching allowed. Type of weights to extract from the fitted
model object.

... For glm: arguments to be used to form the default control argument if it is not
supplied directly.
For weights: further arguments passed to or from other methods.

Details

A typical predictor has the form response ~ terms where response is the (numeric) response
vector and terms is a series of terms which specifies a linear predictor for response. For binomial
and quasibinomial families the response can also be specified as a factor (when the first level
denotes failure and all others success) or as a two-column matrix with the columns giving the
numbers of successes and failures. A terms specification of the form first + second indicates all
the terms in first together with all the terms in second with any duplicates removed.

A specification of the form first:second indicates the the set of terms obtained by taking the in-
teractions of all terms in first with all terms in second. The specification first*second indicates
the cross of first and second. This is the same as first + second + first:second.

The terms in the formula will be re-ordered so that main effects come first, followed by the interac-
tions, all second-order, all third-order and so on: to avoid this pass a terms object as the formula.

Non-NULL weights can be used to indicate that different observations have different dispersions
(with the values in weights being inversely proportional to the dispersions); or equivalently, when
the elements of weights are positive integers wi, that each response yi is the mean of wi unit-
weight observations. For a binomial GLM prior weights are used to give the number of trials when
the response is the proportion of successes: they would rarely be used for a Poisson GLM.

glm.fit is the workhorse function: it is not normally called directly but can be more efficient where
the response vector and design matrix have already been calculated.

If more than one of etastart, start and mustart is specified, the first in the list will be used. It
is often advisable to supply starting values for a quasi family, and also for families with unusual
links such as gaussian("log").

All of weights, subset, offset, etastart and mustart are evaluated in the same way as variables
in formula, that is first in data and then in the environment of formula.

For the background to warning messages about ‘fitted probabilities numerically 0 or 1 occurred’ for
binomial GLMs, see Venables & Ripley (2002, pp. 197–8).

Value

glm returns an object of class inheriting from "glm" which inherits from the class "lm". See later
in this section. If a non-standard method is used, the object will also inherit from the class (if any)
returned by that function.

The function summary (i.e., summary.glm) can be used to obtain or print a summary of the results
and the function anova (i.e., anova.glm) to produce an analysis of variance table.

The generic accessor functions coefficients, effects, fitted.values and residuals can be
used to extract various useful features of the value returned by glm.

weights extracts a vector of weights, one for each case in the fit (after subsetting and na.action).

An object of class "glm" is a list containing at least the following components:

coefficients a named vector of coefficients

residuals the working residuals, that is the residuals in the final iteration of the IWLS fit.
Since cases with zero weights are omitted, their working residuals are NA.

1256 glm

fitted.values the fitted mean values, obtained by transforming the linear predictors by the
inverse of the link function.

rank the numeric rank of the fitted linear model.

family the family object used.
linear.predictors

the linear fit on link scale.

deviance up to a constant, minus twice the maximized log-likelihood. Where sensible, the
constant is chosen so that a saturated model has deviance zero.

aic A version of Akaike’s An Information Criterion, minus twice the maximized
log-likelihood plus twice the number of parameters, computed by the aic com-
ponent of the family. For binomial and Poison families the dispersion is fixed
at one and the number of parameters is the number of coefficients. For gaus-
sian, Gamma and inverse gaussian families the dispersion is estimated from the
residual deviance, and the number of parameters is the number of coefficients
plus one. For a gaussian family the MLE of the dispersion is used so this is a
valid value of AIC, but for Gamma and inverse gaussian families it is not. For
families fitted by quasi-likelihood the value is NA.

null.deviance The deviance for the null model, comparable with deviance. The null model
will include the offset, and an intercept if there is one in the model. Note that
this will be incorrect if the link function depends on the data other than through
the fitted mean: specify a zero offset to force a correct calculation.

iter the number of iterations of IWLS used.

weights the working weights, that is the weights in the final iteration of the IWLS fit.

prior.weights the weights initially supplied, a vector of 1s if none were.

df.residual the residual degrees of freedom.

df.null the residual degrees of freedom for the null model.

y if requested (the default) the y vector used. (It is a vector even for a binomial
model.)

x if requested, the model matrix.

model if requested (the default), the model frame.

converged logical. Was the IWLS algorithm judged to have converged?

boundary logical. Is the fitted value on the boundary of the attainable values?

call the matched call.

formula the formula supplied.

terms the terms object used.

data the data argument.

offset the offset vector used.

control the value of the control argument used.

method the name of the fitter function used, currently always "glm.fit".

contrasts (where relevant) the contrasts used.

xlevels (where relevant) a record of the levels of the factors used in fitting.

na.action (where relevant) information returned by model.frame on the special handling
of NAs.

glm 1257

In addition, non-empty fits will have components qr, R and effects relating to the final weighted
linear fit.

Objects of class "glm" are normally of class c("glm", "lm"), that is inherit from class "lm",
and well-designed methods for class "lm" will be applied to the weighted linear model at the final it-
eration of IWLS. However, care is needed, as extractor functions for class "glm" such as residuals
and weights do not just pick out the component of the fit with the same name.

If a binomial glm model was specified by giving a two-column response, the weights returned
by prior.weights are the total numbers of cases (factored by the supplied case weights) and the
component y of the result is the proportion of successes.

Fitting functions

The argument method serves two purposes. One is to allow the model frame to be recreated with
no fitting. The other is to allow the default fitting function glm.fit to be replaced by a function
which takes the same arguments and uses a different fitting algorithm. If glm.fit is supplied as a
character string it is used to search for a function of that name, starting in the stats namespace.

The class of the object return by the fitter (if any) will be prepended to the class returned by glm.

Author(s)

The original R implementation of glm was written by Simon Davies working for Ross Ihaka at the
University of Auckland, but has since been extensively re-written by members of the R Core team.

The design was inspired by the S function of the same name described in Hastie & Pregibon (1992).

References

Dobson, A. J. (1990) An Introduction to Generalized Linear Models. London: Chapman and Hall.

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in
S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer.

See Also

anova.glm, summary.glm, etc. for glm methods, and the generic functions anova, summary,
effects, fitted.values, and residuals.

lm for non-generalized linear models (which SAS calls GLMs, for ‘general’ linear models).

loglin and loglm (package MASS) for fitting log-linear models (which binomial and Poisson
GLMs are) to contingency tables.

bigglm in package biglm for an alternative way to fit GLMs to large datasets (especially those with
many cases).

esoph, infert and predict.glm have examples of fitting binomial glms.

Examples

Dobson (1990) Page 93: Randomized Controlled Trial :
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
print(d.AD <- data.frame(treatment, outcome, counts))

http://CRAN.R-project.org/package=MASS
http://CRAN.R-project.org/package=biglm

1258 glm.control

glm.D93 <- glm(counts ~ outcome + treatment, family=poisson())
anova(glm.D93)
summary(glm.D93)

an example with offsets from Venables & Ripley (2002, p.189)
utils::data(anorexia, package="MASS")

anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
family = gaussian, data = anorexia)

summary(anorex.1)

A Gamma example, from McCullagh & Nelder (1989, pp. 300-2)
clotting <- data.frame(

u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))

summary(glm(lot1 ~ log(u), data=clotting, family=Gamma))
summary(glm(lot2 ~ log(u), data=clotting, family=Gamma))

Not run:
for an example of the use of a terms object as a formula
demo(glm.vr)

End(Not run)

glm.control Auxiliary for Controlling GLM Fitting

Description

Auxiliary function for glm fitting. Typically only used internally by glm.fit, but may be used to
construct a control argument to either function.

Usage

glm.control(epsilon = 1e-8, maxit = 25, trace = FALSE)

Arguments

epsilon positive convergence tolerance ε; the iterations converge when |dev −
devold|/(|dev|+ 0.1) < ε.

maxit integer giving the maximal number of IWLS iterations.

trace logical indicating if output should be produced for each iteration.

Details

The control argument of glm is by default passed to the control argument of glm.fit, which
uses its elements as arguments to glm.control: the latter provides defaults and sanity checking.

If epsilon is small (less than 10−10) it is also used as the tolerance for the detection of collinearity
in the least squares solution.

When trace is true, calls to cat produce the output for each IWLS iteration. Hence,
options(digits = *) can be used to increase the precision, see the example.

glm.summaries 1259

Value

A list with components named as the arguments.

References

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in
S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

glm.fit, the fitting procedure used by glm.

Examples

A variation on example(glm) :

Annette Dobson’s example ...
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
oo <- options(digits = 12) # to see more when tracing :
glm.D93X <- glm(counts ~ outcome + treatment, family=poisson(),

trace = TRUE, epsilon = 1e-14)
options(oo)
coef(glm.D93X) # the last two are closer to 0 than in ?glm’s glm.D93

glm.summaries Accessing Generalized Linear Model Fits

Description

These functions are all methods for class glm or summary.glm objects.

Usage

S3 method for class ’glm’
family(object, ...)

S3 method for class ’glm’
residuals(object, type = c("deviance", "pearson", "working",

"response", "partial"), ...)

Arguments

object an object of class glm, typically the result of a call to glm.

type the type of residuals which should be returned. The alternatives are:
"deviance" (default), "pearson", "working", "response", and "partial".

... further arguments passed to or from other methods.

1260 hclust

Details

The references define the types of residuals: Davison & Snell is a good reference for the usages of
each.

The partial residuals are a matrix of working residuals, with each column formed by omitting a term
from the model.

How residuals treats cases with missing values in the original fit is determined by the na.action
argument of that fit. If na.action = na.omit omitted cases will not appear in the residuals,
whereas if na.action = na.exclude they will appear, with residual value NA. See also naresid.

For fits done with y = FALSE the response values are computed from other components.

References

Davison, A. C. and Snell, E. J. (1991) Residuals and diagnostics. In: Statistical Theory and Mod-
elling. In Honour of Sir David Cox, FRS, eds. Hinkley, D. V., Reid, N. and Snell, E. J., Chapman
& Hall.

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in
S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.

See Also

glm for computing glm.obj, anova.glm; the corresponding generic functions, summary.glm, coef,
deviance, df.residual, effects, fitted, residuals.

influence.measures for deletion diagnostics, including standardized (rstandard) and studentized
(rstudent) residuals.

hclust Hierarchical Clustering

Description

Hierarchical cluster analysis on a set of dissimilarities and methods for analyzing it.

Usage

hclust(d, method = "complete", members=NULL)

S3 method for class ’hclust’
plot(x, labels = NULL, hang = 0.1,

axes = TRUE, frame.plot = FALSE, ann = TRUE,
main = "Cluster Dendrogram",
sub = NULL, xlab = NULL, ylab = "Height", ...)

plclust(tree, hang = 0.1, unit = FALSE, level = FALSE, hmin = 0,
square = TRUE, labels = NULL, plot. = TRUE,
axes = TRUE, frame.plot = FALSE, ann = TRUE,
main = "", sub = NULL, xlab = NULL, ylab = "Height")

hclust 1261

Arguments

d a dissimilarity structure as produced by dist.

method the agglomeration method to be used. This should be (an unambiguous abbre-
viation of) one of "ward", "single", "complete", "average", "mcquitty",
"median" or "centroid".

members NULL or a vector with length size of d. See the ‘Details’ section.

x,tree an object of the type produced by hclust.

hang The fraction of the plot height by which labels should hang below the rest of the
plot. A negative value will cause the labels to hang down from 0.

labels A character vector of labels for the leaves of the tree. By default the row names
or row numbers of the original data are used. If labels=FALSE no labels at all
are plotted.

axes, frame.plot, ann

logical flags as in plot.default.
main, sub, xlab, ylab

character strings for title. sub and xlab have a non-NULL default when
there’s a tree$call.

... Further graphical arguments.

unit logical. If true, the splits are plotted at equally-spaced heights rather than at the
height in the object.

hmin numeric. All heights less than hmin are regarded as being hmin: this can be used
to suppress detail at the bottom of the tree.

level, square, plot.

as yet unimplemented arguments of plclust for S-PLUS compatibility.

Details

This function performs a hierarchical cluster analysis using a set of dissimilarities for the n objects
being clustered. Initially, each object is assigned to its own cluster and then the algorithm pro-
ceeds iteratively, at each stage joining the two most similar clusters, continuing until there is just
a single cluster. At each stage distances between clusters are recomputed by the Lance–Williams
dissimilarity update formula according to the particular clustering method being used.

A number of different clustering methods are provided. Ward’s minimum variance method aims at
finding compact, spherical clusters. The complete linkage method finds similar clusters. The single
linkage method (which is closely related to the minimal spanning tree) adopts a ‘friends of friends’
clustering strategy. The other methods can be regarded as aiming for clusters with characteristics
somewhere between the single and complete link methods. Note however, that methods "median"
and "centroid" are not leading to a monotone distance measure, or equivalently the resulting
dendrograms can have so called inversions (which are hard to interpret).

If members!=NULL, then d is taken to be a dissimilarity matrix between clusters instead of dissim-
ilarities between singletons and members gives the number of observations per cluster. This way
the hierarchical cluster algorithm can be ‘started in the middle of the dendrogram’, e.g., in order
to reconstruct the part of the tree above a cut (see examples). Dissimilarities between clusters can
be efficiently computed (i.e., without hclust itself) only for a limited number of distance/linkage
combinations, the simplest one being squared Euclidean distance and centroid linkage. In this case
the dissimilarities between the clusters are the squared Euclidean distances between cluster means.

In hierarchical cluster displays, a decision is needed at each merge to specify which subtree should
go on the left and which on the right. Since, for n observations there are n − 1 merges, there

1262 hclust

are 2(n−1) possible orderings for the leaves in a cluster tree, or dendrogram. The algorithm used in
hclust is to order the subtree so that the tighter cluster is on the left (the last, i.e., most recent, merge
of the left subtree is at a lower value than the last merge of the right subtree). Single observations
are the tightest clusters possible, and merges involving two observations place them in order by
their observation sequence number.

Value

An object of class hclust which describes the tree produced by the clustering process. The object is
a list with components:

merge an n− 1 by 2 matrix. Row i of merge describes the merging of clusters at step i
of the clustering. If an element j in the row is negative, then observation−j was
merged at this stage. If j is positive then the merge was with the cluster formed
at the (earlier) stage j of the algorithm. Thus negative entries in merge indicate
agglomerations of singletons, and positive entries indicate agglomerations of
non-singletons.

height a set of n − 1 real values (non-decreasing for ultrametric trees). The clustering
height: that is, the value of the criterion associated with the clustering method
for the particular agglomeration.

order a vector giving the permutation of the original observations suitable for plotting,
in the sense that a cluster plot using this ordering and matrix merge will not have
crossings of the branches.

labels labels for each of the objects being clustered.
call the call which produced the result.
method the cluster method that has been used.
dist.method the distance that has been used to create d (only returned if the distance object

has a "method" attribute).

There are print, plot and identify (see identify.hclust) methods and the rect.hclust()
function for hclust objects. The plclust() function is basically the same as the plot method,
plot.hclust, primarily for back compatibility with S-PLUS. Its extra arguments are not yet im-
plemented.

Author(s)

The hclust function is based on Fortran code contributed to STATLIB by F. Murtagh.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (S version.)

Everitt, B. (1974). Cluster Analysis. London: Heinemann Educ. Books.

Hartigan, J. A. (1975). Clustering Algorithms. New York: Wiley.

Sneath, P. H. A. and R. R. Sokal (1973). Numerical Taxonomy. San Francisco: Freeman.

Anderberg, M. R. (1973). Cluster Analysis for Applications. Academic Press: New York.

Gordon, A. D. (1999). Classification. Second Edition. London: Chapman and Hall / CRC

Murtagh, F. (1985). “Multidimensional Clustering Algorithms”, in COMPSTAT Lectures 4.
Wuerzburg: Physica-Verlag (for algorithmic details of algorithms used).

McQuitty, L.L. (1966). Similarity Analysis by Reciprocal Pairs for Discrete and Continuous Data.
Educational and Psychological Measurement, 26, 825–831.

heatmap 1263

See Also

identify.hclust, rect.hclust, cutree, dendrogram, kmeans.

For the Lance–Williams formula and methods that apply it generally, see agnes from package
cluster.

Examples

require(graphics)

hc <- hclust(dist(USArrests), "ave")
plot(hc)
plot(hc, hang = -1)

Do the same with centroid clustering and squared Euclidean distance,
cut the tree into ten clusters and reconstruct the upper part of the
tree from the cluster centers.
hc <- hclust(dist(USArrests)^2, "cen")
memb <- cutree(hc, k = 10)
cent <- NULL
for(k in 1:10){

cent <- rbind(cent, colMeans(USArrests[memb == k, , drop = FALSE]))
}
hc1 <- hclust(dist(cent)^2, method = "cen", members = table(memb))
opar <- par(mfrow = c(1, 2))
plot(hc, labels = FALSE, hang = -1, main = "Original Tree")
plot(hc1, labels = FALSE, hang = -1, main = "Re-start from 10 clusters")
par(opar)

heatmap Draw a Heat Map

Description

A heat map is a false color image (basically image(t(x))) with a dendrogram added to the left side
and to the top. Typically, reordering of the rows and columns according to some set of values (row
or column means) within the restrictions imposed by the dendrogram is carried out.

Usage

heatmap(x, Rowv=NULL, Colv=if(symm)"Rowv" else NULL,
distfun = dist, hclustfun = hclust,
reorderfun = function(d,w) reorder(d,w),
add.expr, symm = FALSE, revC = identical(Colv, "Rowv"),
scale=c("row", "column", "none"), na.rm = TRUE,
margins = c(5, 5), ColSideColors, RowSideColors,
cexRow = 0.2 + 1/log10(nr), cexCol = 0.2 + 1/log10(nc),
labRow = NULL, labCol = NULL, main = NULL,
xlab = NULL, ylab = NULL,
keep.dendro = FALSE, verbose = getOption("verbose"), ...)

http://CRAN.R-project.org/package=cluster

1264 heatmap

Arguments

x numeric matrix of the values to be plotted.

Rowv determines if and how the row dendrogram should be computed and reordered.
Either a dendrogram or a vector of values used to reorder the row dendrogram
or NA to suppress any row dendrogram (and reordering) or by default, NULL, see
‘Details’ below.

Colv determines if and how the column dendrogram should be reordered. Has the
same options as the Rowv argument above and additionally when x is a square
matrix, Colv = "Rowv" means that columns should be treated identi-
cally to the rows (and so if there is to be no row dendrogram there will not be a
column one either).

distfun function used to compute the distance (dissimilarity) between both rows and
columns. Defaults to dist.

hclustfun function used to compute the hierarchical clustering when Rowv or Colv are not
dendrograms. Defaults to hclust. Should take as argument a result of distfun
and return an object to which as.dendrogram can be applied.

reorderfun function(d,w) of dendrogram and weights for reordering the row and column
dendrograms. The default uses reorder.dendrogram.

add.expr expression that will be evaluated after the call to image. Can be used to add
components to the plot.

symm logical indicating if x should be treated symmetrically; can only be true when x
is a square matrix.

revC logical indicating if the column order should be reversed for plotting, such that
e.g., for the symmetric case, the symmetry axis is as usual.

scale character indicating if the values should be centered and scaled in either the row
direction or the column direction, or none. The default is "row" if symm false,
and "none" otherwise.

na.rm logical indicating whether NA’s should be removed.

margins numeric vector of length 2 containing the margins (see par(mar= *)) for col-
umn and row names, respectively.

ColSideColors (optional) character vector of length ncol(x) containing the color names for a
horizontal side bar that may be used to annotate the columns of x.

RowSideColors (optional) character vector of length nrow(x) containing the color names for a
vertical side bar that may be used to annotate the rows of x.

cexRow, cexCol positive numbers, used as cex.axis in for the row or column axis labeling. The
defaults currently only use number of rows or columns, respectively.

labRow, labCol character vectors with row and column labels to use; these default to
rownames(x) or colnames(x), respectively.

main, xlab, ylab

main, x- and y-axis titles; defaults to none.

keep.dendro logical indicating if the dendrogram(s) should be kept as part of the result (when
Rowv and/or Colv are not NA).

verbose logical indicating if information should be printed.

... additional arguments passed on to image, e.g., col specifying the colors.

heatmap 1265

Details

If either Rowv or Colv are dendrograms they are honored (and not reordered). Otherwise, dendro-
grams are computed as dd <- as.dendrogram(hclustfun(distfun(X))) where X is either x or
t(x).

If either is a vector (of ‘weights’) then the appropriate dendrogram is reordered according to the
supplied values subject to the constraints imposed by the dendrogram, by reorder(dd, Rowv),
in the row case. If either is missing, as by default, then the ordering of the corre-
sponding dendrogram is by the mean value of the rows/columns, i.e., in the case of rows,
Rowv <- rowMeans(x, na.rm=na.rm). If either is NA, no reordering will be done for the cor-
responding side.

By default (scale = "row") the rows are scaled to have mean zero and standard deviation one.
There is some empirical evidence from genomic plotting that this is useful.

The default colors are not pretty. Consider using enhancements such as the RColorBrewer pack-
age.

Value

Invisibly, a list with components

rowInd row index permutation vector as returned by order.dendrogram.

colInd column index permutation vector.

Rowv the row dendrogram; only if input Rowv was not NA and keep.dendro is true.

Colv the column dendrogram; only if input Colv was not NA and keep.dendro is
true.

Note

Unless Rowv = NA (or Colw = NA), the original rows and columns are reordered in any case to
match the dendrogram, e.g., the rows by order.dendrogram(Rowv) where Rowv is the (possibly
reorder()ed) row dendrogram.

heatmap() uses layout and draws the image in the lower right corner of a 2x2 layout. Consequen-
tially, it can not be used in a multi column/row layout, i.e., when par(mfrow= *) or (mfcol= *)
has been called.

Author(s)

Andy Liaw, original; R. Gentleman, M. Maechler, W. Huber, revisions.

See Also

image, hclust

Examples

require(graphics); require(grDevices)
x <- as.matrix(mtcars)
rc <- rainbow(nrow(x), start=0, end=.3)
cc <- rainbow(ncol(x), start=0, end=.3)
hv <- heatmap(x, col = cm.colors(256), scale="column",

RowSideColors = rc, ColSideColors = cc, margins=c(5,10),
xlab = "specification variables", ylab= "Car Models",
main = "heatmap(<Mtcars data>, ..., scale = \"column\")")

http://CRAN.R-project.org/package=RColorBrewer

1266 HoltWinters

utils::str(hv) # the two re-ordering index vectors

no column dendrogram (nor reordering) at all:
heatmap(x, Colv = NA, col = cm.colors(256), scale="column",

RowSideColors = rc, margins=c(5,10),
xlab = "specification variables", ylab= "Car Models",
main = "heatmap(<Mtcars data>, ..., scale = \"column\")")

"no nothing"
heatmap(x, Rowv = NA, Colv = NA, scale="column",

main = "heatmap(*, NA, NA) ~= image(t(x))")

round(Ca <- cor(attitude), 2)
symnum(Ca) # simple graphic
heatmap(Ca, symm = TRUE, margins=c(6,6))# with reorder()
heatmap(Ca, Rowv=FALSE, symm = TRUE, margins=c(6,6))# _NO_ reorder()
slightly artificial with color bar, without and with ordering:
cc <- rainbow(nrow(Ca))
heatmap(Ca, Rowv=FALSE, symm = TRUE, RowSideColors=cc, ColSideColors=cc,
margins=c(6,6))
heatmap(Ca,symm = TRUE, RowSideColors=cc, ColSideColors=cc,
margins=c(6,6))

For variable clustering, rather use distance based on cor():
symnum(cU <- cor(USJudgeRatings))

hU <- heatmap(cU, Rowv = FALSE, symm = TRUE, col = topo.colors(16),
distfun = function(c) as.dist(1 - c), keep.dendro = TRUE)

The Correlation matrix with same reordering:
round(100 * cU[hU[[1]], hU[[2]]])
The column dendrogram:
utils::str(hU$Colv)

HoltWinters Holt-Winters Filtering

Description

Computes Holt-Winters Filtering of a given time series. Unknown parameters are determined by
minimizing the squared prediction error.

Usage

HoltWinters(x, alpha = NULL, beta = NULL, gamma = NULL,
seasonal = c("additive", "multiplicative"),
start.periods = 2, l.start = NULL, b.start = NULL,
s.start = NULL,
optim.start = c(alpha = 0.3, beta = 0.1, gamma = 0.1),
optim.control = list())

HoltWinters 1267

Arguments

x An object of class ts
alpha alpha parameter of Holt-Winters Filter.
beta beta parameter of Holt-Winters Filter. If set to FALSE, the function will do

exponential smoothing.
gamma gamma parameter used for the seasonal component. If set to FALSE, an non-

seasonal model is fitted.
seasonal Character string to select an "additive" (the default) or "multiplicative"

seasonal model. The first few characters are sufficient. (Only takes effect if
gamma is non-zero).

start.periods Start periods used in the autodetection of start values. Must be at least 2.
l.start Start value for level (a[0]).
b.start Start value for trend (b[0]).
s.start Vector of start values for the seasonal component (s1[0] . . . sp[0])
optim.start Vector with named components alpha, beta, and gamma containing the starting

values for the optimizer. Only the values needed must be specified. Ignored in
the one-parameter case.

optim.control Optional list with additional control parameters passed to optim if this is used.
Ignored in the one-parameter case.

Details

The additive Holt-Winters prediction function (for time series with period length p) is

Ŷ [t+ h] = a[t] + hb[t] + s[t− p+ 1 + (h− 1) mod p],

where a[t], b[t] and s[t] are given by

a[t] = α(Y [t]− s[t− p]) + (1− α)(a[t− 1] + b[t− 1])

b[t] = β(a[t]− a[t− 1]) + (1− β)b[t− 1]

s[t] = γ(Y [t]− a[t]) + (1− γ)s[t− p]

The multiplicative Holt-Winters prediction function (for time series with period length p) is

Ŷ [t+ h] = (a[t] + hb[t])× s[t− p+ 1 + (h− 1) mod p].

where a[t], b[t] and s[t] are given by

a[t] = α(Y [t]/s[t− p]) + (1− α)(a[t− 1] + b[t− 1])

b[t] = β(a[t]− a[t− 1]) + (1− β)b[t− 1]

s[t] = γ(Y [t]/a[t]) + (1− γ)s[t− p]
The data in x are required to be non-zero for a multiplicative model, but it makes most sense if they
are all positive.

The function tries to find the optimal values of α and/or β and/or γ by minimizing the squared one-
step prediction error if they are NULL (the default). optimize will be used for the single-parameter
case, and optim otherwise.

For seasonal models, start values for a, b and s are inferred by performing a simple decompo-
sition in trend and seasonal component using moving averages (see function decompose) on the
start.periods first periods (a simple linear regression on the trend component is used for starting
level and trend). For level/trend-models (no seasonal component), start values for a and b are x[2]
and x[2] - x[1], respectively. For level-only models (ordinary exponential smoothing), the start
value for a is x[1].

1268 HoltWinters

Value

An object of class "HoltWinters", a list with components:

fitted A multiple time series with one column for the filtered series as well as for the
level, trend and seasonal components, estimated contemporaneously (that is at
time t and not at the end of the series).

x The original series
alpha alpha used for filtering
beta beta used for filtering
gamma gamma used for filtering
coefficients A vector with named components a, b, s1, ..., sp containing the estimated

values for the level, trend and seasonal components
seasonal The specified seasonal parameter
SSE The final sum of squared errors achieved in optimizing
call The call used

Author(s)

David Meyer <David.Meyer@wu.ac.at>

References

C. C. Holt (1957) Forecasting trends and seasonals by exponentially weighted moving averages,
ONR Research Memorandum, Carnegie Institute of Technology 52.

P. R. Winters (1960) Forecasting sales by exponentially weighted moving averages, Management
Science 6, 324–342.

See Also

predict.HoltWinters, optim.

Examples

require(graphics)

Seasonal Holt-Winters
(m <- HoltWinters(co2))
plot(m)
plot(fitted(m))

(m <- HoltWinters(AirPassengers, seasonal = "mult"))
plot(m)

Non-Seasonal Holt-Winters
x <- uspop + rnorm(uspop, sd = 5)
m <- HoltWinters(x, gamma = FALSE)
plot(m)

Exponential Smoothing
m2 <- HoltWinters(x, gamma = FALSE, beta = FALSE)
lines(fitted(m2)[,1], col = 3)

Hypergeometric 1269

Hypergeometric The Hypergeometric Distribution

Description

Density, distribution function, quantile function and random generation for the hypergeometric dis-
tribution.

Usage

dhyper(x, m, n, k, log = FALSE)
phyper(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
qhyper(p, m, n, k, lower.tail = TRUE, log.p = FALSE)
rhyper(nn, m, n, k)

Arguments

x, q vector of quantiles representing the number of white balls drawn without re-
placement from an urn which contains both black and white balls.

m the number of white balls in the urn.

n the number of black balls in the urn.

k the number of balls drawn from the urn.

p probability, it must be between 0 and 1.

nn number of observations. If length(nn) > 1, the length is taken to be the num-
ber required.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The hypergeometric distribution is used for sampling without replacement. The density of this
distribution with parameters m, n and k (named Np, N − Np, and n, respectively in the reference
below) is given by

p(x) =

(
m

x

)(
n

k − x

)/(
m+ n

k

)
for x = 0, . . . , k.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distribution
function.

Value

dhyper gives the density, phyper gives the distribution function, qhyper gives the quantile function,
and rhyper generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

1270 identify.hclust

Source

dhyper computes via binomial probabilities, using code contributed by Catherine Loader (see
dbinom).

phyper is based on calculating dhyper and phyper(...)/dhyper(...) (as a summation), based
on ideas of Ian Smith and Morten Welinder.

qhyper is based on inversion.

rhyper is based on a corrected version of

Kachitvichyanukul, V. and Schmeiser, B. (1985). Computer generation of hypergeometric random
variates. Journal of Statistical Computation and Simulation, 22, 127–145.

References

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second Edi-
tion. New York: Wiley.

See Also

Distributions for other standard distributions.

Examples

m <- 10; n <- 7; k <- 8
x <- 0:(k+1)
rbind(phyper(x, m, n, k), dhyper(x, m, n, k))
all(phyper(x, m, n, k) == cumsum(dhyper(x, m, n, k)))# FALSE
but error is very small:
signif(phyper(x, m, n, k) - cumsum(dhyper(x, m, n, k)), digits=3)

identify.hclust Identify Clusters in a Dendrogram

Description

identify.hclust reads the position of the graphics pointer when the (first) mouse button is
pressed. It then cuts the tree at the vertical position of the pointer and highlights the cluster con-
taining the horizontal position of the pointer. Optionally a function is applied to the index of data
points contained in the cluster.

Usage

S3 method for class ’hclust’
identify(x, FUN = NULL, N = 20, MAXCLUSTER = 20, DEV.FUN = NULL,

...)

identify.hclust 1271

Arguments

x an object of the type produced by hclust.

FUN (optional) function to be applied to the index numbers of the data points in a
cluster (see ‘Details’ below).

N the maximum number of clusters to be identified.

MAXCLUSTER the maximum number of clusters that can be produced by a cut (limits the effec-
tive vertical range of the pointer).

DEV.FUN (optional) integer scalar. If specified, the corresponding graphics device is made
active before FUN is applied.

... further arguments to FUN.

Details

By default clusters can be identified using the mouse and an invisible list of indices of the re-
spective data points is returned.

If FUN is not NULL, then the index vector of data points is passed to this function as first argument,
see the examples below. The active graphics device for FUN can be specified using DEV.FUN.

The identification process is terminated by pressing any mouse button other than the first, see also
identify.

Value

Either a list of data point index vectors or a list of return values of FUN.

See Also

hclust, rect.hclust

Examples

Not run:
require(graphics)

hca <- hclust(dist(USArrests))
plot(hca)
(x <- identify(hca)) ## Terminate with 2nd mouse button !!

hci <- hclust(dist(iris[,1:4]))
plot(hci)
identify(hci, function(k) print(table(iris[k,5])))

open a new device (one for dendrogram, one for bars):
get(getOption("device"))() # << make that narrow (& small)

and *beside* 1st one
nD <- dev.cur() # to be for the barplot
dev.set(dev.prev())# old one for dendrogram
plot(hci)
select subtrees in dendrogram and "see" the species distribution:
identify(hci, function(k) barplot(table(iris[k,5]),col=2:4), DEV.FUN = nD)

End(Not run)

1272 influence.measures

influence.measures Regression Deletion Diagnostics

Description

This suite of functions can be used to compute some of the regression (leave-one-out deletion)
diagnostics for linear and generalized linear models discussed in Belsley, Kuh and Welsch (1980),
Cook and Weisberg (1982), etc.

Usage

influence.measures(model)

rstandard(model, ...)
S3 method for class ’lm’
rstandard(model, infl = lm.influence(model, do.coef = FALSE),

sd = sqrt(deviance(model)/df.residual(model)), ...)
S3 method for class ’glm’
rstandard(model, infl=influence(model, do.coef=FALSE),

type=c("deviance","pearson"), ...)

rstudent(model, ...)
S3 method for class ’lm’
rstudent(model, infl = lm.influence(model, do.coef = FALSE),

res = infl$wt.res, ...)
S3 method for class ’glm’
rstudent(model, infl = influence(model, do.coef = FALSE), ...)

dffits(model, infl = , res =)

dfbeta(model, ...)
S3 method for class ’lm’
dfbeta(model, infl = lm.influence(model, do.coef = TRUE), ...)

dfbetas(model, ...)
S3 method for class ’lm’
dfbetas(model, infl = lm.influence(model, do.coef = TRUE), ...)

covratio(model, infl = lm.influence(model, do.coef = FALSE),
res = weighted.residuals(model))

cooks.distance(model, ...)
S3 method for class ’lm’
cooks.distance(model, infl = lm.influence(model, do.coef = FALSE),

res = weighted.residuals(model),
sd = sqrt(deviance(model)/df.residual(model)),
hat = infl$hat, ...)

S3 method for class ’glm’
cooks.distance(model, infl = influence(model, do.coef = FALSE),

res = infl$pear.res,
dispersion = summary(model)$dispersion,

influence.measures 1273

hat = infl$hat, ...)

hatvalues(model, ...)
S3 method for class ’lm’
hatvalues(model, infl = lm.influence(model, do.coef = FALSE), ...)

hat(x, intercept = TRUE)

Arguments

model an R object, typically returned by lm or glm.

infl influence structure as returned by lm.influence or influence (the latter only
for the glm method of rstudent and cooks.distance).

res (possibly weighted) residuals, with proper default.

sd standard deviation to use, see default.

dispersion dispersion (for glm objects) to use, see default.

hat hat values Hii, see default.

type type of residuals for glm method for rstandard.

x the X or design matrix.

intercept should an intercept column be prepended to x?

... further arguments passed to or from other methods.

Details

The primary high-level function is influence.measures which produces a class "infl" object
tabular display showing the DFBETAS for each model variable, DFFITS, covariance ratios, Cook’s
distances and the diagonal elements of the hat matrix. Cases which are influential with respect to
any of these measures are marked with an asterisk.

The functions dfbetas, dffits, covratio and cooks.distance provide direct access to the cor-
responding diagnostic quantities. Functions rstandard and rstudent give the standardized and
Studentized residuals respectively. (These re-normalize the residuals to have unit variance, using
an overall and leave-one-out measure of the error variance respectively.)

Values for generalized linear models are approximations, as described in Williams (1987) (except
that Cook’s distances are scaled as F rather than as chi-square values). The approximations can be
poor when some cases have large influence.

The optional infl, res and sd arguments are there to encourage the use of these direct access
functions, in situations where, e.g., the underlying basic influence measures (from lm.influence
or the generic influence) are already available.

Note that cases with weights == 0 are dropped from all these functions, but that if a linear model
has been fitted with na.action = na.exclude, suitable values are filled in for the cases excluded
during fitting.

The function hat() exists mainly for S (version 2) compatibility; we recommend using
hatvalues() instead.

Note

For hatvalues, dfbeta, and dfbetas, the method for linear models also works for generalized
linear models.

1274 influence.measures

Author(s)

Several R core team members and John Fox, originally in his ‘car’ package.

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

Cook, R. D. and Weisberg, S. (1982) Residuals and Influence in Regression. London: Chapman
and Hall.

Williams, D. A. (1987) Generalized linear model diagnostics using the deviance and single case
deletions. Applied Statistics 36, 181–191.

Fox, J. (1997) Applied Regression, Linear Models, and Related Methods. Sage.

Fox, J. (2002) An R and S-Plus Companion to Applied Regression. Sage Publ.; http://www.
socsci.mcmaster.ca/jfox/Books/Companion/.

See Also

influence (containing lm.influence).

‘plotmath’ for the use of hat in plot annotation.

Examples

require(graphics)

Analysis of the life-cycle savings data
given in Belsley, Kuh and Welsch.
lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)

inflm.SR <- influence.measures(lm.SR)
which(apply(inflm.SR$is.inf, 1, any))
which observations ’are’ influential
summary(inflm.SR) # only these
inflm.SR # all
plot(rstudent(lm.SR) ~ hatvalues(lm.SR)) # recommended by some

The ’infl’ argument is not needed, but avoids recomputation:
rs <- rstandard(lm.SR)
iflSR <- influence(lm.SR)
identical(rs, rstandard(lm.SR, infl = iflSR))
to "see" the larger values:
1000 * round(dfbetas(lm.SR, infl = iflSR), 3)

Huber’s data [Atkinson 1985]
xh <- c(-4:0, 10)
yh <- c(2.48, .73, -.04, -1.44, -1.32, 0)
summary(lmH <- lm(yh ~ xh))
(im <- influence.measures(lmH))
plot(xh,yh, main = "Huber’s data: L.S. line and influential obs.")
abline(lmH); points(xh[im$is.inf], yh[im$is.inf], pch=20, col=2)

Irwin’s data [Williams 1987]
xi <- 1:5
yi <- c(0,2,14,19,30) # number of mice responding to dose xi
mi <- rep(40, 5) # number of mice exposed

http://www.socsci.mcmaster.ca/jfox/Books/Companion/
http://www.socsci.mcmaster.ca/jfox/Books/Companion/

integrate 1275

summary(lmI <- glm(cbind(yi, mi -yi) ~ xi, family = binomial))
signif(cooks.distance(lmI), 3)# ~= Ci in Table 3, p.184
(imI <- influence.measures(lmI))
stopifnot(all.equal(imI$infmat[,"cook.d"],

cooks.distance(lmI)))

integrate Integration of One-Dimensional Functions

Description

Adaptive quadrature of functions of one variable over a finite or infinite interval.

Usage

integrate(f, lower, upper, ..., subdivisions=100,
rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
stop.on.error = TRUE, keep.xy = FALSE, aux = NULL)

Arguments

f an R function taking a numeric first argument and returning a numeric vector of
the same length. Returning a non-finite element will generate an error.

lower, upper the limits of integration. Can be infinite.
... additional arguments to be passed to f.
subdivisions the maximum number of subintervals.
rel.tol relative accuracy requested.
abs.tol absolute accuracy requested.
stop.on.error logical. If true (the default) an error stops the function. If false some errors will

give a result with a warning in the message component.
keep.xy unused. For compatibility with S.
aux unused. For compatibility with S.

Details

Note that arguments after ... must be matched exactly.

If one or both limits are infinite, the infinite range is mapped onto a finite interval.

For a finite interval, globally adaptive interval subdivision is used in connection with extrapolation
by Wynn’s Epsilon algorithm, with the basic step being Gauss–Kronrod quadrature.

rel.tol cannot be less than max(50*.Machine$double.eps, 0.5e-28) if abs.tol <= 0.

Value

A list of class "integrate" with components

value the final estimate of the integral.
abs.error estimate of the modulus of the absolute error.
subdivisions the number of subintervals produced in the subdivision process.
message "OK" or a character string giving the error message.
call the matched call.

1276 integrate

Note

Like all numerical integration routines, these evaluate the function on a finite set of points. If the
function is approximately constant (in particular, zero) over nearly all its range it is possible that the
result and error estimate may be seriously wrong.

When integrating over infinite intervals do so explicitly, rather than just using a large number as
the endpoint. This increases the chance of a correct answer – any function whose integral over an
infinite interval is finite must be near zero for most of that interval.

For values at a finite set of points to be a fair reflection of the behaviour of the function elsewhere,
the function needs to be well-behaved, for example differentiable except perhaps for a small number
of jumps or integrable singularities.

f must accept a vector of inputs and produce a vector of function evaluations at those points. The
Vectorize function may be helpful to convert f to this form.

Source

Based on QUADPACK routines dqags and dqagi by R. Piessens and E. deDoncker-Kapenga, avail-
able from Netlib.

References

R. Piessens, E. deDoncker-Kapenga, C. Uberhuber, D. Kahaner (1983) Quadpack: a Subroutine
Package for Automatic Integration; Springer Verlag.

Examples

integrate(dnorm, -1.96, 1.96)
integrate(dnorm, -Inf, Inf)

a slowly-convergent integral
integrand <- function(x) {1/((x+1)*sqrt(x))}
integrate(integrand, lower = 0, upper = Inf)

don’t do this if you really want the integral from 0 to Inf
integrate(integrand, lower = 0, upper = 10)
integrate(integrand, lower = 0, upper = 100000)
integrate(integrand, lower = 0, upper = 1000000, stop.on.error = FALSE)

some functions do not handle vector input properly
f <- function(x) 2.0
try(integrate(f, 0, 1))
integrate(Vectorize(f), 0, 1) ## correct
integrate(function(x) rep(2.0, length(x)), 0, 1) ## correct

integrate can fail if misused
integrate(dnorm,0,2)
integrate(dnorm,0,20)
integrate(dnorm,0,200)
integrate(dnorm,0,2000)
integrate(dnorm,0,20000) ## fails on many systems
integrate(dnorm,0,Inf) ## works

interaction.plot 1277

interaction.plot Two-way Interaction Plot

Description

Plots the mean (or other summary) of the response for two-way combinations of factors, thereby
illustrating possible interactions.

Usage

interaction.plot(x.factor, trace.factor, response, fun = mean,
type = c("l", "p", "b", "o", "c"), legend = TRUE,
trace.label = deparse(substitute(trace.factor)),
fixed = FALSE,
xlab = deparse(substitute(x.factor)),
ylab = ylabel,
ylim = range(cells, na.rm=TRUE),
lty = nc:1, col = 1, pch = c(1:9, 0, letters),
xpd = NULL, leg.bg = par("bg"), leg.bty = "n",
xtick = FALSE, xaxt = par("xaxt"), axes = TRUE,
...)

Arguments

x.factor a factor whose levels will form the x axis.

trace.factor another factor whose levels will form the traces.

response a numeric variable giving the response

fun the function to compute the summary. Should return a single real value.

type the type of plot (see plot.default): lines or points or both.

legend logical. Should a legend be included?

trace.label overall label for the legend.

fixed logical. Should the legend be in the order of the levels of trace.factor or in
the order of the traces at their right-hand ends?

xlab,ylab the x and y label of the plot each with a sensible default.

ylim numeric of length 2 giving the y limits for the plot.

lty line type for the lines drawn, with sensible default.

col the color to be used for plotting.

pch a vector of plotting symbols or characters, with sensible default.

xpd determines clipping behaviour for the legend used, see par(xpd). Per default,
the legend is not clipped at the figure border.

leg.bg, leg.bty

arguments passed to legend().

xtick logical. Should tick marks be used on the x axis?
xaxt, axes, ...

graphics parameters to be passed to the plotting routines.

1278 interaction.plot

Details

By default the levels of x.factor are plotted on the x axis in their given order, with extra space left
at the right for the legend (if specified). If x.factor is an ordered factor and the levels are numeric,
these numeric values are used for the x axis.

The response and hence its summary can contain missing values. If so, the missing values and the
line segments joining them are omitted from the plot (and this can be somewhat disconcerting).

The graphics parameters xlab, ylab, ylim, lty, col and pch are given suitable defaults (and xlim
and xaxs are set and cannot be overridden). The defaults are to cycle through the line types, use the
foreground colour, and to use the symbols 1:9, 0, and the capital letters to plot the traces.

Note

Some of the argument names and the precise behaviour are chosen for S-compatibility.

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed experi-
ments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth &
Brooks/Cole.

Examples

require(graphics)

with(ToothGrowth, {
interaction.plot(dose, supp, len, fixed=TRUE)
dose <- ordered(dose)
interaction.plot(dose, supp, len, fixed=TRUE, col = 2:3, leg.bty = "o")
interaction.plot(dose, supp, len, fixed=TRUE, col = 2:3, type = "p")
})

with(OrchardSprays, {
interaction.plot(treatment, rowpos, decrease)
interaction.plot(rowpos, treatment, decrease, cex.axis=0.8)
order the rows by their mean effect
rowpos <- factor(rowpos,

levels = sort.list(tapply(decrease, rowpos, mean)))
interaction.plot(rowpos, treatment, decrease, col = 2:9, lty = 1)

})

with(esoph, {
interaction.plot(agegp, alcgp, ncases/ncontrols, main = "’esoph’ Data")
interaction.plot(agegp, tobgp, ncases/ncontrols, trace.label="tobacco",

fixed=TRUE, xaxt = "n")
})
deal with NAs:
esoph[66,] # second to last age group: 65-74
esophNA <- esoph; esophNA$ncases[66] <- NA
with(esophNA, {

interaction.plot(agegp, alcgp, ncases/ncontrols, col= 2:5)
doesn’t show *last* group either

interaction.plot(agegp, alcgp, ncases/ncontrols, col= 2:5, type = "b")
alternative take non-NA’s {"cheating"}
interaction.plot(agegp, alcgp, ncases/ncontrols, col= 2:5,

fun = function(x) mean(x, na.rm=TRUE),

IQR 1279

sub = "function(x) mean(x, na.rm=TRUE)")
})
rm(esophNA) # to clear up

IQR The Interquartile Range

Description

computes interquartile range of the x values.

Usage

IQR(x, na.rm = FALSE, type = 7)

Arguments

x a numeric vector.

na.rm logical. Should missing values be removed?

type an integer selecting one of the many quantile algorithms, see quantile.

Details

Note that this function computes the quartiles using the quantile function rather than following
Tukey’s recommendations, i.e., IQR(x) = quantile(x,3/4) - quantile(x,1/4).

For normally N(m, 1) distributed X , the expected value of IQR(X) is 2*qnorm(3/4) = 1.3490,
i.e., for a normal-consistent estimate of the standard deviation, use IQR(x) / 1.349.

References

Tukey, J. W. (1977). Exploratory Data Analysis. Reading: Addison-Wesley.

See Also

fivenum, mad which is more robust, range, quantile.

Examples

IQR(rivers)

1280 isoreg

is.empty.model Test if a Model’s Formula is Empty

Description

R’s formula notation allows models with no intercept and no predictors. These require special
handling internally. is.empty.model() checks whether an object describes an empty model.

Usage

is.empty.model(x)

Arguments

x A terms object or an object with a terms method.

Value

TRUE if the model is empty

See Also

lm,glm

Examples

y <- rnorm(20)
is.empty.model(y ~ 0)
is.empty.model(y ~ -1)
is.empty.model(lm(y ~ 0))

isoreg Isotonic / Monotone Regression

Description

Compute the isotonic (monotonely increasing nonparametric) least squares regression which is
piecewise constant.

Usage

isoreg(x, y = NULL)

Arguments

x, y coordinate vectors of the regression points. Alternatively a single plotting struc-
ture can be specified: see xy.coords.

isoreg 1281

Details

The algorithm determines the convex minorantm(x) of the cumulative data (i.e., cumsum(y)) which
is piecewise linear and the result is m′(x), a step function with level changes at locations where the
convex m(x) touches the cumulative data polygon and changes slope.
as.stepfun() returns a stepfun object which can be more parsimonious.

Value

isoreg() returns an object of class isoreg which is basically a list with components

x original (constructed) abscissa values x.

y corresponding y values.

yf fitted values corresponding to ordered x values.

yc cumulative y values corresponding to ordered x values.

iKnots integer vector giving indices where the fitted curve jumps, i.e., where the convex
minorant has kinks.

isOrd logical indicating if original x values were ordered increasingly already.

ord if(!isOrd): integer permutation order(x) of original x.

call the call to isoreg() used.

Note

The code should be improved to accept weights additionally and solve the corresponding weighted
least squares problem.
‘Patches are welcome!’

References

Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D. (1972) Statistical inference
under order restrictions; Wiley, London.

Robertson, T., Wright,F. T. and Dykstra, R. L. (1988) Order Restricted Statistical Inference; Wiley,
New York.

See Also

the plotting method plot.isoreg with more examples; isoMDS() from the MASS package inter-
nally uses isotonic regression.

Examples

require(graphics)

(ir <- isoreg(c(1,0,4,3,3,5,4,2,0)))
plot(ir, plot.type = "row")

(ir3 <- isoreg(y3 <- c(1,0,4,3,3,5,4,2, 3)))# last "3", not "0"
(fi3 <- as.stepfun(ir3))
(ir4 <- isoreg(1:10, y4 <- c(5, 9, 1:2, 5:8, 3, 8)))
cat(sprintf("R^2 = %.2f\n",

1 - sum(residuals(ir4)^2) / ((10-1)*var(y4))))

If you are interested in the knots alone :

http://CRAN.R-project.org/package=MASS

1282 KalmanLike

with(ir4, cbind(iKnots, yf[iKnots]))

Example of unordered x[] with ties:
x <- sample((0:30)/8)
y <- exp(x)
x. <- round(x) # ties!
plot(m <- isoreg(x., y))
stopifnot(all.equal(with(m, yf[iKnots]),

as.vector(tapply(y, x., mean))))

KalmanLike Kalman Filtering

Description

Use Kalman Filtering to find the (Gaussian) log-likelihood, or for forecasting or smoothing.

Usage

KalmanLike(y, mod, nit = 0, fast=TRUE)
KalmanRun(y, mod, nit = 0, fast=TRUE)
KalmanSmooth(y, mod, nit = 0)
KalmanForecast(n.ahead = 10, mod, fast=TRUE)
makeARIMA(phi, theta, Delta, kappa = 1e6)

Arguments

y a univariate time series.

mod A list describing the state-space model: see ‘Details’.

nit The time at which the initialization is computed. nit = 0 implies that the ini-
tialization is for a one-step prediction, so Pn should not be computed at the first
step.

n.ahead The number of steps ahead for which prediction is required.

phi, theta numeric vectors of length ≥ 0 giving AR and MA parameters.

Delta vector of differencing coefficients, so an ARMA model is fitted to
y[t] - Delta[1]*y[t-1] -

kappa the prior variance (as a multiple of the innovations variance) for the past obser-
vations in a differenced model.

fast If TRUE the mod object may be modified.

Details

These functions work with a general univariate state-space model with state vector ‘a’, transitions
‘a <- T a + R e’, e ∼ N (0, κQ) and observation equation ‘y = Z’a + eta’, (eta ≡ η), η ∼
N (0, κh). The likelihood is a profile likelihood after estimation of κ.

The model is specified as a list with at least components

T the transition matrix

Z the observation coefficients

kernapply 1283

h the observation variance

V ‘RQR’’

a the current state estimate

P the current estimate of the state uncertainty matrix

Pn the estimate at time t− 1 of the state uncertainty matrix

KalmanSmooth is the workhorse function for tsSmooth.

makeARIMA constructs the state-space model for an ARIMA model.

Value

For KalmanLike, a list with components Lik (the log-likelihood less some constants) and s2, the
estimate of κ.

For KalmanRun, a list with components values, a vector of length 2 giving the output of
KalmanLike, resid (the residuals) and states, the contemporaneous state estimates, a matrix with
one row for each time.

For KalmanSmooth, a list with two components. Component smooth is a n by p matrix of state
estimates based on all the observations, with one row for each time. Component var is a n by p by
p array of variance matrices.

For KalmanForecast, a list with components pred, the predictions, and var, the unscaled variances
of the prediction errors (to be multiplied by s2).

For makeARIMA, a model list including components for its arguments.

Warning

These functions are designed to be called from other functions which check the validity of the
arguments passed, so very little checking is done.

In particular, KalmanLike alters the objects passed as the elements a, P and Pn of mod, so these
should not be shared. Use fast=FALSE to prevent this.

References

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

See Also

arima, StructTS. tsSmooth.

kernapply Apply Smoothing Kernel

Description

kernapply computes the convolution between an input sequence and a specific kernel.

1284 kernapply

Usage

kernapply(x, ...)

Default S3 method:
kernapply(x, k, circular = FALSE, ...)
S3 method for class ’ts’
kernapply(x, k, circular = FALSE, ...)
S3 method for class ’vector’
kernapply(x, k, circular = FALSE, ...)

S3 method for class ’tskernel’
kernapply(x, k, ...)

Arguments

x an input vector, matrix, time series or kernel to be smoothed.

k smoothing "tskernel" object.

circular a logical indicating whether the input sequence to be smoothed is treated as
circular, i.e., periodic.

... arguments passed to or from other methods.

Value

A smoothed version of the input sequence.

Note

This uses fft to perform the convolution, so is fastest when NROW(x) is a power of 2 or some other
highly composite integer.

Author(s)

A. Trapletti

See Also

kernel, convolve, filter, spectrum

Examples

see ’kernel’ for examples

kernel 1285

kernel Smoothing Kernel Objects

Description

The "tskernel" class is designed to represent discrete symmetric normalized smoothing kernels.
These kernels can be used to smooth vectors, matrices, or time series objects.

There are print, plot and [methods for these kernel objects.

Usage

kernel(coef, m = 2, r, name)

df.kernel(k)
bandwidth.kernel(k)
is.tskernel(k)

S3 method for class ’tskernel’
plot(x, type = "h", xlab = "k", ylab = "W[k]",

main = attr(x,"name"), ...)

Arguments

coef the upper half of the smoothing kernel coefficients (including coefficient zero)
or the name of a kernel (currently "daniell", "dirichlet", "fejer" or
"modified.daniell".

m the kernel dimension(s) if coef is a name. When m has length larger than one,
it means the convolution of kernels of dimension m[j], for j in 1:length(m).
Currently this is supported only for the named "*daniell" kernels.

name the name the kernel will be called.

r the kernel order for a Fejer kernel.

k, x a "tskernel" object.
type, xlab, ylab, main, ...

arguments passed to plot.default.

Details

kernel is used to construct a general kernel or named specific kernels. The modified Daniell kernel
halves the end coefficients (as used by S-PLUS).

The [method allows natural indexing of kernel objects with indices in (-m) : m. The normaliza-
tion is such that for k <- kernel(*), sum(k[-k$m : k$m]) is one.

df.kernel returns the ‘equivalent degrees of freedom’ of a smoothing kernel as defined in Brock-
well and Davis (1991), page 362, and bandwidth.kernel returns the equivalent bandwidth as de-
fined in Bloomfield (1976), p. 201, with a continuity correction.

Value

kernel() returns an object of class "tskernel" which is basically a list with the two components
coef and the kernel dimension m. An additional attribute is "name".

1286 kmeans

Author(s)

A. Trapletti; modifications by B.D. Ripley

References

Bloomfield, P. (1976) Fourier Analysis of Time Series: An Introduction. Wiley.

Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods. Second edition. Springer,
pp. 350–365.

See Also

kernapply

Examples

require(graphics)

Demonstrate a simple trading strategy for the
financial time series German stock index DAX.
x <- EuStockMarkets[,1]
k1 <- kernel("daniell", 50) # a long moving average
k2 <- kernel("daniell", 10) # and a short one
plot(k1)
plot(k2)
x1 <- kernapply(x, k1)
x2 <- kernapply(x, k2)
plot(x)
lines(x1, col = "red") # go long if the short crosses the long upwards
lines(x2, col = "green") # and go short otherwise

More interesting kernels
kd <- kernel("daniell", c(3,3))
kd # note the unusual indexing
kd[-2:2]
plot(kernel("fejer", 100, r=6))
plot(kernel("modified.daniell", c(7,5,3)))

Reproduce example 10.4.3 from Brockwell and Davis (1991)
spectrum(sunspot.year, kernel=kernel("daniell", c(11,7,3)), log="no")

kmeans K-Means Clustering

Description

Perform k-means clustering on a data matrix.

Usage

kmeans(x, centers, iter.max = 10, nstart = 1,
algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",

"MacQueen"))
S3 method for class ’kmeans’
fitted(object, method = c("centers", "classes"), ...)

kmeans 1287

Arguments

x numeric matrix of data, or an object that can be coerced to such a matrix (such
as a numeric vector or a data frame with all numeric columns).

centers either the number of clusters, say k, or a set of initial (distinct) cluster centres.
If a number, a random set of (distinct) rows in x is chosen as the initial centres.

iter.max the maximum number of iterations allowed.

nstart if centers is a number, how many random sets should be chosen?

algorithm character: may be abbreviated.

object an R object of class "kmeans", typically the result ob of ob <- kmeans(..).

method character: may be abbreviated. "centers" causes fitted to return cluster cen-
ters (one for each input point) and "classes" causes fitted to return a vector
of class assignments.

... not used.

Details

The data given by x is clustered by the k-means method, which aims to partition the points into k
groups such that the sum of squares from points to the assigned cluster centres is minimized. At the
minimum, all cluster centres are at the mean of their Voronoi sets (the set of data points which are
nearest to the cluster centre).

The algorithm of Hartigan and Wong (1979) is used by default. Note that some authors use k-means
to refer to a specific algorithm rather than the general method: most commonly the algorithm given
by MacQueen (1967) but sometimes that given by Lloyd (1957) and Forgy (1965). The Hartigan–
Wong algorithm generally does a better job than either of those, but trying several random starts
(nstart> 1) is often recommended. For ease of programmatic exploration, k = 1 is allowed,
notably returning the center and withinss.

Except for the Lloyd–Forgy method, k clusters will always be returned if a number is specified. If
an initial matrix of centres is supplied, it is possible that no point will be closest to one or more
centres, which is currently an error for the Hartigan–Wong method.

Value

kmeans returns an object of class "kmeans" which has a print and a fitted method. It is a list
with components:

cluster A vector of integers (from 1:k) indicating the cluster to which each point is
allocated.

centers A matrix of cluster centres.

totss The total sum of squares.

withinss Vector of within-cluster sum of squares, one component per cluster.

tot.withinss Total within-cluster sum of squares, i.e., sum(withinss).

betweenss The between-cluster sum of squares, i.e. totss-tot.withinss.

size The number of points in each cluster.

1288 kmeans

References

Forgy, E. W. (1965) Cluster analysis of multivariate data: efficiency vs interpretability of classifica-
tions. Biometrics 21, 768–769.

Hartigan, J. A. and Wong, M. A. (1979). A K-means clustering algorithm. Applied Statistics 28,
100–108.

Lloyd, S. P. (1957, 1982) Least squares quantization in PCM. Technical Note, Bell Laboratories.
Published in 1982 in IEEE Transactions on Information Theory 28, 128–137.

MacQueen, J. (1967) Some methods for classification and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, eds L. M.
Le Cam & J. Neyman, 1, pp. 281–297. Berkeley, CA: University of California Press.

Examples

require(graphics)

a 2-dimensional example
x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),

matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")
(cl <- kmeans(x, 2))
plot(x, col = cl$cluster)
points(cl$centers, col = 1:2, pch = 8, cex=2)

sum of squares
ss <- function(x) sum(scale(x, scale = FALSE)^2)

cluster centers "fitted" to each obs.:
fitted.x <- fitted(cl); head(fitted.x)
resid.x <- x - fitted(cl)

Equalities : ----------------------------------
cbind(cl[c("betweenss", "tot.withinss", "totss")], # the same two columns

c(ss(fitted.x), ss(resid.x), ss(x)))
stopifnot(all.equal(cl$ totss, ss(x)),

all.equal(cl$ tot.withinss, ss(resid.x)),
these three are the same:
all.equal(cl$ betweenss, ss(fitted.x)),
all.equal(cl$ betweenss, cl$totss - cl$tot.withinss),
and hence also
all.equal(ss(x), ss(fitted.x) + ss(resid.x))
)

kmeans(x,1)$withinss # trivial one-cluster, (its W.SS == ss(x))

random starts do help here with too many clusters
(and are often recommended anyway!):
(cl <- kmeans(x, 5, nstart = 25))
plot(x, col = cl$cluster)
points(cl$centers, col = 1:5, pch = 8)

kruskal.test 1289

kruskal.test Kruskal-Wallis Rank Sum Test

Description

Performs a Kruskal-Wallis rank sum test.

Usage

kruskal.test(x, ...)

Default S3 method:
kruskal.test(x, g, ...)

S3 method for class ’formula’
kruskal.test(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

g a vector or factor object giving the group for the corresponding elements of x.
Ignored if x is a list.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the
corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

kruskal.test performs a Kruskal-Wallis rank sum test of the null that the location parameters of
the distribution of x are the same in each group (sample). The alternative is that they differ in at
least one.

If x is a list, its elements are taken as the samples to be compared, and hence have to be numeric
data vectors. In this case, g is ignored, and one can simply use kruskal.test(x) to perform the
test. If the samples are not yet contained in a list, use kruskal.test(list(x, ...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the same
length as x giving the group for the corresponding elements of x.

Value

A list with class "htest" containing the following components:

statistic the Kruskal-Wallis rank sum statistic.

1290 ks.test

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

method the character string "Kruskal-Wallis rank sum test".

data.name a character string giving the names of the data.

References

Myles Hollander and Douglas A. Wolfe (1973), Nonparametric Statistical Methods. New York:
John Wiley & Sons. Pages 115–120.

See Also

The Wilcoxon rank sum test (wilcox.test) as the special case for two samples; lm together with
anova for performing one-way location analysis under normality assumptions; with Student’s t test
(t.test) as the special case for two samples.

wilcox_test in package coin for exact, asymptotic and Monte Carlo conditional p-values, includ-
ing in the presence of ties.

Examples

Hollander & Wolfe (1973), 116.
Mucociliary efficiency from the rate of removal of dust in normal
subjects, subjects with obstructive airway disease, and subjects
with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis
kruskal.test(list(x, y, z))
Equivalently,
x <- c(x, y, z)
g <- factor(rep(1:3, c(5, 4, 5)),

labels = c("Normal subjects",
"Subjects with obstructive airway disease",
"Subjects with asbestosis"))

kruskal.test(x, g)

Formula interface.
require(graphics)
boxplot(Ozone ~ Month, data = airquality)
kruskal.test(Ozone ~ Month, data = airquality)

ks.test Kolmogorov-Smirnov Tests

Description

Perform a one- or two-sample Kolmogorov-Smirnov test.

http://CRAN.R-project.org/package=coin

ks.test 1291

Usage

ks.test(x, y, ...,
alternative = c("two.sided", "less", "greater"),
exact = NULL)

Arguments

x a numeric vector of data values.
y either a numeric vector of data values, or a character string naming a cumulative

distribution function or an actual cumulative distribution function such as pnorm.
Only continuous CDFs are valid.

... parameters of the distribution specified (as a character string) by y.
alternative indicates the alternative hypothesis and must be one of "two.sided" (default),

"less", or "greater". You can specify just the initial letter of the value, but
the argument name must be give in full. See ‘Details’ for the meanings of the
possible values.

exact NULL or a logical indicating whether an exact p-value should be computed. See
‘Details’ for the meaning of NULL. Not available in the two-sample case for a
one-sided test or if ties are present.

Details

If y is numeric, a two-sample test of the null hypothesis that x and y were drawn from the same
continuous distribution is performed.

Alternatively, y can be a character string naming a continuous (cumulative) distribution function, or
such a function. In this case, a one-sample test is carried out of the null that the distribution function
which generated x is distribution y with parameters specified by

The presence of ties always generates a warning, since continuous distributions do not generate
them. If the ties arose from rounding the tests may be approximately valid, but even modest amounts
of rounding can have a significant effect on the calculated statistic.

Missing values are silently omitted from x and (in the two-sample case) y.

The possible values "two.sided", "less" and "greater" of alternative specify the null hy-
pothesis that the true distribution function of x is equal to, not less than or not greater than
the hypothesized distribution function (one-sample case) or the distribution function of y (two-
sample case), respectively. This is a comparison of cumulative distribution functions, and the test
statistic is the maximum difference in value, with the statistic in the "greater" alternative being
D+ = maxu[Fx(u) − Fy(u)]. Thus in the two-sample case alternative = "greater" includes
distributions for which x is stochastically smaller than y (the CDF of x lies above and hence to the
left of that for y), in contrast to t.test or wilcox.test.

Exact p-values are not available for the two-sample case if one-sided or in the presence of ties. If
exact = NULL (the default), an exact p-value is computed if the sample size is less than 100 in the
one-sample case and there are no ties, and if the product of the sample sizes is less than 10000
in the two-sample case. Otherwise, asymptotic distributions are used whose approximations may
be inaccurate in small samples. In the one-sample two-sided case, exact p-values are obtained as
described in Marsaglia, Tsang & Wang (2003) (but not using the optional approximation in the right
tail, so this can be slow for small p-values). The formula of Birnbaum & Tingey (1951) is used for
the one-sample one-sided case.

If a single-sample test is used, the parameters specified in ... must be pre-specified and not esti-
mated from the data. There is some more refined distribution theory for the KS test with estimated
parameters (see Durbin, 1973), but that is not implemented in ks.test.

1292 ks.test

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of test was performed.

data.name a character string giving the name(s) of the data.

Source

The two-sided one-sample distribution comes via Marsaglia, Tsang and Wang (2003).

References

Z. W. Birnbaum and Fred H. Tingey (1951), One-sided confidence contours for probability distri-
bution functions. The Annals of Mathematical Statistics, 22/4, 592–596.

William J. Conover (1971), Practical Nonparametric Statistics. New York: John Wiley & Sons.
Pages 295–301 (one-sample Kolmogorov test), 309–314 (two-sample Smirnov test).

Durbin, J. (1973), Distribution theory for tests based on the sample distribution function. SIAM.

George Marsaglia, Wai Wan Tsang and Jingbo Wang (2003), Evaluating Kolmogorov’s distribution.
Journal of Statistical Software, 8/18. http://www.jstatsoft.org/v08/i18/.

See Also

shapiro.test which performs the Shapiro-Wilk test for normality.

Examples

require(graphics)

x <- rnorm(50)
y <- runif(30)
Do x and y come from the same distribution?
ks.test(x, y)
Does x come from a shifted gamma distribution with shape 3 and rate 2?
ks.test(x+2, "pgamma", 3, 2) # two-sided, exact
ks.test(x+2, "pgamma", 3, 2, exact = FALSE)
ks.test(x+2, "pgamma", 3, 2, alternative = "gr")

test if x is stochastically larger than x2
x2 <- rnorm(50, -1)
plot(ecdf(x), xlim=range(c(x, x2)))
plot(ecdf(x2), add=TRUE, lty="dashed")
t.test(x, x2, alternative="g")
wilcox.test(x, x2, alternative="g")
ks.test(x, x2, alternative="l")

http://www.jstatsoft.org/v08/i18/

ksmooth 1293

ksmooth Kernel Regression Smoother

Description

The Nadaraya–Watson kernel regression estimate.

Usage

ksmooth(x, y, kernel = c("box", "normal"), bandwidth = 0.5,
range.x = range(x),
n.points = max(100, length(x)), x.points)

Arguments

x input x values

y input y values

kernel the kernel to be used.

bandwidth the bandwidth. The kernels are scaled so that their quartiles (viewed as proba-
bility densities) are at ± 0.25*bandwidth.

range.x the range of points to be covered in the output.

n.points the number of points at which to evaluate the fit.

x.points points at which to evaluate the smoothed fit. If missing, n.points are chosen
uniformly to cover range.x.

Value

A list with components

x values at which the smoothed fit is evaluated. Guaranteed to be in increasing
order.

y fitted values corresponding to x.

Note

This function is implemented purely for compatibility with S, although it is nowhere near as slow
as the S function. Better kernel smoothers are available in other packages.

Examples

require(graphics)

with(cars, {
plot(speed, dist)
lines(ksmooth(speed, dist, "normal", bandwidth=2), col=2)
lines(ksmooth(speed, dist, "normal", bandwidth=5), col=3)

})

1294 lag

lag Lag a Time Series

Description

Compute a lagged version of a time series, shifting the time base back by a given number of obser-
vations.

Usage

lag(x, ...)

Default S3 method:
lag(x, k = 1, ...)

Arguments

x A vector or matrix or univariate or multivariate time series

k The number of lags (in units of observations).

... further arguments to be passed to or from methods.

Details

Vector or matrix arguments x are coerced to time series.

lag is a generic function; this page documents its default method.

Value

A time series object.

Note

Note the sign of k: a series lagged by a positive k starts earlier.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

diff, deltat

Examples

lag(ldeaths, 12) # starts one year earlier

lag.plot 1295

lag.plot Time Series Lag Plots

Description

Plot time series against lagged versions of themselves. Helps visualizing ‘auto-dependence’ even
when auto-correlations vanish.

Usage

lag.plot(x, lags = 1, layout = NULL, set.lags = 1:lags,
main = NULL, asp = 1,
diag = TRUE, diag.col = "gray", type = "p", oma = NULL,
ask = NULL, do.lines = (n <= 150), labels = do.lines,
...)

Arguments

x time-series (univariate or multivariate)

lags number of lag plots desired, see arg set.lags.

layout the layout of multiple plots, basically the mfrow par() argument. The default
uses about a square layout (see n2mfrow such that all plots are on one page.

set.lags vector of positive integers allowing specification of the set of lags used; defaults
to 1:lags.

main character with a main header title to be done on the top of each page.

asp Aspect ratio to be fixed, see plot.default.

diag logical indicating if the x=y diagonal should be drawn.

diag.col color to be used for the diagonal if(diag).

type plot type to be used, but see plot.ts about its restricted meaning.

oma outer margins, see par.

ask logical or NULL; if true, the user is asked to confirm before a new page is started.

do.lines logical indicating if lines should be drawn.

labels logical indicating if labels should be used.

... Further arguments to plot.ts. Several graphical parameters are set in this func-
tion and so cannot be changed: these include xlab, ylab, mgp, col.lab and
font.lab: this also applies to the arguments xy.labels and xy.lines.

Details

If just one plot is produced, this is a conventional plot. If more than one plot is to be produced,
par(mfrow) and several other graphics parameters will be set, so it is not (easily) possible to mix
such lag plots with other plots on the same page.

If ask = NULL, par(ask = TRUE) will be called if more than one page of plots is to be produced
and the device is interactive.

1296 line

Note

It is more flexible and has different default behaviour than the S version. We use main = instead of
head = for internal consistency.

Author(s)

Martin Maechler

See Also

plot.ts which is the basic work horse.

Examples

require(graphics)

lag.plot(nhtemp, 8, diag.col = "forest green")
lag.plot(nhtemp, 5, main="Average Temperatures in New Haven")
ask defaults to TRUE when we have more than one page:
lag.plot(nhtemp, 6, layout = c(2,1), asp = NA,

main = "New Haven Temperatures", col.main = "blue")

Multivariate (but non-stationary! ...)
lag.plot(freeny.x, lags = 3)
Not run:
no lines for long series :
lag.plot(sqrt(sunspots), set = c(1:4, 9:12), pch = ".", col = "gold")

End(Not run)

line Robust Line Fitting

Description

Fit a line robustly as recommended in Exploratory Data Analysis.

Usage

line(x, y)

Arguments

x,y the arguments can be any way of specifying x-y pairs.

Value

An object of class "tukeyline".

Methods are available for the generic functions coef, residuals, fitted, and print.

References

Tukey, J. W. (1977). Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley.

lm 1297

See Also

lm.

Examples

require(graphics)

plot(cars)
(z <- line(cars))
abline(coef(z))
Tukey-Anscombe Plot :
plot(residuals(z) ~ fitted(z), main = deparse(z$call))

lm Fitting Linear Models

Description

lm is used to fit linear models. It can be used to carry out regression, single stratum analysis of
variance and analysis of covariance (although aov may provide a more convenient interface for
these).

Usage

lm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset, ...)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted. The details of model specification are
given under ‘Details’.

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model. If not
found in data, the variables are taken from environment(formula), typically
the environment from which lm is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of weights to be used in the fitting process. Should be NULL
or a numeric vector. If non-NULL, weighted least squares is used with weights
weights (that is, minimizing sum(w*e^2)); otherwise ordinary least squares is
used. See also ‘Details’,

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The ‘factory-fresh’ default is na.omit. Another possible value is NULL,
no action. Value na.exclude can be useful.

method the method to be used; for fitting, currently only method = "qr" is sup-
ported; method = "model.frame" returns the model frame (the same as with
model = TRUE, see below).

1298 lm

model, x, y, qr

logicals. If TRUE the corresponding components of the fit (the model frame, the
model matrix, the response, the QR decomposition) are returned.

singular.ok logical. If FALSE (the default in S but not in R) a singular fit is an error.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector of length
equal to the number of cases. One or more offset terms can be included in the
formula instead or as well, and if more than one are specified their sum is used.
See model.offset.

... additional arguments to be passed to the low level regression fitting functions
(see below).

Details

Models for lm are specified symbolically. A typical model has the form response ~ terms where
response is the (numeric) response vector and terms is a series of terms which specifies a linear
predictor for response. A terms specification of the form first + second indicates all the terms
in first together with all the terms in second with duplicates removed. A specification of the form
first:second indicates the set of terms obtained by taking the interactions of all terms in first
with all terms in second. The specification first*second indicates the cross of first and second.
This is the same as first + second + first:second.

If the formula includes an offset, this is evaluated and subtracted from the response.

If response is a matrix a linear model is fitted separately by least-squares to each column of the
matrix.

See model.matrix for some further details. The terms in the formula will be re-ordered so that
main effects come first, followed by the interactions, all second-order, all third-order and so on: to
avoid this pass a terms object as the formula (see aov and demo(glm.vr) for an example).

A formula has an implied intercept term. To remove this use either y ~ x - 1 or y ~ 0 + x. See
formula for more details of allowed formulae.

Non-NULL weights can be used to indicate that different observations have different variances (with
the values in weights being inversely proportional to the variances); or equivalently, when the
elements of weights are positive integers wi, that each response yi is the mean of wi unit-weight
observations (including the case that there are wi observations equal to yi and the data have been
summarized).

lm calls the lower level functions lm.fit, etc, see below, for the actual numerical computations.
For programming only, you may consider doing likewise.

All of weights, subset and offset are evaluated in the same way as variables in formula, that is
first in data and then in the environment of formula.

Value

lm returns an object of class "lm" or for multiple responses of class c("mlm", "lm").

The functions summary and anova are used to obtain and print a summary and analysis of variance
table of the results. The generic accessor functions coefficients, effects, fitted.values and
residuals extract various useful features of the value returned by lm.

An object of class "lm" is a list containing at least the following components:

coefficients a named vector of coefficients

lm 1299

residuals the residuals, that is response minus fitted values.

fitted.values the fitted mean values.

rank the numeric rank of the fitted linear model.

weights (only for weighted fits) the specified weights.

df.residual the residual degrees of freedom.

call the matched call.

terms the terms object used.

contrasts (only where relevant) the contrasts used.

xlevels (only where relevant) a record of the levels of the factors used in fitting.

offset the offset used (missing if none were used).

y if requested, the response used.

x if requested, the model matrix used.

model if requested (the default), the model frame used.

na.action (where relevant) information returned by model.frame on the special handling
of NAs.

In addition, non-null fits will have components assign, effects and (unless not requested) qr
relating to the linear fit, for use by extractor functions such as summary and effects.

Using time series

Considerable care is needed when using lm with time series.

Unless na.action = NULL, the time series attributes are stripped from the variables before the
regression is done. (This is necessary as omitting NAs would invalidate the time series attributes,
and if NAs are omitted in the middle of the series the result would no longer be a regular time series.)

Even if the time series attributes are retained, they are not used to line up series, so that the time
shift of a lagged or differenced regressor would be ignored. It is good practice to prepare a data
argument by ts.intersect(..., dframe = TRUE), then apply a suitable na.action to that data
frame and call lm with na.action = NULL so that residuals and fitted values are time series.

Note

Offsets specified by offset will not be included in predictions by predict.lm, whereas those
specified by an offset term in the formula will be.

Author(s)

The design was inspired by the S function of the same name described in Chambers (1992). The
implementation of model formula by Ross Ihaka was based on Wilkinson & Rogers (1973).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

Wilkinson, G. N. and Rogers, C. E. (1973) Symbolic descriptions of factorial models for analysis
of variance. Applied Statistics, 22, 392–9.

1300 lm.fit

See Also

summary.lm for summaries and anova.lm for the ANOVA table; aov for a different interface.

The generic functions coef, effects, residuals, fitted, vcov.

predict.lm (via predict) for prediction, including confidence and prediction intervals; confint
for confidence intervals of parameters.

lm.influence for regression diagnostics, and glm for generalized linear models.

The underlying low level functions, lm.fit for plain, and lm.wfit for weighted regression fitting.

More lm() examples are available e.g., in anscombe, attitude, freeny, LifeCycleSavings,
longley, stackloss, swiss.

biglm in package biglm for an alternative way to fit linear models to large datasets (especially those
with many cases).

Examples

require(graphics)

Annette Dobson (1990) "An Introduction to Generalized Linear Models".
Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2,10,20, labels=c("Ctl","Trt"))
weight <- c(ctl, trt)
lm.D9 <- lm(weight ~ group)
lm.D90 <- lm(weight ~ group - 1) # omitting intercept

anova(lm.D9)
summary(lm.D90)

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(lm.D9, las = 1) # Residuals, Fitted, ...
par(opar)

less simple examples in "See Also" above

lm.fit Fitter Functions for Linear Models

Description

These are the basic computing engines called by lm used to fit linear models. These should usually
not be used directly unless by experienced users.

Usage

lm.fit (x, y, offset = NULL, method = "qr", tol = 1e-7,
singular.ok = TRUE, ...)

lm.wfit(x, y, w, offset = NULL, method = "qr", tol = 1e-7,
singular.ok = TRUE, ...)

http://CRAN.R-project.org/package=biglm

lm.fit 1301

Arguments

x design matrix of dimension n * p.

y vector of observations of length n, or a matrix with n rows.

w vector of weights (length n) to be used in the fitting process for the wfit func-
tions. Weighted least squares is used with weights w, i.e., sum(w * e^2) is
minimized.

offset numeric of length n). This can be used to specify an a priori known component
to be included in the linear predictor during fitting.

method currently, only method="qr" is supported.

tol tolerance for the qr decomposition. Default is 1e-7.

singular.ok logical. If FALSE, a singular model is an error.

... currently disregarded.

Value

a list with components

coefficients p vector

residuals n vector or matrix

fitted.values n vector or matrix

effects (not null fits)n vector of orthogonal single-df effects. The first rank of them
correspond to non-aliased coefficients, and are named accordingly.

weights n vector — only for the *wfit* functions.

rank integer, giving the rank

df.residual degrees of freedom of residuals

qr (not null fits) the QR decomposition, see qr.

See Also

lm which you should use for linear least squares regression, unless you know better.

Examples

require(utils)

set.seed(129)
n <- 7 ; p <- 2
X <- matrix(rnorm(n * p), n,p) # no intercept!
y <- rnorm(n)
w <- rnorm(n)^2

str(lmw <- lm.wfit(x=X, y=y, w=w))

str(lm. <- lm.fit (x=X, y=y))

1302 lm.influence

lm.influence Regression Diagnostics

Description

This function provides the basic quantities which are used in forming a wide variety of diagnostics
for checking the quality of regression fits.

Usage

influence(model, ...)
S3 method for class ’lm’
influence(model, do.coef = TRUE, ...)
S3 method for class ’glm’
influence(model, do.coef = TRUE, ...)

lm.influence(model, do.coef = TRUE)

Arguments

model an object as returned by lm or glm.

do.coef logical indicating if the changed coefficients (see below) are desired. These
need O(n2p) computing time.

... further arguments passed to or from other methods.

Details

The influence.measures() and other functions listed in See Also provide a more user oriented
way of computing a variety of regression diagnostics. These all build on lm.influence. Note
that for GLMs (other than the Gaussian family with identity link) these are based on one-step
approximations which may be inadequate if a case has high influence.

An attempt is made to ensure that computed hat values that are probably one are treated as one, and
the corresponding rows in sigma and coefficients are NaN. (Dropping such a case would normally
result in a variable being dropped, so it is not possible to give simple drop-one diagnostics.)

naresid is applied to the results and so will fill in with NAs it the fit had na.action = na.exclude.

Value

A list containing the following components of the same length or number of rows n, which is the
number of non-zero weights. Cases omitted in the fit are omitted unless a na.action method was
used (such as na.exclude) which restores them.

hat a vector containing the diagonal of the ‘hat’ matrix.

coefficients (unless do.coef is false) a matrix whose i-th row contains the change in the
estimated coefficients which results when the i-th case is dropped from the re-
gression. Note that aliased coefficients are not included in the matrix.

sigma a vector whose i-th element contains the estimate of the residual standard devi-
ation obtained when the i-th case is dropped from the regression. (The approxi-
mations needed for GLMs can result in this being NaN.)

wt.res a vector of weighted (or for class glm rather deviance) residuals.

lm.summaries 1303

Note

The coefficients returned by the R version of lm.influence differ from those computed by S.
Rather than returning the coefficients which result from dropping each case, we return the changes
in the coefficients. This is more directly useful in many diagnostic measures.
Since these need O(n2p) computing time, they can be omitted by do.coef = FALSE.

Note that cases with weights == 0 are dropped (contrary to the situation in S).

If a model has been fitted with na.action=na.exclude (see na.exclude), cases excluded in the
fit are considered here.

References

See the list in the documentation for influence.measures.

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

summary.lm for summary and related methods;
influence.measures,
hat for the hat matrix diagonals,
dfbetas, dffits, covratio, cooks.distance, lm.

Examples

Analysis of the life-cycle savings data
given in Belsley, Kuh and Welsch.
summary(lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi,

data = LifeCycleSavings),
corr = TRUE)

utils::str(lmI <- lm.influence(lm.SR))

For more "user level" examples, use example(influence.measures)

lm.summaries Accessing Linear Model Fits

Description

All these functions are methods for class "lm" objects.

Usage

S3 method for class ’lm’
family(object, ...)

S3 method for class ’lm’
formula(x, ...)

S3 method for class ’lm’
residuals(object,

type = c("working", "response", "deviance", "pearson",

1304 lm.summaries

"partial"),
...)

S3 method for class ’lm’
labels(object, ...)

Arguments

object, x an object inheriting from class lm, usually the result of a call to lm or aov.

... further arguments passed to or from other methods.

type the type of residuals which should be returned.

Details

The generic accessor functions coef, effects, fitted and residuals can be used to extract vari-
ous useful features of the value returned by lm.

The working and response residuals are ‘observed - fitted’. The deviance and pearson residu-
als are weighted residuals, scaled by the square root of the weights used in fitting. The partial
residuals are a matrix with each column formed by omitting a term from the model. In all these,
zero weight cases are never omitted (as opposed to the standardized rstudent residuals, and the
weighted.residuals).

How residuals treats cases with missing values in the original fit is determined by the na.action
argument of that fit. If na.action = na.omit omitted cases will not appear in the residuals,
whereas if na.action = na.exclude they will appear, with residual value NA. See also naresid.

The "lm" method for generic labels returns the term labels for estimable terms, that is the names
of the terms with an least one estimable coefficient.

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

The model fitting function lm, anova.lm.

coef, deviance, df.residual, effects, fitted, glm for generalized linear models, influence
(etc on that page) for regression diagnostics, weighted.residuals, residuals, residuals.glm,
summary.lm, weights.

influence.measures for deletion diagnostics, including standardized (rstandard) and studentized
(rstudent) residuals.

Examples

##-- Continuing the lm(.) example:
coef(lm.D90)# the bare coefficients

The 2 basic regression diagnostic plots [plot.lm(.) is preferred]
plot(resid(lm.D90), fitted(lm.D90))# Tukey-Anscombe’s
abline(h=0, lty=2, col = ’gray’)

qqnorm(residuals(lm.D90))

loadings 1305

loadings Print Loadings in Factor Analysis

Description

Extract or print loadings in factor analysis (or principal components analysis).

Usage

loadings(x)

S3 method for class ’loadings’
print(x, digits = 3, cutoff = 0.1, sort = FALSE, ...)

S3 method for class ’factanal’
print(x, digits = 3, ...)

Arguments

x an object of class "factanal" or "princomp" or the loadings component of
such an object.

digits number of decimal places to use in printing uniquenesses and loadings.

cutoff loadings smaller than this (in absolute value) are suppressed.

sort logical. If true, the variables are sorted by their importance on each factor. Each
variable with any loading larger than 0.5 (in modulus) is assigned to the factor
with the largest loading, and the variables are printed in the order of the factor
they are assigned to, then those unassigned.

... further arguments for other methods.

Details

‘Loadings’ is a term from factor analysis, but because factor analysis and principal component
analysis (PCA) are often conflated in the social science literature, it was used for PCA by SPSS and
hence by princomp in S-PLUS to help SPSS users.

Small loadings are conventionally not printed (replaced by spaces), to draw the eye to the pattern of
the larger loadings.

The print method for class "factanal" calls the "loadings" method to print the loadings, and so
passes down arguments such as cutoff and sort.

See Also

factanal, princomp

1306 loess

loess Local Polynomial Regression Fitting

Description

Fit a polynomial surface determined by one or more numerical predictors, using local fitting.

Usage

loess(formula, data, weights, subset, na.action, model = FALSE,
span = 0.75, enp.target, degree = 2,
parametric = FALSE, drop.square = FALSE, normalize = TRUE,
family = c("gaussian", "symmetric"),
method = c("loess", "model.frame"),
control = loess.control(...), ...)

Arguments

formula a formula specifying the numeric response and one to four numeric predictors
(best specified via an interaction, but can also be specified additively). Will be
coerced to a formula if necessary.

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model. If not
found in data, the variables are taken from environment(formula), typically
the environment from which loess is called.

weights optional weights for each case.
subset an optional specification of a subset of the data to be used.
na.action the action to be taken with missing values in the response or predictors. The

default is given by getOption("na.action").
model should the model frame be returned?
span the parameter α which controls the degree of smoothing.
enp.target an alternative way to specify span, as the approximate equivalent number of

parameters to be used.
degree the degree of the polynomials to be used, normally 1 or 2. (Degree 0 is also

allowed, but see the ‘Note’.)
parametric should any terms be fitted globally rather than locally? Terms can be specified

by name, number or as a logical vector of the same length as the number of
predictors.

drop.square for fits with more than one predictor and degree=2, should the quadratic term
be dropped for particular predictors? Terms are specified in the same way as for
parametric.

normalize should the predictors be normalized to a common scale if there is more than one?
The normalization used is to set the 10% trimmed standard deviation to one. Set
to false for spatial coordinate predictors and others know to be a common scale.

family if "gaussian" fitting is by least-squares, and if "symmetric" a re-descending
M estimator is used with Tukey’s biweight function.

method fit the model or just extract the model frame.
control control parameters: see loess.control.
... control parameters can also be supplied directly.

loess 1307

Details

Fitting is done locally. That is, for the fit at point x, the fit is made using points in a neighbourhood
of x, weighted by their distance from x (with differences in ‘parametric’ variables being ignored
when computing the distance). The size of the neighbourhood is controlled by α (set by span or
enp.target). For α < 1, the neighbourhood includes proportion α of the points, and these have
tricubic weighting (proportional to (1 − (dist/maxdist)

3
)3). For α > 1, all points are used, with

the ‘maximum distance’ assumed to be α1/p times the actual maximum distance for p explanatory
variables.

For the default family, fitting is by (weighted) least squares. For family="symmetric" a few iter-
ations of an M-estimation procedure with Tukey’s biweight are used. Be aware that as the initial
value is the least-squares fit, this need not be a very resistant fit.

It can be important to tune the control list to achieve acceptable speed. See loess.control for
details.

Value

An object of class "loess".

Note

As this is based on cloess, it is similar to but not identical to the loess function of S. In particular,
conditioning is not implemented.

The memory usage of this implementation of loess is roughly quadratic in the number of points,
with 1000 points taking about 10Mb.

degree = 0, local constant fitting, is allowed in this implementation but not documented in the
reference. It seems very little tested, so use with caution.

Author(s)

B. D. Ripley, based on the cloess package of Cleveland, Grosse and Shyu.

Source

The 1998 version of cloess package of Cleveland, Grosse and Shyu. A later version is available as
dloess at http://www.netlib.org/a.

References

W. S. Cleveland, E. Grosse and W. M. Shyu (1992) Local regression models. Chapter 8 of Statistical
Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth & Brooks/Cole.

See Also

loess.control, predict.loess.

lowess, the ancestor of loess (with different defaults!).

Examples

cars.lo <- loess(dist ~ speed, cars)
predict(cars.lo, data.frame(speed = seq(5, 30, 1)), se = TRUE)
to allow extrapolation
cars.lo2 <- loess(dist ~ speed, cars,

http://www.netlib.org/a

1308 loess.control

control = loess.control(surface = "direct"))
predict(cars.lo2, data.frame(speed = seq(5, 30, 1)), se = TRUE)

loess.control Set Parameters for Loess

Description

Set control parameters for loess fits.

Usage

loess.control(surface = c("interpolate", "direct"),
statistics = c("approximate", "exact"),
trace.hat = c("exact", "approximate"),
cell = 0.2, iterations = 4, ...)

Arguments

surface should the fitted surface be computed exactly or via interpolation from a kd tree?

statistics should the statistics be computed exactly or approximately? Exact computation
can be very slow.

trace.hat should the trace of the smoother matrix be computed exactly or approximately?
It is recommended to use the approximation for more than about 1000 data
points.

cell if interpolation is used this controls the accuracy of the approximation via the
maximum number of points in a cell in the kd tree. Cells with more than
floor(n*span*cell) points are subdivided.

iterations the number of iterations used in robust fitting.

... further arguments which are ignored.

Value

A list with components

surface

statistics

trace.hat

cell

iterations

with meanings as explained under ‘Arguments’.

See Also

loess

Logistic 1309

Logistic The Logistic Distribution

Description

Density, distribution function, quantile function and random generation for the logistic distribution
with parameters location and scale.

Usage

dlogis(x, location = 0, scale = 1, log = FALSE)
plogis(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qlogis(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rlogis(n, location = 0, scale = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

location, scale

location and scale parameters.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

If location or scale are omitted, they assume the default values of 0 and 1 respectively.

The Logistic distribution with location = µ and scale = σ has distribution function

F (x) =
1

1 + e−(x−µ)/σ

and density

f(x) =
1

σ

e(x−µ)/σ

(1 + e(x−µ)/σ)2

It is a long-tailed distribution with mean µ and variance π2/3σ2.

Value

dlogis gives the density, plogis gives the distribution function, qlogis gives the quantile function,
and rlogis generates random deviates.

Note

qlogis(p) is the same as the well known ‘logit’ function, logit(p) = log p/(1−p), and plogis(x)
has consequently been called the ‘inverse logit’.

The distribution function is a rescaled hyperbolic tangent, plogis(x) == (1+ tanh(x/2))/2, and
it is called a sigmoid function in contexts such as neural networks.

1310 logLik

Source

[dpq]logis are calculated directly from the definitions.

rlogis uses inversion.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
2, chapter 23. Wiley, New York.

See Also

Distributions for other standard distributions.

Examples

var(rlogis(4000, 0, scale = 5))# approximately (+/- 3)
pi^2/3 * 5^2

logLik Extract Log-Likelihood

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which have methods for this function include: "glm", "lm", "nls" and "Arima". Packages
contain methods for other classes, such as "fitdistr", "negbin" and "polr" in package MASS,
"multinom" in package nnet and "gls", "gnls" "lme" and others in package nlme.

Usage

logLik(object, ...)

S3 method for class ’lm’
logLik(object, REML = FALSE, ...)

Arguments

object any object from which a log-likelihood value, or a contribution to a log-
likelihood value, can be extracted.

... some methods for this generic function require additional arguments.

REML an optional logical value. If TRUE the restricted log-likelihood is returned, else,
if FALSE, the log-likelihood is returned. Defaults to FALSE.

http://CRAN.R-project.org/package=MASS
http://CRAN.R-project.org/package=nnet
http://CRAN.R-project.org/package=nlme

logLik 1311

Details

For a "glm" fit the family does not have to specify how to calculate the log-likelihood, so this
is based on using the family’s aic() function to compute the AIC. For the gaussian, Gamma and
inverse.gaussian families it assumed that the dispersion of the GLM is estimated and has been
counted as a parameter in the AIC value, and for all other families it is assumed that the dispersion
is known. Note that this procedure does not give the maximized likelihood for "glm" fits from the
Gamma and inverse gaussian families, as the estimate of dispersion used is not the MLE.

For "lm" fits it is assumed that the scale has been estimated (by maximum likelihood or REML),
and all the constants in the log-likelihood are included. That method is only applicable to single-
response fits.

Value

Returns an object of class logLik. This is a number with at least one attribute, "df" (degrees of
freedom), giving the number of (estimated) parameters in the model.

There is a simple print method for "logLik" objects.

There may be other attributes depending on the method used: see the appropriate documentation.
One that is used by several methods is "nobs", the number of observations used in estimation (after
the restrictions if REML = TRUE).

Author(s)

José Pinheiro and Douglas Bates

References

For logLik.lm:

Harville, D.A. (1974). Bayesian inference for variance components using only error contrasts.
Biometrika, 61, 383–385.

See Also

logLik.gls, logLik.lme, in package nlme, etc.

Examples

x <- 1:5
lmx <- lm(x ~ 1)
logLik(lmx) # using print.logLik() method
utils::str(logLik(lmx))

lm method
(fm1 <- lm(rating ~ ., data = attitude))
logLik(fm1)
logLik(fm1, REML = TRUE)

utils::data(Orthodont, package="nlme")
fm1 <- lm(distance ~ Sex * age, Orthodont)
logLik(fm1)
logLik(fm1, REML = TRUE)

http://CRAN.R-project.org/package=nlme

1312 loglin

loglin Fitting Log-Linear Models

Description

loglin is used to fit log-linear models to multidimensional contingency tables by Iterative Propor-
tional Fitting.

Usage

loglin(table, margin, start = rep(1, length(table)), fit = FALSE,
eps = 0.1, iter = 20, param = FALSE, print = TRUE)

Arguments

table a contingency table to be fit, typically the output from table.

margin a list of vectors with the marginal totals to be fit.
(Hierarchical) log-linear models can be specified in terms of these marginal to-
tals which give the ‘maximal’ factor subsets contained in the model. For ex-
ample, in a three-factor model, list(c(1, 2), c(1, 3)) specifies a model
which contains parameters for the grand mean, each factor, and the 1-2 and 1-3
interactions, respectively (but no 2-3 or 1-2-3 interaction), i.e., a model where
factors 2 and 3 are independent conditional on factor 1 (sometimes represented
as ‘[12][13]’).
The names of factors (i.e., names(dimnames(table))) may be used rather than
numeric indices.

start a starting estimate for the fitted table. This optional argument is important for
incomplete tables with structural zeros in table which should be preserved in
the fit. In this case, the corresponding entries in start should be zero and the
others can be taken as one.

fit a logical indicating whether the fitted values should be returned.

eps maximum deviation allowed between observed and fitted margins.

iter maximum number of iterations.

param a logical indicating whether the parameter values should be returned.

print a logical. If TRUE, the number of iterations and the final deviation are printed.

Details

The Iterative Proportional Fitting algorithm as presented in Haberman (1972) is used for fitting the
model. At most iter iterations are performed, convergence is taken to occur when the maximum
deviation between observed and fitted margins is less than eps. All internal computations are done
in double precision; there is no limit on the number of factors (the dimension of the table) in the
model.

Assuming that there are no structural zeros, both the Likelihood Ratio Test and Pearson test statistics
have an asymptotic chi-squared distribution with df degrees of freedom.

Note that the IPF steps are applied to the factors in the order given in margin. Hence if the model
is decomposable and the order given in margin is a running intersection property ordering then IPF
will converge in one iteration.

loglin 1313

Package MASS contains loglm, a front-end to loglin which allows the log-linear model to be
specified and fitted in a formula-based manner similar to that of other fitting functions such as lm or
glm.

Value

A list with the following components.

lrt the Likelihood Ratio Test statistic.

pearson the Pearson test statistic (X-squared).

df the degrees of freedom for the fitted model. There is no adjustment for structural
zeros.

margin list of the margins that were fit. Basically the same as the input margin, but with
numbers replaced by names where possible.

fit An array like table containing the fitted values. Only returned if fit is TRUE.

param A list containing the estimated parameters of the model. The ‘standard’ con-
straints of zero marginal sums (e.g., zero row and column sums for a two factor
parameter) are employed. Only returned if param is TRUE.

Author(s)

Kurt Hornik

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Haberman, S. J. (1972) Log-linear fit for contingency tables—Algorithm AS51. Applied Statistics,
21, 218–225.

Agresti, A. (1990) Categorical data analysis. New York: Wiley.

See Also

table.

loglm in package MASS for a user-friendly wrapper.

glm for another way to fit log-linear models.

Examples

Model of joint independence of sex from hair and eye color.
fm <- loglin(HairEyeColor, list(c(1, 2), c(1, 3), c(2, 3)))
fm
1 - pchisq(fmlrt, fmdf)
Model with no three-factor interactions fits well.

http://CRAN.R-project.org/package=MASS
http://CRAN.R-project.org/package=MASS

1314 Lognormal

Lognormal The Log Normal Distribution

Description

Density, distribution function, quantile function and random generation for the log normal distribu-
tion whose logarithm has mean equal to meanlog and standard deviation equal to sdlog.

Usage

dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)
plnorm(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
qlnorm(p, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
rlnorm(n, meanlog = 0, sdlog = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

meanlog, sdlog mean and standard deviation of the distribution on the log scale with default
values of 0 and 1 respectively.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The log normal distribution has density

f(x) =
1√

2πσx
e−(log(x)−µ)2/2σ2

where µ and σ are the mean and standard deviation of the logarithm. The mean isE(X) = exp(µ+
1/2σ2), the median ismed(X) = exp(µ), and the variance V ar(X) = exp(2µ+σ2)(exp(σ2)−1)
and hence the coefficient of variation is

√
exp(σ2)− 1 which is approximately σ when that is small

(e.g., σ < 1/2).

Value

dlnorm gives the density, plnorm gives the distribution function, qlnorm gives the quantile function,
and rlnorm generates random deviates.

Note

The cumulative hazardH(t) = − log(1−F (t)) is -plnorm(t, r, lower = FALSE, log = TRUE).

Source

dlnorm is calculated from the definition (in ‘Details’). [pqr]lnorm are based on the relationship to
the normal.

lowess 1315

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
1, chapter 14. Wiley, New York.

See Also

Distributions for other standard distributions, including dnorm for the normal distribution.

Examples

dlnorm(1) == dnorm(0)

lowess Scatter Plot Smoothing

Description

This function performs the computations for the LOWESS smoother which uses locally-weighted
polynomial regression (see the references).

Usage

lowess(x, y = NULL, f = 2/3, iter = 3,
delta = 0.01 * diff(range(xy$x[o])))

Arguments

x, y vectors giving the coordinates of the points in the scatter plot. Alternatively a
single plotting structure can be specified – see xy.coords.

f the smoother span. This gives the proportion of points in the plot which influ-
ence the smooth at each value. Larger values give more smoothness.

iter the number of ‘robustifying’ iterations which should be performed. Using
smaller values of iter will make lowess run faster.

delta See ‘Details’. Defaults to 1/100th of the range of x.

Details

lowess is defined by a complex algorithm, the Ratfor original of which (by W. S. Cleveland) can
be found in the R sources as file ‘src/appl/lowess.doc’. Normally a local linear polynomial fit is
used, but under some circumstances (see the file) a local constant fit can be used. ‘Local’ is defined
by the distance to the floor(f*n)th nearest neighbour, and tricubic weighting is used for x which
fall within the neighbourhood.

The initial fit is done using weighted least squares. If iter > 0, further weighted fits are done using
the product of the weights from the proximity of the x values and case weights derived from the
residuals at the previous iteration. Specifically, the case weight is Tukey’s biweight, with cutoff 6
times the MAD of the residuals. (The current R implementation differs from the original in stopping
iteration if the MAD is effectively zero since the algorithm is highly unstable in that case.)

1316 ls.diag

delta is used to speed up computation: instead of computing the local polynomial fit at each data
point it is not computed for points within delta of the last computed point, and linear interpolation
is used to fill in the fitted values for the skipped points.

Value

lowess returns a list containing components x and y which give the coordinates of the smooth. The
smooth can be added to a plot of the original points with the function lines: see the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Cleveland, W. S. (1979) Robust locally weighted regression and smoothing scatterplots. J. Amer.
Statist. Assoc. 74, 829–836.

Cleveland, W. S. (1981) LOWESS: A program for smoothing scatterplots by robust locally weighted
regression. The American Statistician, 35, 54.

See Also

loess, a newer formula based version of lowess (with different defaults!).

Examples

require(graphics)

plot(cars, main = "lowess(cars)")
lines(lowess(cars), col = 2)
lines(lowess(cars, f=.2), col = 3)
legend(5, 120, c(paste("f = ", c("2/3", ".2"))), lty = 1, col = 2:3)

ls.diag Compute Diagnostics for lsfit Regression Results

Description

Computes basic statistics, including standard errors, t- and p-values for the regression coefficients.

Usage

ls.diag(ls.out)

Arguments

ls.out Typically the result of lsfit()

ls.print 1317

Value

A list with the following numeric components.

std.dev The standard deviation of the errors, an estimate of σ.
hat diagonal entries hii of the hat matrix H
std.res standardized residuals
stud.res studentized residuals
cooks Cook’s distances
dfits DFITS statistics
correlation correlation matrix
std.err standard errors of the regression coefficients
cov.scaled Scaled covariance matrix of the coefficients
cov.unscaled Unscaled covariance matrix of the coefficients

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

See Also

hat for the hat matrix diagonals, ls.print, lm.influence, summary.lm, anova.

Examples

##-- Using the same data as the lm(.) example:
lsD9 <- lsfit(x = as.numeric(gl(2, 10, 20)), y = weight)
dlsD9 <- ls.diag(lsD9)
utils::str(dlsD9, give.attr=FALSE)
abs(1 - sum(dlsD9$hat) / 2) < 10*.Machine$double.eps # sum(h.ii) = p
plot(dlsD9$hat, dlsD9$stud.res, xlim=c(0,0.11))
abline(h = 0, lty = 2, col = "lightgray")

ls.print Print lsfit Regression Results

Description

Computes basic statistics, including standard errors, t- and p-values for the regression coefficients
and prints them if print.it is TRUE.

Usage

ls.print(ls.out, digits = 4, print.it = TRUE)

Arguments

ls.out Typically the result of lsfit()
digits The number of significant digits used for printing
print.it a logical indicating whether the result should also be printed

1318 lsfit

Value

A list with the components

summary The ANOVA table of the regression

coef.table matrix with regression coefficients, standard errors, t- and p-values

Note

Usually you would use summary(lm(...)) and anova(lm(...)) to obtain similar output.

See Also

ls.diag, lsfit, also for examples; lm, lm.influence which usually are preferable.

lsfit Find the Least Squares Fit

Description

The least squares estimate of β in the model

Y = Xβ + ε

is found.

Usage

lsfit(x, y, wt = NULL, intercept = TRUE, tolerance = 1e-07,
yname = NULL)

Arguments

x a matrix whose rows correspond to cases and whose columns correspond to
variables.

y the responses, possibly a matrix if you want to fit multiple left hand sides.

wt an optional vector of weights for performing weighted least squares.

intercept whether or not an intercept term should be used.

tolerance the tolerance to be used in the matrix decomposition.

yname names to be used for the response variables.

Details

If weights are specified then a weighted least squares is performed with the weight given to the jth
case specified by the jth entry in wt.

If any observation has a missing value in any field, that observation is removed before the analysis
is carried out. This can be quite inefficient if there is a lot of missing data.

The implementation is via a modification of the LINPACK subroutines which allow for multiple
left-hand sides.

mad 1319

Value

A list with the following named components:

coef the least squares estimates of the coefficients in the model (β as stated above).

residuals residuals from the fit.

intercept indicates whether an intercept was fitted.

qr the QR decomposition of the design matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

lm which usually is preferable; ls.print, ls.diag.

Examples

##-- Using the same data as the lm(.) example:
lsD9 <- lsfit(x = unclass(gl(2,10)), y = weight)
ls.print(lsD9)

mad Median Absolute Deviation

Description

Compute the median absolute deviation, i.e., the (lo-/hi-) median of the absolute deviations from
the median, and (by default) adjust by a factor for asymptotically normal consistency.

Usage

mad(x, center = median(x), constant = 1.4826, na.rm = FALSE,
low = FALSE, high = FALSE)

Arguments

x a numeric vector.

center Optionally, the centre: defaults to the median.

constant scale factor.

na.rm if TRUE then NA values are stripped from x before computation takes place.

low if TRUE, compute the ‘lo-median’, i.e., for even sample size, do not average the
two middle values, but take the smaller one.

high if TRUE, compute the ‘hi-median’, i.e., take the larger of the two middle values
for even sample size.

1320 mahalanobis

Details

The actual value calculated is constant * cMedian(abs(x - center)) with the default value
of center being median(x), and cMedian being the usual, the ‘low’ or ‘high’ median, see the
arguments description for low and high above.

The default constant = 1.4826 (approximately 1/Φ−1(3
4) = 1/qnorm(3/4)) ensures consistency,

i.e.,
E[mad(X1, . . . , Xn)] = σ

for Xi distributed as N(µ, σ2) and large n.

If na.rm is TRUE then NA values are stripped from x before computation takes place. If this is not
done then an NA value in x will cause mad to return NA.

See Also

IQR which is simpler but less robust, median, var.

Examples

mad(c(1:9))
print(mad(c(1:9), constant=1)) ==

mad(c(1:8,100), constant=1) # = 2 ; TRUE
x <- c(1,2,3, 5,7,8)
sort(abs(x - median(x)))
c(mad(x, constant=1),

mad(x, constant=1, low = TRUE),
mad(x, constant=1, high = TRUE))

mahalanobis Mahalanobis Distance

Description

Returns the squared Mahalanobis distance of all rows in x and the vector µ = center with respect
to Σ = cov. This is (for vector x) defined as

D2 = (x− µ)′Σ−1(x− µ)

Usage

mahalanobis(x, center, cov, inverted=FALSE, ...)

Arguments

x vector or matrix of data with, say, p columns.

center mean vector of the distribution or second data vector of length p.

cov covariance matrix (p× p) of the distribution.

inverted logical. If TRUE, cov is supposed to contain the inverse of the covariance matrix.

... passed to solve for computing the inverse of the covariance matrix (if inverted
is false).

make.link 1321

See Also

cov, var

Examples

require(graphics)

ma <- cbind(1:6, 1:3)
(S <- var(ma))
mahalanobis(c(0,0), 1:2, S)

x <- matrix(rnorm(100*3), ncol = 3)
stopifnot(mahalanobis(x, 0, diag(ncol(x))) == rowSums(x*x))

##- Here, D^2 = usual squared Euclidean distances

Sx <- cov(x)
D2 <- mahalanobis(x, colMeans(x), Sx)
plot(density(D2, bw=.5),

main="Squared Mahalanobis distances, n=100, p=3") ; rug(D2)
qqplot(qchisq(ppoints(100), df=3), D2,

main = expression("Q-Q plot of Mahalanobis" * ~D^2 *
" vs. quantiles of" * ~ chi[3]^2))

abline(0, 1, col = ’gray’)

make.link Create a Link for GLM Families

Description

This function is used with the family functions in glm(). Given the name of a link, it returns a link
function, an inverse link function, the derivative dµ/dη and a function for domain checking.

Usage

make.link(link)

Arguments

link character; one of "logit", "probit", "cauchit", "cloglog", "identity",
"log", "sqrt", "1/mu^2", "inverse".

Value

A object of class "link-glm", a list with components

linkfun Link function function(mu)

linkinv Inverse link function function(eta)

mu.eta Derivative function(eta) dµ/dη

valideta function(eta){ TRUE if eta is in the domain of linkinv }.

name a name to be used for the link

.

1322 makepredictcall

See Also

power, glm, family.

Examples

utils::str(make.link("logit"))

makepredictcall Utility Function for Safe Prediction

Description

A utility to help model.frame.default create the right matrices when predicting from models with
terms like poly or ns.

Usage

makepredictcall(var, call)

Arguments

var A variable.

call The term in the formula, as a call.

Details

This is a generic function with methods for poly, bs and ns: the default method handles scale.
If model.frame.default encounters such a term when creating a model frame, it modifies the
predvars attribute of the terms supplied by replacing the term with one which will work for pre-
dicting new data. For example makepredictcall.ns adds arguments for the knots and intercept.

To make use of this, have your model-fitting function return the terms attribute of the model frame,
or copy the predvars attribute of the terms attribute of the model frame to your terms object.

To extend this, make sure the term creates variables with a class, and write a suitable method for
that class.

Value

A replacement for call for the predvars attribute of the terms.

See Also

model.frame, poly, scale; bs and ns in package splines.

cars for an example of prediction from a polynomial fit.

manova 1323

Examples

require(graphics)

using poly: this did not work in R < 1.5.0
fm <- lm(weight ~ poly(height, 2), data = women)
plot(women, xlab = "Height (in)", ylab = "Weight (lb)")
ht <- seq(57, 73, len = 200)
lines(ht, predict(fm, data.frame(height=ht)))

see also example(cars)

see bs and ns for spline examples.

manova Multivariate Analysis of Variance

Description

A class for the multivariate analysis of variance.

Usage

manova(...)

Arguments

... Arguments to be passed to aov.

Details

Class "manova" differs from class "aov" in selecting a different summary method. Function manova
calls aov and then add class "manova" to the result object for each stratum.

Value

See aov and the comments in ‘Details’ here.

References

Krzanowski, W. J. (1988) Principles of Multivariate Analysis. A User’s Perspective. Oxford.

Hand, D. J. and Taylor, C. C. (1987) Multivariate Analysis of Variance and Repeated Measures.
Chapman and Hall.

See Also

aov, summary.manova, the latter containing examples.

1324 mantelhaen.test

Examples

From Venables and Ripley (2002) p.165.
utils::data(npk, package="MASS")

Set orthogonal contrasts.
op <- options(contrasts=c("contr.helmert", "contr.poly"))

Fake a 2nd response variable
npk2 <- within(npk, foo <- rnorm(24))
(npk2.aov <- manova(cbind(yield, foo) ~ block + N*P*K, npk2))
summary(npk2.aov)

(npk2.aovE <- manova(cbind(yield, foo) ~ N*P*K + Error(block), npk2))
summary(npk2.aovE)

mantelhaen.test Cochran-Mantel-Haenszel Chi-Squared Test for Count Data

Description

Performs a Cochran-Mantel-Haenszel chi-squared test of the null that two nominal variables are
conditionally independent in each stratum, assuming that there is no three-way interaction.

Usage

mantelhaen.test(x, y = NULL, z = NULL,
alternative = c("two.sided", "less", "greater"),
correct = TRUE, exact = FALSE, conf.level = 0.95)

Arguments

x either a 3-dimensional contingency table in array form where each dimension is
at least 2 and the last dimension corresponds to the strata, or a factor object with
at least 2 levels.

y a factor object with at least 2 levels; ignored if x is an array.

z a factor object with at least 2 levels identifying to which stratum the correspond-
ing elements in x and y belong; ignored if x is an array.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter. Only used in the 2
by 2 by K case.

correct a logical indicating whether to apply continuity correction when computing the
test statistic. Only used in the 2 by 2 by K case.

exact a logical indicating whether the Mantel-Haenszel test or the exact conditional
test (given the strata margins) should be computed. Only used in the 2 by 2 by
K case.

conf.level confidence level for the returned confidence interval. Only used in the 2 by 2 by
K case.

mantelhaen.test 1325

Details

If x is an array, each dimension must be at least 2, and the entries should be nonnegative integers.
NA’s are not allowed. Otherwise, x, y and z must have the same length. Triples containing NA’s are
removed. All variables must take at least two different values.

Value

A list with class "htest" containing the following components:

statistic Only present if no exact test is performed. In the classical case of a 2 by 2 by
K table (i.e., of dichotomous underlying variables), the Mantel-Haenszel chi-
squared statistic; otherwise, the generalized Cochran-Mantel-Haenszel statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic (1 in the classical case). Only present if no exact test is performed.

p.value the p-value of the test.

conf.int a confidence interval for the common odds ratio. Only present in the 2 by 2 by
K case.

estimate an estimate of the common odds ratio. If an exact test is performed, the condi-
tional Maximum Likelihood Estimate is given; otherwise, the Mantel-Haenszel
estimate. Only present in the 2 by 2 by K case.

null.value the common odds ratio under the null of independence, 1. Only present in the 2
by 2 by K case.

alternative a character string describing the alternative hypothesis. Only present in the 2 by
2 by K case.

method a character string indicating the method employed, and whether or not continuity
correction was used.

data.name a character string giving the names of the data.

Note

The asymptotic distribution is only valid if there is no three-way interaction. In the classical 2
by 2 by K case, this is equivalent to the conditional odds ratios in each stratum being identical.
Currently, no inference on homogeneity of the odds ratios is performed.

See also the example below.

References

Alan Agresti (1990). Categorical data analysis. New York: Wiley. Pages 230–235.

Alan Agresti (2002). Categorical data analysis (second edition). New York: Wiley.

Examples

Agresti (1990), pages 231--237, Penicillin and Rabbits
Investigation of the effectiveness of immediately injected or 1.5
hours delayed penicillin in protecting rabbits against a lethal
injection with beta-hemolytic streptococci.
Rabbits <-
array(c(0, 0, 6, 5,

3, 0, 3, 6,
6, 2, 0, 4,
5, 6, 1, 0,

1326 mantelhaen.test

2, 5, 0, 0),
dim = c(2, 2, 5),
dimnames = list(

Delay = c("None", "1.5h"),
Response = c("Cured", "Died"),
Penicillin.Level = c("1/8", "1/4", "1/2", "1", "4")))

Rabbits
Classical Mantel-Haenszel test
mantelhaen.test(Rabbits)
=> p = 0.047, some evidence for higher cure rate of immediate
injection
Exact conditional test
mantelhaen.test(Rabbits, exact = TRUE)
=> p - 0.040
Exact conditional test for one-sided alternative of a higher
cure rate for immediate injection
mantelhaen.test(Rabbits, exact = TRUE, alternative = "greater")
=> p = 0.020

UC Berkeley Student Admissions
mantelhaen.test(UCBAdmissions)
No evidence for association between admission and gender
when adjusted for department. However,
apply(UCBAdmissions, 3, function(x) (x[1,1]*x[2,2])/(x[1,2]*x[2,1]))
This suggests that the assumption of homogeneous (conditional)
odds ratios may be violated. The traditional approach would be
using the Woolf test for interaction:
woolf <- function(x) {

x <- x + 1 / 2
k <- dim(x)[3]
or <- apply(x, 3, function(x) (x[1,1]*x[2,2])/(x[1,2]*x[2,1]))
w <- apply(x, 3, function(x) 1 / sum(1 / x))
1 - pchisq(sum(w * (log(or) - weighted.mean(log(or), w)) ^ 2), k - 1)

}
woolf(UCBAdmissions)
=> p = 0.003, indicating that there is significant heterogeneity.
(And hence the Mantel-Haenszel test cannot be used.)

Agresti (2002), p. 287f and p. 297.
Job Satisfaction example.
Satisfaction <-

as.table(array(c(1, 2, 0, 0, 3, 3, 1, 2,
11, 17, 8, 4, 2, 3, 5, 2,
1, 0, 0, 0, 1, 3, 0, 1,
2, 5, 7, 9, 1, 1, 3, 6),

dim = c(4, 4, 2),
dimnames =
list(Income =

c("<5000", "5000-15000",
"15000-25000", ">25000"),

"Job Satisfaction" =
c("V_D", "L_S", "M_S", "V_S"),
Gender = c("Female", "Male"))))

(Satisfaction categories abbreviated for convenience.)
ftable(. ~ Gender + Income, Satisfaction)
Table 7.8 in Agresti (2002), p. 288.
mantelhaen.test(Satisfaction)

mauchly.test 1327

See Table 7.12 in Agresti (2002), p. 297.

mauchly.test Mauchly’s Test of Sphericity

Description

Tests whether a Wishart-distributed covariance matrix (or transformation thereof) is proportional to
a given matrix.

Usage

mauchly.test(object, ...)
S3 method for class ’mlm’
mauchly.test(object,...)
S3 method for class ’SSD’
mauchly.test(object, Sigma = diag(nrow = p),

T = Thin.row(proj(M) - proj(X)), M = diag(nrow = p), X = ~0,
idata = data.frame(index = seq_len(p)), ...)

Arguments

object object of class SSD or mlm.

Sigma matrix to be proportional to.

T transformation matrix. By default computed from M and X.

M formula or matrix describing the outer projection (see below).

X formula or matrix describing the inner projection (see below).

idata data frame describing intra-block design.

... arguments to be passed to or from other methods.

Details

Mauchly’s test test for whether a covariance matrix can be assumed to be proportional to a given
matrix.

This is a generic function with methods for classes "mlm" and "SSD".

The basic method is for objects of class SSD the method for mlm objects just extracts the SSD matrix
and invokes the corresponding method with the same options and arguments.

The T argument is used to transform the observations prior to testing. This typically involves trans-
formation to intra-block differences, but more complicated within-block designs can be encoun-
tered, making more elaborate transformations necessary. A matrix T can be given directly or spec-
ified as the difference between two projections onto the spaces spanned by M and X, which in turn
can be given as matrices or as model formulas with respect to idata (the tests will be invariant to
parametrization of the quotient space M/X).

The common use of this test is in repeated measurements designs, with X=~1. This is almost, but
not quite the same as testing for compound symmetry in the untransformed covariance matrix.

Notice that the defaults involve p, which is calculated internally as the dimension of the SSD matrix,
and a couple of hidden functions in the stats namespace, namely proj which calculates projection
matrices from design matrices or model formulas and Thin.row which removes linearly dependent
rows from a matrix until it has full row rank.

1328 mcnemar.test

Value

An object of class "htest"

Note

The p-value differs slightly from that of SAS because a second order term is included in the asymp-
totic approximation in R.

References

T. W. Anderson (1958). An Introduction to Multivariate Statistical Analysis. Wiley.

See Also

SSD, anova.mlm

Examples

utils::example(SSD) # Brings in the mlmfit and reacttime objects

traditional test of intrasubj. contrasts
mauchly.test(mlmfit, X=~1)

tests using intra-subject 3x2 design
idata <- data.frame(deg=gl(3,1,6, labels=c(0,4,8)),

noise=gl(2,3,6, labels=c("A","P")))
mauchly.test(mlmfit, X = ~ deg + noise, idata = idata)
mauchly.test(mlmfit, M = ~ deg + noise, X = ~ noise, idata=idata)

mcnemar.test McNemar’s Chi-squared Test for Count Data

Description

Performs McNemar’s chi-squared test for symmetry of rows and columns in a two-dimensional
contingency table.

Usage

mcnemar.test(x, y = NULL, correct = TRUE)

Arguments

x either a two-dimensional contingency table in matrix form, or a factor object.

y a factor object; ignored if x is a matrix.

correct a logical indicating whether to apply continuity correction when computing the
test statistic.

median 1329

Details

The null is that the probabilities of being classified into cells [i,j] and [j,i] are the same.

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries should be
nonnegative integers. Otherwise, both x and y must be vectors or factors of the same length. In-
complete cases are removed, vectors are coerced into factors, and the contingency table is computed
from these.

Continuity correction is only used in the 2-by-2 case if correct is TRUE.

Value

A list with class "htest" containing the following components:

statistic the value of McNemar’s statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

method a character string indicating the type of test performed, and whether continuity
correction was used.

data.name a character string giving the name(s) of the data.

References

Alan Agresti (1990). Categorical data analysis. New York: Wiley. Pages 350–354.

Examples

Agresti (1990), p. 350.
Presidential Approval Ratings.
Approval of the President’s performance in office in two surveys,
one month apart, for a random sample of 1600 voting-age Americans.
Performance <-
matrix(c(794, 86, 150, 570),

nrow = 2,
dimnames = list("1st Survey" = c("Approve", "Disapprove"),

"2nd Survey" = c("Approve", "Disapprove")))
Performance
mcnemar.test(Performance)
=> significant change (in fact, drop) in approval ratings

median Median Value

Description

Compute the sample median.

Usage

median(x, na.rm = FALSE)

1330 medpolish

Arguments

x an object for which a method has been defined, or a numeric vector containing
the values whose median is to be computed.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

Details

This is a generic function for which methods can be written. However, the default method makes
use of sort and mean from package base both of which are generic, and so the default method will
work for most classes (e.g. "Date") for which a median is a reasonable concept.

Value

The default method returns a length-one object of the same type as x, except when x is integer of
even length, when the result will be double.

If there are no values or if na.rm = FALSE and there are NA values the result is NA of the same type
as x (or more generally the result of x[FALSE][NA]).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

quantile for general quantiles.

Examples

median(1:4)# = 2.5 [even number]
median(c(1:3,100,1000))# = 3 [odd, robust]

medpolish Median Polish of a Matrix

Description

Fits an additive model using Tukey’s median polish procedure.

Usage

medpolish(x, eps = 0.01, maxiter = 10, trace.iter = TRUE,
na.rm = FALSE)

Arguments

x a numeric matrix.
eps real number greater than 0. A tolerance for convergence: see ‘Details’.
maxiter the maximum number of iterations
trace.iter logical. Should progress in convergence be reported?
na.rm logical. Should missing values be removed?

medpolish 1331

Details

The model fitted is additive (constant + rows + columns). The algorithm works by alternately
removing the row and column medians, and continues until the proportional reduction in the sum of
absolute residuals is less than eps or until there have been maxiter iterations. The sum of absolute
residuals is printed at each iteration of the fitting process, if trace.iter is TRUE. If na.rm is FALSE
the presence of any NA value in x will cause an error, otherwise NA values are ignored.

medpolish returns an object of class medpolish (see below). There are printing and plotting meth-
ods for this class, which are invoked via by the generics print and plot.

Value

An object of class medpolish with the following named components:

overall the fitted constant term.

row the fitted row effects.

col the fitted column effects.

residuals the residuals.

name the name of the dataset.

References

Tukey, J. W. (1977). Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley.

See Also

median; aov for a mean instead of median decomposition.

Examples

require(graphics)

Deaths from sport parachuting; from ABC of EDA, p.224:
deaths <-

rbind(c(14,15,14),
c(7, 4, 7),
c(8, 2,10),
c(15, 9,10),
c(0, 2, 0))

dimnames(deaths) <- list(c("1-24", "25-74", "75-199", "200++", "NA"),
paste(1973:1975))

deaths
(med.d <- medpolish(deaths))
plot(med.d)
Check decomposition:
all(deaths ==

med.d$overall + outer(med.d$row,med.d$col, "+") + med.d$residuals)

1332 model.extract

model.extract Extract Components from a Model Frame

Description

Returns the response, offset, subset, weights or other special components of a model frame passed
as optional arguments to model.frame.

Usage

model.extract(frame, component)
model.offset(x)
model.response(data, type = "any")
model.weights(x)

Arguments

frame, x, data A model frame.

component literal character string or name. The name of a component to extract, such as
"weights", "subset".

type One of "any", "numeric", "double". Using either of latter two coerces the
result to have storage mode "double".

Details

model.extract is provided for compatibility with S, which does not have the more specific func-
tions. It is also useful to extract e.g. the etastart and mustart components of a glm fit.

model.offset and model.response are equivalent to model.extract(, "offset") and
model.extract(, "response") respectively. model.offset sums any terms specified by offset
terms in the formula or by offset arguments in the call producing the model frame: it does check
that the offset is numeric.

model.weights is slightly different from model.frame(, "weights") in not naming the vector it
returns.

Value

The specified component of the model frame, usually a vector.

See Also

model.frame, offset

Examples

a <- model.frame(cbind(ncases,ncontrols) ~ agegp+tobgp+alcgp, data=esoph)
model.extract(a, "response")
stopifnot(model.extract(a, "response") == model.response(a))

a <- model.frame(ncases/(ncases+ncontrols) ~ agegp+tobgp+alcgp,
data = esoph, weights = ncases+ncontrols)

model.response(a)

model.frame 1333

model.extract(a, "weights")

a <- model.frame(cbind(ncases,ncontrols) ~ agegp,
something = tobgp, data = esoph)

names(a)
stopifnot(model.extract(a, "something") == esoph$tobgp)

model.frame Extracting the Model Frame from a Formula or Fit

Description

model.frame (a generic function) and its methods return a data.frame with the variables needed
to use formula and any ... arguments.

Usage

model.frame(formula, ...)

Default S3 method:
model.frame(formula, data = NULL,

subset = NULL, na.action = na.fail,
drop.unused.levels = FALSE, xlev = NULL, ...)

S3 method for class ’aovlist’
model.frame(formula, data = NULL, ...)

S3 method for class ’glm’
model.frame(formula, ...)

S3 method for class ’lm’
model.frame(formula, ...)

get_all_vars(formula, data, ...)

Arguments

formula a model formula or terms object or an R object.

data a data.frame, list or environment (or object coercible by as.data.frame to a
data.frame), containing the variables in formula. Neither a matrix nor an array
will be accepted.

subset a specification of the rows to be used: defaults to all rows. This can be any
valid indexing vector (see [.data.frame) for the rows of data or if that is not
supplied, a data frame made up of the variables used in formula.

na.action how NAs are treated. The default is first, any na.action attribute of data, second
a na.action setting of options, and third na.fail if that is unset. The ‘factory-
fresh’ default is na.omit. Another possible value is NULL.

drop.unused.levels

should factors have unused levels dropped? Defaults to FALSE.

xlev a named list of character vectors giving the full set of levels to be assumed for
each factor.

1334 model.frame

... further arguments such as data, na.action, subset. Any additional argu-
ments such as offset and weights which reach the default method are used
to create further columns in the model frame, with parenthesised names such as
"(offset)".

Details

Exactly what happens depends on the class and attributes of the object formula. If this is an object
of fitted-model class such as "lm", the method will either return the saved model frame used when
fitting the model (if any, often selected by argument model = TRUE) or pass the call used when
fitting on to the default method. The default method itself can cope with rather standard model
objects such as those of class "lqs" from package MASS if no other arguments are supplied.

The rest of this section applies only to the default method.

If either formula or data is already a model frame (a data frame with a "terms" attribute) and the
other is missing, the model frame is returned. Unless formula is a terms object, as.formula and
then terms is called on it. (If you wish to use the keep.order argument of terms.formula, pass a
terms object rather than a formula.)

Row names for the model frame are taken from the data argument if present, then from the names
of the response in the formula (or rownames if it is a matrix), if there is one.

All the variables in formula, subset and in ... are looked for first in data and then in the
environment of formula (see the help for formula() for further details) and collected into a data
frame. Then the subset expression is evaluated, and it is used as a row index to the data frame. Then
the na.action function is applied to the data frame (and may well add attributes). The levels of any
factors in the data frame are adjusted according to the drop.unused.levels and xlev arguments:
if xlev specifies a factor and a character variable is found, it is converted to a factor (as from R
2.10.0).

Unless na.action = NULL, time-series attributes will be removed from the variables found (since
they will be wrong if NAs are removed).

Note that all the variables in the formula are included in the data frame, even those preceded by -.

Only variables whose type is raw, logical, integer, real, complex or character can be included in a
model frame: this includes classed variables such as factors (whose underlying type is integer), but
excludes lists.

get_all_vars returns a data.frame containing the variables used in formula plus those specified
.... Unlike model.frame.default, it returns the input variables and not those resulting from
function calls in formula.

Value

A data.frame containing the variables used in formula plus those specified in It will have
additional attributes, including "terms" for an object of class "terms" derived from formula, and
possibly "na.action" giving information on the handling of NAs (which will not be present if no
special handling was done, e.g. by na.pass).

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

http://CRAN.R-project.org/package=MASS

model.matrix 1335

See Also

model.matrix for the ‘design matrix’, formula for formulas and expand.model.frame for
model.frame manipulation.

Examples

data.class(model.frame(dist ~ speed, data = cars))

model.matrix Construct Design Matrices

Description

model.matrix creates a design (or model) matrix.

Usage

model.matrix(object, ...)

Default S3 method:
model.matrix(object, data = environment(object),

contrasts.arg = NULL, xlev = NULL, ...)

Arguments

object an object of an appropriate class. For the default method, a model formula or a
terms object.

data a data frame created with model.frame. If another sort of object, model.frame
is called first.

contrasts.arg A list, whose entries are values (numeric matrices or character strings nam-
ing functions) to be used as replacement values for the contrasts replace-
ment function and whose names are the names of columns of data containing
factors.

xlev to be used as argument of model.frame if data is such that model.frame is
called.

... further arguments passed to or from other methods.

Details

model.matrix creates a design matrix from the description given in terms(object), using the
data in data which must supply variables with the same names as would be created by a call to
model.frame(object) or, more precisely, by evaluating attr(terms(object), "variables").
If data is a data frame, there may be other columns and the order of columns is not important. Any
character variables are coerced to factors, with a warning. After coercion, all the variables used on
the right-hand side of the formula must be logical, integer, numeric or factor.

If contrasts.arg is specified for a factor it overrides the default factor coding for that variable and
any "contrasts" attribute set by C or contrasts.

In an interaction term, the variable whose levels vary fastest is the first one to appear in the formula
(and not in the term), so in ~ a + b + b:a the interaction will have a varying fastest.

By convention, if the response variable also appears on the right-hand side of the formula it is
dropped (with a warning), although interactions involving the term are retained.

1336 model.tables

Value

The design matrix for a regression-like model with the specified formula and data.

There is an attribute "assign", an integer vector with an entry for each column in the matrix giving
the term in the formula which gave rise to the column. Value 0 corresponds to the intercept (if any),
and positive values to terms in the order given by the term.labels attribute of the terms structure
corresponding to object.

If there are any factors in terms in the model, there is an attribute "contrasts", a named list with an
entry for each factor. This specifies the contrasts that would be used in terms in which the factor is
coded by contrasts (in some terms dummy coding may be used), either as a character vector naming
a function or as a numeric matrix.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

model.frame, model.extract, terms

Examples

ff <- log(Volume) ~ log(Height) + log(Girth)
utils::str(m <- model.frame(ff, trees))
mat <- model.matrix(ff, m)

dd <- data.frame(a = gl(3,4), b = gl(4,1,12)) # balanced 2-way
options("contrasts")
model.matrix(~ a + b, dd)
model.matrix(~ a + b, dd, contrasts = list(a="contr.sum"))
model.matrix(~ a + b, dd, contrasts = list(a="contr.sum", b="contr.poly"))
m.orth <- model.matrix(~a+b, dd, contrasts = list(a="contr.helmert"))
crossprod(m.orth) # m.orth is ALMOST orthogonal

model.tables Compute Tables of Results from an Aov Model Fit

Description

Computes summary tables for model fits, especially complex aov fits.

Usage

model.tables(x, ...)

S3 method for class ’aov’
model.tables(x, type = "effects", se = FALSE, cterms, ...)

S3 method for class ’aovlist’
model.tables(x, type = "effects", se = FALSE, ...)

model.tables 1337

Arguments

x a model object, usually produced by aov

type type of table: currently only "effects" and "means" are implemented.

se should standard errors be computed?

cterms A character vector giving the names of the terms for which tables should be
computed. The default is all tables.

... further arguments passed to or from other methods.

Details

For type = "effects" give tables of the coefficients for each term, optionally with standard errors.

For type = "means" give tables of the mean response for each combinations of levels of the factors
in a term.

The "aov" method cannot be applied to components of a "aovlist" fit.

Value

An object of class "tables.aov", as list which may contain components

tables A list of tables for each requested term.

n The replication information for each term.

se Standard error information.

Warning

The implementation is incomplete, and only the simpler cases have been tested thoroughly.

Weighted aov fits are not supported.

See Also

aov, proj, replications, TukeyHSD, se.contrast

Examples

From Venables and Ripley (2002) p.165.
utils::data(npk, package="MASS")

options(contrasts=c("contr.helmert", "contr.treatment"))
npk.aov <- aov(yield ~ block + N*P*K, npk)
model.tables(npk.aov, "means", se = TRUE)

as a test, not particularly sensible statistically
npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
model.tables(npk.aovE, se=TRUE)
model.tables(npk.aovE, "means")

1338 monthplot

monthplot Plot a Seasonal or other Subseries from a Time Series

Description

These functions plot seasonal (or other) subseries of a time series. For each season (or other cate-
gory), a time series is plotted.

Usage

monthplot(x, ...)

S3 method for class ’stl’
monthplot(x, labels = NULL, ylab = choice, choice = "seasonal",

...)

S3 method for class ’StructTS’
monthplot(x, labels = NULL, ylab = choice, choice = "sea", ...)

S3 method for class ’ts’
monthplot(x, labels = NULL, times = time(x), phase = cycle(x),

ylab = deparse(substitute(x)), ...)

Default S3 method:
monthplot(x, labels = 1L:12L,

ylab = deparse(substitute(x)),
times = seq_along(x),
phase = (times - 1L)%%length(labels) + 1L, base = mean,
axes = TRUE, type = c("l", "h"), box = TRUE,
add = FALSE, ...)

Arguments

x Time series or related object.

labels Labels to use for each ‘season’.

ylab y label.

times Time of each observation.

phase Indicator for each ‘season’.

base Function to use for reference line for subseries.

choice Which series of an stl or StructTS object?

... Arguments to be passed to the default method or graphical parameters.

axes Should axes be drawn (ignored if add=TRUE)?

type Type of plot. The default is to join the points with lines, and "h" is for histogram-
like vertical lines.

box Should a box be drawn (ignored if add=TRUE?

add Should thus just add on an existing plot.

monthplot 1339

Details

These functions extract subseries from a time series and plot them all in one frame. The ts, stl,
and StructTS methods use the internally recorded frequency and start and finish times to set the
scale and the seasons. The default method assumes observations come in groups of 12 (though this
can be changed).

If the labels are not given but the phase is given, then the labels default to the unique values of
the phase. If both are given, then the phase values are assumed to be indices into the labels array,
i.e., they should be in the range from 1 to length(labels).

Value

These functions are executed for their side effect of drawing a seasonal subseries plot on the current
graphical window.

Author(s)

Duncan Murdoch

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ts, stl, StructTS

Examples

require(graphics)

The CO2 data
fit <- stl(log(co2), s.window = 20, t.window = 20)
plot(fit)
op <- par(mfrow = c(2,2))
monthplot(co2, ylab = "data", cex.axis = 0.8)
monthplot(fit, choice = "seasonal", cex.axis = 0.8)
monthplot(fit, choice = "trend", cex.axis = 0.8)
monthplot(fit, choice = "remainder", type = "h", cex.axis = 0.8)
par(op)

The CO2 data, grouped quarterly
quarter <- (cycle(co2) - 1) %/% 3
monthplot(co2, phase = quarter)

see also JohnsonJohnson

1340 mood.test

mood.test Mood Two-Sample Test of Scale

Description

Performs Mood’s two-sample test for a difference in scale parameters.

Usage

mood.test(x, ...)

Default S3 method:
mood.test(x, y,

alternative = c("two.sided", "less", "greater"), ...)

S3 method for class ’formula’
mood.test(formula, data, subset, na.action, ...)

Arguments

x, y numeric vectors of data values.
alternative indicates the alternative hypothesis and must be one of "two.sided" (default),

"greater" or "less" all of which can be abbreviated.
formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the

data values and rhs a factor with two levels giving the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing

the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. De-

faults to getOption("na.action").
... further arguments to be passed to or from methods.

Details

The underlying model is that the two samples are drawn from f(x− l) and f((x− l)/s)/s, respec-
tively, where l is a common location parameter and s is a scale parameter.

The null hypothesis is s = 1.

There are more useful tests for this problem.

In the case of ties, the formulation of Mielke (1967) is employed.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.
p.value the p-value of the test.
alternative a character string describing the alternative hypothesis.
method the character string "Mood two-sample test of scale".
data.name a character string giving the names of the data.

Multinom 1341

References

William J. Conover (1971), Practical nonparametric statistics. New York: John Wiley & Sons.
Pages 234f.

Paul W. Mielke, Jr. (1967), Note on some squared rank tests with existing ties. Technometrics, 9/2,
312–314.

See Also

fligner.test for a rank-based (nonparametric) k-sample test for homogeneity of variances;
ansari.test for another rank-based two-sample test for a difference in scale parameters; var.test
and bartlett.test for parametric tests for the homogeneity in variance.

Examples

Same data as for the Ansari-Bradley test:
Serum iron determination using Hyland control sera
ramsay <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,

101, 96, 97, 102, 107, 113, 116, 113, 110, 98)
jung.parekh <- c(107, 108, 106, 98, 105, 103, 110, 105, 104,

100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)
mood.test(ramsay, jung.parekh)
Compare this to ansari.test(ramsay, jung.parekh)

Multinom The Multinomial Distribution

Description

Generate multinomially distributed random number vectors and compute multinomial probabilities.

Usage

rmultinom(n, size, prob)
dmultinom(x, size = NULL, prob, log = FALSE)

Arguments

x vector of length K of integers in 0:size.

n number of random vectors to draw.

size integer, say N , specifying the total number of objects that are put into K boxes
in the typical multinomial experiment. For dmultinom, it defaults to sum(x).

prob numeric non-negative vector of length K, specifying the probability for the K
classes; is internally normalized to sum 1.

log logical; if TRUE, log probabilities are computed.

1342 na.action

Details

If x is a K-component vector, dmultinom(x, prob) is the probability

P (X1 = x1, . . . , XK = xk) = C ×
K∏
j=1

π
xj

j

where C is the ‘multinomial coefficient’ C = N !/(x1! · · ·xK !) and N =
∑K
j=1 xj .

By definition, each component Xj is binomially distributed as Bin(size, prob[j]) for j =
1, . . . ,K.

The rmultinom() algorithm draws binomials Xj from Bin(nj , Pj) sequentially, where n1 = N

(N := size), P1 = π1 (π is prob scaled to sum 1), and for j ≥ 2, recursively, nj = N −
∑j−1
k=1Xk

and Pj = πj/(1−
∑j−1
k=1 πk).

Value

For rmultinom(), an integer K x n matrix where each column is a random vector generated ac-
cording to the desired multinomial law, and hence summing to size. Whereas the transposed result
would seem more natural at first, the returned matrix is more efficient because of columnwise stor-
age.

Note

dmultinom is currently not vectorized at all and has no C interface (API); this may be amended in
the future.

See Also

Distributions for standard distributions, including dbinom which is a special case conceptually.

Examples

rmultinom(10, size = 12, prob=c(0.1,0.2,0.8))

pr <- c(1,3,6,10) # normalization not necessary for generation
rmultinom(10, 20, prob = pr)

all possible outcomes of Multinom(N = 3, K = 3)
X <- t(as.matrix(expand.grid(0:3, 0:3))); X <- X[, colSums(X) <= 3]
X <- rbind(X, 3:3 - colSums(X)); dimnames(X) <- list(letters[1:3], NULL)
X
round(apply(X, 2, function(x) dmultinom(x, prob = c(1,2,5))), 3)

na.action NA Action

Description

Extract information on the NA action used to create an object.

Usage

na.action(object, ...)

na.contiguous 1343

Arguments

object any object whose NA action is given.

... further arguments special methods could require.

Details

na.action is a generic function, and na.action.default its default method. The latter extracts
the "na.action" component of a list if present, otherwise the "na.action" attribute.

When model.frame is called, it records any information on NA handling in a "na.action" attribute.
Most model-fitting functions return this as a component of their result.

Value

Information from the action which was applied to object if NAs were handled specially, or NULL.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

options("na.action"), na.omit, na.fail, also for na.exclude, na.pass.

Examples

na.action(na.omit(c(1, NA)))

na.contiguous Find Longest Contiguous Stretch of non-NAs

Description

Find the longest consecutive stretch of non-missing values in a time series object. (In the event of a
tie, the first such stretch.)

Usage

na.contiguous(object, ...)

Arguments

object a univariate or multivariate time series.

... further arguments passed to or from other methods.

Value

A time series without missing values. The class of object will be preserved.

See Also

na.omit and na.omit.ts; na.fail

1344 na.fail

Examples

na.contiguous(presidents)

na.fail Handle Missing Values in Objects

Description

These generic functions are useful for dealing with NAs in e.g., data frames. na.fail returns the
object if it does not contain any missing values, and signals an error otherwise. na.omit returns the
object with incomplete cases removed. na.pass returns the object unchanged.

Usage

na.fail(object, ...)
na.omit(object, ...)
na.exclude(object, ...)
na.pass(object, ...)

Arguments

object an R object, typically a data frame

... further arguments special methods could require.

Details

At present these will handle vectors, matrices and data frames comprising vectors and matrices
(only).

If na.omit removes cases, the row numbers of the cases form the "na.action" attribute of the
result, of class "omit".

na.exclude differs from na.omit only in the class of the "na.action" attribute of the result, which
is "exclude". This gives different behaviour in functions making use of naresid and napredict:
when na.exclude is used the residuals and predictions are padded to the correct length by inserting
NAs for cases omitted by na.exclude.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

na.action; options with argument na.action for setting NA actions; and lm and glm for func-
tions using these. na.contiguous as alternative for time series.

naprint 1345

Examples

DF <- data.frame(x = c(1, 2, 3), y = c(0, 10, NA))
na.omit(DF)
m <- as.matrix(DF)
na.omit(m)
stopifnot(all(na.omit(1:3) == 1:3)) # does not affect objects with no NA’s
try(na.fail(DF))#> Error: missing values in ...

options("na.action")

naprint Adjust for Missing Values

Description

Use missing value information to report the effects of an na.action.

Usage

naprint(x, ...)

Arguments

x An object produced by an na.action function.

... further arguments passed to or from other methods.

Details

This is a generic function, and the exact information differs by method. naprint.omit reports the
number of rows omitted: naprint.default reports an empty string.

Value

A character string providing information on missing values, for example the number.

naresid Adjust for Missing Values

Description

Use missing value information to adjust residuals and predictions.

Usage

naresid(omit, x, ...)
napredict(omit, x, ...)

1346 NegBinomial

Arguments

omit an object produced by an na.action function, typically the "na.action" at-
tribute of the result of na.omit or na.exclude.

x a vector, data frame, or matrix to be adjusted based upon the missing value
information.

... further arguments passed to or from other methods.

Details

These are utility functions used to allow predict, fitted and residuals methods for modelling
functions to compensate for the removal of NAs in the fitting process. They are used by the default,
"lm", "glm" and "nls" methods, and by further methods in packages MASS, rpart and survival.
Also used for the scores returned by factanal, prcomp and princomp.

The default methods do nothing. The default method for the na.exclude action is to pad the object
with NAs in the correct positions to have the same number of rows as the original data frame.

Currently naresid and napredict are identical, but future methods need not be. naresid is used
for residuals, and napredict for fitted values, predictions and weights.

Value

These return a similar object to x.

Note

In the early 2000s, packages rpart and survival5 contained versions of these functions that had an
na.omit action equivalent to that now used for na.exclude.

NegBinomial The Negative Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the negative binomial
distribution with parameters size and prob.

Usage

dnbinom(x, size, prob, mu, log = FALSE)
pnbinom(q, size, prob, mu, lower.tail = TRUE, log.p = FALSE)
qnbinom(p, size, prob, mu, lower.tail = TRUE, log.p = FALSE)
rnbinom(n, size, prob, mu)

Arguments

x vector of (non-negative integer) quantiles.

q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

http://CRAN.R-project.org/package=MASS
http://CRAN.R-project.org/package=rpart
http://CRAN.R-project.org/package=survival
http://CRAN.R-project.org/package=rpart

NegBinomial 1347

size target for number of successful trials, or dispersion parameter (the shape param-
eter of the gamma mixing distribution). Must be strictly positive, need not be
integer.

prob probability of success in each trial. 0 < prob <= 1.

mu alternative parametrization via mean: see ‘Details’.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The negative binomial distribution with size = n and prob = p has density

p(x) =
Γ(x+ n)

Γ(n)x!
pn(1− p)x

for x = 0, 1, 2, . . ., n > 0 and 0 < p ≤ 1.

This represents the number of failures which occur in a sequence of Bernoulli trials before a target
number of successes is reached. The mean is n(1− p)/p and variance n(1− p)/p2.

A negative binomial distribution can also arise as a mixture of Poisson distributions with mean
distributed as a gamma distribution (seepgamma) with scale parameter (1 - prob)/prob and shape
parameter size. (This definition allows non-integer values of size.)

An alternative parametrization (often used in ecology) is by the mean mu, and size, the dispersion
parameter, where prob = size/(size+mu). The variance is mu + mu^2/size in this parametriza-
tion.

If an element of x is not integer, the result of dnbinom is zero, with a warning.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distribution
function.

Value

dnbinom gives the density, pnbinom gives the distribution function, qnbinom gives the quantile
function, and rnbinom generates random deviates.

Invalid size or prob will result in return value NaN, with a warning.

Source

dnbinom computes via binomial probabilities, using code contributed by Catherine Loader (see
dbinom).

pnbinom uses pbeta.

qnbinom uses the Cornish–Fisher Expansion to include a skewness correction to a normal approxi-
mation, followed by a search.

rnbinom uses the derivation as a gamma mixture of Poissons, see

Devroye, L. (1986) Non-Uniform Random Variate Generation. Springer-Verlag, New York. Page
480.

See Also

Distributions for standard distributions, including dbinom for the binomial, dpois for the Poisson
and dgeom for the geometric distribution, which is a special case of the negative binomial.

1348 nextn

Examples

require(graphics)
x <- 0:11
dnbinom(x, size = 1, prob = 1/2) * 2^(1 + x) # == 1
126 / dnbinom(0:8, size = 2, prob = 1/2) #- theoretically integer

Cumulative (’p’) = Sum of discrete prob.s (’d’); Relative error :
summary(1 - cumsum(dnbinom(x, size = 2, prob = 1/2)) /

pnbinom(x, size = 2, prob = 1/2))

x <- 0:15
size <- (1:20)/4
persp(x,size, dnb <- outer(x, size, function(x,s) dnbinom(x,s, prob= 0.4)),

xlab = "x", ylab = "s", zlab="density", theta = 150)
title(tit <- "negative binomial density(x,s, pr = 0.4) vs. x & s")

image (x,size, log10(dnb), main= paste("log [",tit,"]"))
contour(x,size, log10(dnb),add=TRUE)

Alternative parametrization
x1 <- rnbinom(500, mu = 4, size = 1)
x2 <- rnbinom(500, mu = 4, size = 10)
x3 <- rnbinom(500, mu = 4, size = 100)
h1 <- hist(x1, breaks = 20, plot = FALSE)
h2 <- hist(x2, breaks = h1$breaks, plot = FALSE)
h3 <- hist(x3, breaks = h1$breaks, plot = FALSE)
barplot(rbind(h1$counts, h2$counts, h3$counts),

beside = TRUE, col = c("red","blue","cyan"),
names.arg = round(h1$breaks[-length(h1$breaks)]))

nextn Highly Composite Numbers

Description

nextn returns the smallest integer, greater than or equal to n, which can be obtained as a product of
powers of the values contained in factors. nextn is intended to be used to find a suitable length
to zero-pad the argument of fft to so that the transform is computed quickly. The default value for
factors ensures this.

Usage

nextn(n, factors = c(2,3,5))

Arguments

n an integer.

factors a vector of positive integer factors.

See Also

convolve, fft.

nlm 1349

Examples

nextn(1001) # 1024
table(sapply(599:630, nextn))

nlm Non-Linear Minimization

Description

This function carries out a minimization of the function f using a Newton-type algorithm. See the
references for details.

Usage

nlm(f, p, ..., hessian = FALSE, typsize = rep(1, length(p)),
fscale = 1, print.level = 0, ndigit = 12, gradtol = 1e-6,
stepmax = max(1000 * sqrt(sum((p/typsize)^2)), 1000),
steptol = 1e-6, iterlim = 100, check.analyticals = TRUE)

Arguments

f the function to be minimized. If the function value has an attribute called
gradient or both gradient and hessian attributes, these will be used in the
calculation of updated parameter values. Otherwise, numerical derivatives are
used. deriv returns a function with suitable gradient attribute. This should
be a function of a vector of the length of p followed by any other arguments
specified by the ... argument.

p starting parameter values for the minimization.

... additional arguments to f.

hessian if TRUE, the hessian of f at the minimum is returned.

typsize an estimate of the size of each parameter at the minimum.

fscale an estimate of the size of f at the minimum.

print.level this argument determines the level of printing which is done during the mini-
mization process. The default value of 0 means that no printing occurs, a value
of 1 means that initial and final details are printed and a value of 2 means that
full tracing information is printed.

ndigit the number of significant digits in the function f.

gradtol a positive scalar giving the tolerance at which the scaled gradient is considered
close enough to zero to terminate the algorithm. The scaled gradient is a measure
of the relative change in f in each direction p[i] divided by the relative change
in p[i].

stepmax a positive scalar which gives the maximum allowable scaled step length.
stepmax is used to prevent steps which would cause the optimization function to
overflow, to prevent the algorithm from leaving the area of interest in parameter
space, or to detect divergence in the algorithm. stepmax would be chosen small
enough to prevent the first two of these occurrences, but should be larger than
any anticipated reasonable step.

steptol A positive scalar providing the minimum allowable relative step length.

1350 nlm

iterlim a positive integer specifying the maximum number of iterations to be performed
before the program is terminated.

check.analyticals

a logical scalar specifying whether the analytic gradients and Hessians, if they
are supplied, should be checked against numerical derivatives at the initial pa-
rameter values. This can help detect incorrectly formulated gradients or Hes-
sians.

Details

Note that arguments after ... must be matched exactly.

If a gradient or hessian is supplied but evaluates to the wrong mode or length, it will be ignored if
check.analyticals = TRUE (the default) with a warning. The hessian is not even checked unless
the gradient is present and passes the sanity checks.

From the three methods available in the original source, we always use method “1” which is line
search.

The functions supplied must always return finite (including not NA and not NaN) values.

The parameter vector passed to f and hessian has special semantics and is shared between calls.
The functions should not copy it.

Value

A list containing the following components:

minimum the value of the estimated minimum of f.
estimate the point at which the minimum value of f is obtained.
gradient the gradient at the estimated minimum of f.
hessian the hessian at the estimated minimum of f (if requested).
code an integer indicating why the optimization process terminated.

1: relative gradient is close to zero, current iterate is probably solution.
2: successive iterates within tolerance, current iterate is probably solution.
3: last global step failed to locate a point lower than estimate. Either

estimate is an approximate local minimum of the function or steptol
is too small.

4: iteration limit exceeded.
5: maximum step size stepmax exceeded five consecutive times. Either the

function is unbounded below, becomes asymptotic to a finite value from
above in some direction or stepmax is too small.

iterations the number of iterations performed.

Source

The current code is by Saikat DebRoy and the R Core team, using a C translation of Fortran code
by Richard H. Jones.

References

Dennis, J. E. and Schnabel, R. B. (1983) Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ.

Schnabel, R. B., Koontz, J. E. and Weiss, B. E. (1985) A modular system of algorithms for uncon-
strained minimization. ACM Trans. Math. Software, 11, 419–440.

nlminb 1351

See Also

optim and nlminb.

constrOptim for constrained optimization, optimize for one-dimensional minimization and
uniroot for root finding. deriv to calculate analytical derivatives.

For nonlinear regression, nls may be better.

Examples

f <- function(x) sum((x-1:length(x))^2)
nlm(f, c(10,10))
nlm(f, c(10,10), print.level = 2)
utils::str(nlm(f, c(5), hessian = TRUE))

f <- function(x, a) sum((x-a)^2)
nlm(f, c(10,10), a=c(3,5))
f <- function(x, a)
{

res <- sum((x-a)^2)
attr(res, "gradient") <- 2*(x-a)
res

}
nlm(f, c(10,10), a=c(3,5))

more examples, including the use of derivatives.
Not run: demo(nlm)

nlminb Optimization using PORT routines

Description

Unconstrained and box-constrained optimization using PORT routines.

Usage

nlminb(start, objective, gradient = NULL, hessian = NULL, ...,
scale = 1, control = list(), lower = -Inf, upper = Inf)

Arguments

start numeric vector, initial values for the parameters to be optimized.

objective Function to be minimized. Must return a scalar value. The first argument to
objective is the vector of parameters to be optimized, whose initial values
are supplied through start. Further arguments (fixed during the course of the
optimization) to objective may be specified as well (see ...).

gradient Optional function that takes the same arguments as objective and evaluates
the gradient of objective at its first argument. Must return a vector as long as
start.

hessian Optional function that takes the same arguments as objective and evaluates the
hessian of objective at its first argument. Must return a square matrix of order
length(start). Only the lower triangle is used.

1352 nlminb

... Further arguments to be supplied to objective.

scale See PORT documentation (or leave alone).

control A list of control parameters. See below for details.

lower, upper vectors of lower and upper bounds, replicated to be as long as start. If unspec-
ified, all parameters are assumed to be unconstrained.

Details

Any names of start are passed on to objective and where applicable, gradient and hessian.
The parameter vector will be coerced to double.

The PORT documentation is at http://netlib.bell-labs.com/cm/cs/cstr/153.pdf.

The parameter vector passed to objective, gradient and hessian has special semantics and is
shared between calls. The functions should not copy it.

If any of the functions returns NA or NaN the internal code could infinite-loop in R prior to 2.15.2: this
is now an error for the gradient and Hessian, and such values for function evaluation are replaced
by +Inf with a warning.

Value

A list with components:

par The best set of parameters found.

objective The value of objective corresponding to par.

convergence An integer code. 0 indicates successful convergence.

message A character string giving any additional information returned by the optimizer,
or NULL. For details, see PORT documentation.

iterations Number of iterations performed.

evaluations Number of objective function and gradient function evaluations

Control parameters

Possible names in the control list and their default values are:

eval.max Maximum number of evaluations of the objective function allowed. Defaults to 200.

iter.max Maximum number of iterations allowed. Defaults to 150.

trace The value of the objective function and the parameters is printed every trace’th iteration.
Defaults to 0 which indicates no trace information is to be printed.

abs.tol Absolute tolerance. As from R 2.12.0, defaults to 0 so the absolute convergence test is
not used. If the objective function is known to be non-negative, the previous default of 1e-20
would be more appropriate.

rel.tol Relative tolerance. Defaults to 1e-10.

x.tol X tolerance. Defaults to 1.5e-8.

xf.tol false convergence tolerance. Defaults to 2.2e-14.

step.min, step.max Minimum and maximum step size. Both default to 1..

sing.tol singular convergence tolerance; defaults to rel.tol.

scale.init ...

diff.g an estimated bound on the relative error in the objective function value.

http://netlib.bell-labs.com/cm/cs/cstr/153.pdf

nlminb 1353

Author(s)

R port: Douglas Bates and Deepayan Sarkar.

Underlying Fortran code by David M. Gay

Source

http://netlib.bell-labs.com/netlib/port/

See Also

optim and nlm.

optimize for one-dimensional minimization and constrOptim for constrained optimization.

Examples

x <- rnbinom(100, mu = 10, size = 10)
hdev <- function(par)

-sum(dnbinom(x, mu = par[1], size = par[2], log = TRUE))
nlminb(c(9, 12), hdev)
nlminb(c(20, 20), hdev, lower = 0, upper = Inf)
nlminb(c(20, 20), hdev, lower = 0.001, upper = Inf)

slightly modified from the S-PLUS help page for nlminb
this example minimizes a sum of squares with known solution y
sumsq <- function(x, y) {sum((x-y)^2)}
y <- rep(1,5)
x0 <- rnorm(length(y))
nlminb(start = x0, sumsq, y = y)
now use bounds with a y that has some components outside the bounds
y <- c(0, 2, 0, -2, 0)
nlminb(start = x0, sumsq, lower = -1, upper = 1, y = y)
try using the gradient
sumsq.g <- function(x,y) 2*(x-y)
nlminb(start = x0, sumsq, sumsq.g,

lower = -1, upper = 1, y = y)
now use the hessian, too
sumsq.h <- function(x,y) diag(2, nrow = length(x))
nlminb(start = x0, sumsq, sumsq.g, sumsq.h,

lower = -1, upper = 1, y = y)

Rest lifted from optim help page

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
grr <- function(x) { ## Gradient of ’fr’

x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))
}
nlminb(c(-1.2,1), fr)

http://netlib.bell-labs.com/netlib/port/

1354 nls

nlminb(c(-1.2,1), fr, grr)

flb <- function(x)
{ p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) }

25-dimensional box constrained
par[24] is *not* at boundary
nlminb(rep(3, 25), flb,

lower=rep(2, 25),
upper=rep(4, 25))

trying to use a too small tolerance:
r <- nlminb(rep(3, 25), flb, control = list(rel.tol=1e-16))
stopifnot(grepl("rel.tol", r$message))

nls Nonlinear Least Squares

Description

Determine the nonlinear (weighted) least-squares estimates of the parameters of a nonlinear model.

Usage

nls(formula, data, start, control, algorithm,
trace, subset, weights, na.action, model,
lower, upper, ...)

Arguments

formula a nonlinear model formula including variables and parameters. Will be coerced
to a formula if necessary.

data an optional data frame in which to evaluate the variables in formula and
weights. Can also be a list or an environment, but not a matrix.

start a named list or named numeric vector of starting estimates. When start is
missing, a very cheap guess for start is tried (if algorithm != "plinear").

control an optional list of control settings. See nls.control for the names of the set-
table control values and their effect.

algorithm character string specifying the algorithm to use. The default algorithm is a
Gauss-Newton algorithm. Other possible values are "plinear" for the Golub-
Pereyra algorithm for partially linear least-squares models and "port" for the
‘nl2sol’ algorithm from the Port library – see the references.

trace logical value indicating if a trace of the iteration progress should be printed. De-
fault is FALSE. If TRUE the residual (weighted) sum-of-squares and the parameter
values are printed at the conclusion of each iteration. When the "plinear" al-
gorithm is used, the conditional estimates of the linear parameters are printed
after the nonlinear parameters. When the "port" algorithm is used the objec-
tive function value printed is half the residual (weighted) sum-of-squares.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

nls 1355

weights an optional numeric vector of (fixed) weights. When present, the objective func-
tion is weighted least squares.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The ‘factory-fresh’ default is na.omit. Value na.exclude can be useful.

model logical. If true, the model frame is returned as part of the object. Default is
FALSE.

lower, upper vectors of lower and upper bounds, replicated to be as long as start. If unspec-
ified, all parameters are assumed to be unconstrained. Bounds can only be used
with the "port" algorithm. They are ignored, with a warning, if given for other
algorithms.

... Additional optional arguments. None are used at present.

Details

An nls object is a type of fitted model object. It has methods for the generic functions anova,
coef, confint, deviance, df.residual, fitted, formula, logLik, predict, print, profile,
residuals, summary, vcov and weights.

Variables in formula (and weights if not missing) are looked for first in data, then the environment
of formula and finally along the search path. Functions in formula are searched for first in the
environment of formula and then along the search path.

Arguments subset and na.action are supported only when all the variables in the formula taken
from data are of the same length: other cases give a warning.

Note that the anova method does not check that the models are nested: this cannot easily be done
automatically, so use with care.

Value

A list of

m an nlsModel object incorporating the model.

data the expression that was passed to nls as the data argument. The actual data
values are present in the environment of the m component.

call the matched call with several components, notably algorithm.

na.action the "na.action" attribute (if any) of the model frame.

dataClasses the "dataClasses" attribute (if any) of the "terms" attribute of the model
frame.

model if model = TRUE, the model frame.

weights if weights is supplied, the weights.

convInfo a list with convergence information.

control the control list used, see the control argument.
convergence, message

for an algorithm = "port" fit only, a convergence code (0 for convergence)
and message.
To use these is deprecated, as they are available from convInfo now.

1356 nls

Warning

Do not use nls on artificial "zero-residual" data.
The nls function uses a relative-offset convergence criterion that compares the numerical impreci-
sion at the current parameter estimates to the residual sum-of-squares. This performs well on data
of the form

y = f(x, θ) + ε

(with var(eps) > 0). It fails to indicate convergence on data of the form

y = f(x, θ)

because the criterion amounts to comparing two components of the round-off error. If you wish to
test nls on artificial data please add a noise component, as shown in the example below.

The algorithm = "port" code appears unfinished, and does not even check that the starting value
is within the bounds. Use with caution, especially where bounds are supplied.

Note

Setting warnOnly = TRUE in the control argument (see nls.control) returns a non-converged
object (since R version 2.5.0) which might be useful for further convergence analysis, but not for
inference.

Author(s)

Douglas M. Bates and Saikat DebRoy: David M. Gay for the Fortran code used by
algorithm = "port".

References

Bates, D. M. and Watts, D. G. (1988) Nonlinear Regression Analysis and Its Applications, Wiley

Bates, D. M. and Chambers, J. M. (1992) Nonlinear models. Chapter 10 of Statistical Models in S
eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

http://www.netlib.org/port/ for the Port library documentation.

See Also

summary.nls, predict.nls, profile.nls.

Examples

require(graphics)

DNase1 <- subset(DNase, Run == 1)

using a selfStart model
fm1DNase1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1)
summary(fm1DNase1)
the coefficients only:
coef(fm1DNase1)
including their SE, etc:
coef(summary(fm1DNase1))

using conditional linearity

http://www.netlib.org/port/

nls 1357

fm2DNase1 <- nls(density ~ 1/(1 + exp((xmid - log(conc))/scal)),
data = DNase1,
start = list(xmid = 0, scal = 1),
algorithm = "plinear")

summary(fm2DNase1)

without conditional linearity
fm3DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),

data = DNase1,
start = list(Asym = 3, xmid = 0, scal = 1))

summary(fm3DNase1)

using Port’s nl2sol algorithm
fm4DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),

data = DNase1,
start = list(Asym = 3, xmid = 0, scal = 1),
algorithm = "port")

summary(fm4DNase1)

weighted nonlinear regression
Treated <- Puromycin[Puromycin$state == "treated",]
weighted.MM <- function(resp, conc, Vm, K)
{

Purpose: exactly as white book p. 451 -- RHS for nls()
Weighted version of Michaelis-Menten model
--
Arguments: ’y’, ’x’ and the two parameters (see book)
--
Author: Martin Maechler, Date: 23 Mar 2001

pred <- (Vm * conc)/(K + conc)
(resp - pred) / sqrt(pred)

}

Pur.wt <- nls(~ weighted.MM(rate, conc, Vm, K), data = Treated,
start = list(Vm = 200, K = 0.1))

summary(Pur.wt)

Passing arguments using a list that can not be coerced to a data.frame
lisTreat <- with(Treated,

list(conc1 = conc[1], conc.1 = conc[-1], rate = rate))

weighted.MM1 <- function(resp, conc1, conc.1, Vm, K)
{

conc <- c(conc1, conc.1)
pred <- (Vm * conc)/(K + conc)
(resp - pred) / sqrt(pred)

}
Pur.wt1 <- nls(~ weighted.MM1(rate, conc1, conc.1, Vm, K),

data = lisTreat, start = list(Vm = 200, K = 0.1))
stopifnot(all.equal(coef(Pur.wt), coef(Pur.wt1)))

Chambers and Hastie (1992) Statistical Models in S (p. 537):
If the value of the right side [of formula] has an attribute called
’gradient’ this should be a matrix with the number of rows equal
to the length of the response and one column for each parameter.

1358 nls

weighted.MM.grad <- function(resp, conc1, conc.1, Vm, K)
{

conc <- c(conc1, conc.1)

K.conc <- K+conc
dy.dV <- conc/K.conc
dy.dK <- -Vm*dy.dV/K.conc
pred <- Vm*dy.dV
pred.5 <- sqrt(pred)
dev <- (resp - pred) / pred.5
Ddev <- -0.5*(resp+pred)/(pred.5*pred)
attr(dev, "gradient") <- Ddev * cbind(Vm = dy.dV, K = dy.dK)
dev

}

Pur.wt.grad <- nls(~ weighted.MM.grad(rate, conc1, conc.1, Vm, K),
data = lisTreat, start = list(Vm = 200, K = 0.1))

rbind(coef(Pur.wt), coef(Pur.wt1), coef(Pur.wt.grad))

In this example, there seems no advantage to providing the gradient.
In other cases, there might be.

The two examples below show that you can fit a model to
artificial data with noise but not to artificial data
without noise.
x <- 1:10
y <- 2*x + 3 # perfect fit
yeps <- y + rnorm(length(y), sd = 0.01) # added noise
nls(yeps ~ a + b*x, start = list(a = 0.12345, b = 0.54321))
Not run:
terminates in an error, because convergence cannot be confirmed:
nls(y ~ a + b*x, start = list(a = 0.12345, b = 0.54321))

End(Not run)

the nls() internal cheap guess for starting values can be sufficient:

x <- -(1:100)/10
y <- 100 + 10 * exp(x / 2) + rnorm(x)/10
nlmod <- nls(y ~ Const + A * exp(B * x))

plot(x,y, main = "nls(*), data, true function and fit, n=100")
curve(100 + 10 * exp(x / 2), col=4, add = TRUE)
lines(x, predict(nlmod), col=2)

The muscle dataset in MASS is from an experiment on muscle
contraction on 21 animals. The observed variables are Strip
(identifier of muscle), Conc (Cacl concentration) and Length
(resulting length of muscle section).
utils::data(muscle, package = "MASS")

The non linear model considered is
Length = alpha + beta*exp(-Conc/theta) + error
where theta is constant but alpha and beta may vary with Strip.

nls.control 1359

with(muscle, table(Strip)) # 2,3 or 4 obs per strip

We first use the plinear algorithm to fit an overall model,
ignoring that alpha and beta might vary with Strip.

musc.1 <- nls(Length ~ cbind(1, exp(-Conc/th)), muscle,
start = list(th=1), algorithm="plinear")

summary(musc.1)

Then we use nls’ indexing feature for parameters in non-linear
models to use the conventional algorithm to fit a model in which
alpha and beta vary with Strip. The starting values are provided
by the previously fitted model.
Note that with indexed parameters, the starting values must be
given in a list (with names):
b <- coef(musc.1)
musc.2 <- nls(Length ~ a[Strip] + b[Strip]*exp(-Conc/th),

muscle,
start = list(a=rep(b[2],21), b=rep(b[3],21), th=b[1]))

summary(musc.2)

nls.control Control the Iterations in nls

Description

Allow the user to set some characteristics of the nls nonlinear least squares algorithm.

Usage

nls.control(maxiter = 50, tol = 1e-05, minFactor = 1/1024,
printEval = FALSE, warnOnly = FALSE)

Arguments

maxiter A positive integer specifying the maximum number of iterations allowed.

tol A positive numeric value specifying the tolerance level for the relative offset
convergence criterion.

minFactor A positive numeric value specifying the minimum step-size factor allowed on
any step in the iteration. The increment is calculated with a Gauss-Newton
algorithm and successively halved until the residual sum of squares has been
decreased or until the step-size factor has been reduced below this limit.

printEval a logical specifying whether the number of evaluations (steps in the gradient
direction taken each iteration) is printed.

warnOnly a logical specifying whether nls() should return instead of signalling an error
in the case of termination before convergence. Termination before convergence
happens upon completion of maxiter iterations, in the case of a singular gradi-
ent, and in the case that the step-size factor is reduced below minFactor.

1360 NLSstAsymptotic

Value

A list with exactly five components:

maxiter

tol

minFactor

printEval

warnOnly

with meanings as explained under ‘Arguments’.

Author(s)

Douglas Bates and Saikat DebRoy

References

Bates, D. M. and Watts, D. G. (1988), Nonlinear Regression Analysis and Its Applications, Wiley.

See Also

nls

Examples

nls.control(minFactor = 1/2048)

NLSstAsymptotic Fit the Asymptotic Regression Model

Description

Fits the asymptotic regression model, in the form b0 + b1*(1-exp(-exp(lrc) * x) to the
xy data. This can be used as a building block in determining starting estimates for more complicated
models.

Usage

NLSstAsymptotic(xy)

Arguments

xy a sortedXyData object

Value

A numeric value of length 3 with components labelled b0, b1, and lrc. b0 is the estimated intercept
on the y-axis, b1 is the estimated difference between the asymptote and the y-intercept, and lrc is
the estimated logarithm of the rate constant.

NLSstClosestX 1361

Author(s)

José Pinheiro and Douglas Bates

See Also

SSasymp

Examples

Lob.329 <- Loblolly[Loblolly$Seed == "329",]
print(NLSstAsymptotic(sortedXyData(expression(age),

expression(height),
Lob.329)), digits=3)

NLSstClosestX Inverse Interpolation

Description

Use inverse linear interpolation to approximate the x value at which the function represented by xy
is equal to yval.

Usage

NLSstClosestX(xy, yval)

Arguments

xy a sortedXyData object

yval a numeric value on the y scale

Value

A single numeric value on the x scale.

Author(s)

José Pinheiro and Douglas Bates

See Also

sortedXyData, NLSstLfAsymptote, NLSstRtAsymptote, selfStart

Examples

DNase.2 <- DNase[DNase$Run == "2",]
DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)
NLSstClosestX(DN.srt, 1.0)

1362 NLSstRtAsymptote

NLSstLfAsymptote Horizontal Asymptote on the Left Side

Description

Provide an initial guess at the horizontal asymptote on the left side (i.e., small values of x) of the
graph of y versus x from the xy object. Primarily used within initial functions for self-starting
nonlinear regression models.

Usage

NLSstLfAsymptote(xy)

Arguments

xy a sortedXyData object

Value

A single numeric value estimating the horizontal asymptote for small x.

Author(s)

José Pinheiro and Douglas Bates

See Also

sortedXyData, NLSstClosestX, NLSstRtAsymptote, selfStart

Examples

DNase.2 <- DNase[DNase$Run == "2",]
DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)
NLSstLfAsymptote(DN.srt)

NLSstRtAsymptote Horizontal Asymptote on the Right Side

Description

Provide an initial guess at the horizontal asymptote on the right side (i.e., large values of x) of the
graph of y versus x from the xy object. Primarily used within initial functions for self-starting
nonlinear regression models.

Usage

NLSstRtAsymptote(xy)

Arguments

xy a sortedXyData object

nobs 1363

Value

A single numeric value estimating the horizontal asymptote for large x.

Author(s)

José Pinheiro and Douglas Bates

See Also

sortedXyData, NLSstClosestX, NLSstRtAsymptote, selfStart

Examples

DNase.2 <- DNase[DNase$Run == "2",]
DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)
NLSstRtAsymptote(DN.srt)

nobs Extract the Number of Observations from a Fit.

Description

Extract the number of ‘observations’ from a model fit. This is principally intended to be used in
computing BIC (see AIC).

Usage

nobs(object, ...)

Default S3 method:
nobs(object, use.fallback = FALSE, ...)

Arguments

object A fitted model object.

use.fallback logical: should fallback methods be used to try to guess the value?

... Further arguments to be passed to methods.

Details

This is a generic function, with an S4 generic in package stats4. There are methods in this package
for objects of classes "lm", "glm", "nls" and "logLik", as well as a default method (which throws
an error, unless use.fallback = TRUE when it looks for weights and residuals components –
use with care!).

The main usage is in determining the appropriate penalty for BIC, but nobs is also used by the
stepwise fitting methods step, add1 and drop1 as a quick check that different fits have been fitted
to the same set of data (and not, say, that further rows have been dropped because of NAs in the
new predictors).

For lm, glm and nls fits, observations with zero weight are not included.

1364 Normal

Value

A single number, normally an integer. Could be NA.

See Also

AIC.

Normal The Normal Distribution

Description

Density, distribution function, quantile function and random generation for the normal distribution
with mean equal to mean and standard deviation equal to sd.

Usage

dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

mean vector of means.

sd vector of standard deviations.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x] otherwise, P [X > x].

Details

If mean or sd are not specified they assume the default values of 0 and 1, respectively.

The normal distribution has density

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

where µ is the mean of the distribution and σ the standard deviation.

qnorm is based on Wichura’s algorithm AS 241 which provides precise results up to about 16 digits.

Value

dnorm gives the density, pnorm gives the distribution function, qnorm gives the quantile function,
and rnorm generates random deviates.

Normal 1365

Source

For pnorm, based on

Cody, W. D. (1993) Algorithm 715: SPECFUN – A portable FORTRAN package of special function
routines and test drivers. ACM Transactions on Mathematical Software 19, 22–32.

For qnorm, the code is a C translation of

Wichura, M. J. (1988) Algorithm AS 241: The percentage points of the normal distribution. Applied
Statistics, 37, 477–484.

For rnorm, see RNG for how to select the algorithm and for references to the supplied methods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
1, chapter 13. Wiley, New York.

See Also

Distributions for other standard distributions, including dlnorm for the Lognormal distribution.

Examples

require(graphics)

dnorm(0) == 1/ sqrt(2*pi)
dnorm(1) == exp(-1/2)/ sqrt(2*pi)
dnorm(1) == 1/ sqrt(2*pi*exp(1))

Using "log = TRUE" for an extended range :
par(mfrow=c(2,1))
plot(function(x) dnorm(x, log=TRUE), -60, 50,

main = "log { Normal density }")
curve(log(dnorm(x)), add=TRUE, col="red",lwd=2)
mtext("dnorm(x, log=TRUE)", adj=0)
mtext("log(dnorm(x))", col="red", adj=1)

plot(function(x) pnorm(x, log.p=TRUE), -50, 10,
main = "log { Normal Cumulative }")

curve(log(pnorm(x)), add=TRUE, col="red",lwd=2)
mtext("pnorm(x, log=TRUE)", adj=0)
mtext("log(pnorm(x))", col="red", adj=1)

if you want the so-called ’error function’
erf <- function(x) 2 * pnorm(x * sqrt(2)) - 1
(see Abramowitz and Stegun 29.2.29)
and the so-called ’complementary error function’
erfc <- function(x) 2 * pnorm(x * sqrt(2), lower = FALSE)
and the inverses
erfinv <- function (x) qnorm((1 + x)/2)/sqrt(2)
erfcinv <- function (x) qnorm(x/2, lower = FALSE)/sqrt(2)

1366 numericDeriv

numericDeriv Evaluate Derivatives Numerically

Description

numericDeriv numerically evaluates the gradient of an expression.

Usage

numericDeriv(expr, theta, rho = parent.frame(), dir = 1.0)

Arguments

expr The expression to be differentiated. The value of this expression should be a
numeric vector.

theta A character vector of names of numeric variables used in expr.

rho An environment containing all the variables needed to evaluate expr.

dir A numeric vector of directions to use for the finite differences.

Details

This is a front end to the C function numeric_deriv, which is described in Writing R Extensions.

The numeric variables must be of type real and not integer.

Value

The value of eval(expr, envir = rho) plus a matrix attribute called gradient. The columns of
this matrix are the derivatives of the value with respect to the variables listed in theta.

Author(s)

Saikat DebRoy <saikat@stat.wisc.edu>

Examples

myenv <- new.env()
assign("mean", 0., envir = myenv)
assign("sd", 1., envir = myenv)
assign("x", seq(-3., 3., len = 31), envir = myenv)
numericDeriv(quote(pnorm(x, mean, sd)), c("mean", "sd"), myenv)

offset 1367

offset Include an Offset in a Model Formula

Description

An offset is a term to be added to a linear predictor, such as in a generalised linear model, with
known coefficient 1 rather than an estimated coefficient.

Usage

offset(object)

Arguments

object An offset to be included in a model frame

Details

There can be more than one offset in a model formula, but - is not supported for offset terms (and
is equivalent to +).

Value

The input value.

See Also

model.offset, model.frame.

For examples see glm and Insurance in package MASS.

oneway.test Test for Equal Means in a One-Way Layout

Description

Test whether two or more samples from normal distributions have the same means. The variances
are not necessarily assumed to be equal.

Usage

oneway.test(formula, data, subset, na.action, var.equal = FALSE)

http://CRAN.R-project.org/package=MASS

1368 oneway.test

Arguments

formula a formula of the form lhs ~ rhs where lhs gives the sample values and rhs
the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

var.equal a logical variable indicating whether to treat the variances in the samples as
equal. If TRUE, then a simple F test for the equality of means in a one-way
analysis of variance is performed. If FALSE, an approximate method of Welch
(1951) is used, which generalizes the commonly known 2-sample Welch test to
the case of arbitrarily many samples.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

parameter the degrees of freedom of the exact or approximate F distribution of the test
statistic.

p.value the p-value of the test.

method a character string indicating the test performed.

data.name a character string giving the names of the data.

References

B. L. Welch (1951), On the comparison of several mean values: an alternative approach.
Biometrika, 38, 330–336.

See Also

The standard t test (t.test) as the special case for two samples; the Kruskal-Wallis test
kruskal.test for a nonparametric test for equal location parameters in a one-way layout.

Examples

Not assuming equal variances
oneway.test(extra ~ group, data = sleep)
Assuming equal variances
oneway.test(extra ~ group, data = sleep, var.equal = TRUE)
which gives the same result as
anova(lm(extra ~ group, data = sleep))

optim 1369

optim General-purpose Optimization

Description

General-purpose optimization based on Nelder–Mead, quasi-Newton and conjugate-gradient algo-
rithms. It includes an option for box-constrained optimization and simulated annealing.

Usage

optim(par, fn, gr = NULL, ...,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE)

optimHess(par, fn, gr = NULL, ..., control = list())

Arguments

par Initial values for the parameters to be optimized over.

fn A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

gr A function to return the gradient for the "BFGS", "CG" and "L-BFGS-B" methods.
If it is NULL, a finite-difference approximation will be used.
For the "SANN" method it specifies a function to generate a new candidate point.
If it is NULL a default Gaussian Markov kernel is used.

... Further arguments to be passed to fn and gr.

method The method to be used. See ‘Details’.

lower, upper Bounds on the variables for the "L-BFGS-B" method, or bounds in which to
search for method "Brent".

control A list of control parameters. See ‘Details’.

hessian Logical. Should a numerically differentiated Hessian matrix be returned?

Details

Note that arguments after ... must be matched exactly.

By default optim performs minimization, but it will maximize if control$fnscale is negative.
optimHess is an auxiliary function to compute the Hessian at a later stage if hessian = TRUE was
forgotten.

The default method is an implementation of that of Nelder and Mead (1965), that uses only func-
tion values and is robust but relatively slow. It will work reasonably well for non-differentiable
functions.

Method "BFGS" is a quasi-Newton method (also known as a variable metric algorithm), specifi-
cally that published simultaneously in 1970 by Broyden, Fletcher, Goldfarb and Shanno. This uses
function values and gradients to build up a picture of the surface to be optimized.

Method "CG" is a conjugate gradients method based on that by Fletcher and Reeves (1964) (but
with the option of Polak–Ribiere or Beale–Sorenson updates). Conjugate gradient methods will

1370 optim

generally be more fragile than the BFGS method, but as they do not store a matrix they may be
successful in much larger optimization problems.

Method "L-BFGS-B" is that of Byrd et. al. (1995) which allows box constraints, that is each
variable can be given a lower and/or upper bound. The initial value must satisfy the constraints.
This uses a limited-memory modification of the BFGS quasi-Newton method. If non-trivial bounds
are supplied, this method will be selected, with a warning.

Nocedal and Wright (1999) is a comprehensive reference for the previous three methods.

Method "SANN" is by default a variant of simulated annealing given in Belisle (1992). Simulated-
annealing belongs to the class of stochastic global optimization methods. It uses only function
values but is relatively slow. It will also work for non-differentiable functions. This implemen-
tation uses the Metropolis function for the acceptance probability. By default the next candidate
point is generated from a Gaussian Markov kernel with scale proportional to the actual tempera-
ture. If a function to generate a new candidate point is given, method "SANN" can also be used
to solve combinatorial optimization problems. Temperatures are decreased according to the loga-
rithmic cooling schedule as given in Belisle (1992, p. 890); specifically, the temperature is set to
temp / log(((t-1) %/% tmax)*tmax + exp(1)), where t is the current iteration step and temp
and tmax are specifiable via control, see below. Note that the "SANN" method depends critically
on the settings of the control parameters. It is not a general-purpose method but can be very useful
in getting to a good value on a very rough surface.

Method "Brent" is for one-dimensional problems only, using optimize(). It can be useful in cases
where optim() is used inside other functions where only method can be specified, such as in mle
from package stats4.

Function fn can return NA or Inf if the function cannot be evaluated at the supplied value, but the
initial value must have a computable finite value of fn. (Except for method "L-BFGS-B" where the
values should always be finite.)

optim can be used recursively, and for a single parameter as well as many. It also accepts a zero-
length par, and just evaluates the function with that argument.

The control argument is a list that can supply any of the following components:

trace Non-negative integer. If positive, tracing information on the progress of the optimization
is produced. Higher values may produce more tracing information: for method "L-BFGS-B"
there are six levels of tracing. (To understand exactly what these do see the source code:
higher levels give more detail.)

fnscale An overall scaling to be applied to the value of fn and gr during optimization. If
negative, turns the problem into a maximization problem. Optimization is performed on
fn(par)/fnscale.

parscale A vector of scaling values for the parameters. Optimization is performed on
par/parscale and these should be comparable in the sense that a unit change in any
element produces about a unit change in the scaled value. Not used (nor needed) for
method = "Brent".

ndeps A vector of step sizes for the finite-difference approximation to the gradient, on
par/parscale scale. Defaults to 1e-3.

maxit The maximum number of iterations. Defaults to 100 for the derivative-based methods, and
500 for "Nelder-Mead".
For "SANN" maxit gives the total number of function evaluations: there is no other stopping
criterion. Defaults to 10000.

abstol The absolute convergence tolerance. Only useful for non-negative functions, as a tolerance
for reaching zero.

optim 1371

reltol Relative convergence tolerance. The algorithm stops if it is unable to reduce
the value by a factor of reltol * (abs(val) + reltol) at a step. Defaults to
sqrt(.Machine$double.eps), typically about 1e-8.

alpha, beta, gamma Scaling parameters for the "Nelder-Mead" method. alpha is the reflection
factor (default 1.0), beta the contraction factor (0.5) and gamma the expansion factor (2.0).

REPORT The frequency of reports for the "BFGS", "L-BFGS-B" and "SANN" methods if
control$trace is positive. Defaults to every 10 iterations for "BFGS" and "L-BFGS-B", or
every 100 temperatures for "SANN".

type for the conjugate-gradients method. Takes value 1 for the Fletcher–Reeves update, 2 for
Polak–Ribiere and 3 for Beale–Sorenson.

lmm is an integer giving the number of BFGS updates retained in the "L-BFGS-B" method, It de-
faults to 5.

factr controls the convergence of the "L-BFGS-B" method. Convergence occurs when the reduc-
tion in the objective is within this factor of the machine tolerance. Default is 1e7, that is a
tolerance of about 1e-8.

pgtol helps control the convergence of the "L-BFGS-B" method. It is a tolerance on the projected
gradient in the current search direction. This defaults to zero, when the check is suppressed.

temp controls the "SANN" method. It is the starting temperature for the cooling schedule. Defaults
to 10.

tmax is the number of function evaluations at each temperature for the "SANN" method. Defaults to
10.

Any names given to par will be copied to the vectors passed to fn and gr. Note that no other
attributes of par are copied over.

The parameter vector passed to fn has special semantics and may be shared between calls: the
function should not change or copy it.

Value

For optim, a list with components:

par The best set of parameters found.
value The value of fn corresponding to par.
counts A two-element integer vector giving the number of calls to fn and gr respec-

tively. This excludes those calls needed to compute the Hessian, if requested,
and any calls to fn to compute a finite-difference approximation to the gradient.

convergence An integer code. 0 indicates successful completion (which is always the case for
"SANN" and "Brent"). Possible error codes are
1 indicates that the iteration limit maxit had been reached.
10 indicates degeneracy of the Nelder–Mead simplex.
51 indicates a warning from the "L-BFGS-B" method; see component message

for further details.
52 indicates an error from the "L-BFGS-B" method; see component message

for further details.
message A character string giving any additional information returned by the optimizer,

or NULL.
hessian Only if argument hessian is true. A symmetric matrix giving an estimate of the

Hessian at the solution found. Note that this is the Hessian of the unconstrained
problem even if the box constraints are active.

For optimHess, the description of the hessian component applies.

1372 optim

Note

optim will work with one-dimensional pars, but the default method does not work well (and will
warn). Method "Brent" uses optimize and needs bounds to be available; "BFGS" often works well
enough if not.

Source

The code for methods "Nelder-Mead", "BFGS" and "CG" was based originally on Pascal code in
Nash (1990) that was translated by p2c and then hand-optimized. Dr Nash has agreed that the code
can be made freely available.

The code for method "L-BFGS-B" is based on Fortran code by Zhu, Byrd, Lu-Chen and Nocedal
obtained from Netlib (file ‘opt/lbfgs_bcm.shar’: another version is in ‘toms/778’).

The code for method "SANN" was contributed by A. Trapletti.

References

Belisle, C. J. P. (1992) Convergence theorems for a class of simulated annealing algorithms on Rd.
J. Applied Probability, 29, 885–895.

Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995) A limited memory algorithm for bound con-
strained optimization. SIAM J. Scientific Computing, 16, 1190–1208.

Fletcher, R. and Reeves, C. M. (1964) Function minimization by conjugate gradients. Computer
Journal 7, 148–154.

Nash, J. C. (1990) Compact Numerical Methods for Computers. Linear Algebra and Function
Minimisation. Adam Hilger.

Nelder, J. A. and Mead, R. (1965) A simplex algorithm for function minimization. Computer
Journal 7, 308–313.

Nocedal, J. and Wright, S. J. (1999) Numerical Optimization. Springer.

See Also

nlm, nlminb.

optimize for one-dimensional minimization and constrOptim for constrained optimization.

Examples

require(graphics)

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
grr <- function(x) { ## Gradient of ’fr’

x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))
}
optim(c(-1.2,1), fr)
(res <- optim(c(-1.2,1), fr, grr, method = "BFGS"))
optimHess(res$par, fr, grr)

optim 1373

optim(c(-1.2,1), fr, NULL, method = "BFGS", hessian = TRUE)
These do not converge in the default number of steps
optim(c(-1.2,1), fr, grr, method = "CG")
optim(c(-1.2,1), fr, grr, method = "CG", control=list(type=2))
optim(c(-1.2,1), fr, grr, method = "L-BFGS-B")

flb <- function(x)
{ p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) }

25-dimensional box constrained
optim(rep(3, 25), flb, NULL, method = "L-BFGS-B",

lower=rep(2, 25), upper=rep(4, 25)) # par[24] is *not* at boundary

"wild" function , global minimum at about -15.81515
fw <- function (x)

10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80
plot(fw, -50, 50, n=1000, main = "optim() minimising ’wild function’")

res <- optim(50, fw, method="SANN",
control=list(maxit=20000, temp=20, parscale=20))

res
Now improve locally {typically only by a small bit}:
(r2 <- optim(res$par, fw, method="BFGS"))
points(r2$par, r2$value, pch = 8, col = "red", cex = 2)

Combinatorial optimization: Traveling salesman problem
library(stats) # normally loaded

eurodistmat <- as.matrix(eurodist)

distance <- function(sq) { # Target function
sq2 <- embed(sq, 2)
sum(eurodistmat[cbind(sq2[,2],sq2[,1])])

}

genseq <- function(sq) { # Generate new candidate sequence
idx <- seq(2, NROW(eurodistmat)-1)
changepoints <- sample(idx, size=2, replace=FALSE)
tmp <- sq[changepoints[1]]
sq[changepoints[1]] <- sq[changepoints[2]]
sq[changepoints[2]] <- tmp
sq

}

sq <- c(1:nrow(eurodistmat), 1) # Initial sequence: alphabetic
distance(sq)
rotate for conventional orientation
loc <- -cmdscale(eurodist, add=TRUE)$points
x <- loc[,1]; y <- loc[,2]
s <- seq_len(nrow(eurodistmat))
tspinit <- loc[sq,]

plot(x, y, type="n", asp=1, xlab="", ylab="",
main="initial solution of traveling salesman problem", axes = FALSE)

arrows(tspinit[s,1], tspinit[s,2], tspinit[s+1,1], tspinit[s+1,2],
angle=10, col="green")

text(x, y, labels(eurodist), cex=0.8)

1374 optimize

set.seed(123) # chosen to get a good soln relatively quickly
res <- optim(sq, distance, genseq, method = "SANN",

control = list(maxit = 30000, temp = 2000, trace = TRUE,
REPORT = 500))

res # Near optimum distance around 12842

tspres <- loc[res$par,]
plot(x, y, type="n", asp=1, xlab="", ylab="",

main="optim() ’solving’ traveling salesman problem", axes = FALSE)
arrows(tspres[s,1], tspres[s,2], tspres[s+1,1], tspres[s+1,2],

angle=10, col="red")
text(x, y, labels(eurodist), cex=0.8)

optimize One Dimensional Optimization

Description

The function optimize searches the interval from lower to upper for a minimum or maximum of
the function f with respect to its first argument.

optimise is an alias for optimize.

Usage

optimize(f = , interval = , ..., lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps^0.25)

optimise(f = , interval = , ..., lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps^0.25)

Arguments

f the function to be optimized. The function is either minimized or maximized
over its first argument depending on the value of maximum.

interval a vector containing the end-points of the interval to be searched for the mini-
mum.

... additional named or unnamed arguments to be passed to f.

lower the lower end point of the interval to be searched.

upper the upper end point of the interval to be searched.

maximum logical. Should we maximize or minimize (the default)?

tol the desired accuracy.

Details

Note that arguments after ... must be matched exactly.

The method used is a combination of golden section search and successive parabolic interpolation,
and was designed for use with continuous functions. Convergence is never much slower than that
for a Fibonacci search. If f has a continuous second derivative which is positive at the minimum

optimize 1375

(which is not at lower or upper), then convergence is superlinear, and usually of the order of about
1.324.

The function f is never evaluated at two points closer together than ε|x0| + (tol/3), where ε is
approximately sqrt(.Machine$double.eps) and x0 is the final abscissa optimize()$minimum.
If f is a unimodal function and the computed values of f are always unimodal when separated by at
least ε |x|+ (tol/3), then x0 approximates the abscissa of the global minimum of f on the interval
lower,upper with an error less than ε|x0|+ tol.
If f is not unimodal, then optimize() may approximate a local, but perhaps non-global, minimum
to the same accuracy.

The first evaluation of f is always at x1 = a + (1 − φ)(b − a) where (a,b) = (lower, upper)
and φ = (

√
5− 1)/2 = 0.61803.. is the golden section ratio. Almost always, the second evaluation

is at x2 = a+ φ(b− a). Note that a local minimum inside [x1, x2] will be found as solution, even
when f is constant in there, see the last example.

f will be called as f(x, ...) for a numeric value of x.

Value

A list with components minimum (or maximum) and objective which give the location of the mini-
mum (or maximum) and the value of the function at that point.

Note

The argument passed to f has special semantics and is shared between calls. The function should
not copy it.

Source

A C translation of Fortran code http://www.netlib.org/fmm/fmin.f (author(s) unstated) based
on the Algol 60 procedure localmin given in the reference.

References

Brent, R. (1973) Algorithms for Minimization without Derivatives. Englewood Cliffs N.J.: Prentice-
Hall.

See Also

nlm, uniroot.

Examples

require(graphics)

f <- function (x,a) (x-a)^2
xmin <- optimize(f, c(0, 1), tol = 0.0001, a = 1/3)
xmin

See where the function is evaluated:
optimize(function(x) x^2*(print(x)-1), lower=0, upper=10)

"wrong" solution with unlucky interval and piecewise constant f():
f <- function(x) ifelse(x > -1, ifelse(x < 4, exp(-1/abs(x - 1)), 10), 10)
fp <- function(x) { print(x); f(x) }

http://www.netlib.org/fmm/fmin.f

1376 order.dendrogram

plot(f, -2,5, ylim = 0:1, col = 2)
optimize(fp, c(-4, 20))# doesn’t see the minimum
optimize(fp, c(-7, 20))# ok

order.dendrogram Ordering or Labels of the Leaves in a Dendrogram

Description

Theses functions return the order (index) or the "label" attribute for the leaves in a dendrogram.
These indices can then be used to access the appropriate components of any additional data.

Usage

order.dendrogram(x)

S3 method for class ’dendrogram’
labels(object, ...)

Arguments

x, object a dendrogram (see as.dendrogram).

... additional arguments

Details

The indices or labels for the leaves in left to right order are retrieved.

Value

A vector with length equal to the number of leaves in the dendrogram is returned. From
r <- order.dendrogram(), each element is the index into the original data (from which the den-
drogram was computed).

Author(s)

R. Gentleman (order.dendrogram) and Martin Maechler (labels.dendrogram).

See Also

reorder, dendrogram.

Examples

set.seed(123)
x <- rnorm(10)
hc <- hclust(dist(x))
hc$order
dd <- as.dendrogram(hc)
order.dendrogram(dd) ## the same :
stopifnot(hc$order == order.dendrogram(dd))

d2 <- as.dendrogram(hclust(dist(USArrests)))

p.adjust 1377

labels(d2) ## in this case the same as
stopifnot(identical(labels(d2),

rownames(USArrests)[order.dendrogram(d2)]))

p.adjust Adjust P-values for Multiple Comparisons

Description

Given a set of p-values, returns p-values adjusted using one of several methods.

Usage

p.adjust(p, method = p.adjust.methods, n = length(p))

p.adjust.methods
c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY",
"fdr", "none")

Arguments

p numeric vector of p-values (possibly with NAs). Any other R is coerced by
as.numeric.

method correction method

n number of comparisons, must be at least length(p); only set this (to non-
default) when you know what you are doing!

Details

The adjustment methods include the Bonferroni correction ("bonferroni") in which the p-values
are multiplied by the number of comparisons. Less conservative corrections are also included by
Holm (1979) ("holm"), Hochberg (1988) ("hochberg"), Hommel (1988) ("hommel"), Benjamini
& Hochberg (1995) ("BH" or its alias "fdr"), and Benjamini & Yekutieli (2001) ("BY"), respec-
tively. A pass-through option ("none") is also included. The set of methods are contained in the
p.adjust.methods vector for the benefit of methods that need to have the method as an option and
pass it on to p.adjust.

The first four methods are designed to give strong control of the family-wise error rate. There seems
no reason to use the unmodified Bonferroni correction because it is dominated by Holm’s method,
which is also valid under arbitrary assumptions.

Hochberg’s and Hommel’s methods are valid when the hypothesis tests are independent or when
they are non-negatively associated (Sarkar, 1998; Sarkar and Chang, 1997). Hommel’s method is
more powerful than Hochberg’s, but the difference is usually small and the Hochberg p-values are
faster to compute.

The "BH" (aka "fdr") and "BY" method of Benjamini, Hochberg, and Yekutieli control the false
discovery rate, the expected proportion of false discoveries amongst the rejected hypotheses. The
false discovery rate is a less stringent condition than the family-wise error rate, so these methods
are more powerful than the others.

Note that you can set n larger than length(p) which means the unobserved p-values are assumed
to be greater than all the observed p for "bonferroni" and "holm" methods and equal to 1 for the
other methods.

1378 p.adjust

Value

A numeric vector of corrected p-values (of the same length as p, with names copied from p).

References

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57, 289–300.

Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing
under dependency. Annals of Statistics 29, 1165–1188.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of
Statistics, 6, 65–70.

Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni
test. Biometrika, 75, 383–386.

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika,
75, 800–803.

Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46, 561–576. (An
excellent review of the area.)

Sarkar, S. (1998). Some probability inequalities for ordered MTP2 random variables: a proof of
Simes conjecture. Annals of Statistics, 26, 494–504.

Sarkar, S., and Chang, C. K. (1997). Simes’ method for multiple hypothesis testing with positively
dependent test statistics. Journal of the American Statistical Association, 92, 1601–1608.

Wright, S. P. (1992). Adjusted P-values for simultaneous inference. Biometrics, 48, 1005–1013.
(Explains the adjusted P-value approach.)

See Also

pairwise.* functions such as pairwise.t.test.

Examples

require(graphics)

set.seed(123)
x <- rnorm(50, mean=c(rep(0,25),rep(3,25)))
p <- 2*pnorm(sort(-abs(x)))

round(p, 3)
round(p.adjust(p), 3)
round(p.adjust(p,"BH"), 3)

or all of them at once (dropping the "fdr" alias):
p.adjust.M <- p.adjust.methods[p.adjust.methods != "fdr"]
p.adj <- sapply(p.adjust.M, function(meth) p.adjust(p, meth))
p.adj.60 <- sapply(p.adjust.M, function(meth) p.adjust(p, meth, n = 60))
stopifnot(identical(p.adj[,"none"], p), p.adj <= p.adj.60)
round(p.adj, 3)
or a bit nicer:
noquote(apply(p.adj, 2, format.pval, digits = 3))

and a graphic:
matplot(p, p.adj, ylab="p.adjust(p, meth)", type = "l", asp=1, lty=1:6,

pairwise.prop.test 1379

main = "P-value adjustments")
legend(.7,.6, p.adjust.M, col=1:6, lty=1:6)

Can work with NA’s:
pN <- p; iN <- c(46,47); pN[iN] <- NA
pN.a <- sapply(p.adjust.M, function(meth) p.adjust(pN, meth))
The smallest 20 P-values all affected by the NA’s :
round((pN.a / p.adj)[1:20,] , 4)

pairwise.prop.test Pairwise comparisons for proportions

Description

Calculate pairwise comparisons between pairs of proportions with correction for multiple testing

Usage

pairwise.prop.test(x, n, p.adjust.method = p.adjust.methods, ...)

Arguments

x Vector of counts of successes or a matrix with 2 columns giving the counts of
successes and failures, respectively.

n Vector of counts of trials; ignored if x is a matrix.

p.adjust.method

Method for adjusting p values (see p.adjust)

... Additional arguments to pass to prop.test

Value

Object of class "pairwise.htest"

See Also

prop.test, p.adjust

Examples

smokers <- c(83, 90, 129, 70)
patients <- c(86, 93, 136, 82)
pairwise.prop.test(smokers, patients)

1380 pairwise.t.test

pairwise.t.test Pairwise t tests

Description

Calculate pairwise comparisons between group levels with corrections for multiple testing

Usage

pairwise.t.test(x, g, p.adjust.method = p.adjust.methods,
pool.sd = !paired, paired = FALSE,
alternative = c("two.sided", "less", "greater"),
...)

Arguments

x response vector.
g grouping vector or factor.
p.adjust.method

Method for adjusting p values (see p.adjust).
pool.sd switch to allow/disallow the use of a pooled SD
paired a logical indicating whether you want paired t-tests.
alternative a character string specifying the alternative hypothesis, must be one of

"two.sided" (default), "greater" or "less".
... additional arguments to pass to t.test.

Details

The pool.sd switch calculates a common SD for all groups and uses that for all comparisons
(this can be useful if some groups are small). This method does not actually call t.test, so extra
arguments are ignored. Pooling does not generalize to paired tests so pool.sd and paired cannot
both be TRUE.
Only the lower triangle of the matrix of possible comparisons is being calculated, so setting
alternative to anything other than "two.sided" requires that the levels of g are ordered sen-
sibly.

Value

Object of class "pairwise.htest"

See Also

t.test, p.adjust

Examples

attach(airquality)
Month <- factor(Month, labels = month.abb[5:9])
pairwise.t.test(Ozone, Month)
pairwise.t.test(Ozone, Month, p.adj = "bonf")
pairwise.t.test(Ozone, Month, pool.sd = FALSE)
detach()

pairwise.table 1381

pairwise.table Tabulate p values for pairwise comparisons

Description

Creates table of p values for pairwise comparisons with corrections for multiple testing.

Usage

pairwise.table(compare.levels, level.names, p.adjust.method)

Arguments

compare.levels Function to compute (raw) p value given indices i and j

level.names Names of the group levels
p.adjust.method

Method for multiple testing adjustment

Details

Functions that do multiple group comparisons create separate compare.levels functions (assumed
to be symmetrical in i and j) and passes them to this function.

Value

Table of p values in lower triangular form.

See Also

pairwise.t.test, et al.

pairwise.wilcox.test Pairwise Wilcoxon Rank Sum Tests

Description

Calculate pairwise comparisons between group levels with corrections for multiple testing.

Usage

pairwise.wilcox.test(x, g, p.adjust.method = p.adjust.methods,
paired=FALSE, ...)

Arguments

x response vector.
g grouping vector or factor.
p.adjust.method

method for adjusting p values (see p.adjust).
paired a logical indicating whether you want a paired test.
... additional arguments to pass to wilcox.test.

1382 plot.acf

Details

Extra arguments that are passed on to wilcox.test may or may not be sensible in this context.
In particular, only the lower triangle of the matrix of possible comparisons is being calculated, so
setting alternative to anything other than "two.sided" requires that the levels of g are ordered
sensibly.

Value

Object of class "pairwise.htest"

See Also

wilcox.test, p.adjust

Examples

attach(airquality)
Month <- factor(Month, labels = month.abb[5:9])
These give warnings because of ties :
pairwise.wilcox.test(Ozone, Month)
pairwise.wilcox.test(Ozone, Month, p.adj = "bonf")
detach()

plot.acf Plot Autocovariance and Autocorrelation Functions

Description

Plot method for objects of class "acf".

Usage

S3 method for class ’acf’
plot(x, ci = 0.95, type = "h", xlab = "Lag", ylab = NULL,

ylim = NULL, main = NULL,
ci.col = "blue", ci.type = c("white", "ma"),
max.mfrow = 6, ask = Npgs > 1 && dev.interactive(),
mar = if(nser > 2) c(3,2,2,0.8) else par("mar"),
oma = if(nser > 2) c(1,1.2,1,1) else par("oma"),
mgp = if(nser > 2) c(1.5,0.6,0) else par("mgp"),
xpd = par("xpd"),
cex.main = if(nser > 2) 1 else par("cex.main"),
verbose = getOption("verbose"),
...)

Arguments

x an object of class "acf".

ci coverage probability for confidence interval. Plotting of the confidence interval
is suppressed if ci is zero or negative.

type the type of plot to be drawn, default to histogram like vertical lines.

plot.density 1383

xlab the x label of the plot.

ylab the y label of the plot.

ylim numeric of length 2 giving the y limits for the plot.

main overall title for the plot.

ci.col colour to plot the confidence interval lines.

ci.type should the confidence limits assume a white noise input or for lag k an MA(k−1)
input?

max.mfrow positive integer; for multivariate x indicating how many rows and columns of
plots should be put on one page, using par(mfrow = c(m,m)).

ask logical; if TRUE, the user is asked before a new page is started.
mar, oma, mgp, xpd, cex.main

graphics parameters as in par(*), by default adjusted to use smaller than default
margins for multivariate x only.

verbose logical. Should R report extra information on progress?

... graphics parameters to be passed to the plotting routines.

Note

The confidence interval plotted in plot.acf is based on an uncorrelated series and should be treated
with appropriate caution. Using ci.type = "ma" may be less potentially misleading.

See Also

acf which calls plot.acf by default.

Examples

require(graphics)

z4 <- ts(matrix(rnorm(400), 100, 4), start=c(1961, 1), frequency=12)
z7 <- ts(matrix(rnorm(700), 100, 7), start=c(1961, 1), frequency=12)
acf(z4)
acf(z7, max.mfrow = 7)# squeeze on 1 page
acf(z7) # multi-page

plot.density Plot Method for Kernel Density Estimation

Description

The plot method for density objects.

Usage

S3 method for class ’density’
plot(x, main = NULL, xlab = NULL, ylab = "Density", type = "l",

zero.line = TRUE, ...)

1384 plot.HoltWinters

Arguments

x a "density" object.
main, xlab, ylab, type

plotting parameters with useful defaults.

... further plotting parameters.

zero.line logical; if TRUE, add a base line at y = 0

Value

None.

See Also

density.

plot.HoltWinters Plot function for HoltWinters objects

Description

Produces a chart of the original time series along with the fitted values. Optionally, predicted values
(and their confidence bounds) can also be plotted.

Usage

S3 method for class ’HoltWinters’
plot(x, predicted.values = NA, intervals = TRUE,

separator = TRUE, col = 1, col.predicted = 2,
col.intervals = 4, col.separator = 1, lty = 1,
lty.predicted = 1, lty.intervals = 1, lty.separator = 3,
ylab = "Observed / Fitted",
main = "Holt-Winters filtering",
ylim = NULL, ...)

Arguments

x Object of class "HoltWinters"
predicted.values

Predicted values as returned by predict.HoltWinters

intervals If TRUE, the prediction intervals are plotted (default).

separator If TRUE, a separating line between fitted and predicted values is plotted (default).

col, lty Color/line type of original data (default: black solid).
col.predicted, lty.predicted

Color/line type of fitted and predicted values (default: red solid).
col.intervals, lty.intervals

Color/line type of prediction intervals (default: blue solid).
col.separator, lty.separator

Color/line type of observed/predicted values separator (default: black dashed).

plot.isoreg 1385

ylab Label of the y-axis.

main Main title.

ylim Limits of the y-axis. If NULL, the range is chosen such that the plot contains the
original series, the fitted values, and the predicted values if any.

... Other graphics parameters.

Author(s)

David Meyer <David.Meyer@wu.ac.at>

References

C. C. Holt (1957) Forecasting trends and seasonals by exponentially weighted moving averages,
ONR Research Memorandum, Carnegie Institute of Technology 52.

P. R. Winters (1960) Forecasting sales by exponentially weighted moving averages, Management
Science 6, 324–342.

See Also

HoltWinters, predict.HoltWinters

plot.isoreg Plot Method for isoreg Objects

Description

The plot and lines method for R objects of class isoreg.

Usage

S3 method for class ’isoreg’
plot(x, plot.type = c("single", "row.wise", "col.wise"),

main = paste("Isotonic regression", deparse(x$call)),
main2 = "Cumulative Data and Convex Minorant",
xlab = "x0", ylab = "x$y",
par.fit = list(col = "red", cex = 1.5, pch = 13, lwd = 1.5),
mar = if (both) 0.1 + c(3.5, 2.5, 1, 1) else par("mar"),
mgp = if (both) c(1.6, 0.7, 0) else par("mgp"),
grid = length(x$x) < 12, ...)

S3 method for class ’isoreg’
lines(x, col = "red", lwd = 1.5,

do.points = FALSE, cex = 1.5, pch = 13, ...)

1386 plot.isoreg

Arguments

x an isoreg object.

plot.type character indicating which type of plot is desired. The first (default) only draws
the data and the fit, where the others add a plot of the cumulative data and fit.

main main title of plot, see title.

main2 title for second (cumulative) plot.

xlab, ylab x- and y- axis annotation.

par.fit a list of arguments (for points and lines) for drawing the fit.

mar, mgp graphical parameters, see par, mainly for the case of two plots.

grid logical indicating if grid lines should be drawn. If true, grid() is used for the
first plot, where as vertical lines are drawn at ‘touching’ points for the cumula-
tive plot.

do.points for lines(): logical indicating if the step points should be drawn as well (and
as they are drawn in plot()).

col, lwd, cex, pch

graphical arguments for lines(), where cex and pch are only used when
do.points is TRUE.

... further arguments passed to and from methods.

See Also

isoreg for computation of isoreg objects.

Examples

require(graphics)

utils::example(isoreg) # for the examples there

plot(y3, main = "simple plot(.) + lines(<isoreg>)")
lines(ir3)

’same’ plot as above, "proving" that only ranks of ’x’ are important
plot(isoreg(2^(1:9), c(1,0,4,3,3,5,4,2,0)), plot.type = "row", log = "x")

plot(ir3, plot.type = "row", ylab = "y3")
plot(isoreg(y3 - 4), plot.t="r", ylab = "y3 - 4")
plot(ir4, plot.type = "ro", ylab = "y4", xlab = "x = 1:n")

experiment a bit with these (C-c C-j):
plot(isoreg(sample(9), y3), plot.type="row")
plot(isoreg(sample(9), y3), plot.type="col.wise")

plot(ir <- isoreg(sample(10), sample(10, replace = TRUE)),
plot.type = "r")

plot.lm 1387

plot.lm Plot Diagnostics for an lm Object

Description

Six plots (selectable by which) are currently available: a plot of residuals against fitted values, a
Scale-Location plot of

√
|residuals| against fitted values, a Normal Q-Q plot, a plot of Cook’s

distances versus row labels, a plot of residuals against leverages, and a plot of Cook’s distances
against leverage/(1-leverage). By default, the first three and 5 are provided.

Usage

S3 method for class ’lm’
plot(x, which = c(1:3,5),

caption = list("Residuals vs Fitted", "Normal Q-Q",
"Scale-Location", "Cook’s distance",
"Residuals vs Leverage",
expression("Cook’s dist vs Leverage " * h[ii] / (1 - h[ii]))),

panel = if(add.smooth) panel.smooth else points,
sub.caption = NULL, main = "",
ask = prod(par("mfcol")) < length(which) && dev.interactive(),
...,
id.n = 3, labels.id = names(residuals(x)), cex.id = 0.75,
qqline = TRUE, cook.levels = c(0.5, 1.0),
add.smooth = getOption("add.smooth"), label.pos = c(4,2),
cex.caption = 1)

Arguments

x lm object, typically result of lm or glm.

which if a subset of the plots is required, specify a subset of the numbers 1:6.

caption captions to appear above the plots; character vector or list of valid graphics
annotations, see as.graphicsAnnot. Can be set to "" or NA to suppress all
captions.

panel panel function. The useful alternative to points, panel.smooth can be chosen
by add.smooth = TRUE.

sub.caption common title—above the figures if there are more than one; used as sub
(s.title) otherwise. If NULL, as by default, a possible abbreviated version of
deparse(x$call) is used.

main title to each plot—in addition to caption.

ask logical; if TRUE, the user is asked before each plot, see par(ask=.).

... other parameters to be passed through to plotting functions.

id.n number of points to be labelled in each plot, starting with the most extreme.

labels.id vector of labels, from which the labels for extreme points will be chosen. NULL
uses observation numbers.

cex.id magnification of point labels.

qqline logical indicating if a qqline() should be added to the normal Q-Q plot.

1388 plot.lm

cook.levels levels of Cook’s distance at which to draw contours.

add.smooth logical indicating if a smoother should be added to most plots; see also panel
above.

label.pos positioning of labels, for the left half and right half of the graph respectively, for
plots 1-3.

cex.caption controls the size of caption.

Details

sub.caption—by default the function call—is shown as a subtitle (under the x-axis title) on each
plot when plots are on separate pages, or as a subtitle in the outer margin (if any) when there are
multiple plots per page.

The ‘Scale-Location’ plot, also called ‘Spread-Location’ or ‘S-L’ plot, takes the square root of the
absolute residuals in order to diminish skewness (

√
|E|) is much less skewed than |E| for Gaussian

zero-mean E).

The ‘S-L’, the Q-Q, and the Residual-Leverage plot, use standardized residuals which have identical
variance (under the hypothesis). They are given as Ri/(s ×

√
1− hii) where hii are the diagonal

entries of the hat matrix, influence()$hat (see also hat), and where the Residual-Leverage plot
uses standardized Pearson residuals (residuals.glm(type = "pearson")) for R[i].

The Residual-Leverage plot shows contours of equal Cook’s distance, for values of cook.levels
(by default 0.5 and 1) and omits cases with leverage one with a warning. If the leverages are constant
(as is typically the case in a balanced aov situation) the plot uses factor level combinations instead
of the leverages for the x-axis. (The factor levels are ordered by mean fitted value.)

In the Cook’s distance vs leverage/(1-leverage) plot, contours of standardized residuals that are
equal in magnitude are lines through the origin. The contour lines are labelled with the magnitudes.

Author(s)

John Maindonald and Martin Maechler.

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

Cook, R. D. and Weisberg, S. (1982) Residuals and Influence in Regression. London: Chapman
and Hall.

Firth, D. (1991) Generalized Linear Models. In Hinkley, D. V. and Reid, N. and Snell, E. J., eds: Pp.
55-82 in Statistical Theory and Modelling. In Honour of Sir David Cox, FRS. London: Chapman
and Hall.

Hinkley, D. V. (1975) On power transformations to symmetry. Biometrika 62, 101–111.

McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.

See Also

termplot, lm.influence, cooks.distance, hatvalues.

plot.ppr 1389

Examples

require(graphics)

Analysis of the life-cycle savings data
given in Belsley, Kuh and Welsch.
lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
plot(lm.SR)

4 plots on 1 page;
allow room for printing model formula in outer margin:
par(mfrow = c(2, 2), oma = c(0, 0, 2, 0))
plot(lm.SR)
plot(lm.SR, id.n = NULL) # no id’s
plot(lm.SR, id.n = 5, labels.id = NULL)# 5 id numbers

Was default in R <= 2.1.x:
Cook’s distances instead of Residual-Leverage plot
plot(lm.SR, which = 1:4)

Fit a smooth curve, where applicable:
plot(lm.SR, panel = panel.smooth)
Gives a smoother curve
plot(lm.SR, panel = function(x,y) panel.smooth(x, y, span = 1))

par(mfrow=c(2,1))# same oma as above
plot(lm.SR, which = 1:2, sub.caption = "Saving Rates, n=50, p=5")

plot.ppr Plot Ridge Functions for Projection Pursuit Regression Fit

Description

Plot ridge functions for projection pursuit regression fit.

Usage

S3 method for class ’ppr’
plot(x, ask, type = "o", ...)

Arguments

x A fit of class "ppr" as produced by a call to ppr.

ask the graphics parameter ask: see par for details. If set to TRUE will ask between
the plot of each cross-section.

type the type of line to draw

... further graphical parameters

Value

None

1390 plot.profile.nls

Side Effects

A series of plots are drawn on the current graphical device, one for each term in the fit.

See Also

ppr, par

Examples

require(graphics)

with(rock, {
area1 <- area/10000; peri1 <- peri/10000
par(mfrow=c(3,2))# maybe: , pty="s")
rock.ppr <- ppr(log(perm) ~ area1 + peri1 + shape,

data = rock, nterms = 2, max.terms = 5)
plot(rock.ppr, main="ppr(log(perm)~ ., nterms=2, max.terms=5)")
plot(update(rock.ppr, bass=5), main = "update(..., bass = 5)")
plot(update(rock.ppr, sm.method="gcv", gcvpen=2),

main = "update(..., sm.method=\"gcv\", gcvpen=2)")
})

plot.profile.nls Plot a profile.nls Object

Description

Displays a series of plots of the profile t function and interpolated confidence intervals for the pa-
rameters in a nonlinear regression model that has been fit with nls and profiled with profile.nls.

Usage

S3 method for class ’profile.nls’
plot(x, levels, conf = c(99, 95, 90, 80, 50)/100,

absVal = TRUE, ylab = NULL, lty = 2, ...)

Arguments

x an object of class "profile.nls"

levels levels, on the scale of the absolute value of a t statistic, at which to interpolate
intervals. Usually conf is used instead of giving levels explicitly.

conf a numeric vector of confidence levels for profile-based confidence intervals on
the parameters. Defaults to c(0.99, 0.95, 0.90, 0.80, 0.50).

absVal a logical value indicating whether or not the plots should be on the scale of the
absolute value of the profile t. Defaults to TRUE.

lty the line type to be used for axis and dropped lines.

ylab, ... other arguments to the plot.default function can be passed here (but not xlab,
xlim, ylim nor type).

plot.spec 1391

Details

The plots are produced in a set of hard-coded colours, but as these are coded by number their effect
can be changed by setting the palette. Colour 1 is used for the axes and 4 for the profile itself.
Colours 3 and 6 are used for the axis line at zero and the horizontal/vertical lines dropping to the
axes.

Author(s)

Douglas M. Bates and Saikat DebRoy

References

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications, Wiley
(chapter 6)

See Also

nls, profile, profile.nls

Examples

require(graphics)

obtain the fitted object
fm1 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
get the profile for the fitted model
pr1 <- profile(fm1, alpha = 0.05)
opar <- par(mfrow = c(2,2), oma = c(1.1, 0, 1.1, 0), las = 1)
plot(pr1, conf = c(95, 90, 80, 50)/100)
plot(pr1, conf = c(95, 90, 80, 50)/100, absVal = FALSE)
mtext("Confidence intervals based on the profile sum of squares",

side = 3, outer = TRUE)
mtext("BOD data - confidence levels of 50%, 80%, 90% and 95%",

side = 1, outer = TRUE)
par(opar)

plot.spec Plotting Spectral Densities

Description

Plotting method for objects of class "spec". For multivariate time series it plots the marginal spectra
of the series or pairs plots of the coherency and phase of the cross-spectra.

Usage

S3 method for class ’spec’
plot(x, add = FALSE, ci = 0.95, log = c("yes", "dB", "no"),

xlab = "frequency", ylab = NULL, type = "l",
ci.col = "blue", ci.lty = 3,
main = NULL, sub = NULL,
plot.type = c("marginal", "coherency", "phase"),

1392 plot.spec

...)

plot.spec.phase(x, ci = 0.95,
xlab = "frequency", ylab = "phase",
ylim = c(-pi, pi), type = "l",
main = NULL, ci.col = "blue", ci.lty = 3, ...)

plot.spec.coherency(x, ci = 0.95,
xlab = "frequency",
ylab = "squared coherency",
ylim = c(0, 1), type = "l",
main = NULL, ci.col = "blue", ci.lty = 3, ...)

Arguments

x an object of class "spec".

add logical. If TRUE, add to already existing plot. Only valid for
plot.type = "marginal".

ci coverage probability for confidence interval. Plotting of the confidence
bar/limits is omitted unless ci is strictly positive.

log If "dB", plot on log10 (decibel) scale (as S-PLUS), otherwise use conventional
log scale or linear scale. Logical values are also accepted. The default is "yes"
unless options(ts.S.compat = TRUE) has been set, when it is "dB". Only
valid for plot.type = "marginal".

xlab the x label of the plot.

ylab the y label of the plot. If missing a suitable label will be constructed.

type the type of plot to be drawn, defaults to lines.

ci.col colour for plotting confidence bar or confidence intervals for coherency and
phase.

ci.lty line type for confidence intervals for coherency and phase.

main overall title for the plot. If missing, a suitable title is constructed.

sub a sub title for the plot. Only used for plot.type = "marginal". If
missing, a description of the smoothing is used.

plot.type For multivariate time series, the type of plot required. Only the first character is
needed.

ylim, ... Graphical parameters.

See Also

spectrum

plot.stepfun 1393

plot.stepfun Plot Step Functions

Description

Method of the generic plot for stepfun objects and utility for plotting piecewise constant func-
tions.

Usage

S3 method for class ’stepfun’
plot(x, xval, xlim, ylim = range(c(y,Fn.kn)),

xlab = "x", ylab = "f(x)", main = NULL,
add = FALSE, verticals = TRUE, do.points = (n < 1000),
pch = par("pch"), col = par("col"),
col.points = col, cex.points = par("cex"),
col.hor = col, col.vert = col,
lty = par("lty"), lwd = par("lwd"), ...)

S3 method for class ’stepfun’
lines(x, ...)

Arguments

x an R object inheriting from "stepfun".

xval numeric vector of abscissa values at which to evaluate x. Defaults to knots(x)
restricted to xlim.

xlim, ylim limits for the plot region: see plot.window. Both have sensible defaults if
omitted.

xlab, ylab labels for x and y axis.

main main title.

add logical; if TRUE only add to an existing plot.

verticals logical; if TRUE, draw vertical lines at steps.

do.points logical; if TRUE, also draw points at the (xlim restricted) knot locations. Default
is true, for sample size < 1000.

pch character; point character if do.points.

col default color of all points and lines.

col.points character or integer code; color of points if do.points.

cex.points numeric; character expansion factor if do.points.

col.hor color of horizontal lines.

col.vert color of vertical lines.

lty, lwd line type and thickness for all lines.

... further arguments of plot(.), or if(add) segments(.).

1394 plot.ts

Value

A list with two components

t abscissa (x) values, including the two outermost ones.

y y values ‘in between’ the t[].

Author(s)

Martin Maechler <maechler@stat.math.ethz.ch>, 1990, 1993; ported to R, 1997.

See Also

ecdf for empirical distribution functions as special step functions, approxfun and splinefun.

Examples

require(graphics)

y0 <- c(1,2,4,3)
sfun0 <- stepfun(1:3, y0, f = 0)
sfun.2 <- stepfun(1:3, y0, f = .2)
sfun1 <- stepfun(1:3, y0, right = TRUE)

tt <- seq(0,3, by=0.1)
op <- par(mfrow=c(2,2))
plot(sfun0); plot(sfun0, xval=tt, add=TRUE, col.hor="bisque")
plot(sfun.2);plot(sfun.2,xval=tt, add=TRUE, col = "orange")# all colors
plot(sfun1);lines(sfun1, xval=tt, col.hor="coral")
##-- This is revealing :
plot(sfun0, verticals= FALSE,

main = "stepfun(x, y0, f=f) for f = 0, .2, 1")
for(i in 1:3)

lines(list(sfun0,sfun.2,stepfun(1:3,y0,f = 1))[[i]], col=i)
legend(2.5, 1.9, paste("f =", c(0,0.2,1)), col=1:3, lty=1, y.intersp=1)
par(op)

Extend and/or restrict ’viewport’:
plot(sfun0, xlim = c(0,5), ylim = c(0, 3.5),

main = "plot(stepfun(*), xlim= . , ylim = .)")

##-- this works too (automatic call to ecdf(.)):
plot.stepfun(rt(50, df=3), col.vert = "gray20")

plot.ts Plotting Time-Series Objects

Description

Plotting method for objects inheriting from class "ts".

plot.ts 1395

Usage

S3 method for class ’ts’
plot(x, y = NULL, plot.type = c("multiple", "single"),

xy.labels, xy.lines, panel = lines, nc, yax.flip = FALSE,
mar.multi = c(0, 5.1, 0, if(yax.flip) 5.1 else 2.1),
oma.multi = c(6, 0, 5, 0), axes = TRUE, ...)

S3 method for class ’ts’
lines(x, ...)

Arguments

x, y time series objects, usually inheriting from class "ts".

plot.type for multivariate time series, should the series by plotted separately (with a com-
mon time axis) or on a single plot?

xy.labels logical, indicating if text() labels should be used for an x-y plot, or character,
supplying a vector of labels to be used. The default is to label for up to 150
points, and not for more.

xy.lines logical, indicating if lines should be drawn for an x-y plot. Defaults to the
value of xy.labels if that is logical, otherwise to TRUE.

panel a function(x, col, bg, pch, type, ...) which gives the action to be car-
ried out in each panel of the display for plot.type="multiple". The default is
lines.

nc the number of columns to use when type="multiple". Defaults to 1 for up to
4 series, otherwise to 2.

yax.flip logical indicating if the y-axis (ticks and numbering) should flip from side 2
(left) to 4 (right) from series to series when type="multiple".

mar.multi, oma.multi

the (default) par settings for plot.type="multiple". Modify with care!

axes logical indicating if x- and y- axes should be drawn.

... additional graphical arguments, see plot, plot.default and par.

Details

If y is missing, this function creates a time series plot, for multivariate series of one of two kinds
depending on plot.type.

If y is present, both x and y must be univariate, and a scatter plot y ~ x will be drawn, enhanced by
using text if xy.labels is TRUE or character, and lines if xy.lines is TRUE.

See Also

ts for basic time series construction and access functionality.

Examples

require(graphics)

Multivariate
z <- ts(matrix(rt(200 * 8, df = 3), 200, 8),

start = c(1961, 1), frequency = 12)

1396 Poisson

plot(z, yax.flip = TRUE)
plot(z, axes = FALSE, ann = FALSE, frame.plot = TRUE,

mar.multi = c(0,0,0,0), oma.multi = c(1,1,5,1))
title("plot(ts(..), axes=FALSE, ann=FALSE, frame.plot=TRUE, mar..., oma...)")

z <- window(z[,1:3], end = c(1969,12))
plot(z, type = "b") # multiple
plot(z, plot.type="single", lty=1:3, col=4:2)

A phase plot:
plot(nhtemp, c(nhtemp[-1], NA), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")
a clearer way to do this would be
Not run:
plot(nhtemp, lag(nhtemp, 1), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")

End(Not run)

xy.lines and xy.labels are FALSE for large series:
plot(lag(sunspots, 1), sunspots, pch = ".")

SMI <- EuStockMarkets[, "SMI"]
plot(lag(SMI, 1), SMI, pch = ".")
plot(lag(SMI, 20), SMI, pch = ".", log = "xy",

main = "4 weeks lagged SMI stocks -- log scale", xy.lines= TRUE)

Poisson The Poisson Distribution

Description

Density, distribution function, quantile function and random generation for the Poisson distribution
with parameter lambda.

Usage

dpois(x, lambda, log = FALSE)
ppois(q, lambda, lower.tail = TRUE, log.p = FALSE)
qpois(p, lambda, lower.tail = TRUE, log.p = FALSE)
rpois(n, lambda)

Arguments

x vector of (non-negative integer) quantiles.

q vector of quantiles.

p vector of probabilities.

n number of random values to return.

lambda vector of (non-negative) means.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Poisson 1397

Details

The Poisson distribution has density

p(x) =
λxe−λ

x!

for x = 0, 1, 2, The mean and variance are E(X) = V ar(X) = λ.

If an element of x is not integer, the result of dpois is zero, with a warning. p(x) is computed using
Loader’s algorithm, see the reference in dbinom.

The quantile is right continuous: qpois(p, lambda) is the smallest integer x such that P (X ≤
x) ≥ p.

Setting lower.tail = FALSE allows to get much more precise results when the default,
lower.tail = TRUE would return 1, see the example below.

Value

dpois gives the (log) density, ppois gives the (log) distribution function, qpois gives the quantile
function, and rpois generates random deviates.

Invalid lambda will result in return value NaN, with a warning.

Source

dpois uses C code contributed by Catherine Loader (see dbinom).

ppois uses pgamma.

qpois uses the Cornish–Fisher Expansion to include a skewness correction to a normal approxima-
tion, followed by a search.

rpois uses

Ahrens, J. H. and Dieter, U. (1982). Computer generation of Poisson deviates from modified normal
distributions. ACM Transactions on Mathematical Software, 8, 163–179.

See Also

Distributions for other standard distributions, including dbinom for the binomial and dnbinom for
the negative binomial distribution.

poisson.test.

Examples

require(graphics)

-log(dpois(0:7, lambda=1) * gamma(1+ 0:7)) # == 1
Ni <- rpois(50, lambda = 4); table(factor(Ni, 0:max(Ni)))

1 - ppois(10*(15:25), lambda=100) # becomes 0 (cancellation)
ppois(10*(15:25), lambda=100, lower.tail=FALSE) # no cancellation

par(mfrow = c(2, 1))
x <- seq(-0.01, 5, 0.01)
plot(x, ppois(x, 1), type="s", ylab="F(x)", main="Poisson(1) CDF")
plot(x, pbinom(x, 100, 0.01),type="s", ylab="F(x)",

main="Binomial(100, 0.01) CDF")

1398 poisson.test

poisson.test Exact Poisson tests

Description

Performs an exact test of a simple null hypothesis about the rate parameter in Poisson distribution,
or for the ratio between two rate parameters.

Usage

poisson.test(x, T = 1, r = 1,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95)

Arguments

x number of events. A vector of length one or two.
T time base for event count. A vector of length one or two.
r hypothesized rate or rate ratio
alternative indicates the alternative hypothesis and must be one of "two.sided",

"greater" or "less". You can specify just the initial letter.
conf.level confidence level for the returned confidence interval.

Details

Confidence intervals are computed similarly to those of binom.test in the one-sample case, and
using binom.test in the two sample case.

Value

A list with class "htest" containing the following components:

statistic the number of events (in the first sample if there are two.)
parameter the corresponding expected count
p.value the p-value of the test.
conf.int a confidence interval for the rate or rate ratio.
estimate the estimated rate or rate ratio.
null.value the rate or rate ratio under the null, r.
alternative a character string describing the alternative hypothesis.
method the character string "Exact Poisson test" or

"Comparison of Poisson rates" as appropriate.
data.name a character string giving the names of the data.

Note

The rate parameter in Poisson data is often given based on a “time on test” or similar quantity
(person-years, population size, or expected number of cases from mortality tables). This is the role
of the T argument.
The one-sample case is effectively the binomial test with a very large n. The two sample case is
converted to a binomial test by conditioning on the total event count, and the rate ratio is directly
related to the odds in that binomial distribution.

poly 1399

See Also

binom.test

Examples

These are paraphrased from data sets in the ISwR package

SMR, Welsh Nickel workers
poisson.test(137, 24.19893)

eba1977, compare Fredericia to other three cities for ages 55-59
poisson.test(c(11,6+8+7),c(800, 1083+1050+878))

poly Compute Orthogonal Polynomials

Description

Returns or evaluates orthogonal polynomials of degree 1 to degree over the specified set of points
x. These are all orthogonal to the constant polynomial of degree 0. Alternatively, evaluate raw
polynomials.

Usage

poly(x, ..., degree = 1, coefs = NULL, raw = FALSE)
polym(..., degree = 1, raw = FALSE)

S3 method for class ’poly’
predict(object, newdata, ...)

Arguments

x, newdata a numeric vector at which to evaluate the polynomial. x can also be a matrix.
Missing values are not allowed in x.

degree the degree of the polynomial. Must be less than the number of unique points if
raw = TRUE.

coefs for prediction, coefficients from a previous fit.

raw if true, use raw and not orthogonal polynomials.

object an object inheriting from class "poly", normally the result of a call to poly with
a single vector argument.

... poly, polym: further vectors.
predict.poly: arguments to be passed to or from other methods.

Details

Although formally degree should be named (as it follows ...), an unnamed second argument of
length 1 will be interpreted as the degree.

The orthogonal polynomial is summarized by the coefficients, which can be used to evaluate it via
the three-term recursion given in Kennedy & Gentle (1980, pp. 343–4), and used in the predict
part of the code.

1400 power

Value

For poly with a single vector argument:
A matrix with rows corresponding to points in x and columns corresponding to the degree, with
attributes "degree" specifying the degrees of the columns and (unless raw = TRUE) "coefs" which
contains the centering and normalization constants used in constructing the orthogonal polynomials.
The matrix has given class c("poly", "matrix").

Other cases of poly and polym, and predict.poly: a matrix.

Note

This routine is intended for statistical purposes such as contr.poly: it does not attempt to orthog-
onalize to machine accuracy.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

Kennedy, W. J. Jr and Gentle, J. E. (1980) Statistical Computing Marcel Dekker.

See Also

contr.poly.

cars for an example of polynomial regression.

Examples

od <- options(digits=3) # avoid too much visual clutter
(z <- poly(1:10, 3))
predict(z, seq(2, 4, 0.5))
zapsmall(poly(seq(4, 6, 0.5), 3, coefs = attr(z, "coefs")))

zapsmall(polym(1:4, c(1, 4:6), degree=3)) # or just poly()
zapsmall(poly(cbind(1:4, c(1, 4:6)), degree=3))
options(od)

power Create a Power Link Object

Description

Creates a link object based on the link function η = µλ.

Usage

power(lambda = 1)

Arguments

lambda a real number.

power.anova.test 1401

Details

If lambda is non-positive, it is taken as zero, and the log link is obtained. The default lambda = 1
gives the identity link.

Value

A list with components linkfun, linkinv, mu.eta, and valideta. See make.link for information
on their meaning.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

make.link, family

To raise a number to a power, see Arithmetic.

To calculate the power of a test, see various functions in the stats package, e.g., power.t.test.

Examples

power()
quasi(link=power(1/3))[c("linkfun", "linkinv")]

power.anova.test Power Calculations for Balanced One-Way Analysis of Variance Tests

Description

Compute power of test or determine parameters to obtain target power.

Usage

power.anova.test(groups = NULL, n = NULL,
between.var = NULL, within.var = NULL,
sig.level = 0.05, power = NULL)

Arguments

groups Number of groups
n Number of observations (per group)
between.var Between group variance
within.var Within group variance
sig.level Significance level (Type I error probability)
power Power of test (1 minus Type II error probability)

Details

Exactly one of the parameters groups, n, between.var, power, within.var, and sig.level must
be passed as NULL, and that parameter is determined from the others. Notice that sig.level has
non-NULL default so NULL must be explicitly passed if you want it computed.

1402 power.prop.test

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it, notably
about inability to bracket the root when invalid arguments are given.

Author(s)

Claus Ekstrøm

See Also

anova, lm, uniroot

Examples

power.anova.test(groups=4, n=5, between.var=1, within.var=3)
Power = 0.3535594

power.anova.test(groups=4, between.var=1, within.var=3,
power=.80)

n = 11.92613

Assume we have prior knowledge of the group means:
groupmeans <- c(120, 130, 140, 150)
power.anova.test(groups = length(groupmeans),

between.var=var(groupmeans),
within.var=500, power=.90) # n = 15.18834

power.prop.test Power Calculations for Two-Sample Test for Proportions

Description

Compute power of test, or determine parameters to obtain target power.

Usage

power.prop.test(n = NULL, p1 = NULL, p2 = NULL, sig.level = 0.05,
power = NULL,
alternative = c("two.sided", "one.sided"),
strict = FALSE)

power.prop.test 1403

Arguments

n Number of observations (per group)

p1 probability in one group

p2 probability in other group

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

alternative One- or two-sided test

strict Use strict interpretation in two-sided case

Details

Exactly one of the parameters n, p1, p2, power, and sig.level must be passed as NULL, and that
parameter is determined from the others. Notice that sig.level has a non-NULL default so NULL
must be explicitly passed if you want it computed.

If strict = TRUE is used, the power will include the probability of rejection in the opposite direc-
tion of the true effect, in the two-sided case. Without this the power will be half the significance
level if the true difference is zero.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it, notably about
inability to bracket the root when invalid arguments are given. If one of them is computed p1 < p2
will hold, although this is not enforced when both are specified.

Author(s)

Peter Dalgaard. Based on previous work by Claus Ekstrøm

See Also

prop.test, uniroot

Examples

power.prop.test(n = 50, p1 = .50, p2 = .75)
power.prop.test(p1 = .50, p2 = .75, power = .90)
power.prop.test(n = 50, p1 = .5, power = .90)

1404 power.t.test

power.t.test Power calculations for one and two sample t tests

Description

Compute power of test, or determine parameters to obtain target power.

Usage

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05,
power = NULL,
type = c("two.sample", "one.sample", "paired"),
alternative = c("two.sided", "one.sided"),
strict = FALSE)

Arguments

n Number of observations (per group)

delta True difference in means

sd Standard deviation

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

type Type of t test

alternative One- or two-sided test

strict Use strict interpretation in two-sided case

Details

Exactly one of the parameters n, delta, power, sd, and sig.level must be passed as NULL, and
that parameter is determined from the others. Notice that the last two have non-NULL defaults so
NULL must be explicitly passed if you want to compute them.

If strict = TRUE is used, the power will include the probability of rejection in the opposite direc-
tion of the true effect, in the two-sided case. Without this the power will be half the significance
level if the true difference is zero.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it, notably
about inability to bracket the root when invalid arguments are given.

Author(s)

Peter Dalgaard. Based on previous work by Claus Ekstrøm

PP.test 1405

See Also

t.test, uniroot

Examples

power.t.test(n = 20, delta = 1)
power.t.test(power = .90, delta = 1)
power.t.test(power = .90, delta = 1, alternative = "one.sided")

PP.test Phillips-Perron Test for Unit Roots

Description

Computes the Phillips-Perron test for the null hypothesis that x has a unit root against a stationary
alternative.

Usage

PP.test(x, lshort = TRUE)

Arguments

x a numeric vector or univariate time series.

lshort a logical indicating whether the short or long version of the truncation lag pa-
rameter is used.

Details

The general regression equation which incorporates a constant and a linear trend is used and the
corrected t-statistic for a first order autoregressive coefficient equals one is computed. To estimate
sigma^2 the Newey-West estimator is used. If lshort is TRUE, then the truncation lag parameter
is set to trunc(4*(n/100)^0.25), otherwise trunc(12*(n/100)^0.25) is used. The p-values are
interpolated from Table 4.2, page 103 of Banerjee et al. (1993).

Missing values are not handled.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

parameter the truncation lag parameter.

p.value the p-value of the test.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

Author(s)

A. Trapletti

1406 ppoints

References

A. Banerjee, J. J. Dolado, J. W. Galbraith, and D. F. Hendry (1993) Cointegration, Error Correction,
and the Econometric Analysis of Non-Stationary Data, Oxford University Press, Oxford.

P. Perron (1988) Trends and random walks in macroeconomic time series. Journal of Economic
Dynamics and Control 12, 297–332.

Examples

x <- rnorm(1000)
PP.test(x)
y <- cumsum(x) # has unit root
PP.test(y)

ppoints Ordinates for Probability Plotting

Description

Generates the sequence of probability points (1:m - a)/(m + (1-a)-a) where m is either n, if
length(n)==1, or length(n).

Usage

ppoints(n, a = ifelse(n <= 10, 3/8, 1/2))

Arguments

n either the number of points generated or a vector of observations.

a the offset fraction to be used; typically in (0, 1).

Details

If 0 < a < 1, the resulting values are within (0, 1) (excluding boundaries). In any case, the resulting
sequence is symmetric in [0, 1], i.e., p + rev(p) == 1.

ppoints() is used in qqplot and qqnorm to generate the set of probabilities at which to evaluate
the inverse distribution.

The choice of a follows the documentation of the function of the same name in Becker et al (1988),
and appears to have been motivated by results from Blom (1958) on approximations to expect
normal order statistics (see also quantile).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Blom, G. (1958) Statistical Estimates and Transformed Beta Variables. Wiley

See Also

qqplot, qqnorm.

ppr 1407

Examples

ppoints(4) # the same as ppoints(1:4)
ppoints(10)
ppoints(10, a=1/2)

ppr Projection Pursuit Regression

Description

Fit a projection pursuit regression model.

Usage

ppr(x, ...)

S3 method for class ’formula’
ppr(formula, data, weights, subset, na.action,

contrasts = NULL, ..., model = FALSE)

Default S3 method:
ppr(x, y, weights = rep(1,n),

ww = rep(1,q), nterms, max.terms = nterms, optlevel = 2,
sm.method = c("supsmu", "spline", "gcvspline"),
bass = 0, span = 0, df = 5, gcvpen = 1, ...)

Arguments

formula a formula specifying one or more numeric response variables and the explana-
tory variables.

x numeric matrix of explanatory variables. Rows represent observations, and
columns represent variables. Missing values are not accepted.

y numeric matrix of response variables. Rows represent observations, and
columns represent variables. Missing values are not accepted.

nterms number of terms to include in the final model.

data a data frame (or similar: see model.frame) from which variables specified in
formula are preferentially to be taken.

weights a vector of weights w_i for each case.

ww a vector of weights for each response, so the fit criterion is the sum over case i
and responses j of w_i ww_j (y_ij - fit_ij)^2 divided by the sum of w_i.

subset an index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)

na.action a function to specify the action to be taken if NAs are found. The default action
is given by getOption("na.action"). (NOTE: If given, this argument must be
named.)

contrasts the contrasts to be used when any factor explanatory variables are coded.

max.terms maximum number of terms to choose from when building the model.

1408 ppr

optlevel integer from 0 to 3 which determines the thoroughness of an optimization rou-
tine in the SMART program. See the ‘Details’ section.

sm.method the method used for smoothing the ridge functions. The default is to use Fried-
man’s super smoother supsmu. The alternatives are to use the smoothing spline
code underlying smooth.spline, either with a specified (equivalent) degrees of
freedom for each ridge functions, or to allow the smoothness to be chosen by
GCV.

bass super smoother bass tone control used with automatic span selection (see
supsmu); the range of values is 0 to 10, with larger values resulting in increased
smoothing.

span super smoother span control (see supsmu). The default, 0, results in automatic
span selection by local cross validation. span can also take a value in (0, 1].

df if sm.method is "spline" specifies the smoothness of each ridge term via the
requested equivalent degrees of freedom.

gcvpen if sm.method is "gcvspline" this is the penalty used in the GCV selection for
each degree of freedom used.

... arguments to be passed to or from other methods.

model logical. If true, the model frame is returned.

Details

The basic method is given by Friedman (1984), and is essentially the same code used by S-PLUS’s
ppreg. This code is extremely sensitive to the compiler used.

The algorithm first adds up to max.terms ridge terms one at a time; it will use less if it is unable to
find a term to add that makes sufficient difference. It then removes the least important term at each
step until nterms terms are left.

The levels of optimization (argument optlevel) differ in how thoroughly the models are refitted
during this process. At level 0 the existing ridge terms are not refitted. At level 1 the projection
directions are not refitted, but the ridge functions and the regression coefficients are.

Levels 2 and 3 refit all the terms and are equivalent for one response; level 3 is more careful to
re-balance the contributions from each regressor at each step and so is a little less likely to converge
to a saddle point of the sum of squares criterion.

Value

A list with the following components, many of which are for use by the method functions.

call the matched call

p the number of explanatory variables (after any coding)

q the number of response variables

mu the argument nterms

ml the argument max.terms

gof the overall residual (weighted) sum of squares for the selected model

gofn the overall residual (weighted) sum of squares against the number of terms, up
to max.terms. Will be invalid (and zero) for less than nterms.

df the argument df

edf if sm.method is "spline" or "gcvspline" the equivalent number of degrees of
freedom for each ridge term used.

ppr 1409

xnames the names of the explanatory variables

ynames the names of the response variables

alpha a matrix of the projection directions, with a column for each ridge term

beta a matrix of the coefficients applied for each response to the ridge terms: the rows
are the responses and the columns the ridge terms

yb the weighted means of each response

ys the overall scale factor used: internally the responses are divided by ys to have
unit total weighted sum of squares.

fitted.values the fitted values, as a matrix if q > 1.

residuals the residuals, as a matrix if q > 1.

smod internal work array, which includes the ridge functions evaluated at the training
set points.

model (only if model=TRUE) the model frame.

Source

Friedman (1984): converted to double precision and added interface to smoothing splines by B. D.
Ripley, originally for the MASS package.

References

Friedman, J. H. and Stuetzle, W. (1981) Projection pursuit regression. Journal of the American
Statistical Association, 76, 817–823.

Friedman, J. H. (1984) SMART User’s Guide. Laboratory for Computational Statistics, Stanford
University Technical Report No. 1.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Springer.

See Also

plot.ppr, supsmu, smooth.spline

Examples

require(graphics)

Note: your numerical values may differ
attach(rock)
area1 <- area/10000; peri1 <- peri/10000
rock.ppr <- ppr(log(perm) ~ area1 + peri1 + shape,

data = rock, nterms = 2, max.terms = 5)
rock.ppr
Call:
ppr.formula(formula = log(perm) ~ area1 + peri1 + shape, data = rock,
nterms = 2, max.terms = 5)
#
Goodness of fit:
2 terms 3 terms 4 terms 5 terms
8.737806 5.289517 4.745799 4.490378

summary(rock.ppr)
..... (same as above)

1410 prcomp

.....
#
Projection direction vectors:
term 1 term 2
area1 0.34357179 0.37071027
peri1 -0.93781471 -0.61923542
shape 0.04961846 0.69218595
#
Coefficients of ridge terms:
term 1 term 2
1.6079271 0.5460971

par(mfrow=c(3,2))# maybe: , pty="s")
plot(rock.ppr, main="ppr(log(perm)~ ., nterms=2, max.terms=5)")
plot(update(rock.ppr, bass=5), main = "update(..., bass = 5)")
plot(update(rock.ppr, sm.method="gcv", gcvpen=2),

main = "update(..., sm.method=\"gcv\", gcvpen=2)")
cbind(perm=rock$perm, prediction=round(exp(predict(rock.ppr)), 1))
detach()

prcomp Principal Components Analysis

Description

Performs a principal components analysis on the given data matrix and returns the results as an
object of class prcomp.

Usage

prcomp(x, ...)

S3 method for class ’formula’
prcomp(formula, data = NULL, subset, na.action, ...)

Default S3 method:
prcomp(x, retx = TRUE, center = TRUE, scale. = FALSE,

tol = NULL, ...)

S3 method for class ’prcomp’
predict(object, newdata, ...)

Arguments

formula a formula with no response variable, referring only to numeric variables.

data an optional data frame (or similar: see model.frame) containing the vari-
ables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector used to select rows (observations) of the data matrix x.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The ‘factory-fresh’ default is na.omit.

prcomp 1411

... arguments passed to or from other methods. If x is a formula one might specify
scale. or tol.

x a numeric or complex matrix (or data frame) which provides the data for the
principal components analysis.

retx a logical value indicating whether the rotated variables should be returned.

center a logical value indicating whether the variables should be shifted to be zero
centered. Alternately, a vector of length equal the number of columns of x can
be supplied. The value is passed to scale.

scale. a logical value indicating whether the variables should be scaled to have unit
variance before the analysis takes place. The default is FALSE for consistency
with S, but in general scaling is advisable. Alternatively, a vector of length equal
the number of columns of x can be supplied. The value is passed to scale.

tol a value indicating the magnitude below which components should be omitted.
(Components are omitted if their standard deviations are less than or equal to
tol times the standard deviation of the first component.) With the default null
setting, no components are omitted. Other settings for tol could be tol = 0 or
tol = sqrt(.Machine$double.eps), which would omit essentially constant
components.

object Object of class inheriting from "prcomp"

newdata An optional data frame or matrix in which to look for variables with which to
predict. If omitted, the scores are used. If the original fit used a formula or a
data frame or a matrix with column names, newdata must contain columns with
the same names. Otherwise it must contain the same number of columns, to be
used in the same order.

Details

The calculation is done by a singular value decomposition of the (centered and possibly scaled)
data matrix, not by using eigen on the covariance matrix. This is generally the preferred method
for numerical accuracy. The print method for these objects prints the results in a nice format and
the plot method produces a scree plot.

Unlike princomp, variances are computed with the usual divisor N − 1.

Note that scale = TRUE cannot be used if there are zero or constant (for center = TRUE) variables.

Value

prcomp returns a list with class "prcomp" containing the following components:

sdev the standard deviations of the principal components (i.e., the square roots of
the eigenvalues of the covariance/correlation matrix, though the calculation is
actually done with the singular values of the data matrix).

rotation the matrix of variable loadings (i.e., a matrix whose columns contain the eigen-
vectors). The function princomp returns this in the element loadings.

x if retx is true the value of the rotated data (the centred (and scaled if requested)
data multiplied by the rotation matrix) is returned. Hence, cov(x) is the di-
agonal matrix diag(sdev^2). For the formula method, napredict() is applied
to handle the treatment of values omitted by the na.action.

center, scale the centering and scaling used, or FALSE.

1412 predict

Note

The signs of the columns of the rotation matrix are arbitrary, and so may differ between different
programs for PCA, and even between different builds of R.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Mardia, K. V., J. T. Kent, and J. M. Bibby (1979) Multivariate Analysis, London: Academic Press.

Venables, W. N. and B. D. Ripley (2002) Modern Applied Statistics with S, Springer-Verlag.

See Also

biplot.prcomp, screeplot, princomp, cor, cov, svd, eigen.

Examples

signs are random
require(graphics)

the variances of the variables in the
USArrests data vary by orders of magnitude, so scaling is appropriate
prcomp(USArrests) # inappropriate
prcomp(USArrests, scale = TRUE)
prcomp(~ Murder + Assault + Rape, data = USArrests, scale = TRUE)
plot(prcomp(USArrests))
summary(prcomp(USArrests, scale = TRUE))
biplot(prcomp(USArrests, scale = TRUE))

predict Model Predictions

Description

predict is a generic function for predictions from the results of various model fitting functions.
The function invokes particular methods which depend on the class of the first argument.

Usage

predict (object, ...)

Arguments

object a model object for which prediction is desired.

... additional arguments affecting the predictions produced.

predict.Arima 1413

Details

Most prediction methods which are similar to those for linear models have an argument newdata
specifying the first place to look for explanatory variables to be used for prediction. Some consid-
erable attempts are made to match up the columns in newdata to those used for fitting, for example
that they are of comparable types and that any factors have the same level set in the same order (or
can be transformed to be so).

Time series prediction methods in package stats have an argument n.ahead specifying how many
time steps ahead to predict.

Many methods have a logical argument se.fit saying if standard errors are to returned.

Value

The form of the value returned by predict depends on the class of its argument. See the documen-
tation of the particular methods for details of what is produced by that method.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

predict.glm, predict.lm, predict.loess, predict.nls, predict.poly, predict.princomp,
predict.smooth.spline.

SafePrediction for prediction from polynomial and spline fits.

For time-series prediction, predict.ar, predict.Arima, predict.arima0,
predict.HoltWinters, predict.StructTS.

Examples

require(utils)

All the "predict" methods found
NB most of the methods in the standard packages are hidden.
for(fn in methods("predict"))

try({
f <- eval(substitute(getAnywhere(fn)$objs[[1]], list(fn = fn)))
cat(fn, ":\n\t", deparse(args(f)), "\n")
}, silent = TRUE)

predict.Arima Forecast from ARIMA fits

Description

Forecast from models fitted by arima.

1414 predict.Arima

Usage

S3 method for class ’Arima’
predict(object, n.ahead = 1, newxreg = NULL,

se.fit = TRUE, ...)

Arguments

object The result of an arima fit.

n.ahead The number of steps ahead for which prediction is required.

newxreg New values of xreg to be used for prediction. Must have at least n.ahead rows.

se.fit Logical: should standard errors of prediction be returned?

... arguments passed to or from other methods.

Details

Finite-history prediction is used, via KalmanForecast. This is only statistically efficient if the MA
part of the fit is invertible, so predict.Arima will give a warning for non-invertible MA models.

The standard errors of prediction exclude the uncertainty in the estimation of the ARMA model and
the regression coefficients. According to Harvey (1993, pp. 58–9) the effect is small.

Value

A time series of predictions, or if se.fit = TRUE, a list with components pred, the predictions,
and se, the estimated standard errors. Both components are time series.

References

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

Harvey, A. C. and McKenzie, C. R. (1982) Algorithm AS182. An algorithm for finite sample
prediction from ARIMA processes. Applied Statistics 31, 180–187.

Harvey, A. C. (1993) Time Series Models, 2nd Edition, Harvester Wheatsheaf, sections 3.3 and 4.4.

See Also

arima

Examples

od <- options(digits=5) # avoid too much spurious accuracy
predict(arima(lh, order = c(3,0,0)), n.ahead = 12)

(fit <- arima(USAccDeaths, order = c(0,1,1),
seasonal = list(order=c(0,1,1))))

predict(fit, n.ahead = 6)
options(od)

predict.glm 1415

predict.glm Predict Method for GLM Fits

Description

Obtains predictions and optionally estimates standard errors of those predictions from a fitted gen-
eralized linear model object.

Usage

S3 method for class ’glm’
predict(object, newdata = NULL,

type = c("link", "response", "terms"),
se.fit = FALSE, dispersion = NULL, terms = NULL,
na.action = na.pass, ...)

Arguments

object a fitted object of class inheriting from "glm".

newdata optionally, a data frame in which to look for variables with which to predict. If
omitted, the fitted linear predictors are used.

type the type of prediction required. The default is on the scale of the linear predic-
tors; the alternative "response" is on the scale of the response variable. Thus
for a default binomial model the default predictions are of log-odds (probabil-
ities on logit scale) and type = "response" gives the predicted probabilities.
The "terms" option returns a matrix giving the fitted values of each term in the
model formula on the linear predictor scale.

The value of this argument can be abbreviated.

se.fit logical switch indicating if standard errors are required.

dispersion the dispersion of the GLM fit to be assumed in computing the standard errors.
If omitted, that returned by summary applied to the object is used.

terms with type="terms" by default all terms are returned. A character vector speci-
fies which terms are to be returned

na.action function determining what should be done with missing values in newdata. The
default is to predict NA.

... further arguments passed to or from other methods.

Details

If newdata is omitted the predictions are based on the data used for the fit. In that case
how cases with missing values in the original fit is determined by the na.action argument of
that fit. If na.action = na.omit omitted cases will not appear in the residuals, whereas if
na.action = na.exclude they will appear (in predictions and standard errors), with residual value
NA. See also napredict.

1416 predict.HoltWinters

Value

If se = FALSE, a vector or matrix of predictions. If se = TRUE, a list with components

fit Predictions

se.fit Estimated standard errors

residual.scale A scalar giving the square root of the dispersion used in computing the standard
errors.

Note

Variables are first looked for in newdata and then searched for in the usual way (which will include
the environment of the formula used in the fit). A warning will be given if the variables found are
not of the same length as those in newdata if it was supplied.

See Also

glm, SafePrediction

Examples

require(graphics)

example from Venables and Ripley (2002, pp. 190-2.)
ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive=20-numdead)
budworm.lg <- glm(SF ~ sex*ldose, family=binomial)
summary(budworm.lg)

plot(c(1,32), c(0,1), type = "n", xlab = "dose",
ylab = "prob", log = "x")

text(2^ldose, numdead/20, as.character(sex))
ld <- seq(0, 5, 0.1)
lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,

sex=factor(rep("M", length(ld)), levels=levels(sex))),
type = "response"))

lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,
sex=factor(rep("F", length(ld)), levels=levels(sex))),
type = "response"))

predict.HoltWinters Prediction Function for Fitted Holt-Winters Models

Description

Computes predictions and prediction intervals for models fitted by the Holt-Winters method.

Usage

S3 method for class ’HoltWinters’
predict(object, n.ahead=1, prediction.interval = FALSE,

level = 0.95, ...)

predict.lm 1417

Arguments

object An object of class HoltWinters.

n.ahead Number of future periods to predict.

prediction.interval

logical. If TRUE, the lower and upper bounds of the corresponding prediction
intervals are computed.

level Confidence level for the prediction interval.

... arguments passed to or from other methods.

Value

A time series of the predicted values. If prediction intervals are requested, a multiple time series is
returned with columns fit, lwr and upr for the predicted values and the lower and upper bounds
respectively.

Author(s)

David Meyer <David.Meyer@wu.ac.at>

References

C. C. Holt (1957) Forecasting trends and seasonals by exponentially weighted moving averages,
ONR Research Memorandum, Carnegie Institute of Technology 52.

P. R. Winters (1960) Forecasting sales by exponentially weighted moving averages, Management
Science 6, 324–342.

See Also

HoltWinters

Examples

require(graphics)

m <- HoltWinters(co2)
p <- predict(m, 50, prediction.interval = TRUE)
plot(m, p)

predict.lm Predict method for Linear Model Fits

Description

Predicted values based on linear model object.

1418 predict.lm

Usage

S3 method for class ’lm’
predict(object, newdata, se.fit = FALSE, scale = NULL, df = Inf,

interval = c("none", "confidence", "prediction"),
level = 0.95, type = c("response", "terms"),
terms = NULL, na.action = na.pass,
pred.var = res.var/weights, weights = 1, ...)

Arguments

object Object of class inheriting from "lm"

newdata An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

se.fit A switch indicating if standard errors are required.

scale Scale parameter for std.err. calculation

df Degrees of freedom for scale

interval Type of interval calculation.

level Tolerance/confidence level

type Type of prediction (response or model term).

terms If type="terms", which terms (default is all terms)

na.action function determining what should be done with missing values in newdata. The
default is to predict NA.

pred.var the variance(s) for future observations to be assumed for prediction intervals.
See ‘Details’.

weights variance weights for prediction. This can be a numeric vector or a one-sided
model formula. In the latter case, it is interpreted as an expression evaluated in
newdata

... further arguments passed to or from other methods.

Details

predict.lm produces predicted values, obtained by evaluating the regression function in the frame
newdata (which defaults to model.frame(object). If the logical se.fit is TRUE, standard errors
of the predictions are calculated. If the numeric argument scale is set (with optional df), it is
used as the residual standard deviation in the computation of the standard errors, otherwise this is
extracted from the model fit. Setting intervals specifies computation of confidence or prediction
(tolerance) intervals at the specified level, sometimes referred to as narrow vs. wide intervals.

If the fit is rank-deficient, some of the columns of the design matrix will have been dropped. Predic-
tion from such a fit only makes sense if newdata is contained in the same subspace as the original
data. That cannot be checked accurately, so a warning is issued.

If newdata is omitted the predictions are based on the data used for the fit. In that case
how cases with missing values in the original fit is determined by the na.action argument of
that fit. If na.action = na.omit omitted cases will not appear in the residuals, whereas if
na.action = na.exclude they will appear (in predictions, standard errors or interval limits), with
residual value NA. See also napredict.

The prediction intervals are for a single observation at each case in newdata (or by default, the data
used for the fit) with error variance(s) pred.var. This can be a multiple of res.var, the estimated
value of σ2: the default is to assume that future observations have the same error variance as those

predict.lm 1419

used for fitting. If weights is supplied, the inverse of this is used as a scale factor. For a weighted
fit, if the prediction is for the original data frame, weights defaults to the weights used for the model
fit, with a warning since it might not be the intended result. If the fit was weighted and newdata is
given, the default is to assume constant prediction variance, with a warning.

Value

predict.lm produces a vector of predictions or a matrix of predictions and bounds with column
names fit, lwr, and upr if interval is set. If se.fit is TRUE, a list with the following components
is returned:

fit vector or matrix as above

se.fit standard error of predicted means

residual.scale residual standard deviations

df degrees of freedom for residual

Note

Variables are first looked for in newdata and then searched for in the usual way (which will include
the environment of the formula used in the fit). A warning will be given if the variables found are
not of the same length as those in newdata if it was supplied.

Notice that prediction variances and prediction intervals always refer to future observations, possi-
bly corresponding to the same predictors as used for the fit. The variance of the residuals will be
smaller.

Strictly speaking, the formula used for prediction limits assumes that the degrees of freedom for
the fit are the same as those for the residual variance. This may not be the case if res.var is not
obtained from the fit.

See Also

The model fitting function lm, predict.

SafePrediction for prediction from polynomial and spline fits.

Examples

require(graphics)

Predictions
x <- rnorm(15)
y <- x + rnorm(15)
predict(lm(y ~ x))
new <- data.frame(x = seq(-3, 3, 0.5))
predict(lm(y ~ x), new, se.fit = TRUE)
pred.w.plim <- predict(lm(y ~ x), new, interval="prediction")
pred.w.clim <- predict(lm(y ~ x), new, interval="confidence")
matplot(new$x,cbind(pred.w.clim, pred.w.plim[,-1]),

lty=c(1,2,2,3,3), type="l", ylab="predicted y")

Prediction intervals, special cases
The first three of these throw warnings
w <- 1 + x^2
fit <- lm(y ~ x)
wfit <- lm(y ~ x, weights = w)

1420 predict.loess

predict(fit, interval = "prediction")
predict(wfit, interval = "prediction")
predict(wfit, new, interval = "prediction")
predict(wfit, new, interval = "prediction", weights = (new$x)^2)
predict(wfit, new, interval = "prediction", weights = ~x^2)

predict.loess Predict Loess Curve or Surface

Description

Predictions from a loess fit, optionally with standard errors.

Usage

S3 method for class ’loess’
predict(object, newdata = NULL, se = FALSE,

na.action = na.pass, ...)

Arguments

object an object fitted by loess.
newdata an optional data frame in which to look for variables with which to predict,

or a matrix or vector containing exactly the variables needs for prediction. If
missing, the original data points are used.

se should standard errors be computed?
na.action function determining what should be done with missing values in data frame

newdata. The default is to predict NA.
... arguments passed to or from other methods.

Details

The standard errors calculation is slower than prediction.

When the fit was made using surface="interpolate" (the default), predict.loess will not ex-
trapolate – so points outside an axis-aligned hypercube enclosing the original data will have missing
(NA) predictions and standard errors.

The default for na.action prior to R 2.12.0 was na.omit.

Value

If se = FALSE, a vector giving the prediction for each row of newdata (or the original data). If
se = TRUE, a list containing components

fit the predicted values.
se an estimated standard error for each predicted value.
residual.scale the estimated scale of the residuals used in computing the standard errors.
df an estimate of the effective degrees of freedom used in estimating the residual

scale, intended for use with t-based confidence intervals.

If newdata was the result of a call to expand.grid, the predictions (and s.e.’s if requested) will be
an array of the appropriate dimensions.

Predictions from infinite inputs will be NA since loess does not support extrapolation.

predict.nls 1421

Note

Variables are first looked for in newdata and then searched for in the usual way (which will include
the environment of the formula used in the fit). A warning will be given if the variables found are
not of the same length as those in newdata if it was supplied.

Author(s)

B. D. Ripley, based on the cloess package of Cleveland, Grosse and Shyu.

See Also

loess

Examples

cars.lo <- loess(dist ~ speed, cars)
predict(cars.lo, data.frame(speed=seq(5, 30, 1)), se=TRUE)
to get extrapolation
cars.lo2 <- loess(dist ~ speed, cars,

control=loess.control(surface="direct"))
predict(cars.lo2, data.frame(speed=seq(5, 30, 1)), se=TRUE)

predict.nls Predicting from Nonlinear Least Squares Fits

Description

predict.nls produces predicted values, obtained by evaluating the regression function in the frame
newdata. If the logical se.fit is TRUE, standard errors of the predictions are calculated. If the
numeric argument scale is set (with optional df), it is used as the residual standard deviation
in the computation of the standard errors, otherwise this is extracted from the model fit. Setting
intervals specifies computation of confidence or prediction (tolerance) intervals at the specified
level.

At present se.fit and interval are ignored.

Usage

S3 method for class ’nls’
predict(object, newdata , se.fit = FALSE, scale = NULL, df = Inf,

interval = c("none", "confidence", "prediction"),
level = 0.95, ...)

Arguments

object An object that inherits from class nls.

newdata A named list or data frame in which to look for variables with which to predict.
If newdata is missing the fitted values at the original data points are returned.

se.fit A logical value indicating if the standard errors of the predictions should be
calculated. Defaults to FALSE. At present this argument is ignored.

1422 predict.nls

scale A numeric scalar. If it is set (with optional df), it is used as the residual standard
deviation in the computation of the standard errors, otherwise this information
is extracted from the model fit. At present this argument is ignored.

df A positive numeric scalar giving the number of degrees of freedom for the scale
estimate. At present this argument is ignored.

interval A character string indicating if prediction intervals or a confidence interval on
the mean responses are to be calculated. At present this argument is ignored.

level A numeric scalar between 0 and 1 giving the confidence level for the intervals
(if any) to be calculated. At present this argument is ignored.

... Additional optional arguments. At present no optional arguments are used.

Value

predict.nls produces a vector of predictions. When implemented, interval will produce a ma-
trix of predictions and bounds with column names fit, lwr, and upr. When implemented, if se.fit
is TRUE, a list with the following components will be returned:

fit vector or matrix as above

se.fit standard error of predictions

residual.scale residual standard deviations

df degrees of freedom for residual

Note

Variables are first looked for in newdata and then searched for in the usual way (which will include
the environment of the formula used in the fit). A warning will be given if the variables found are
not of the same length as those in newdata if it was supplied.

See Also

The model fitting function nls, predict.

Examples

require(graphics)

fm <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
predict(fm) # fitted values at observed times
Form data plot and smooth line for the predictions
opar <- par(las = 1)
plot(demand ~ Time, data = BOD, col = 4,

main = "BOD data and fitted first-order curve",
xlim = c(0,7), ylim = c(0, 20))

tt <- seq(0, 8, length = 101)
lines(tt, predict(fm, list(Time = tt)))
par(opar)

predict.smooth.spline 1423

predict.smooth.spline Predict from Smoothing Spline Fit

Description

Predict a smoothing spline fit at new points, return the derivative if desired. The predicted fit is
linear beyond the original data.

Usage

S3 method for class ’smooth.spline’
predict(object, x, deriv = 0, ...)

Arguments

object a fit from smooth.spline.

x the new values of x.

deriv integer; the order of the derivative required.

... further arguments passed to or from other methods.

Value

A list with components

x The input x.

y The fitted values or derivatives at x.

See Also

smooth.spline

Examples

require(graphics)

attach(cars)
cars.spl <- smooth.spline(speed, dist, df=6.4)

"Proof" that the derivatives are okay, by comparing with approximation
diff.quot <- function(x,y) {

Difference quotient (central differences where available)
n <- length(x); i1 <- 1:2; i2 <- (n-1):n
c(diff(y[i1]) / diff(x[i1]), (y[-i1] - y[-i2]) / (x[-i1] - x[-i2]),
diff(y[i2]) / diff(x[i2]))

}

xx <- unique(sort(c(seq(0,30, by = .2), kn <- unique(speed))))
i.kn <- match(kn, xx)# indices of knots within xx
op <- par(mfrow = c(2,2))
plot(speed, dist, xlim = range(xx), main = "Smooth.spline & derivatives")
lines(pp <- predict(cars.spl, xx), col = "red")

1424 princomp

points(kn, pp$y[i.kn], pch = 3, col="dark red")
mtext("s(x)", col = "red")
for(d in 1:3){

n <- length(pp$x)
plot(pp$x, diff.quot(pp$x,pp$y), type = ’l’, xlab="x", ylab="",

col = "blue", col.main = "red",
main= paste0("s",paste(rep("’",d), collapse=""),"(x)"))

mtext("Difference quotient approx.(last)", col = "blue")
lines(pp <- predict(cars.spl, xx, deriv = d), col = "red")

points(kn, pp$y[i.kn], pch = 3, col="dark red")
abline(h=0, lty = 3, col = "gray")

}
detach(); par(op)

preplot Pre-computations for a Plotting Object

Description

Compute an object to be used for plots relating to the given model object.

Usage

preplot(object, ...)

Arguments

object a fitted model object.

... additional arguments for specific methods.

Details

Only the generic function is currently provided in base R, but some add-on packages have methods.
Principally here for S compatibility.

Value

An object set up to make a plot that describes object.

princomp Principal Components Analysis

Description

princomp performs a principal components analysis on the given numeric data matrix and returns
the results as an object of class princomp.

princomp 1425

Usage

princomp(x, ...)

S3 method for class ’formula’
princomp(formula, data = NULL, subset, na.action, ...)

Default S3 method:
princomp(x, cor = FALSE, scores = TRUE, covmat = NULL,

subset = rep(TRUE, nrow(as.matrix(x))), ...)

S3 method for class ’princomp’
predict(object, newdata, ...)

Arguments

formula a formula with no response variable, referring only to numeric variables.

data an optional data frame (or similar: see model.frame) containing the vari-
ables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector used to select rows (observations) of the data matrix x.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The ‘factory-fresh’ default is na.omit.

x a numeric matrix or data frame which provides the data for the principal com-
ponents analysis.

cor a logical value indicating whether the calculation should use the correlation ma-
trix or the covariance matrix. (The correlation matrix can only be used if there
are no constant variables.)

scores a logical value indicating whether the score on each principal component should
be calculated.

covmat a covariance matrix, or a covariance list as returned by cov.wt (and cov.mve or
cov.mcd from package MASS). If supplied, this is used rather than the covari-
ance matrix of x.

... arguments passed to or from other methods. If x is a formula one might specify
cor or scores.

object Object of class inheriting from "princomp"

newdata An optional data frame or matrix in which to look for variables with which to
predict. If omitted, the scores are used. If the original fit used a formula or a
data frame or a matrix with column names, newdata must contain columns with
the same names. Otherwise it must contain the same number of columns, to be
used in the same order.

Details

princomp is a generic function with "formula" and "default" methods.

The calculation is done using eigen on the correlation or covariance matrix, as determined by cor.
This is done for compatibility with the S-PLUS result. A preferred method of calculation is to use
svd on x, as is done in prcomp.

Note that the default calculation uses divisor N for the covariance matrix.

http://CRAN.R-project.org/package=MASS

1426 princomp

The print method for these objects prints the results in a nice format and the plot method produces
a scree plot (screeplot). There is also a biplot method.

If x is a formula then the standard NA-handling is applied to the scores (if requested): see
napredict.

princomp only handles so-called R-mode PCA, that is feature extraction of variables. If a data
matrix is supplied (possibly via a formula) it is required that there are at least as many units as
variables. For Q-mode PCA use prcomp.

Value

princomp returns a list with class "princomp" containing the following components:

sdev the standard deviations of the principal components.

loadings the matrix of variable loadings (i.e., a matrix whose columns contain the eigen-
vectors). This is of class "loadings": see loadings for its print method.

center the means that were subtracted.

scale the scalings applied to each variable.

n.obs the number of observations.

scores if scores = TRUE, the scores of the supplied data on the principal components.
These are non-null only if x was supplied, and if covmat was also supplied if
it was a covariance list. For the formula method, napredict() is applied to
handle the treatment of values omitted by the na.action.

call the matched call.

na.action If relevant.

Note

The signs of the columns of the loadings and scores are arbitrary, and so may differ between differ-
ent programs for PCA, and even between different builds of R.

References

Mardia, K. V., J. T. Kent and J. M. Bibby (1979). Multivariate Analysis, London: Academic Press.

Venables, W. N. and B. D. Ripley (2002). Modern Applied Statistics with S, Springer-Verlag.

See Also

summary.princomp, screeplot, biplot.princomp, prcomp, cor, cov, eigen.

Examples

require(graphics)

The variances of the variables in the
USArrests data vary by orders of magnitude, so scaling is appropriate
(pc.cr <- princomp(USArrests)) # inappropriate
princomp(USArrests, cor = TRUE) # =^= prcomp(USArrests, scale=TRUE)
Similar, but different:
The standard deviations differ by a factor of sqrt(49/50)

summary(pc.cr <- princomp(USArrests, cor = TRUE))
loadings(pc.cr) ## note that blank entries are small but not zero

print.power.htest 1427

plot(pc.cr) # shows a screeplot.
biplot(pc.cr)

Formula interface
princomp(~ ., data = USArrests, cor = TRUE)

NA-handling
USArrests[1, 2] <- NA
pc.cr <- princomp(~ Murder + Assault + UrbanPop,

data = USArrests, na.action=na.exclude, cor = TRUE)
pc.cr$scores[1:5,]

(Simple) Robust PCA:
Classical:
(pc.cl <- princomp(stackloss))
Robust:
(pc.rob <- princomp(stackloss, covmat = MASS::cov.rob(stackloss)))

print.power.htest Print method for power calculation object

Description

Print object of class "power.htest" in nice layout.

Usage

S3 method for class ’power.htest’
print(x, ...)

Arguments

x Object of class "power.htest".

... further arguments to be passed to or from methods.

Details

A power.htest object is just a named list of numbers and character strings, supplemented with
method and note elements. The method is displayed as a title, the note as a footnote, and the
remaining elements are given in an aligned ‘name = value’ format.

Value

none

Author(s)

Peter Dalgaard

See Also

power.t.test, power.prop.test

1428 printCoefmat

print.ts Printing Time-Series Objects

Description

Print method for time series objects.

Usage

S3 method for class ’ts’
print(x, calendar, ...)

Arguments

x a time series object.

calendar enable/disable the display of information about month names, quarter names
or year when printing. The default is TRUE for a frequency of 4 or 12, FALSE
otherwise.

... additional arguments to print.

Details

This is the print methods for objects inheriting from class "ts".

See Also

print, ts.

Examples

print(ts(1:10, frequency = 7, start = c(12, 2)), calendar = TRUE)

printCoefmat Print Coefficient Matrices

Description

Utility function to be used in higher-level print methods, such as print.summary.lm,
print.summary.glm and print.anova. The goal is to provide a flexible interface with smart
defaults such that often, only x needs to be specified.

printCoefmat 1429

Usage

printCoefmat(x, digits=max(3, getOption("digits") - 2),
signif.stars = getOption("show.signif.stars"),
signif.legend = signif.stars,
dig.tst = max(1, min(5, digits - 1)),
cs.ind = 1L:k, tst.ind = k + 1L,
zap.ind = integer(0), P.values = NULL,
has.Pvalue = nc >= 4L &&

substr(colnames(x)[nc], 1L, 3L) == "Pr(",
eps.Pvalue = .Machine$double.eps,
na.print = "NA", ...)

Arguments

x a numeric matrix like object, to be printed.

digits minimum number of significant digits to be used for most numbers.

signif.stars logical; if TRUE, P-values are additionally encoded visually as ‘significance
stars’ in order to help scanning of long coefficient tables. It defaults to the
show.signif.stars slot of options.

signif.legend logical; if TRUE, a legend for the ‘significance stars’ is printed provided
signif.stars=TRUE.

dig.tst minimum number of significant digits for the test statistics, see tst.ind.

cs.ind indices (integer) of column numbers which are (like) coefficients and standard
errors to be formatted together.

tst.ind indices (integer) of column numbers for test statistics.

zap.ind indices (integer) of column numbers which should be formatted by zapsmall,
i.e., by ‘zapping’ values close to 0.

P.values logical or NULL; if TRUE, the last column of x is formatted by format.pval
as P values. If P.values = NULL, the default, it is set to TRUE only if
options("show.coef.Pvalue") is TRUE and x has at least 4 columns and the
last column name of x starts with "Pr(".

has.Pvalue logical; if TRUE, the last column of x contains P values; in that case, it is printed
if and only if P.values (above) is true.

eps.Pvalue number,..

na.print a character string to code NA values in printed output.

... further arguments for print.

Value

Invisibly returns its argument, x.

Author(s)

Martin Maechler

See Also

print.summary.lm, format.pval, format.

1430 profile

Examples

cmat <- cbind(rnorm(3, 10), sqrt(rchisq(3, 12)))
cmat <- cbind(cmat, cmat[,1]/cmat[,2])
cmat <- cbind(cmat, 2*pnorm(-cmat[,3]))
colnames(cmat) <- c("Estimate", "Std.Err", "Z value", "Pr(>z)")
printCoefmat(cmat[,1:3])
printCoefmat(cmat)
options(show.coef.Pvalues = FALSE)
printCoefmat(cmat, digits=2)
printCoefmat(cmat, digits=2, P.values = TRUE)
options(show.coef.Pvalues = TRUE)# revert

profile Generic Function for Profiling Models

Description

Investigates behavior of objective function near the solution represented by fitted.

See documentation on method functions for further details.

Usage

profile(fitted, ...)

Arguments

fitted the original fitted model object.

... additional parameters. See documentation on individual methods.

Value

A list with an element for each parameter being profiled. See the individual methods for further
details.

See Also

profile.nls, profile.glm in package MASS, . . .

For profiling R code, see Rprof.

http://CRAN.R-project.org/package=MASS

profile.nls 1431

profile.nls Method for Profiling nls Objects

Description

Investigates the profile log-likelihood function for a fitted model of class "nls".

Usage

S3 method for class ’nls’
profile(fitted, which = 1:npar, maxpts = 100, alphamax = 0.01,

delta.t = cutoff/5, ...)

Arguments

fitted the original fitted model object.

which the original model parameters which should be profiled. This can be a numeric
or character vector. By default, all non-linear parameters are profiled.

maxpts maximum number of points to be used for profiling each parameter.

alphamax highest significance level allowed for the profile t-statistics.

delta.t suggested change on the scale of the profile t-statistics. Default value chosen to
allow profiling at about 10 parameter values.

... further arguments passed to or from other methods.

Details

The profile t-statistics is defined as the square root of change in sum-of-squares divided by residual
standard error with an appropriate sign.

Value

A list with an element for each parameter being profiled. The elements are data-frames with two
variables

par.vals a matrix of parameter values for each fitted model.

tau the profile t-statistics.

Author(s)

Of the original version, Douglas M. Bates and Saikat DebRoy

References

Bates, D. M. and Watts, D. G. (1988), Nonlinear Regression Analysis and Its Applications, Wiley
(chapter 6).

See Also

nls, profile, plot.profile.nls

1432 proj

Examples

obtain the fitted object
fm1 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
get the profile for the fitted model: default level is too extreme
pr1 <- profile(fm1, alpha = 0.05)
profiled values for the two parameters
pr1$A
pr1$lrc
see also example(plot.profile.nls)

proj Projections of Models

Description

proj returns a matrix or list of matrices giving the projections of the data onto the terms of a linear
model. It is most frequently used for aov models.

Usage

proj(object, ...)

S3 method for class ’aov’
proj(object, onedf = FALSE, unweighted.scale = FALSE, ...)

S3 method for class ’aovlist’
proj(object, onedf = FALSE, unweighted.scale = FALSE, ...)

Default S3 method:
proj(object, onedf = TRUE, ...)

S3 method for class ’lm’
proj(object, onedf = FALSE, unweighted.scale = FALSE, ...)

Arguments

object An object of class "lm" or a class inheriting from it, or an object with a similar
structure including in particular components qr and effects.

onedf A logical flag. If TRUE, a projection is returned for all the columns of the model
matrix. If FALSE, the single-column projections are collapsed by terms of the
model (as represented in the analysis of variance table).

unweighted.scale

If the fit producing object used weights, this determines if the projections cor-
respond to weighted or unweighted observations.

... Swallow and ignore any other arguments.

Details

A projection is given for each stratum of the object, so for aov models with an Error term the result
is a list of projections.

proj 1433

Value

A projection matrix or (for multi-stratum objects) a list of projection matrices.

Each projection is a matrix with a row for each observations and either a column for each term
(onedf = FALSE) or for each coefficient (onedf = TRUE). Projection matrices from the default
method have orthogonal columns representing the projection of the response onto the column space
of the Q matrix from the QR decomposition. The fitted values are the sum of the projections, and
the sum of squares for each column is the reduction in sum of squares from fitting that column (after
those to the left of it).

The methods for lm and aov models add a column to the projection matrix giving the residuals (the
projection of the data onto the orthogonal complement of the model space).

Strictly, when onedf = FALSE the result is not a projection, but the columns represent sums of
projections onto the columns of the model matrix corresponding to that term. In this case the matrix
does not depend on the coding used.

Author(s)

The design was inspired by the S function of the same name described in Chambers et al. (1992).

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed experi-
ments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth &
Brooks/Cole.

See Also

aov, lm, model.tables

Examples

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,
55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),
K=factor(K), yield=yield)

npk.aov <- aov(yield ~ block + N*P*K, npk)
proj(npk.aov)

as a test, not particularly sensible
options(contrasts=c("contr.helmert", "contr.treatment"))
npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
proj(npk.aovE)

1434 prop.test

prop.test Test of Equal or Given Proportions

Description

prop.test can be used for testing the null that the proportions (probabilities of success) in several
groups are the same, or that they equal certain given values.

Usage

prop.test(x, n, p = NULL,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, correct = TRUE)

Arguments

x a vector of counts of successes, a one-dimensional table with two entries, or
a two-dimensional table (or matrix) with 2 columns, giving the counts of suc-
cesses and failures, respectively.

n a vector of counts of trials; ignored if x is a matrix or a table.

p a vector of probabilities of success. The length of p must be the same as the
number of groups specified by x, and its elements must be greater than 0 and
less than 1.

alternative a character string specifying the alternative hypothesis, must be one of
"two.sided" (default), "greater" or "less". You can specify just the ini-
tial letter. Only used for testing the null that a single proportion equals a given
value, or that two proportions are equal; ignored otherwise.

conf.level confidence level of the returned confidence interval. Must be a single number
between 0 and 1. Only used when testing the null that a single proportion equals
a given value, or that two proportions are equal; ignored otherwise.

correct a logical indicating whether Yates’ continuity correction should be applied
where possible.

Details

Only groups with finite numbers of successes and failures are used. Counts of successes and failures
must be nonnegative and hence not greater than the corresponding numbers of trials which must be
positive. All finite counts should be integers.

If p is NULL and there is more than one group, the null tested is that the proportions in each group
are the same. If there are two groups, the alternatives are that the probability of success in the first
group is less than, not equal to, or greater than the probability of success in the second group, as
specified by alternative. A confidence interval for the difference of proportions with confidence
level as specified by conf.level and clipped to [−1, 1] is returned. Continuity correction is used
only if it does not exceed the difference of the sample proportions in absolute value. Otherwise,
if there are more than 2 groups, the alternative is always "two.sided", the returned confidence
interval is NULL, and continuity correction is never used.

If there is only one group, then the null tested is that the underlying probability of success is p,
or .5 if p is not given. The alternative is that the probability of success is less than, not equal to,
or greater than p or 0.5, respectively, as specified by alternative. A confidence interval for the

prop.test 1435

underlying proportion with confidence level as specified by conf.level and clipped to [0, 1] is
returned. Continuity correction is used only if it does not exceed the difference between sample and
null proportions in absolute value. The confidence interval is computed by inverting the score test.

Finally, if p is given and there are more than 2 groups, the null tested is that the underlying probabili-
ties of success are those given by p. The alternative is always "two.sided", the returned confidence
interval is NULL, and continuity correction is never used.

Value

A list with class "htest" containing the following components:

statistic the value of Pearson’s chi-squared test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

estimate a vector with the sample proportions x/n.

conf.int a confidence interval for the true proportion if there is one group, or for the
difference in proportions if there are 2 groups and p is not given, or NULL other-
wise. In the cases where it is not NULL, the returned confidence interval has an
asymptotic confidence level as specified by conf.level, and is appropriate to
the specified alternative hypothesis.

null.value the value of p if specified by the null, or NULL otherwise.

alternative a character string describing the alternative.

method a character string indicating the method used, and whether Yates’ continuity
correction was applied.

data.name a character string giving the names of the data.

References

Wilson, E.B. (1927) Probable inference, the law of succession, and statistical inference. J. Am. Stat.
Assoc., 22, 209–212.

Newcombe R.G. (1998) Two-Sided Confidence Intervals for the Single Proportion: Comparison of
Seven Methods. Statistics in Medicine 17, 857–872.

Newcombe R.G. (1998) Interval Estimation for the Difference Between Independent Proportions:
Comparison of Eleven Methods. Statistics in Medicine 17, 873–890.

See Also

binom.test for an exact test of a binomial hypothesis.

Examples

heads <- rbinom(1, size=100, prob = .5)
prop.test(heads, 100) # continuity correction TRUE by default
prop.test(heads, 100, correct = FALSE)

Data from Fleiss (1981), p. 139.
H0: The null hypothesis is that the four populations from which
the patients were drawn have the same true proportion of smokers.
A: The alternative is that this proportion is different in at
least one of the populations.

1436 prop.trend.test

smokers <- c(83, 90, 129, 70)
patients <- c(86, 93, 136, 82)
prop.test(smokers, patients)

prop.trend.test Test for trend in proportions

Description

Performs chi-squared test for trend in proportions, i.e., a test asymptotically optimal for local alter-
natives where the log odds vary in proportion with score. By default, score is chosen as the group
numbers.

Usage

prop.trend.test(x, n, score = seq_along(x))

Arguments

x Number of events

n Number of trials

score Group score

Value

An object of class "htest" with title, test statistic, p-value, etc.

Note

This really should get integrated with prop.test

Author(s)

Peter Dalgaard

See Also

prop.test

Examples

smokers <- c(83, 90, 129, 70)
patients <- c(86, 93, 136, 82)
prop.test(smokers, patients)
prop.trend.test(smokers, patients)
prop.trend.test(smokers, patients,c(0,0,0,1))

qqnorm 1437

qqnorm Quantile-Quantile Plots

Description

qqnorm is a generic function the default method of which produces a normal QQ plot of the values
in y. qqline adds a line to a “theoretical”, by default normal, quantile-quantile plot which passes
through the probs quantiles, by default the first and third quartiles.

qqplot produces a QQ plot of two datasets.

Graphical parameters may be given as arguments to qqnorm, qqplot and qqline.

Usage

qqnorm(y, ...)
Default S3 method:
qqnorm(y, ylim, main = "Normal Q-Q Plot",

xlab = "Theoretical Quantiles", ylab = "Sample Quantiles",
plot.it = TRUE, datax = FALSE, ...)

qqline(y, datax = FALSE, distribution = qnorm,
probs = c(0.25, 0.75), qtype = 7, ...)

qqplot(x, y, plot.it = TRUE, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), ...)

Arguments

x The first sample for qqplot.

y The second or only data sample.
xlab, ylab, main

plot labels. The xlab and ylab refer to the y and x axes respectively if
datax = TRUE.

plot.it logical. Should the result be plotted?

datax logical. Should data values be on the x-axis?

distribution quantile function for reference theoretical distribution.

probs numeric vector of length two, representing probabilities. Corresponding quan-
tile pairs define the line drawn.

qtype the type of quantile computation used in quantile.

ylim, ... graphical parameters.

Value

For qqnorm and qqplot, a list with components

x The x coordinates of the points that were/would be plotted

y The original y vector, i.e., the corresponding y coordinates including NAs.

1438 quade.test

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ppoints, used by qqnorm to generate approximations to expected order statistics for a normal
distribution.

Examples

require(graphics)

y <- rt(200, df = 5)
qqnorm(y); qqline(y, col = 2)
qqplot(y, rt(300, df = 5))

qqnorm(precip, ylab = "Precipitation [in/yr] for 70 US cities")

"QQ-Chisquare" : --------------------------
y <- rchisq(500, df=3)
Q-Q plot for Chi^2 data against true theoretical distribution:
qqplot(qchisq(ppoints(500), df=3), y,

main = expression("Q-Q plot for" ~~ {chi^2}[nu==3]))
qqline(y, distribution = function(p) qchisq(p, df=3),

prob = c(0.1, 0.6), col=2)
mtext("qqline(*, dist = qchisq(., df=3), prob = c(0.1, 0.6))")

quade.test Quade Test

Description

Performs a Quade test with unreplicated blocked data.

Usage

quade.test(y, ...)

Default S3 method:
quade.test(y, groups, blocks, ...)

S3 method for class ’formula’
quade.test(formula, data, subset, na.action, ...)

Arguments

y either a numeric vector of data values, or a data matrix.

groups a vector giving the group for the corresponding elements of y if this is a vector;
ignored if y is a matrix. If not a factor object, it is coerced to one.

blocks a vector giving the block for the corresponding elements of y if this is a vector;
ignored if y is a matrix. If not a factor object, it is coerced to one.

quade.test 1439

formula a formula of the form a ~ b | c, where a, b and c give the data values and
corresponding groups and blocks, respectively.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

quade.test can be used for analyzing unreplicated complete block designs (i.e., there is exactly
one observation in y for each combination of levels of groups and blocks) where the normality
assumption may be violated.

The null hypothesis is that apart from an effect of blocks, the location parameter of y is the same
in each of the groups.

If y is a matrix, groups and blocks are obtained from the column and row indices, respectively.
NA’s are not allowed in groups or blocks; if y contains NA’s, corresponding blocks are removed.

Value

A list with class "htest" containing the following components:

statistic the value of Quade’s F statistic.

parameter a vector with the numerator and denominator degrees of freedom of the approx-
imate F distribution of the test statistic.

p.value the p-value of the test.

method the character string "Quade test".

data.name a character string giving the names of the data.

References

D. Quade (1979), Using weighted rankings in the analysis of complete blocks with additive block
effects. Journal of the American Statistical Association, 74, 680–683.

William J. Conover (1999), Practical nonparametric statistics. New York: John Wiley & Sons.
Pages 373–380.

See Also

friedman.test.

Examples

Conover (1999, p. 375f):
Numbers of five brands of a new hand lotion sold in seven stores
during one week.
y <- matrix(c(5, 4, 7, 10, 12,

1, 3, 1, 0, 2,
16, 12, 22, 22, 35,
5, 4, 3, 5, 4,

1440 quantile

10, 9, 7, 13, 10,
19, 18, 28, 37, 58,
10, 7, 6, 8, 7),

nrow = 7, byrow = TRUE,
dimnames =
list(Store = as.character(1:7),

Brand = LETTERS[1:5]))
y
quade.test(y)

quantile Sample Quantiles

Description

The generic function quantile produces sample quantiles corresponding to the given probabilities.
The smallest observation corresponds to a probability of 0 and the largest to a probability of 1.

Usage

quantile(x, ...)

Default S3 method:
quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE,

names = TRUE, type = 7, ...)

Arguments

x numeric vector whose sample quantiles are wanted, or an object of a class for
which a method has been defined (see also ‘details’). NA and NaN values are not
allowed in numeric vectors unless na.rm is TRUE.

probs numeric vector of probabilities with values in [0, 1]. (Values up to ‘2e-14’ out-
side that range are accepted and moved to the nearby endpoint.)

na.rm logical; if true, any NA and NaN’s are removed from x before the quantiles are
computed.

names logical; if true, the result has a names attribute. Set to FALSE for speedup with
many probs.

type an integer between 1 and 9 selecting one of the nine quantile algorithms detailed
below to be used.

... further arguments passed to or from other methods.

Details

A vector of length length(probs) is returned; if names = TRUE, it has a names attribute.

NA and NaN values in probs are propagated to the result.

The default method works with classed objects sufficiently like numeric vectors that sort and (not
needed by types 1 and 3) addition of elements and multiplication by a number work correctly. Note
that as this is in a namespace, the copy of sort in base will be used, not some S4 generic of that
name. Also note that that is no check on the ‘correctly’, and so e.g. quantile can be applied to
complex vectors which (apart from ties) will be ordered on their real parts.

There is a method for the date-time classes (see "POSIXt"). Types 1 and 3 can be used for class
"Date" and for ordered factors.

quantile 1441

Types

quantile returns estimates of underlying distribution quantiles based on one or two order statistics
from the supplied elements in x at probabilities in probs. One of the nine quantile algorithms
discussed in Hyndman and Fan (1996), selected by type, is employed.

All sample quantiles are defined as weighted averages of consecutive order statistics. Sample quan-
tiles of type i are defined by:

Qi(p) = (1− γ)xj + γxj+1

where 1 ≤ i ≤ 9, j−mn ≤ p < j−m+1
n , xj is the jth order statistic, n is the sample size, the value

of γ is a function of j = bnp + mc and g = np + m − j, and m is a constant determined by the
sample quantile type.

Discontinuous sample quantile types 1, 2, and 3

For types 1, 2 and 3, Qi(p) is a discontinuous function of p, with m = 0 when i = 1 and i = 2, and
m = −1/2 when i = 3.

Type 1 Inverse of empirical distribution function. γ = 0 if g = 0, and 1 otherwise.

Type 2 Similar to type 1 but with averaging at discontinuities. γ = 0.5 if g = 0, and 1 otherwise.

Type 3 SAS definition: nearest even order statistic. γ = 0 if g = 0 and j is even, and 1 otherwise.

Continuous sample quantile types 4 through 9

For types 4 through 9, Qi(p) is a continuous function of p, with γ = g and m given below. The
sample quantiles can be obtained equivalently by linear interpolation between the points (pk, xk)
where xk is the kth order statistic. Specific expressions for pk are given below.

Type 4 m = 0. pk = k
n . That is, linear interpolation of the empirical cdf.

Type 5 m = 1/2. pk = k−0.5
n . That is a piecewise linear function where the knots are the values

midway through the steps of the empirical cdf. This is popular amongst hydrologists.

Type 6 m = p. pk = k
n+1 . Thus pk = E[F (xk)]. This is used by Minitab and by SPSS.

Type 7 m = 1− p. pk = k−1
n−1 . In this case, pk = mode[F (xk)]. This is used by S.

Type 8 m = (p+ 1)/3. pk = k−1/3
n+1/3 . Then pk ≈ median[F (xk)]. The resulting quantile estimates

are approximately median-unbiased regardless of the distribution of x.

Type 9 m = p/4 + 3/8. pk = k−3/8
n+1/4 . The resulting quantile estimates are approximately unbiased

for the expected order statistics if x is normally distributed.

Further details are provided in Hyndman and Fan (1996) who recommended type 8. The default
method is type 7, as used by S and by R < 2.0.0.

Author(s)

of the version used in R >= 2.0.0, Ivan Frohne and Rob J Hyndman.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in statistical packages, American Statistician,
50, 361–365.

1442 r2dtable

See Also

ecdf for empirical distributions of which quantile is an inverse; boxplot.stats and fivenum for
computing other versions of quartiles, etc.

Examples

quantile(x <- rnorm(1001)) # Extremes & Quartiles by default
quantile(x, probs = c(0.1, 0.5, 1, 2, 5, 10, 50, NA)/100)

Compare different types
p <- c(0.1, 0.5, 1, 2, 5, 10, 50)/100
res <- matrix(as.numeric(NA), 9, 7)
for(type in 1:9) res[type,] <- y <- quantile(x, p, type = type)
dimnames(res) <- list(1:9, names(y))
round(res, 3)

r2dtable Random 2-way Tables with Given Marginals

Description

Generate random 2-way tables with given marginals using Patefield’s algorithm.

Usage

r2dtable(n, r, c)

Arguments

n a non-negative numeric giving the number of tables to be drawn.

r a non-negative vector of length at least 2 giving the row totals, to be coerced to
integer. Must sum to the same as c.

c a non-negative vector of length at least 2 giving the column totals, to be coerced
to integer.

Value

A list of length n containing the generated tables as its components.

References

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables with given
row and column totals. Applied Statistics 30, 91–97.

read.ftable 1443

Examples

Fisher’s Tea Drinker data.
TeaTasting <-
matrix(c(3, 1, 1, 3),

nrow = 2,
dimnames = list(Guess = c("Milk", "Tea"),

Truth = c("Milk", "Tea")))
Simulate permutation test for independence based on the maximum
Pearson residuals (rather than their sum).
rowTotals <- rowSums(TeaTasting)
colTotals <- colSums(TeaTasting)
nOfCases <- sum(rowTotals)
expected <- outer(rowTotals, colTotals, "*") / nOfCases
maxSqResid <- function(x) max((x - expected) ^ 2 / expected)
simMaxSqResid <-

sapply(r2dtable(1000, rowTotals, colTotals), maxSqResid)
sum(simMaxSqResid >= maxSqResid(TeaTasting)) / 1000
Fisher’s exact test gives p = 0.4857 ...

read.ftable Manipulate Flat Contingency Tables

Description

Read, write and coerce ‘flat’ contingency tables.

Usage

read.ftable(file, sep = "", quote = "\"",
row.var.names, col.vars, skip = 0)

write.ftable(x, file = "", quote = TRUE, append = FALSE,
digits = getOption("digits"))

S3 method for class ’ftable’
format(x, quote = TRUE, digits = getOption("digits"), ...)

Arguments

file either a character string naming a file or a connection which the data are to be
read from or written to. "" indicates input from the console for reading and
output to the console for writing.

sep the field separator string. Values on each line of the file are separated by this
string.

quote a character string giving the set of quoting characters for read.ftable; to dis-
able quoting altogether, use quote="". For write.table, a logical indicating
whether strings in the data will be surrounded by double quotes.

row.var.names a character vector with the names of the row variables, in case these cannot be
determined automatically.

col.vars a list giving the names and levels of the column variables, in case these cannot
be determined automatically.

1444 read.ftable

skip the number of lines of the data file to skip before beginning to read data.

x an object of class "ftable".

append logical. If TRUE and file is the name of a file (and not a connection or "|cmd"),
the output from write.ftable is appended to the file. If FALSE, the contents of
file will be overwritten.

digits an integer giving the number of significant digits to use for (the cell entries of)
x.

... further arguments to be passed to or from methods.

Details

read.ftable reads in a flat-like contingency table from a file. If the file contains the written
representation of a flat table (more precisely, a header with all information on names and levels of
column variables, followed by a line with the names of the row variables), no further arguments are
needed. Similarly, flat tables with only one column variable the name of which is the only entry
in the first line are handled automatically. Other variants can be dealt with by skipping all header
information using skip, and providing the names of the row variables and the names and levels of
the column variable using row.var.names and col.vars, respectively. See the examples below.

Note that flat tables are characterized by their ‘ragged’ display of row (and maybe also column)
labels. If the full grid of levels of the row variables is given, one should instead use read.table to
read in the data, and create the contingency table from this using xtabs.

write.ftable writes a flat table to a file, which is useful for generating ‘pretty’ ASCII representa-
tions of contingency tables.

References

Agresti, A. (1990) Categorical data analysis. New York: Wiley.

See Also

ftable for more information on flat contingency tables.

Examples

Agresti (1990), page 157, Table 5.8.
Not in ftable standard format, but o.k.
file <- tempfile()
cat(" Intercourse\n",

"Race Gender Yes No\n",
"White Male 43 134\n",
" Female 26 149\n",
"Black Male 29 23\n",
" Female 22 36\n",
file = file)

file.show(file)
ft <- read.ftable(file)
ft
unlink(file)

Agresti (1990), page 297, Table 8.16.
Almost o.k., but misses the name of the row variable.
file <- tempfile()
cat(" \"Tonsil Size\"\n",

rect.hclust 1445

" \"Not Enl.\" \"Enl.\" \"Greatly Enl.\"\n",
"Noncarriers 497 560 269\n",
"Carriers 19 29 24\n",
file = file)

file.show(file)
ft <- read.ftable(file, skip = 2,

row.var.names = "Status",
col.vars = list("Tonsil Size" =

c("Not Enl.", "Enl.", "Greatly Enl.")))
ft
unlink(file)

ft22 <- ftable(Titanic, row.vars = 2:1, col.vars = 4:3)
write.ftable(ft22, quote = FALSE)

rect.hclust Draw Rectangles Around Hierarchical Clusters

Description

Draws rectangles around the branches of a dendrogram highlighting the corresponding clusters.
First the dendrogram is cut at a certain level, then a rectangle is drawn around selected branches.

Usage

rect.hclust(tree, k = NULL, which = NULL, x = NULL, h = NULL,
border = 2, cluster = NULL)

Arguments

tree an object of the type produced by hclust.

k, h Scalar. Cut the dendrogram such that either exactly k clusters are produced or
by cutting at height h.

which, x A vector selecting the clusters around which a rectangle should be drawn. which
selects clusters by number (from left to right in the tree), x selects clusters con-
taining the respective horizontal coordinates. Default is which = 1:k.

border Vector with border colors for the rectangles.

cluster Optional vector with cluster memberships as returned by
cutree(hclust.obj, k = k), can be specified for efficiency if already
computed.

Value

(Invisibly) returns a list where each element contains a vector of data points contained in the re-
spective cluster.

See Also

hclust, identify.hclust.

1446 relevel

Examples

require(graphics)

hca <- hclust(dist(USArrests))
plot(hca)
rect.hclust(hca, k=3, border="red")
x <- rect.hclust(hca, h=50, which=c(2,7), border=3:4)
x

relevel Reorder Levels of Factor

Description

The levels of a factor are re-ordered so that the level specified by ref is first and the others are moved
down. This is useful for contr.treatment contrasts which take the first level as the reference.

Usage

relevel(x, ref, ...)

Arguments

x An unordered factor.

ref The reference level.

... Additional arguments for future methods.

Value

A factor of the same length as x.

See Also

factor, contr.treatment, levels, reorder.

Examples

warpbreaks$tension <- relevel(warpbreaks$tension, ref="M")
summary(lm(breaks ~ wool + tension, data=warpbreaks))

reorder.default 1447

reorder.default Reorder Levels of a Factor

Description

reorder is a generic function. The "default" method treats its first argument as a categorical
variable, and reorders its levels based on the values of a second variable, usually numeric.

Usage

reorder(x, ...)

Default S3 method:
reorder(x, X, FUN = mean, ...,

order = is.ordered(x))

Arguments

x An atomic vector, usually a factor (possibly ordered). The vector is treated as a
categorical variable whose levels will be reordered. If x is not a factor, its unique
values will be used as the implicit levels.

X a vector of the same length as x, whose subset of values for each unique level of
x determines the eventual order of that level.

FUN a function whose first argument is a vector and returns a scalar, to be applied to
each subset of X determined by the levels of x.

... optional: extra arguments supplied to FUN

order logical, whether return value will be an ordered factor rather than a factor.

Value

A factor or an ordered factor (depending on the value of order), with the order of the levels deter-
mined by FUN applied to X grouped by x. The levels are ordered such that the values returned by
FUN are in increasing order. Empty levels will be dropped.

Additionally, the values of FUN applied to the subsets of X (in the original order of the levels of x) is
returned as the "scores" attribute.

Author(s)

Deepayan Sarkar <deepayan.sarkar@r-project.org>

See Also

reorder.dendrogram, levels, relevel.

1448 reorder.dendrogram

Examples

require(graphics)

bymedian <- with(InsectSprays, reorder(spray, count, median))
boxplot(count ~ bymedian, data = InsectSprays,

xlab = "Type of spray", ylab = "Insect count",
main = "InsectSprays data", varwidth = TRUE,
col = "lightgray")

reorder.dendrogram Reorder a Dendrogram

Description

A method for the generic function reorder.

There are many different orderings of a dendrogram that are consistent with the structure imposed.
This function takes a dendrogram and a vector of values and reorders the dendrogram in the order
of the supplied vector, maintaining the constraints on the dendrogram.

Usage

S3 method for class ’dendrogram’
reorder(x, wts, agglo.FUN = sum, ...)

Arguments

x the (dendrogram) object to be reordered

wts numeric weights (arbitrary values) for reordering.

agglo.FUN a function for weights agglomeration, see below.

... additional arguments

Details

Using the weights wts, the leaves of the dendrogram are reordered so as to be in an order as con-
sistent as possible with the weights. At each node, the branches are ordered in increasing weights
where the weight of a branch is defined as f(wj) where f is agglo.FUN and wj is the weight of the
j-th sub branch).

Value

A dendrogram where each node has a further attribute value with its corresponding weight.

Author(s)

R. Gentleman and M. Maechler

See Also

reorder.

rev.dendrogram which simply reverses the nodes’ order; heatmap, cophenetic.

replications 1449

Examples

require(graphics)

set.seed(123)
x <- rnorm(10)
hc <- hclust(dist(x))
dd <- as.dendrogram(hc)
dd.reorder <- reorder(dd, 10:1)
plot(dd, main = "random dendrogram ’dd’")

op <- par(mfcol = 1:2)
plot(dd.reorder, main = "reorder(dd, 10:1)")
plot(reorder(dd,10:1, agglo.FUN= mean),

main = "reorder(dd, 10:1, mean)")
par(op)

replications Number of Replications of Terms

Description

Returns a vector or a list of the number of replicates for each term in the formula.

Usage

replications(formula, data=NULL, na.action)

Arguments

formula a formula or a terms object or a data frame.

data a data frame used to find the objects in formula.

na.action function for handling missing values. Defaults to a na.action attribute of data,
then a setting of the option na.action, or na.fail if that is not set.

Details

If formula is a data frame and data is missing, formula is used for data with the formula ~ ..

Value

A vector or list with one entry for each term in the formula giving the number(s) of replications for
each level. If all levels are balanced (have the same number of replications) the result is a vector,
otherwise it is a list with a component for each terms, as a vector, matrix or array as required.

A test for balance is !is.list(replications(formula,data)).

Author(s)

The design was inspired by the S function of the same name described in Chambers et al. (1992).

1450 reshape

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed experi-
ments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth &
Brooks/Cole.

See Also

model.tables

Examples

From Venables and Ripley (2002) p.165.
N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,
55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),
K=factor(K), yield=yield)

replications(~ . - yield, npk)

reshape Reshape Grouped Data

Description

This function reshapes a data frame between ‘wide’ format with repeated measurements in separate
columns of the same record and ‘long’ format with the repeated measurements in separate records.

Usage

reshape(data, varying = NULL, v.names = NULL, timevar = "time",
idvar = "id", ids = 1:NROW(data),
times = seq_along(varying[[1]]),
drop = NULL, direction, new.row.names = NULL,
sep = ".",
split = if (sep == "") {

list(regexp = "[A-Za-z][0-9]", include = TRUE)
} else {

list(regexp = sep, include = FALSE, fixed = TRUE)}
)

Arguments

data a data frame

varying names of sets of variables in the wide format that correspond to single variables
in long format (‘time-varying’). This is canonically a list of vectors of variable
names, but it can optionally be a matrix of names, or a single vector of names.
In each case, the names can be replaced by indices which are interpreted as
referring to names(data). See ‘Details’ for more details and options.

reshape 1451

v.names names of variables in the long format that correspond to multiple variables in
the wide format. See ‘Details’.

timevar the variable in long format that differentiates multiple records from the same
group or individual. If more than one record matches, the first will be taken
(with a warning).

idvar Names of one or more variables in long format that identify multiple records
from the same group/individual. These variables may also be present in wide
format.

ids the values to use for a newly created idvar variable in long format.

times the values to use for a newly created timevar variable in long format. See
‘Details’.

drop a vector of names of variables to drop before reshaping.

direction character string, either "wide" to reshape to wide format, or "long" to reshape
to long format.

new.row.names logical; if TRUE and direction = "wide", create new row names in long format
from the values of the id and time variables.

sep A character vector of length 1, indicating a separating character in the variable
names in the wide format. This is used for guessing v.names and times argu-
ments based on the names in varying. If sep == "", the split is just before
the first numeral that follows an alphabetic character. This is also used to create
variable names when reshaping to wide format.

split A list with three components, regexp, include, and (optionally) fixed. This
allows an extended interface to variable name splitting. See ‘Details’.

Details

The arguments to this function are described in terms of longitudinal data, as that is the application
motivating the functions. A ‘wide’ longitudinal dataset will have one record for each individual
with some time-constant variables that occupy single columns and some time-varying variables
that occupy a column for each time point. In ‘long’ format there will be multiple records for each
individual, with some variables being constant across these records and others varying across the
records. A ‘long’ format dataset also needs a ‘time’ variable identifying which time point each
record comes from and an ‘id’ variable showing which records refer to the same person.

If the data frame resulted from a previous reshape then the operation can be reversed simply by
reshape(a). The direction argument is optional and the other arguments are stored as attributes
on the data frame.

If direction = "wide" and no varying or v.names arguments are supplied it is assumed that all
variables except idvar and timevar are time-varying. They are all expanded into multiple variables
in wide format.

If direction = "long" the varying argument can be a vector of column names (or a correspond-
ing index). The function will attempt to guess the v.names and times from these names. The
default is variable names like x.1, x.2, where sep = "." specifies to split at the dot and drop it
from the name. To have alphabetic followed by numeric times use sep = "".

Variable name splitting as described above is only attempted in the case where varying is an atomic
vector, if it is a list or a matrix, v.names and times will generally need to be specified, although
they will default to, respectively, the first variable name in each set, and sequential times.

Also, guessing is not attempted if v.names is given explicitly. Notice that the order of variables in
varying is like x.1,y.1,x.2,y.2.

1452 reshape

The split argument should not usually be necessary. The split$regexp component is passed
to either strsplit() or regexp(), where the latter is used if split$include is TRUE, in which
case the splitting occurs after the first character of the matched string. In the strsplit() case,
the separator is not included in the result, and it is possible to specify fixed-string matching using
split$fixed.

Value

The reshaped data frame with added attributes to simplify reshaping back to the original form.

See Also

stack, aperm; relist for reshaping the result of unlist.

Examples

summary(Indometh)
wide <- reshape(Indometh, v.names = "conc", idvar = "Subject",

timevar = "time", direction = "wide")
wide

reshape(wide, direction = "long")
reshape(wide, idvar = "Subject", varying = list(2:12),

v.names = "conc", direction = "long")

times need not be numeric
df <- data.frame(id = rep(1:4, rep(2,4)),

visit = I(rep(c("Before","After"), 4)),
x = rnorm(4), y = runif(4))

df
reshape(df, timevar = "visit", idvar = "id", direction = "wide")
warns that y is really varying
reshape(df, timevar = "visit", idvar = "id", direction = "wide", v.names = "x")

unbalanced ’long’ data leads to NA fill in ’wide’ form
df2 <- df[1:7,]
df2
reshape(df2, timevar = "visit", idvar = "id", direction = "wide")

Alternative regular expressions for guessing names
df3 <- data.frame(id = 1:4, age = c(40,50,60,50), dose1 = c(1,2,1,2),

dose2 = c(2,1,2,1), dose4 = c(3,3,3,3))
reshape(df3, direction = "long", varying = 3:5, sep = "")

an example that isn’t longitudinal data
state.x77 <- as.data.frame(state.x77)
long <- reshape(state.x77, idvar = "state", ids = row.names(state.x77),

times = names(state.x77), timevar = "Characteristic",
varying = list(names(state.x77)), direction = "long")

reshape(long, direction = "wide")

reshape(long, direction = "wide", new.row.names = unique(long$state))

multiple id variables

residuals 1453

df3 <- data.frame(school = rep(1:3, each = 4), class = rep(9:10, 6),
time = rep(c(1,1,2,2), 3), score = rnorm(12))

wide <- reshape(df3, idvar = c("school","class"), direction = "wide")
wide
transform back
reshape(wide)

residuals Extract Model Residuals

Description

residuals is a generic function which extracts model residuals from objects returned by modeling
functions.

The abbreviated form resid is an alias for residuals. It is intended to encourage users to access
object components through an accessor function rather than by directly referencing an object slot.

All object classes which are returned by model fitting functions should provide a residuals
method. (Note that the method is for ‘residuals’ and not ‘resid’.)

Methods can make use of naresid methods to compensate for the omission of missing values. The
default, nls and smooth.spline methods do.

Usage

residuals(object, ...)
resid(object, ...)

Arguments

object an object for which the extraction of model residuals is meaningful.

... other arguments.

Value

Residuals extracted from the object object.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

coefficients, fitted.values, glm, lm.

influence.measures for standardized (rstandard) and studentized (rstudent) residuals.

1454 runmed

runmed Running Medians – Robust Scatter Plot Smoothing

Description

Compute running medians of odd span. This is the ‘most robust’ scatter plot smoothing possible.
For efficiency (and historical reason), you can use one of two different algorithms giving identical
results.

Usage

runmed(x, k, endrule = c("median", "keep", "constant"),
algorithm = NULL, print.level = 0)

Arguments

x numeric vector, the ‘dependent’ variable to be smoothed.

k integer width of median window; must be odd. Turlach had a default of
k <- 1 + 2 * min((n-1)%/% 2, ceiling(0.1*n)). Use k = 3 for ‘mini-
mal’ robust smoothing eliminating isolated outliers.

endrule character string indicating how the values at the beginning and the end (of the
data) should be treated.

"keep" keeps the first and last k2 values at both ends, where k2 is the half-
bandwidth k2 = k %/% 2, i.e., y[j] = x[j] for j ∈ {1, . . . , k2;n− k2 +
1, . . . , n};

"constant" copies median(y[1:k2]) to the first values and analogously for
the last ones making the smoothed ends constant;

"median" the default, smooths the ends by using symmetrical medians of sub-
sequently smaller bandwidth, but for the very first and last value where
Tukey’s robust end-point rule is applied, see smoothEnds.

algorithm character string (partially matching "Turlach" or "Stuetzle") or the default
NULL, specifying which algorithm should be applied. The default choice depends
on n = length(x) and k where "Turlach" will be used for larger problems.

print.level integer, indicating verboseness of algorithm; should rarely be changed by aver-
age users.

Details

Apart from the end values, the result y = runmed(x, k) simply has
y[j] = median(x[(j-k2):(j+k2)]) (k = 2*k2+1), computed very efficiently.

The two algorithms are internally entirely different:

"Turlach" is the Härdle–Steiger algorithm (see Ref.) as implemented by Berwin Turlach. A tree
algorithm is used, ensuring performance O(n log k) where n = length(x) which is asymp-
totically optimal.

"Stuetzle" is the (older) Stuetzle–Friedman implementation which makes use of median updating
when one observation enters and one leaves the smoothing window. While this performs as
O(n× k) which is slower asymptotically, it is considerably faster for small k or n.

runmed 1455

Value

vector of smoothed values of the same length as x with an attribute k containing (the ‘oddified’)
k.

Author(s)

Martin Maechler <maechler@stat.math.ethz.ch>, based on Fortran code from Werner Stuetzle
and S-PLUS and C code from Berwin Turlach.

References

Härdle, W. and Steiger, W. (1995) [Algorithm AS 296] Optimal median smoothing, Applied Statis-
tics 44, 258–264.

Jerome H. Friedman and Werner Stuetzle (1982) Smoothing of Scatterplots; Report, Dep. Statistics,
Stanford U., Project Orion 003.

Martin Maechler (2003) Fast Running Medians: Finite Sample and Asymptotic Optimality; work-
ing paper available from the author.

See Also

smoothEnds which implements Tukey’s end point rule and is called by default from
runmed(*, endrule = "median"). smooth uses running medians of 3 for its compound
smoothers.

Examples

require(graphics)

utils::example(nhtemp)
myNHT <- as.vector(nhtemp)
myNHT[20] <- 2 * nhtemp[20]
plot(myNHT, type="b", ylim = c(48,60), main = "Running Medians Example")
lines(runmed(myNHT, 7), col = "red")

special: multiple y values for one x
plot(cars, main = "’cars’ data and runmed(dist, 3)")
lines(cars, col = "light gray", type = "c")
with(cars, lines(speed, runmed(dist, k = 3), col = 2))

nice quadratic with a few outliers
y <- ys <- (-20:20)^2
y [c(1,10,21,41)] <- c(150, 30, 400, 450)
all(y == runmed(y, 1)) # 1-neighbourhood <==> interpolation
plot(y) ## lines(y, lwd=.1, col="light gray")
lines(lowess(seq(y),y, f = .3), col = "brown")
lines(runmed(y, 7), lwd=2, col = "blue")
lines(runmed(y,11), lwd=2, col = "red")

Lowess is not robust
y <- ys ; y[21] <- 6666 ; x <- seq(y)
col <- c("black", "brown","blue")
plot(y, col=col[1])
lines(lowess(x,y, f = .3), col = col[2])

1456 rWishart

lines(runmed(y, 7), lwd=2, col = col[3])
legend(length(y),max(y), c("data", "lowess(y, f = 0.3)", "runmed(y, 7)"),

xjust = 1, col = col, lty = c(0, 1,1), pch = c(1,NA,NA))

rWishart Random Wishart Distributed Matrices

Description

Generate n random matrices, distributed according to the Wishart distribution with parameters
Sigma, df, Wp(Σ,m), m = df, Σ = Sigma.

Usage

rWishart(n, df, Sigma)

Arguments

n integer sample size.

df numeric parameter, “degrees of freedom”.

Sigma positive definite (p× p) “scale” matrix, the matrix parameter of the distribution.

Details

If X1, . . . , Xm, Xi ∈ Rp is a sample of m independent multivariate Gaussians with mean (vector)
0, and covariance matrix Σ, the distribution of M = X ′X is Wp(Σ,m).

Consequently, the expectation of M is

E[M] = m× Σ.

Further, if Sigma is scalar (p = 1), the Wishart distribution is a scaled chi-squared (χ2) distribution
with df degrees of freedom, W1(σ2,m) = σ2χ2

m.

The component wise variance is

Var(Mij) = m(Σ2
ij + ΣiiΣjj).

Value

a numeric array, say R, of dimension p× p× n, where each R[,,i] is a positive definite matrix, a
realization of the Wishart distribution Wp(Σ,m), m = df, Σ = Sigma.

Author(s)

Douglas Bates

References

Mardia, K. V., J. T. Kent, and J. M. Bibby (1979) Multivariate Analysis, London: Academic Press.

See Also

cov, rnorm, rchisq.

scatter.smooth 1457

Examples

Artificial
S <- toeplitz((10:1)/10)
set.seed(11)
R <- rWishart(1000, 20, S)
dim(R)# 10 10 1000
mR <- apply(R, 1:2, mean)# ~= E[Wish(S, 20)] = 20 * S
stopifnot(all.equal(mR, 20*S, tol = .009))

See Details, the variance is
Va <- 20*(S^2 + tcrossprod(diag(S)))
vR <- apply(R, 1:2, var)
stopifnot(all.equal(vR, Va, tol = 1/16))

scatter.smooth Scatter Plot with Smooth Curve Fitted by Loess

Description

Plot and add a smooth curve computed by loess to a scatter plot.

Usage

scatter.smooth(x, y = NULL, span = 2/3, degree = 1,
family = c("symmetric", "gaussian"),
xlab = NULL, ylab = NULL,
ylim = range(y, prediction$y, na.rm = TRUE),
evaluation = 50, ...)

loess.smooth(x, y, span = 2/3, degree = 1,
family = c("symmetric", "gaussian"), evaluation = 50, ...)

Arguments

x,y the x and y arguments provide the x and y coordinates for the plot. Any reason-
able way of defining the coordinates is acceptable. See the function xy.coords
for details.

span smoothness parameter for loess.

degree degree of local polynomial used.

family if "gaussian" fitting is by least-squares, and if family="symmetric" a re-
descending M estimator is used.

xlab label for x axis.

ylab label for y axis.

ylim the y limits of the plot.

evaluation number of points at which to evaluate the smooth curve.

... For scatter.smooth, graphical parameters. For loess.smooth, control param-
eters passed to loess.control.

1458 screeplot

Details

loess.smooth is an auxiliary function which evaluates the loess smooth at evaluation equally
spaced points covering the range of x.

Value

For scatter.smooth, none.

For loess.smooth, a list with two components, x (the grid of evaluation points) and y (the smoothed
values at the grid points).

See Also

loess; smoothScatter for scatter plots with smoothed density color representation.

Examples

require(graphics)

with(cars, scatter.smooth(speed, dist))

screeplot Screeplots

Description

screeplot.default plots the variances against the number of the principal component. This is
also the plot method for classes "princomp" and "prcomp".

Usage

Default S3 method:
screeplot(x, npcs = min(10, length(x$sdev)),

type = c("barplot", "lines"),
main = deparse(substitute(x)), ...)

Arguments

x an object containing a sdev component, such as that returned by princomp()
and prcomp().

npcs the number of components to be plotted.

type the type of plot.

main, ... graphics parameters.

References

Mardia, K. V., J. T. Kent and J. M. Bibby (1979). Multivariate Analysis, London: Academic Press.

Venables, W. N. and B. D. Ripley (2002). Modern Applied Statistics with S, Springer-Verlag.

See Also

princomp and prcomp.

sd 1459

Examples

require(graphics)

The variances of the variables in the
USArrests data vary by orders of magnitude, so scaling is appropriate
(pc.cr <- princomp(USArrests, cor = TRUE)) # inappropriate
screeplot(pc.cr)

fit <- princomp(covmat=Harman74.cor)
screeplot(fit)
screeplot(fit, npcs=24, type="lines")

sd Standard Deviation

Description

This function computes the standard deviation of the values in x. If na.rm is TRUE then missing
values are removed before computation proceeds.

Usage

sd(x, na.rm = FALSE)

Arguments

x a numeric vector or an R object which is coercible to one by as.vector. Earlier
versions of R allowed matrices or data frames for x, see below.

na.rm logical. Should missing values be removed?

Details

Like var this uses denominator n− 1.

The standard deviation of a zero-length vector (after removal of NAs if na.rm = TRUE) is not defined
and gives an error. The standard deviation of a length-one vector is NA.

In earlier versions R, for a data.frame dfrm, sd(dfrm) worked directly. This is deprecated now,
and you are expected to use sapply(dfrm, sd) instead.

See Also

var for its square, and mad, the most robust alternative.

Examples

sd(1:2) ^ 2

1460 se.contrast

se.contrast Standard Errors for Contrasts in Model Terms

Description

Returns the standard errors for one or more contrasts in an aov object.

Usage

se.contrast(object, ...)
S3 method for class ’aov’
se.contrast(object, contrast.obj,

coef = contr.helmert(ncol(contrast))[, 1],
data = NULL, ...)

Arguments

object A suitable fit, usually from aov.

contrast.obj The contrasts for which standard errors are requested. This can be specified
via a list or via a matrix. A single contrast can be specified by a list of logical
vectors giving the cells to be contrasted. Multiple contrasts should be specified
by a matrix, each column of which is a numerical contrast vector (summing to
zero).

coef used when contrast.obj is a list; it should be a vector of the same length as
the list with zero sum. The default value is the first Helmert contrast, which
contrasts the first and second cell means specified by the list.

data The data frame used to evaluate contrast.obj.

... further arguments passed to or from other methods.

Details

Contrasts are usually used to test if certain means are significantly different; it can be easier to use
se.contrast than compute them directly from the coefficients.

In multistratum models, the contrasts can appear in more than one stratum, in which case the stan-
dard errors are computed in the lowest stratum and adjusted for efficiencies and comparisons be-
tween strata. (See the comments in the note in the help for aov about using orthogonal contrasts.)
Such standard errors are often conservative.

Suitable matrices for use with coef can be found by calling contrasts and indexing the columns
by a factor.

Value

A vector giving the standard errors for each contrast.

See Also

contrasts, model.tables

se.contrast 1461

Examples

From Venables and Ripley (2002) p.165.
N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,
55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block = gl(6,4), N = factor(N), P = factor(P),
K = factor(K), yield = yield)

Set suitable contrasts.
options(contrasts=c("contr.helmert", "contr.poly"))
npk.aov1 <- aov(yield ~ block + N + K, data=npk)
se.contrast(npk.aov1, list(N == "0", N == "1"), data=npk)
or via a matrix
cont <- matrix(c(-1,1), 2, 1, dimnames=list(NULL, "N"))
se.contrast(npk.aov1, cont[N, , drop=FALSE]/12, data=npk)

test a multi-stratum model
npk.aov2 <- aov(yield ~ N + K + Error(block/(N + K)), data=npk)
se.contrast(npk.aov2, list(N == "0", N == "1"))

an example looking at an interaction contrast
Dataset from R.E. Kirk (1995)
’Experimental Design: procedures for the behavioral sciences’
score <- c(12, 8,10, 6, 8, 4,10,12, 8, 6,10,14, 9, 7, 9, 5,11,12,

7,13, 9, 9, 5,11, 8, 7, 3, 8,12,10,13,14,19, 9,16,14)
A <- gl(2, 18, labels=c("a1", "a2"))
B <- rep(gl(3, 6, labels=c("b1", "b2", "b3")), 2)
fit <- aov(score ~ A*B)
cont <- c(1, -1)[A] * c(1, -1, 0)[B]
sum(cont) # 0
sum(cont*score) # value of the contrast
se.contrast(fit, as.matrix(cont))
(t.stat <- sum(cont*score)/se.contrast(fit, as.matrix(cont)))
summary(fit, split=list(B=1:2), expand.split = TRUE)
t.stat^2 is the F value on the A:B: C1 line (with Helmert contrasts)
Now look at all three interaction contrasts
cont <- c(1, -1)[A] * cbind(c(1, -1, 0), c(1, 0, -1), c(0, 1, -1))[B,]
se.contrast(fit, cont) # same, due to balance.
rm(A,B,score)

multi-stratum example where efficiencies play a role
utils::example(eff.aovlist)
fit <- aov(Yield ~ A + B * C + Error(Block), data = aovdat)
cont1 <- c(-1, 1)[A]/32 # Helmert contrasts
cont2 <- c(-1, 1)[B] * c(-1, 1)[C]/32
cont <- cbind(A=cont1, BC=cont2)
colSums(cont*Yield) # values of the contrasts
se.contrast(fit, as.matrix(cont))
Not run: # comparison with lme
library(nlme)
fit2 <- lme(Yield ~ A + B*C, random = ~1 | Block, data = aovdat)
summary(fit2)$tTable # same estimates, similar (but smaller) se’s.

1462 selfStart

End(Not run)

selfStart Construct Self-starting Nonlinear Models

Description

Construct self-starting nonlinear models.

Usage

selfStart(model, initial, parameters, template)

Arguments

model a function object defining a nonlinear model or a nonlinear formula object of the
form ~expression.

initial a function object, taking three arguments: mCall, data, and LHS, representing,
respectively, a matched call to the function model, a data frame in which to
interpret the variables in mCall, and the expression from the left-hand side of
the model formula in the call to nls. This function should return initial values
for the parameters in model.

parameters a character vector specifying the terms on the right hand side of model for which
initial estimates should be calculated. Passed as the namevec argument to the
deriv function.

template an optional prototype for the calling sequence of the returned object, passed as
the function.arg argument to the deriv function. By default, a template is
generated with the covariates in model coming first and the parameters in model
coming last in the calling sequence.

Details

This function is generic; methods functions can be written to handle specific classes of objects.

Value

a function object of class "selfStart", for the formula method obtained by applying deriv to the
right hand side of the model formula. An initial attribute (defined by the initial argument) is
added to the function to calculate starting estimates for the parameters in the model automatically.

Author(s)

José Pinheiro and Douglas Bates

See Also

nls. Each of the following are "selfStart" models (with examples) SSasymp, SSasympOff,
SSasympOrig, SSbiexp, SSfol,SSfpl, SSgompertz, SSlogis, SSmicmen, SSweibull

setNames 1463

Examples

self-starting logistic model

SSlogis <- selfStart(~ Asym/(1 + exp((xmid - x)/scal)),
function(mCall, data, LHS)
{
xy <- sortedXyData(mCall[["x"]], LHS, data)
if(nrow(xy) < 4) {

stop("Too few distinct x values to fit a logistic")
}
z <- xy[["y"]]
if (min(z) <= 0) { z <- z + 0.05 * max(z) } # avoid zeroes
z <- z/(1.05 * max(z)) # scale to within unit height
xy[["z"]] <- log(z/(1 - z)) # logit transformation
aux <- coef(lm(x ~ z, xy))
parameters(xy) <- list(xmid = aux[1], scal = aux[2])
pars <- as.vector(coef(nls(y ~ 1/(1 + exp((xmid - x)/scal)),

data = xy, algorithm = "plinear")))
value <- c(pars[3], pars[1], pars[2])
names(value) <- mCall[c("Asym", "xmid", "scal")]
value

}, c("Asym", "xmid", "scal"))

’first.order.log.model’ is a function object defining a first order
compartment model
’first.order.log.initial’ is a function object which calculates initial
values for the parameters in ’first.order.log.model’

self-starting first order compartment model
Not run:
SSfol <- selfStart(first.order.log.model, first.order.log.initial)

End(Not run)

Explore the self-starting models already available in R’s "stats":
pos.st <- which("package:stats" == search())
mSS <- apropos("^SS..", where=TRUE, ignore.case=FALSE)
(mSS <- unname(mSS[names(mSS) == pos.st]))
fSS <- sapply(mSS, get, pos = pos.st, mode = "function")
all(sapply(fSS, inherits, "selfStart"))# -> TRUE

Show the argument list of each self-starting function:
str(fSS, give.attr=FALSE)

setNames Set the Names in an Object

Description

This is a convenience function that sets the names on an object and returns the object. It is most
useful at the end of a function definition where one is creating the object to be returned and would
prefer not to store it under a name just so the names can be assigned.

1464 shapiro.test

Usage

setNames(object, nm)

Arguments

object an object for which a names attribute will be meaningful
nm a character vector of names to assign to the object

Value

An object of the same sort as object with the new names assigned.

Author(s)

Douglas M. Bates and Saikat DebRoy

See Also

unname for removing names.

Examples

setNames(1:3, c("foo", "bar", "baz"))
this is just a short form of
tmp <- 1:3
names(tmp) <- c("foo", "bar", "baz")
tmp

shapiro.test Shapiro-Wilk Normality Test

Description

Performs the Shapiro-Wilk test of normality.

Usage

shapiro.test(x)

Arguments

x a numeric vector of data values. Missing values are allowed, but the number of
non-missing values must be between 3 and 5000.

Value

A list with class "htest" containing the following components:

statistic the value of the Shapiro-Wilk statistic.
p.value an approximate p-value for the test. This is said in Royston (1995) to be ade-

quate for p.value < 0.1.
method the character string "Shapiro-Wilk normality test".
data.name a character string giving the name(s) of the data.

SignRank 1465

Source

The algorithm used is a C translation of the Fortran code described in Royston (1995) and found
at http://lib.stat.cmu.edu/apstat/R94. The calculation of the p value is exact for n = 3,
otherwise approximations are used, separately for 4 ≤ n ≤ 11 and n ≥ 12.

References

Patrick Royston (1982) An extension of Shapiro and Wilk’s W test for normality to large samples.
Applied Statistics, 31, 115–124.

Patrick Royston (1982) Algorithm AS 181: The W test for Normality. Applied Statistics, 31, 176–
180.

Patrick Royston (1995) Remark AS R94: A remark on Algorithm AS 181: TheW test for normality.
Applied Statistics, 44, 547–551.

See Also

qqnorm for producing a normal quantile-quantile plot.

Examples

shapiro.test(rnorm(100, mean = 5, sd = 3))
shapiro.test(runif(100, min = 2, max = 4))

SignRank Distribution of the Wilcoxon Signed Rank Statistic

Description

Density, distribution function, quantile function and random generation for the distribution of the
Wilcoxon Signed Rank statistic obtained from a sample with size n.

Usage

dsignrank(x, n, log = FALSE)
psignrank(q, n, lower.tail = TRUE, log.p = FALSE)
qsignrank(p, n, lower.tail = TRUE, log.p = FALSE)
rsignrank(nn, n)

Arguments

x,q vector of quantiles.

p vector of probabilities.

nn number of observations. If length(nn) > 1, the length is taken to be the num-
ber required.

n number(s) of observations in the sample(s). A positive integer, or a vector of
such integers.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

http://lib.stat.cmu.edu/apstat/R94

1466 simulate

Details

This distribution is obtained as follows. Let x be a sample of size n from a continuous distribution
symmetric about the origin. Then the Wilcoxon signed rank statistic is the sum of the ranks of
the absolute values x[i] for which x[i] is positive. This statistic takes values between 0 and
n(n+ 1)/2, and its mean and variance are n(n+ 1)/4 and n(n+ 1)(2n+ 1)/24, respectively.

If either of the first two arguments is a vector, the recycling rule is used to do the calculations for
all combinations of the two up to the length of the longer vector.

Value

dsignrank gives the density, psignrank gives the distribution function, qsignrank gives the quan-
tile function, and rsignrank generates random deviates.

Author(s)

Kurt Hornik; efficiency improvement by Ivo Ugrina.

See Also

wilcox.test to calculate the statistic from data, find p values and so on.

Distributions for standard distributions, including dwilcox for the distribution of two-sample
Wilcoxon rank sum statistic.

Examples

require(graphics)

par(mfrow=c(2,2))
for(n in c(4:5,10,40)) {

x <- seq(0, n*(n+1)/2, length=501)
plot(x, dsignrank(x,n=n), type=’l’, main=paste("dsignrank(x,n=",n,")"))

}

simulate Simulate Responses

Description

Simulate one or more responses from the distribution corresponding to a fitted model object.

Usage

simulate(object, nsim = 1, seed = NULL, ...)

simulate 1467

Arguments

object an object representing a fitted model.

nsim number of response vectors to simulate. Defaults to 1.

seed an object specifying if and how the random number generator should be initial-
ized (‘seeded’).
For the "lm" method, either NULL or an integer that will be used in a call to
set.seed before simulating the response vectors. If set, the value is saved as
the "seed" attribute of the returned value. The default, NULL will not change the
random generator state, and return .Random.seed as the "seed" attribute, see
‘Value’.

... additional optional arguments.

Details

This is a generic function. Consult the individual modeling functions for details on how to use this
function.

Package stats has a method for "lm" objects which is used for lm and glm fits. There is a method
for fits from glm.nb in package MASS, and hence the case of negative binomial families is not
covered by the "lm" method.

The methods for linear models fitted by lm or glm(family = "gaussian") assume that any
weights which have been supplied are inversely proportional to the error variance. For other GLMs
the (optional) simulate component of the family object is used—there is no appropriate simulation
method for ‘quasi’ models as they are specified only up to two moments.

For binomial and Poisson GLMs the dispersion is fixed at one. Integer prior weights wi can be
interpreted as meaning that observation i is an average of wi observations, which is natural for
binomials specified as proportions but less so for a Poisson, for which prior weights are ignored
with a warning.

For a gamma GLM the shape parameter is estimated by maximum likelihood (using function
gamma.shape in package MASS). The interpretation of weights is as multipliers to a basic shape
parameter, since dispersion is inversely proportional to shape.

For an inverse gaussian GLM the model assumed is IG(µi, λwi) (see http://en.wikipedia.
org/wiki/Inverse_Gaussian_distribution) where λ is estimated by the inverse of the disper-
sion estimate for the fit. The variance is µ3

i /(λwi) and hence inversely proportional to the prior
weights. The simulation is done by function rinvGauss from the SuppDists package, which must
be installed.

Value

Typically, a list of length nsim of simulated responses. Where appropriate the result can be a data
frame (which is a special type of list).

For the "lm" method, the result is a data frame with an attribute "seed". If argument seed is NULL,
the attribute is the value of .Random.seed before the simulation was started; otherwise it is the
value of the argument with a "kind" attribute with value as.list(RNGkind()).

See Also

RNG about random number generation in R, fitted.values and residuals for related methods;
glm, lm for model fitting.

There are further examples in the ‘simulate.R’ tests file in the sources for package stats.

http://CRAN.R-project.org/package=MASS
http://CRAN.R-project.org/package=MASS
http://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
http://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
http://CRAN.R-project.org/package=SuppDists

1468 smooth

Examples

x <- 1:5
mod1 <- lm(c(1:3, 7, 6) ~ x)
S1 <- simulate(mod1, nsim = 4)
repeat the simulation:
.Random.seed <- attr(S1, "seed")
identical(S1, simulate(mod1, nsim = 4))

S2 <- simulate(mod1, nsim = 200, seed = 101)
rowMeans(S2) # should be about the same as
fitted(mod1)

repeat identically:
(sseed <- attr(S2, "seed")) # seed; RNGkind as attribute
stopifnot(identical(S2, simulate(mod1, nsim = 200, seed = sseed)))

To be sure about the proper RNGkind, e.g., after
RNGversion("2.7.0")
first set the RNG kind, then simulate
do.call(RNGkind, attr(sseed, "kind"))
identical(S2, simulate(mod1, nsim = 200, seed = sseed))

Binomial GLM examples
yb1 <- matrix(c(4, 4, 5, 7, 8, 6, 6, 5, 3, 2), ncol = 2)
modb1 <- glm(yb1 ~ x, family = binomial)
S3 <- simulate(modb1, nsim = 4)
each column of S3 is a two-column matrix.

x2 <- sort(runif(100))
yb2 <- rbinom(100, prob = plogis(2*(x2-1)), size = 1)
yb2 <- factor(1 + yb2, labels = c("failure", "success"))
modb2 <- glm(yb2 ~ x2, family = binomial)
S4 <- simulate(modb2, nsim = 4)
each column of S4 is a factor

smooth Tukey’s (Running Median) Smoothing

Description

Tukey’s smoothers, 3RS3R, 3RSS, 3R, etc.

Usage

smooth(x, kind = c("3RS3R", "3RSS", "3RSR", "3R", "3", "S"),
twiceit = FALSE, endrule = "Tukey", do.ends = FALSE)

Arguments

x a vector or time series

kind a character string indicating the kind of smoother required; defaults to "3RS3R".

smooth 1469

twiceit logical, indicating if the result should be ‘twiced’. Twicing a smoother S(y)
means S(y) + S(y − S(y)), i.e., adding smoothed residuals to the smoothed
values. This decreases bias (increasing variance).

endrule a character string indicating the rule for smoothing at the boundary. Either
"Tukey" (default) or "copy".

do.ends logical, indicating if the 3-splitting of ties should also happen at the boundaries
(ends). This is only used for kind = "S".

Details

3 is Tukey’s short notation for running medians of length 3,
3R stands for Repeated 3 until convergence, and
S for Splitting of horizontal stretches of length 2 or 3.

Hence, 3RS3R is a concatenation of 3R, S and 3R, 3RSS similarly, whereas 3RSR means first 3R and
then (S and 3) Repeated until convergence – which can be bad.

Value

An object of class "tukeysmooth" (which has print and summary methods) and is a vector or time
series containing the smoothed values with additional attributes.

Note

S and S-PLUS use a different (somewhat better) Tukey smoother in smooth(*). Note that there
are other smoothing methods which provide rather better results. These were designed for hand
calculations and may be used mainly for didactical purposes.

Since R version 1.2, smooth does really implement Tukey’s end-point rule correctly (see argument
endrule).

kind = "3RSR" has been the default till R-1.1, but it can have very bad properties, see the examples.

Note that repeated application of smooth(*) does smooth more, for the "3RS*" kinds.

References

Tukey, J. W. (1977). Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley.

See Also

runmed for running medians; lowess and loess; supsmu and smooth.spline.

Examples

require(graphics)

see also demo(smooth) !

x1 <- c(4, 1, 3, 6, 6, 4, 1, 6, 2, 4, 2) # very artificial
(x3R <- smooth(x1, "3R")) # 2 iterations of "3"
smooth(x3R, kind = "S")

sm.3RS <- function(x, ...)
smooth(smooth(x, "3R", ...), "S", ...)

y <- c(1,1, 19:1)

1470 smooth.spline

plot(y, main = "misbehaviour of \"3RSR\"", col.main = 3)
lines(sm.3RS(y))
lines(smooth(y))
lines(smooth(y, "3RSR"), col = 3, lwd = 2)# the horror

x <- c(8:10,10, 0,0, 9,9)
plot(x, main = "breakdown of 3R and S and hence 3RSS")
matlines(cbind(smooth(x,"3R"),smooth(x,"S"), smooth(x,"3RSS"),smooth(x)))

presidents[is.na(presidents)] <- 0 # silly
summary(sm3 <- smooth(presidents, "3R"))
summary(sm2 <- smooth(presidents,"3RSS"))
summary(sm <- smooth(presidents))

all.equal(c(sm2),c(smooth(smooth(sm3, "S"), "S"))) # 3RSS === 3R S S
all.equal(c(sm), c(smooth(smooth(sm3, "S"), "3R")))# 3RS3R === 3R S 3R

plot(presidents, main = "smooth(presidents0, *) : 3R and default 3RS3R")
lines(sm3,col = 3, lwd = 1.5)
lines(sm, col = 2, lwd = 1.25)

smooth.spline Fit a Smoothing Spline

Description

Fits a cubic smoothing spline to the supplied data.

Usage

smooth.spline(x, y = NULL, w = NULL, df, spar = NULL,
cv = FALSE, all.knots = FALSE, nknots = NULL,
keep.data = TRUE, df.offset = 0, penalty = 1,
control.spar = list(), tol = 1e-6 * IQR(x))

Arguments

x a vector giving the values of the predictor variable, or a list or a two-column
matrix specifying x and y.

y responses. If y is missing or NULL, the responses are assumed to be specified by
x, with x the index vector.

w optional vector of weights of the same length as x; defaults to all 1.

df the desired equivalent number of degrees of freedom (trace of the smoother ma-
trix).

spar smoothing parameter, typically (but not necessarily) in (0, 1]. The coefficient λ
of the integral of the squared second derivative in the fit (penalized log likeli-
hood) criterion is a monotone function of spar, see the details below.

cv ordinary (TRUE) or ‘generalized’ cross-validation (GCV) when FALSE; setting it
to NA skips the evaluation of leverages and any score.

all.knots if TRUE, all distinct points in x are used as knots. If FALSE (default), a subset
of x[] is used, specifically x[j] where the nknots indices are evenly spaced in
1:n, see also the next argument nknots.

smooth.spline 1471

nknots integer giving the number of knots to use when all.knots=FALSE. Per default,
this is less than n, the number of unique x values for n > 49.

keep.data logical specifying if the input data should be kept in the result. If TRUE (as per
default), fitted values and residuals are available from the result.

df.offset allows the degrees of freedom to be increased by df.offset in the GCV crite-
rion.

penalty the coefficient of the penalty for degrees of freedom in the GCV criterion.
control.spar optional list with named components controlling the root finding when the

smoothing parameter spar is computed, i.e., missing or NULL, see below.
Note that this is partly experimental and may change with general spar compu-
tation improvements!
low: lower bound for spar; defaults to -1.5 (used to implicitly default to 0 in R

versions earlier than 1.4).
high: upper bound for spar; defaults to +1.5.
tol: the absolute precision (tolerance) used; defaults to 1e-4 (formerly 1e-3).
eps: the relative precision used; defaults to 2e-8 (formerly 0.00244).
trace: logical indicating if iterations should be traced.
maxit: integer giving the maximal number of iterations; defaults to 500.
Note that spar is only searched for in the interval [low, high].

tol A tolerance for same-ness of the x values. The values are binned into bins of
size tol and values which fall into the same bin are regarded as the same. Must
be strictly positive (and finite).

Details

Neither x nor y are allowed to containing missing or infinite values.

The x vector should contain at least four distinct values. ‘Distinct’ here is controlled by tol: values
which are regarded as the same are replaced by the first of their values and the corresponding y and
w are pooled accordingly.

The computational λ used (as a function of s = spar) is λ = r ∗ 2563s−1 where r =
tr(X ′WX)/tr(Σ), Σ is the matrix given by Σij =

∫
B′′i (t)B′′j (t)dt, X is given by Xij = Bj(xi),

W is the diagonal matrix of weights (scaled such that its trace is n, the original number of observa-
tions) and Bk(.) is the k-th B-spline.

Note that with these definitions, fi = f(xi), and the B-spline basis representation f = Xc (i.e., c
is the vector of spline coefficients), the penalized log likelihood is L = (y− f)′W (y− f) +λc′Σc,
and hence c is the solution of the (ridge regression) (X ′WX + λΣ)c = X ′Wy.

If spar is missing or NULL, the value of df is used to determine the degree of smoothing. If both
are missing, leave-one-out cross-validation (ordinary or ‘generalized’ as determined by cv) is used
to determine λ. Note that from the above relation,

spar is s = s0 + 0.0601 ∗ log λ, which is intentionally different from the S-PLUS implementation
of smooth.spline (where spar is proportional to λ). In R’s (log λ) scale, it makes more sense to
vary spar linearly.

Note however that currently the results may become very unreliable for spar values smaller than
about -1 or -2. The same may happen for values larger than 2 or so. Don’t think of setting spar or
the controls low and high outside such a safe range, unless you know what you are doing!

The ‘generalized’ cross-validation method will work correctly when there are duplicated points in
x. However, it is ambiguous what leave-one-out cross-validation means with duplicated points,
and the internal code uses an approximation that involves leaving out groups of duplicated points.
cv=TRUE is best avoided in that case.

1472 smooth.spline

Value

An object of class "smooth.spline" with components

x the distinct x values in increasing order, see the ‘Details’ above.

y the fitted values corresponding to x.

w the weights used at the unique values of x.

yin the y values used at the unique y values.

data only if keep.data = TRUE: itself a list with components x, y and w of the same
length. These are the original (xi, yi, wi), i = 1, . . . , n, values where data$x
may have repeated values and hence be longer than the above x component; see
details.

lev (when cv was not NA) leverages, the diagonal values of the smoother matrix.

cv.crit cross-validation score, ‘generalized’ or true, depending on cv.

pen.crit penalized criterion

crit the criterion value minimized in the underlying .Fortran routine ‘sslvrg’.

df equivalent degrees of freedom used. Note that (currently) this value may become
quite imprecise when the true df is between and 1 and 2.

spar the value of spar computed or given.

lambda the value of λ corresponding to spar, see the details above.

iparms named integer(3) vector where ..$ipars["iter"] gives number of spar com-
puting iterations used.

fit list for use by predict.smooth.spline, with components

knot: the knot sequence (including the repeated boundary knots).
nk: number of coefficients or number of ‘proper’ knots plus 2.
coef: coefficients for the spline basis used.
min, range: numbers giving the corresponding quantities of x.

call the matched call.

Note

The default all.knots = FALSE and nknots = NULL entails using onlyO(n0.2) knots instead of n
for n > 49. This cuts speed and memory requirements, but not drastically anymore since R version
1.5.1 where it is only O(nk) + O(n) where nk is the number of knots. In this case where not all
unique x values are used as knots, the result is not a smoothing spline in the strict sense, but very
close unless a small smoothing parameter (or large df) is used.

Author(s)

R implementation by B. D. Ripley and Martin Maechler (spar/lambda, etc).

Source

This function is based on code in the GAMFIT Fortran program by T. Hastie and R. Tibshirani
(http://lib.stat.cmu.edu/general/), which makes use of spline code by Finbarr O’Sullivan.
Its design parallels the smooth.spline function of Chambers & Hastie (1992).

http://lib.stat.cmu.edu/general/

smooth.spline 1473

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S, Wadsworth & Brooks/Cole.

Green, P. J. and Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear Mod-
els: A Roughness Penalty Approach. Chapman and Hall.

Hastie, T. J. and Tibshirani, R. J. (1990) Generalized Additive Models. Chapman and Hall.

See Also

predict.smooth.spline for evaluating the spline and its derivatives.

Examples

require(graphics)

attach(cars)
plot(speed, dist, main = "data(cars) & smoothing splines")
cars.spl <- smooth.spline(speed, dist)
(cars.spl)
This example has duplicate points, so avoid cv=TRUE

lines(cars.spl, col = "blue")
lines(smooth.spline(speed, dist, df=10), lty=2, col = "red")
legend(5,120,c(paste("default [C.V.] => df =",round(cars.spl$df,1)),

"s(* , df = 10)"), col = c("blue","red"), lty = 1:2,
bg=’bisque’)

detach()

Residual (Tukey Anscombe) plot:
plot(residuals(cars.spl) ~ fitted(cars.spl))
abline(h = 0, col="gray")

consistency check:
stopifnot(all.equal(cars$dist,

fitted(cars.spl) + residuals(cars.spl)))

##-- artificial example
y18 <- c(1:3,5,4,7:3,2*(2:5),rep(10,4))
xx <- seq(1,length(y18), len=201)
(s2 <- smooth.spline(y18)) # GCV
(s02 <- smooth.spline(y18, spar = 0.2))
(s02. <- smooth.spline(y18, spar = 0.2, cv=NA))
plot(y18, main=deparse(s2$call), col.main=2)
lines(s2, col = "gray"); lines(predict(s2, xx), col = 2)
lines(predict(s02, xx), col = 3); mtext(deparse(s02$call), col = 3)

The following shows the problematic behavior of ’spar’ searching:
(s2 <- smooth.spline(y18, control =

list(trace = TRUE, tol = 1e-6, low = -1.5)))
(s2m <- smooth.spline(y18, cv = TRUE, control =

list(trace = TRUE, tol = 1e-6, low = -1.5)))
both above do quite similarly (Df = 8.5 +- 0.2)

1474 smoothEnds

smoothEnds End Points Smoothing (for Running Medians)

Description

Smooth end points of a vector y using subsequently smaller medians and Tukey’s end point rule at
the very end. (of odd span),

Usage

smoothEnds(y, k = 3)

Arguments

y dependent variable to be smoothed (vector).

k width of largest median window; must be odd.

Details

smoothEnds is used to only do the ‘end point smoothing’, i.e., change at most the observations
closer to the beginning/end than half the window k. The first and last value are computed using
Tukey’s end point rule, i.e., sm[1] = median(y[1], sm[2], 3*sm[2] - 2*sm[3]).

Value

vector of smoothed values, the same length as y.

Author(s)

Martin Maechler

References

John W. Tukey (1977) Exploratory Data Analysis, Addison.

Velleman, P.F., and Hoaglin, D.C. (1981) ABC of EDA (Applications, Basics, and Computing of
Exploratory Data Analysis); Duxbury.

See Also

runmed(*, endrule = "median") which calls smoothEnds().

Examples

require(graphics)

y <- ys <- (-20:20)^2
y [c(1,10,21,41)] <- c(100, 30, 400, 470)
s7k <- runmed(y,7, endrule = "keep")
s7. <- runmed(y,7, endrule = "const")
s7m <- runmed(y,7)
col3 <- c("midnightblue","blue","steelblue")
plot(y, main = "Running Medians -- runmed(*, k=7, end.rule = X)")

sortedXyData 1475

lines(ys, col = "light gray")
matlines(cbind(s7k,s7.,s7m), lwd= 1.5, lty = 1, col = col3)
legend(1,470, paste("endrule",c("keep","constant","median"),sep=" = "),

col = col3, lwd = 1.5, lty = 1)

stopifnot(identical(s7m, smoothEnds(s7k, 7)))

sortedXyData Create a sortedXyData Object

Description

This is a constructor function for the class of sortedXyData objects. These objects are mostly
used in the initial function for a self-starting nonlinear regression model, which will be of the
selfStart class.

Usage

sortedXyData(x, y, data)

Arguments

x a numeric vector or an expression that will evaluate in data to a numeric vector

y a numeric vector or an expression that will evaluate in data to a numeric vector

data an optional data frame in which to evaluate expressions for x and y, if they are
given as expressions

Value

A sortedXyData object. This is a data frame with exactly two numeric columns, named x and y.
The rows are sorted so the x column is in increasing order. Duplicate x values are eliminated by
averaging the corresponding y values.

Author(s)

José Pinheiro and Douglas Bates

See Also

selfStart, NLSstClosestX, NLSstLfAsymptote, NLSstRtAsymptote

Examples

DNase.2 <- DNase[DNase$Run == "2",]
sortedXyData(expression(log(conc)), expression(density), DNase.2)

1476 spec.ar

spec.ar Estimate Spectral Density of a Time Series from AR Fit

Description

Fits an AR model to x (or uses the existing fit) and computes (and by default plots) the spectral
density of the fitted model.

Usage

spec.ar(x, n.freq, order = NULL, plot = TRUE, na.action = na.fail,
method = "yule-walker", ...)

Arguments

x A univariate (not yet:or multivariate) time series or the result of a fit by ar.

n.freq The number of points at which to plot.

order The order of the AR model to be fitted. If omitted, the order is chosen by AIC.

plot Plot the periodogram?

na.action NA action function.

method method for ar fit.

... Graphical arguments passed to plot.spec.

Value

An object of class "spec". The result is returned invisibly if plot is true.

Warning

Some authors, for example Thomson (1990), warn strongly that AR spectra can be misleading.

Note

The multivariate case is not yet implemented.

References

Thompson, D.J. (1990) Time series analysis of Holocene climate data. Phil. Trans. Roy. Soc. A
330, 601–616.

Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
(Especially page 402.)

See Also

ar, spectrum.

spec.pgram 1477

Examples

require(graphics)

spec.ar(lh)

spec.ar(ldeaths)
spec.ar(ldeaths, method="burg")

spec.ar(log(lynx))
spec.ar(log(lynx), method="burg", add=TRUE, col="purple")
spec.ar(log(lynx), method="mle", add=TRUE, col="forest green")
spec.ar(log(lynx), method="ols", add=TRUE, col="blue")

spec.pgram Estimate Spectral Density of a Time Series by a Smoothed Peri-
odogram

Description

spec.pgram calculates the periodogram using a fast Fourier transform, and optionally smooths the
result with a series of modified Daniell smoothers (moving averages giving half weight to the end
values).

Usage

spec.pgram(x, spans = NULL, kernel, taper = 0.1,
pad = 0, fast = TRUE, demean = FALSE, detrend = TRUE,
plot = TRUE, na.action = na.fail, ...)

Arguments

x univariate or multivariate time series.

spans vector of odd integers giving the widths of modified Daniell smoothers to be
used to smooth the periodogram.

kernel alternatively, a kernel smoother of class "tskernel".

taper specifies the proportion of data to taper. A split cosine bell taper is applied to
this proportion of the data at the beginning and end of the series.

pad proportion of data to pad. Zeros are added to the end of the series to increase its
length by the proportion pad.

fast logical; if TRUE, pad the series to a highly composite length.

demean logical. If TRUE, subtract the mean of the series.

detrend logical. If TRUE, remove a linear trend from the series. This will also remove the
mean.

plot plot the periodogram?

na.action NA action function.

... graphical arguments passed to plot.spec.

1478 spec.pgram

Details

The raw periodogram is not a consistent estimator of the spectral density, but adjacent values are
asymptotically independent. Hence a consistent estimator can be derived by smoothing the raw
periodogram, assuming that the spectral density is smooth.

The series will be automatically padded with zeros until the series length is a highly composite
number in order to help the Fast Fourier Transform. This is controlled by the fast and not the pad
argument.

The periodogram at zero is in theory zero as the mean of the series is removed (but this may be
affected by tapering): it is replaced by an interpolation of adjacent values during smoothing, and no
value is returned for that frequency.

Value

A list object of class "spec" (see spectrum) with the following additional components:

kernel The kernel argument, or the kernel constructed from spans.

df The distribution of the spectral density estimate can be approximated by a
(scaled) chi square distribution with df degrees of freedom.

bandwidth The equivalent bandwidth of the kernel smoother as defined by Bloomfield
(1976, page 201).

taper The value of the taper argument.

pad The value of the pad argument.

detrend The value of the detrend argument.

demean The value of the demean argument.

The result is returned invisibly if plot is true.

Author(s)

Originally Martyn Plummer; kernel smoothing by Adrian Trapletti, synthesis by B.D. Ripley

References

Bloomfield, P. (1976) Fourier Analysis of Time Series: An Introduction. Wiley.

Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods. Second edition. Springer.

Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
(Especially pp. 392–7.)

See Also

spectrum, spec.taper, plot.spec, fft

Examples

require(graphics)

Examples from Venables & Ripley
spectrum(ldeaths)
spectrum(ldeaths, spans = c(3,5))
spectrum(ldeaths, spans = c(5,7))
spectrum(mdeaths, spans = c(3,3))

spec.taper 1479

spectrum(fdeaths, spans = c(3,3))

bivariate example
mfdeaths.spc <- spec.pgram(ts.union(mdeaths, fdeaths), spans = c(3,3))
plots marginal spectra: now plot coherency and phase
plot(mfdeaths.spc, plot.type = "coherency")
plot(mfdeaths.spc, plot.type = "phase")

now impose a lack of alignment
mfdeaths.spc <- spec.pgram(ts.intersect(mdeaths, lag(fdeaths, 4)),

spans = c(3,3), plot = FALSE)
plot(mfdeaths.spc, plot.type = "coherency")
plot(mfdeaths.spc, plot.type = "phase")

stocks.spc <- spectrum(EuStockMarkets, kernel("daniell", c(30,50)),
plot = FALSE)

plot(stocks.spc, plot.type = "marginal") # the default type
plot(stocks.spc, plot.type = "coherency")
plot(stocks.spc, plot.type = "phase")

sales.spc <- spectrum(ts.union(BJsales, BJsales.lead),
kernel("modified.daniell", c(5,7)))

plot(sales.spc, plot.type = "coherency")
plot(sales.spc, plot.type = "phase")

spec.taper Taper a Time Series by a Cosine Bell

Description

Apply a cosine-bell taper to a time series.

Usage

spec.taper(x, p = 0.1)

Arguments

x A univariate or multivariate time series
p The proportion to be tapered at each end of the series, either a scalar (giving the

proportion for all series) or a vector of the length of the number of series (giving
the proportion for each series..

Details

The cosine-bell taper is applied to the first and last p[i] observations of time series x[, i].

Value

A new time series object.

See Also

spec.pgram, cpgram

1480 spectrum

spectrum Spectral Density Estimation

Description

The spectrum function estimates the spectral density of a time series.

Usage

spectrum(x, ..., method = c("pgram", "ar"))

Arguments

x A univariate or multivariate time series.

method String specifying the method used to estimate the spectral density. Allowed
methods are "pgram" (the default) and "ar".

... Further arguments to specific spec methods or plot.spec.

Details

spectrum is a wrapper function which calls the methods spec.pgram and spec.ar.

The spectrum here is defined with scaling 1/frequency(x), following S-PLUS. This makes the
spectral density a density over the range (-frequency(x)/2, +frequency(x)/2], whereas a more
common scaling is 2π and range (−0.5, 0.5] (e.g., Bloomfield) or 1 and range (−π, π].

If available, a confidence interval will be plotted by plot.spec: this is asymmetric, and the width
of the centre mark indicates the equivalent bandwidth.

Value

An object of class "spec", which is a list containing at least the following components:

freq vector of frequencies at which the spectral density is estimated. (Possibly ap-
proximate Fourier frequencies.) The units are the reciprocal of cycles per unit
time (and not per observation spacing): see ‘Details’ below.

spec Vector (for univariate series) or matrix (for multivariate series) of estimates of
the spectral density at frequencies corresponding to freq.

coh NULL for univariate series. For multivariate time series, a matrix containing the
squared coherency between different series. Column i+ (j − 1) ∗ (j − 2)/2 of
coh contains the squared coherency between columns i and j of x, where i < j.

phase NULL for univariate series. For multivariate time series a matrix containing the
cross-spectrum phase between different series. The format is the same as coh.

series The name of the time series.

snames For multivariate input, the names of the component series.

method The method used to calculate the spectrum.

The result is returned invisibly if plot is true.

splinefun 1481

Note

The default plot for objects of class "spec" is quite complex, including an error bar and default title,
subtitle and axis labels. The defaults can all be overridden by supplying the appropriate graphical
parameters.

Author(s)

Martyn Plummer, B.D. Ripley

References

Bloomfield, P. (1976) Fourier Analysis of Time Series: An Introduction. Wiley.

Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods. Second edition.
Springer.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S-PLUS. Fourth edition.
Springer. (Especially pages 392–7.)

See Also

spec.ar, spec.pgram; plot.spec.

Examples

require(graphics)

Examples from Venables & Ripley
spec.pgram
par(mfrow=c(2,2))
spectrum(lh)
spectrum(lh, spans=3)
spectrum(lh, spans=c(3,3))
spectrum(lh, spans=c(3,5))

spectrum(ldeaths)
spectrum(ldeaths, spans=c(3,3))
spectrum(ldeaths, spans=c(3,5))
spectrum(ldeaths, spans=c(5,7))
spectrum(ldeaths, spans=c(5,7), log="dB", ci=0.8)

for multivariate examples see the help for spec.pgram

spec.ar
spectrum(lh, method="ar")
spectrum(ldeaths, method="ar")

splinefun Interpolating Splines

Description

Perform cubic (or Hermite) spline interpolation of given data points, returning either a list of points
obtained by the interpolation or a function performing the interpolation.

1482 splinefun

Usage

splinefun(x, y = NULL,
method = c("fmm", "periodic", "natural", "monoH.FC", "hyman"),
ties = mean)

spline(x, y = NULL, n = 3*length(x), method = "fmm",
xmin = min(x), xmax = max(x), xout, ties = mean)

splinefunH(x, y, m)

Arguments

x, y vectors giving the coordinates of the points to be interpolated. Alternatively a
single plotting structure can be specified: see xy.coords.
y must be increasing or decreasing for method = "hyman".

m (for splinefunH()): vector of slopes mi at the points (xi, yi); these together
determine the Hermite “spline” which is piecewise cubic, (only) once differen-
tiable continuously.

method specifies the type of spline to be used. Possible values are "fmm", "natural",
"periodic", "monoH.FC" and "hyman".

n if xout is left unspecified, interpolation takes place at n equally spaced points
spanning the interval [xmin, xmax].

xmin, xmax left-hand and right-hand endpoint of the interpolation interval (when xout is
unspecified).

xout an optional set of values specifying where interpolation is to take place.

ties Handling of tied x values. Either a function with a single vector argument re-
turning a single number result or the string "ordered".

Details

The inputs can contain missing values which are deleted, so at least one complete (x, y) pair is
required. If method = "fmm", the spline used is that of Forsythe, Malcolm and Moler (an exact
cubic is fitted through the four points at each end of the data, and this is used to determine the
end conditions). Natural splines are used when method = "natural", and periodic splines when
method = "periodic".

The method "monoH.FC" computes a monotone Hermite spline according to the method of Fritsch
and Carlson. It does so by determining slopes such that the Hermite spline, determined by
(xi, yi,mi), is monotone (increasing or decreasing) iff the data are.

Method "hyman" computes a monotone cubic spline using Hyman filtering of an method = "fmm"
fit for strictly monotonic inputs. (Added in R 2.16.0.)

These interpolation splines can also be used for extrapolation, that is prediction at points outside
the range of x. Extrapolation makes little sense for method = "fmm"; for natural splines it is linear
using the slope of the interpolating curve at the nearest data point.

Value

spline returns a list containing components x and y which give the ordinates where interpolation
took place and the interpolated values.

splinefun returns a function with formal arguments x and deriv, the latter defaulting to zero. This
function can be used to evaluate the interpolating cubic spline (deriv = 0), or its derivatives (deriv

splinefun 1483

= 1, 2, 3) at the points x, where the spline function interpolates the data points originally specified.
This is often more useful than spline.

Warning

The value returned by splinefun contains references to the code in the current version of R: it is
not intended to be saved and loaded into a different R session.

Author(s)

R Core Team.

Simon Wood for the original code for Hyman filtering.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dougherty, R. L., Edelman, A. and Hyman, J. M. (1989) Positivity-, monotonicity-, or convexity-
preserving cubic and quintic Hermite interpolation. Mathematics of Computation 52, 471–494.

Forsythe, G. E., Malcolm, M. A. and Moler, C. B. (1977) Computer Methods for Mathematical
Computations. Wiley.

Fritsch, F. N. and Carlson, R. E. (1980) Monotone piecewise cubic interpolation, SIAM Journal on
Numerical Analysis 17, 238–246.

Hyman, J. M. (1983) Accurate monotonicity preserving cubic interpolation. SIAM J. Sci. Stat.
Comput. 4, 645–654.

See Also

approx and approxfun for constant and linear interpolation.

Package splines, especially interpSpline and periodicSpline for interpolation splines. That
package also generates spline bases that can be used for regression splines.

smooth.spline for smoothing splines.

Examples

require(graphics)

op <- par(mfrow = c(2,1), mgp = c(2,.8,0), mar = .1+c(3,3,3,1))
n <- 9
x <- 1:n
y <- rnorm(n)
plot(x, y, main = paste("spline[fun](.) through", n, "points"))
lines(spline(x, y))
lines(spline(x, y, n = 201), col = 2)

y <- (x-6)^2
plot(x, y, main = "spline(.) -- 3 methods")
lines(spline(x, y, n = 201), col = 2)
lines(spline(x, y, n = 201, method = "natural"), col = 3)
lines(spline(x, y, n = 201, method = "periodic"), col = 4)
legend(6,25, c("fmm","natural","periodic"), col=2:4, lty=1)

y <- sin((x-0.5)*pi)

1484 SSasymp

f <- splinefun(x, y)
ls(envir = environment(f))
splinecoef <- get("z", envir = environment(f))
curve(f(x), 1, 10, col = "green", lwd = 1.5)
points(splinecoef, col = "purple", cex = 2)
curve(f(x, deriv=1), 1, 10, col = 2, lwd = 1.5)
curve(f(x, deriv=2), 1, 10, col = 2, lwd = 1.5, n = 401)
curve(f(x, deriv=3), 1, 10, col = 2, lwd = 1.5, n = 401)
par(op)

Manual spline evaluation --- demo the coefficients :
.x <- splinecoef$x
u <- seq(3,6, by = 0.25)
(ii <- findInterval(u, .x))
dx <- u - .x[ii]
f.u <- with(splinecoef,

y[ii] + dx*(b[ii] + dx*(c[ii] + dx* d[ii])))
stopifnot(all.equal(f(u), f.u))

An example with ties (non-unique x values):
set.seed(1); x <- round(rnorm(30), 1); y <- sin(pi * x) + rnorm(30)/10
plot(x,y, main="spline(x,y) when x has ties")
lines(spline(x,y, n= 201), col = 2)
visualizes the non-unique ones:
tx <- table(x); mx <- as.numeric(names(tx[tx > 1]))
ry <- matrix(unlist(tapply(y, match(x,mx), range, simplify=FALSE)),

ncol=2, byrow=TRUE)
segments(mx, ry[,1], mx, ry[,2], col = "blue", lwd = 2)

An example of monotone interpolation
n <- 20
set.seed(11)
x. <- sort(runif(n)) ; y. <- cumsum(abs(rnorm(n)))
plot(x.,y.)
curve(splinefun(x.,y.)(x), add = TRUE, col = 2, n = 1001)
curve(splinefun(x.,y., method = "monoH.FC")(x), add = TRUE, col = 3, n = 1001)
curve(splinefun(x.,y., method = "hyman")(x), add = TRUE, col = 4, n = 1001)
legend("topleft",

paste0("splinefun(\"", c("fmm", "monoH.FC", "hyman"), "\")"),
col = 2:4, lty = 1)

and one from Fritsch and Carlson (1980), Dougherty et al (1989)
x. <- c(7.09, 8.09, 8.19, 8.7, 9.2, 10, 12, 15, 20)
f <- c(0, 2.76429e-5, 4.37498e-2, 0.169183, 0.469428, 0.943740,

0.998636, 0.999919, 0.999994)
plot(x., f, ylim = c(-0.2, 1.2))
curve(splinefun(x., f)(x), add = TRUE, col = 2, n = 1001)
curve(splinefun(x., f, method = "hyman")(x), add = TRUE, col = 4, n = 1001)

SSasymp Self-Starting Nls Asymptotic Regression Model

Description

This selfStart model evaluates the asymptotic regression function and its gradient. It has an
initial attribute that will evaluate initial estimates of the parameters Asym, R0, and lrc for a given

SSasympOff 1485

set of data.

Usage

SSasymp(input, Asym, R0, lrc)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote on the right side
(very large values of input).

R0 a numeric parameter representing the response when input is zero.

lrc a numeric parameter representing the natural logarithm of the rate constant.

Value

a numeric vector of the same length as input. It is the value of the expression
Asym+(R0-Asym)*exp(-exp(lrc)*input). If all of the arguments Asym, R0, and lrc are names of
objects, the gradient matrix with respect to these names is attached as an attribute named gradient.

Author(s)

José Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

Lob.329 <- Loblolly[Loblolly$Seed == "329",]
SSasymp(Lob.329$age, 100, -8.5, -3.2) # response only
Asym <- 100
resp0 <- -8.5
lrc <- -3.2
SSasymp(Lob.329$age, Asym, resp0, lrc) # response and gradient
getInitial(height ~ SSasymp(age, Asym, resp0, lrc), data = Lob.329)
Initial values are in fact the converged values
fm1 <- nls(height ~ SSasymp(age, Asym, resp0, lrc), data = Lob.329)
summary(fm1)

SSasympOff Self-Starting Nls Asymptotic Regression Model with an Offset

Description

This selfStart model evaluates an alternative parametrization of the asymptotic regression func-
tion and the gradient with respect to those parameters. It has an initial attribute that creates initial
estimates of the parameters Asym, lrc, and c0.

1486 SSasympOrig

Usage

SSasympOff(input, Asym, lrc, c0)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote on the right side
(very large values of input).

lrc a numeric parameter representing the natural logarithm of the rate constant.

c0 a numeric parameter representing the input for which the response is zero.

Value

a numeric vector of the same length as input. It is the value of the expression
Asym*(1 - exp(-exp(lrc)*(input - c0))). If all of the arguments Asym, lrc, and c0 are
names of objects, the gradient matrix with respect to these names is attached as an attribute named
gradient.

Author(s)

José Pinheiro and Douglas Bates

See Also

nls, selfStart; example(SSasympOff) gives graph showing the SSasympOff parametrization,
where φ1 is Asymp, φ3 is c0.

Examples

CO2.Qn1 <- CO2[CO2$Plant == "Qn1",]
SSasympOff(CO2.Qn1$conc, 32, -4, 43) # response only
Asym <- 32; lrc <- -4; c0 <- 43
SSasympOff(CO2.Qn1$conc, Asym, lrc, c0) # response and gradient
getInitial(uptake ~ SSasympOff(conc, Asym, lrc, c0), data = CO2.Qn1)
Initial values are in fact the converged values
fm1 <- nls(uptake ~ SSasympOff(conc, Asym, lrc, c0), data = CO2.Qn1)
summary(fm1)

SSasympOrig Self-Starting Nls Asymptotic Regression Model through the Origin

Description

This selfStart model evaluates the asymptotic regression function through the origin and its gra-
dient. It has an initial attribute that will evaluate initial estimates of the parameters Asym and lrc
for a given set of data.

Usage

SSasympOrig(input, Asym, lrc)

SSbiexp 1487

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote.

lrc a numeric parameter representing the natural logarithm of the rate constant.

Value

a numeric vector of the same length as input. It is the value of the expression
Asym*(1 - exp(-exp(lrc)*input)). If all of the arguments Asym and lrc are names of objects,
the gradient matrix with respect to these names is attached as an attribute named gradient.

Author(s)

José Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

Lob.329 <- Loblolly[Loblolly$Seed == "329",]
SSasympOrig(Lob.329$age, 100, -3.2) # response only
Asym <- 100; lrc <- -3.2
SSasympOrig(Lob.329$age, Asym, lrc) # response and gradient
getInitial(height ~ SSasympOrig(age, Asym, lrc), data = Lob.329)
Initial values are in fact the converged values
fm1 <- nls(height ~ SSasympOrig(age, Asym, lrc), data = Lob.329)
summary(fm1)

SSbiexp Self-Starting Nls Biexponential model

Description

This selfStart model evaluates the biexponential model function and its gradient. It has an
initial attribute that creates initial estimates of the parameters A1, lrc1, A2, and lrc2.

Usage

SSbiexp(input, A1, lrc1, A2, lrc2)

1488 SSD

Arguments

input a numeric vector of values at which to evaluate the model.
A1 a numeric parameter representing the multiplier of the first exponential.
lrc1 a numeric parameter representing the natural logarithm of the rate constant of

the first exponential.
A2 a numeric parameter representing the multiplier of the second exponential.
lrc2 a numeric parameter representing the natural logarithm of the rate constant of

the second exponential.

Value

a numeric vector of the same length as input. It is the value of the expression
A1*exp(-exp(lrc1)*input)+A2*exp(-exp(lrc2)*input). If all of the arguments A1, lrc1, A2,
and lrc2 are names of objects, the gradient matrix with respect to these names is attached as an
attribute named gradient.

Author(s)

José Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

Indo.1 <- Indometh[Indometh$Subject == 1,]
SSbiexp(Indo.1$time, 3, 1, 0.6, -1.3) # response only
A1 <- 3; lrc1 <- 1; A2 <- 0.6; lrc2 <- -1.3
SSbiexp(Indo.1$time, A1, lrc1, A2, lrc2) # response and gradient
print(getInitial(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2), data = Indo.1),

digits = 5)
Initial values are in fact the converged values
fm1 <- nls(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2), data = Indo.1)
summary(fm1)

SSD SSD Matrix and Estimated Variance Matrix in Multivariate Models

Description

Functions to compute matrix of residual sums of squares and products, or the estimated variance
matrix for multivariate linear models.

Usage

S3 method for class ’mlm’
SSD(object, ...)

S3 methods for class ’SSD’ and ’mlm’
estVar(object, ...)

SSfol 1489

Arguments

object object of class "mlm", or "SSD" in the case of estVar.

... Unused

Value

SSD() returns a list of class "SSD" containing the following components

SSD The residual sums of squares and products matrix

df Degrees of freedom

call Copied from object

estVar returns a matrix with the estimated variances and covariances.

See Also

mauchly.test, anova.mlm

Examples

Lifted from Baron+Li:
"Notes on the use of R for psychology experiments and questionnaires"
Maxwell and Delaney, p. 497
reacttime <- matrix(c(
420, 420, 480, 480, 600, 780,
420, 480, 480, 360, 480, 600,
480, 480, 540, 660, 780, 780,
420, 540, 540, 480, 780, 900,
540, 660, 540, 480, 660, 720,
360, 420, 360, 360, 480, 540,
480, 480, 600, 540, 720, 840,
480, 600, 660, 540, 720, 900,
540, 600, 540, 480, 720, 780,
480, 420, 540, 540, 660, 780),
ncol = 6, byrow = TRUE,
dimnames=list(subj=1:10,

cond=c("deg0NA", "deg4NA", "deg8NA",
"deg0NP", "deg4NP", "deg8NP")))

mlmfit <- lm(reacttime~1)
SSD(mlmfit)
estVar(mlmfit)

SSfol Self-Starting Nls First-order Compartment Model

Description

This selfStart model evaluates the first-order compartment function and its gradient. It has an
initial attribute that creates initial estimates of the parameters lKe, lKa, and lCl.

1490 SSfpl

Usage

SSfol(Dose, input, lKe, lKa, lCl)

Arguments

Dose a numeric value representing the initial dose.

input a numeric vector at which to evaluate the model.

lKe a numeric parameter representing the natural logarithm of the elimination rate
constant.

lKa a numeric parameter representing the natural logarithm of the absorption rate
constant.

lCl a numeric parameter representing the natural logarithm of the clearance.

Value

a numeric vector of the same length as input, which is the value of the expression
Dose * exp(lKe+lKa-lCl) * (exp(-exp(lKe)*input)-exp(-exp(lKa)*input)) / (exp(lKa)-exp(lKe)).

If all of the arguments lKe, lKa, and lCl are names of objects, the gradient matrix with respect to
these names is attached as an attribute named gradient.

Author(s)

José Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

Theoph.1 <- Theoph[Theoph$Subject == 1,]
SSfol(Theoph.1$Dose, Theoph.1$Time, -2.5, 0.5, -3) # response only
lKe <- -2.5; lKa <- 0.5; lCl <- -3
SSfol(Theoph.1$Dose, Theoph.1$Time, lKe, lKa, lCl) # response and gradient
getInitial(conc ~ SSfol(Dose, Time, lKe, lKa, lCl), data = Theoph.1)
Initial values are in fact the converged values
fm1 <- nls(conc ~ SSfol(Dose, Time, lKe, lKa, lCl), data = Theoph.1)
summary(fm1)

SSfpl Self-Starting Nls Four-Parameter Logistic Model

Description

This selfStart model evaluates the four-parameter logistic function and its gradient. It has an
initial attribute that will evaluate initial estimates of the parameters A, B, xmid, and scal for a
given set of data.

Usage

SSfpl(input, A, B, xmid, scal)

SSgompertz 1491

Arguments

input a numeric vector of values at which to evaluate the model.

A a numeric parameter representing the horizontal asymptote on the left side (very
small values of input).

B a numeric parameter representing the horizontal asymptote on the right side
(very large values of input).

xmid a numeric parameter representing the input value at the inflection point of the
curve. The value of SSfpl will be midway between A and B at xmid.

scal a numeric scale parameter on the input axis.

Value

a numeric vector of the same length as input. It is the value of the expression
A+(B-A)/(1+exp((xmid-input)/scal)). If all of the arguments A, B, xmid, and scal are names of
objects, the gradient matrix with respect to these names is attached as an attribute named gradient.

Author(s)

José Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

Chick.1 <- ChickWeight[ChickWeight$Chick == 1,]
SSfpl(Chick.1$Time, 13, 368, 14, 6) # response only
A <- 13; B <- 368; xmid <- 14; scal <- 6
SSfpl(Chick.1$Time, A, B, xmid, scal) # response and gradient
print(getInitial(weight ~ SSfpl(Time, A, B, xmid, scal), data = Chick.1),

digits = 5)
Initial values are in fact the converged values
fm1 <- nls(weight ~ SSfpl(Time, A, B, xmid, scal), data = Chick.1)
summary(fm1)

SSgompertz Self-Starting Nls Gompertz Growth Model

Description

This selfStart model evaluates the Gompertz growth model and its gradient. It has an initial
attribute that creates initial estimates of the parameters Asym, b2, and b3.

Usage

SSgompertz(x, Asym, b2, b3)

1492 SSlogis

Arguments

x a numeric vector of values at which to evaluate the model.
Asym a numeric parameter representing the asymptote.
b2 a numeric parameter related to the value of the function at x = 0

b3 a numeric parameter related to the scale the x axis.

Value

a numeric vector of the same length as input. It is the value of the expression
Asym*exp(-b2*b3^x). If all of the arguments Asym, b2, and b3 are names of objects the gradi-
ent matrix with respect to these names is attached as an attribute named gradient.

Author(s)

Douglas Bates

See Also

nls, selfStart

Examples

DNase.1 <- subset(DNase, Run == 1)
SSgompertz(log(DNase.1$conc), 4.5, 2.3, 0.7) # response only
Asym <- 4.5; b2 <- 2.3; b3 <- 0.7
SSgompertz(log(DNase.1$conc), Asym, b2, b3) # response and gradient
print(getInitial(density ~ SSgompertz(log(conc), Asym, b2, b3),

data = DNase.1), digits = 5)
Initial values are in fact the converged values
fm1 <- nls(density ~ SSgompertz(log(conc), Asym, b2, b3),

data = DNase.1)
summary(fm1)

SSlogis Self-Starting Nls Logistic Model

Description

This selfStart model evaluates the logistic function and its gradient. It has an initial attribute
that creates initial estimates of the parameters Asym, xmid, and scal.

Usage

SSlogis(input, Asym, xmid, scal)

Arguments

input a numeric vector of values at which to evaluate the model.
Asym a numeric parameter representing the asymptote.
xmid a numeric parameter representing the x value at the inflection point of the curve.

The value of SSlogis will be Asym/2 at xmid.
scal a numeric scale parameter on the input axis.

SSmicmen 1493

Value

a numeric vector of the same length as input. It is the value of the expression
Asym/(1+exp((xmid-input)/scal)). If all of the arguments Asym, xmid, and scal are names of
objects the gradient matrix with respect to these names is attached as an attribute named gradient.

Author(s)

José Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

Chick.1 <- ChickWeight[ChickWeight$Chick == 1,]
SSlogis(Chick.1$Time, 368, 14, 6) # response only
Asym <- 368; xmid <- 14; scal <- 6
SSlogis(Chick.1$Time, Asym, xmid, scal) # response and gradient
getInitial(weight ~ SSlogis(Time, Asym, xmid, scal), data = Chick.1)
Initial values are in fact the converged values
fm1 <- nls(weight ~ SSlogis(Time, Asym, xmid, scal), data = Chick.1)
summary(fm1)

SSmicmen Self-Starting Nls Michaelis-Menten Model

Description

This selfStart model evaluates the Michaelis-Menten model and its gradient. It has an initial
attribute that will evaluate initial estimates of the parameters Vm and K

Usage

SSmicmen(input, Vm, K)

Arguments

input a numeric vector of values at which to evaluate the model.

Vm a numeric parameter representing the maximum value of the response.

K a numeric parameter representing the input value at which half the maximum
response is attained. In the field of enzyme kinetics this is called the Michaelis
parameter.

Value

a numeric vector of the same length as input. It is the value of the expression
Vm*input/(K+input). If both the arguments Vm and K are names of objects, the gradient matrix
with respect to these names is attached as an attribute named gradient.

1494 SSweibull

Author(s)

José Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

PurTrt <- Puromycin[Puromycin$state == "treated",]
SSmicmen(PurTrt$conc, 200, 0.05) # response only
Vm <- 200; K <- 0.05
SSmicmen(PurTrt$conc, Vm, K) # response and gradient
print(getInitial(rate ~ SSmicmen(conc, Vm, K), data = PurTrt), digits=3)
Initial values are in fact the converged values
fm1 <- nls(rate ~ SSmicmen(conc, Vm, K), data = PurTrt)
summary(fm1)
Alternative call using the subset argument
fm2 <- nls(rate ~ SSmicmen(conc, Vm, K), data = Puromycin,

subset = state == "treated")
summary(fm2)

SSweibull Self-Starting Nls Weibull Growth Curve Model

Description

This selfStart model evaluates the Weibull model for growth curve data and its gradient. It has
an initial attribute that will evaluate initial estimates of the parameters Asym, Drop, lrc, and pwr
for a given set of data.

Usage

SSweibull(x, Asym, Drop, lrc, pwr)

Arguments

x a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote on the right side
(very small values of x).

Drop a numeric parameter representing the change from Asym to the y intercept.

lrc a numeric parameter representing the natural logarithm of the rate constant.

pwr a numeric parameter representing the power to which x is raised.

Details

This model is a generalization of the SSasymp model in that it reduces to SSasymp when pwr is
unity.

start 1495

Value

a numeric vector of the same length as x. It is the value of the expression
Asym-Drop*exp(-exp(lrc)*x^pwr). If all of the arguments Asym, Drop, lrc, and pwr are names
of objects, the gradient matrix with respect to these names is attached as an attribute named
gradient.

Author(s)

Douglas Bates

References

Ratkowsky, David A. (1983), Nonlinear Regression Modeling, Dekker. (section 4.4.5)

See Also

nls, selfStart, SSasymp

Examples

Chick.6 <- subset(ChickWeight, (Chick == 6) & (Time > 0))
SSweibull(Chick.6$Time, 160, 115, -5.5, 2.5) # response only
Asym <- 160; Drop <- 115; lrc <- -5.5; pwr <- 2.5
SSweibull(Chick.6$Time, Asym, Drop, lrc, pwr) # response and gradient
getInitial(weight ~ SSweibull(Time, Asym, Drop, lrc, pwr), data = Chick.6)
Initial values are in fact the converged values
fm1 <- nls(weight ~ SSweibull(Time, Asym, Drop, lrc, pwr), data = Chick.6)
summary(fm1)

start Encode the Terminal Times of Time Series

Description

Extract and encode the times the first and last observations were taken. Provided only for compati-
bility with S version 2.

Usage

start(x, ...)
end(x, ...)

Arguments

x a univariate or multivariate time-series, or a vector or matrix.

... extra arguments for future methods.

Details

These are generic functions, which will use the tsp attribute of x if it exists. Their default methods
decode the start time from the original time units, so that for a monthly series 1995.5 is represented
as c(1995, 7). For a series of frequency f, time n+i/f is presented as c(n, i+1) (even for i = 0
and f = 1).

1496 stat.anova

Warning

The representation used by start and end has no meaning unless the frequency is supplied.

See Also

ts, time, tsp.

stat.anova GLM Anova Statistics

Description

This is a utility function, used in lm and glm methods for anova(..., test != NULL) and should
not be used by the average user.

Usage

stat.anova(table, test = c("Rao","LRT", "Chisq", "F", "Cp"),
scale, df.scale, n)

Arguments

table numeric matrix as results from anova.glm(..., test=NULL).

test a character string, matching one of "Rao", "LRT","Chisq", "F" or "Cp".

scale a residual mean square or other scale estimate to be used as the denominator in
an F test.

df.scale degrees of freedom corresponding to scale.

n number of observations.

Value

A matrix which is the original table, augmented by a column of test statistics, depending on the
test argument.

References

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in
S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

anova.lm, anova.glm.

Examples

##-- Continued from ’?glm’:

print(ag <- anova(glm.D93))
stat.anova(ag$table, test = "Cp",

scale = sum(resid(glm.D93, "pearson")^2)/4,
df.scale = 4, n = 9)

stats-deprecated 1497

stats-deprecated Deprecated Functions in Package stats

Description

These functions are provided for compatibility with older versions of R only, and may be defunct
as soon as the next release.

Details

There are currently no deprecated functions in this package.

See Also

Deprecated

step Choose a model by AIC in a Stepwise Algorithm

Description

Select a formula-based model by AIC.

Usage

step(object, scope, scale = 0,
direction = c("both", "backward", "forward"),
trace = 1, keep = NULL, steps = 1000, k = 2, ...)

Arguments

object an object representing a model of an appropriate class (mainly "lm" and "glm").
This is used as the initial model in the stepwise search.

scope defines the range of models examined in the stepwise search. This should be
either a single formula, or a list containing components upper and lower, both
formulae. See the details for how to specify the formulae and how they are used.

scale used in the definition of the AIC statistic for selecting the models, currently only
for lm, aov and glm models. The default value, 0, indicates the scale should be
estimated: see extractAIC.

direction the mode of stepwise search, can be one of "both", "backward", or "forward",
with a default of "both". If the scope argument is missing the default for
direction is "backward".

trace if positive, information is printed during the running of step. Larger values may
give more detailed information.

keep a filter function whose input is a fitted model object and the associated AIC
statistic, and whose output is arbitrary. Typically keep will select a subset of the
components of the object and return them. The default is not to keep anything.

1498 step

steps the maximum number of steps to be considered. The default is 1000 (essentially
as many as required). It is typically used to stop the process early.

k the multiple of the number of degrees of freedom used for the penalty. Only
k = 2 gives the genuine AIC: k = log(n) is sometimes referred to as BIC or
SBC.

... any additional arguments to extractAIC.

Details

step uses add1 and drop1 repeatedly; it will work for any method for which they work, and that
is determined by having a valid method for extractAIC. When the additive constant can be chosen
so that AIC is equal to Mallows’ Cp, this is done and the tables are labelled appropriately.

The set of models searched is determined by the scope argument. The right-hand-side of its lower
component is always included in the model, and right-hand-side of the model is included in the
upper component. If scope is a single formula, it specifies the upper component, and the lower
model is empty. If scope is missing, the initial model is used as the upper model.

Models specified by scope can be templates to update object as used by update.formula. So
using . in a scope formula means ‘what is already there’, with .^2 indicating all interactions of
existing terms.

There is a potential problem in using glm fits with a variable scale, as in that case the deviance is
not simply related to the maximized log-likelihood. The "glm" method for function extractAIC
makes the appropriate adjustment for a gaussian family, but may need to be amended for other
cases. (The binomial and poisson families have fixed scale by default and do not correspond to
a particular maximum-likelihood problem for variable scale.)

Value

the stepwise-selected model is returned, with up to two additional components. There is an "anova"
component corresponding to the steps taken in the search, as well as a "keep" component if the
keep= argument was supplied in the call. The "Resid. Dev" column of the analysis of deviance
table refers to a constant minus twice the maximized log likelihood: it will be a deviance only
in cases where a saturated model is well-defined (thus excluding lm, aov and survreg fits, for
example).

Warning

The model fitting must apply the models to the same dataset. This may be a problem if there are
missing values and R’s default of na.action = na.omit is used. We suggest you remove the
missing values first.

Calls to the function nobs are used to check that the number of observations involved in the fitting
process remains unchanged.

Note

This function differs considerably from the function in S, which uses a number of approximations
and does not in general compute the correct AIC.

This is a minimal implementation. Use stepAIC in package MASS for a wider range of object
classes.

http://CRAN.R-project.org/package=MASS

stepfun 1499

Author(s)

B. D. Ripley: step is a slightly simplified version of stepAIC in package MASS (Venables &
Ripley, 2002 and earlier editions).

The idea of a step function follows that described in Hastie & Pregibon (1992); but the implemen-
tation in R is more general.

References

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in
S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer
(4th ed).

See Also

stepAIC in MASS, add1, drop1

Examples

following on from example(lm)

step(lm.D9)

summary(lm1 <- lm(Fertility ~ ., data = swiss))
slm1 <- step(lm1)
summary(slm1)
slm1$anova

stepfun Step Function Class

Description

Given the vectors (x1, . . . , xn) and (y0, y1, . . . , yn) (one value more!), stepfun(x,y,...) returns
an interpolating ‘step’ function, say fn. I.e., fn(t) = ci (constant) for t ∈ (xi, xi+1) and at the
abscissa values, if (by default) right = FALSE, fn(xi) = yi and for right = TRUE, fn(xi) =
yi−1, for i = 1, . . . , n.

The value of the constant ci above depends on the ‘continuity’ parameter f. For the default,
right = FALSE, f = 0, fn is a cadlag function, i.e., continuous at right, limit (‘the point’) at
left. In general, ci is interpolated in between the neighbouring y values, ci = (1− f)yi + f · yi+1.
Therefore, for non-0 values of f, fn may no longer be a proper step function, since it can be discon-
tinuous from both sides, unless right = TRUE, f = 1 which is right-continuous.

Usage

stepfun(x, y, f = as.numeric(right), ties = "ordered",
right = FALSE)

is.stepfun(x)
knots(Fn, ...)

http://CRAN.R-project.org/package=MASS
http://CRAN.R-project.org/package=MASS

1500 stepfun

as.stepfun(x, ...)

S3 method for class ’stepfun’
print(x, digits = getOption("digits") - 2, ...)

S3 method for class ’stepfun’
summary(object, ...)

Arguments

x numeric vector giving the knots or jump locations of the step function for
stepfun(). For the other functions, x is as object below.

y numeric vector one longer than x, giving the heights of the function values be-
tween the x values.

f a number between 0 and 1, indicating how interpolation outside the given x
values should happen. See approxfun.

ties Handling of tied x values. Either a function or the string "ordered". See
approxfun.

right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.

Fn, object an R object inheriting from "stepfun".

digits number of significant digits to use, see print.

... potentially further arguments (required by the generic).

Value

A function of class "stepfun", say fn.

There are methods available for summarizing ("summary(.)"), representing ("print(.)") and
plotting ("plot(.)", see plot.stepfun) "stepfun" objects.

The environment of fn contains all the information needed;

"x","y" the original arguments

"n" number of knots (x values)

"f" continuity parameter
"yleft", "yright"

the function values outside the knots

"method" (always == "constant", from approxfun(.)).

The knots are also available via knots(fn).

Author(s)

Martin Maechler, <maechler@stat.math.ethz.ch> with some basic code from Thomas Lumley.

See Also

ecdf for empirical distribution functions as special step functions and plot.stepfun for plotting
step functions.

approxfun and splinefun.

stl 1501

Examples

y0 <- c(1.,2.,4.,3.)
sfun0 <- stepfun(1:3, y0, f = 0)
sfun.2 <- stepfun(1:3, y0, f = .2)
sfun1 <- stepfun(1:3, y0, f = 1)
sfun1c <- stepfun(1:3, y0, right=TRUE)# hence f=1
sfun0
summary(sfun0)
summary(sfun.2)

look at the internal structure:
unclass(sfun0)
ls(envir = environment(sfun0))

x0 <- seq(0.5,3.5, by = 0.25)
rbind(x=x0, f.f0 = sfun0(x0), f.f02= sfun.2(x0),

f.f1 = sfun1(x0), f.f1c = sfun1c(x0))
Identities :
stopifnot(identical(y0[-1], sfun0 (1:3)),# right = FALSE

identical(y0[-4], sfun1c(1:3)))# right = TRUE

stl Seasonal Decomposition of Time Series by Loess

Description

Decompose a time series into seasonal, trend and irregular components using loess, acronym STL.

Usage

stl(x, s.window, s.degree = 0,
t.window = NULL, t.degree = 1,
l.window = nextodd(period), l.degree = t.degree,
s.jump = ceiling(s.window/10),
t.jump = ceiling(t.window/10),
l.jump = ceiling(l.window/10),
robust = FALSE,
inner = if(robust) 1 else 2,
outer = if(robust) 15 else 0,
na.action = na.fail)

Arguments

x univariate time series to be decomposed. This should be an object of class "ts"
with a frequency greater than one.

s.window either the character string "periodic" or the span (in lags) of the loess window
for seasonal extraction, which should be odd. This has no default.

s.degree degree of locally-fitted polynomial in seasonal extraction. Should be zero or
one.

t.window the span (in lags) of the loess window for trend ex-
traction, which should be odd. If NULL, the default,
nextodd(ceiling((1.5*period) / (1-(1.5/s.window)))), is taken.

1502 stl

t.degree degree of locally-fitted polynomial in trend extraction. Should be zero or one.

l.window the span (in lags) of the loess window of the low-pass filter used for each
subseries. Defaults to the smallest odd integer greater than or equal to
frequency(x) which is recommended since it prevents competition between
the trend and seasonal components. If not an odd integer its given value is in-
creased to the next odd one.

l.degree degree of locally-fitted polynomial for the subseries low-pass filter. Must be 0
or 1.

s.jump, t.jump, l.jump

integers at least one to increase speed of the respective smoother. Linear inter-
polation happens between every *.jumpth value.

robust logical indicating if robust fitting be used in the loess procedure.

inner integer; the number of ‘inner’ (backfitting) iterations; usually very few (2) iter-
ations suffice.

outer integer; the number of ‘outer’ robustness iterations.

na.action action on missing values.

Details

The seasonal component is found by loess smoothing the seasonal sub-series (the series of all Jan-
uary values, . . .); if s.window = "periodic" smoothing is effectively replaced by taking the mean.
The seasonal values are removed, and the remainder smoothed to find the trend. The overall level is
removed from the seasonal component and added to the trend component. This process is iterated
a few times. The remainder component is the residuals from the seasonal plus trend fit.

Several methods for the resulting class "stl" objects, see, plot.stl.

Value

stl returns an object of class "stl" with components

time.series a multiple time series with columns seasonal, trend and remainder.

weights the final robust weights (all one if fitting is not done robustly).

call the matched call.

win integer (length 3 vector) with the spans used for the "s", "t", and "l"
smoothers.

deg integer (length 3) vector with the polynomial degrees for these smoothers.

jump integer (length 3) vector with the ‘jumps’ (skips) used for these smoothers.

ni number of inner iterations

no number of outer robustness iterations

Note

This is similar to but not identical to the stl function in S-PLUS. The remainder component given
by S-PLUS is the sum of the trend and remainder series from this function.

Author(s)

B.D. Ripley; Fortran code by Cleveland et al. (1990) from ‘netlib’.

stlmethods 1503

References

R. B. Cleveland, W. S. Cleveland, J.E. McRae, and I. Terpenning (1990) STL: A Seasonal-Trend
Decomposition Procedure Based on Loess. Journal of Official Statistics, 6, 3–73.

See Also

plot.stl for stl methods; loess in package stats (which is not actually used in stl).

StructTS for different kind of decomposition.

Examples

require(graphics)

plot(stl(nottem, "per"))
plot(stl(nottem, s.window = 4, t.window = 50, t.jump = 1))

plot(stllc <- stl(log(co2), s.window=21))
summary(stllc)
linear trend, strict period.
plot(stl(log(co2), s.window="per", t.window=1000))

Two STL plotted side by side :
stmd <- stl(mdeaths, s.window = "per") # non-robust

summary(stmR <- stl(mdeaths, s.window = "per", robust = TRUE))
op <- par(mar = c(0, 4, 0, 3), oma = c(5, 0, 4, 0), mfcol = c(4, 2))
plot(stmd, set.pars=NULL, labels = NULL,

main = "stl(mdeaths, s.w = \"per\", robust = FALSE / TRUE)")
plot(stmR, set.pars=NULL)
mark the ’outliers’ :
(iO <- which(stmR $ weights < 1e-8)) # 10 were considered outliers
sts <- stmR$time.series
points(time(sts)[iO], 0.8* sts[,"remainder"][iO], pch = 4, col = "red")
par(op)# reset

stlmethods Methods for STL Objects

Description

Methods for objects of class stl, typically the result of stl. The plot method does a multiple
figure plot with some flexibility.

There are also (non-visible) print and summary methods.

Usage

S3 method for class ’stl’
plot(x, labels = colnames(X),

set.pars = list(mar = c(0, 6, 0, 6), oma = c(6, 0, 4, 0),
tck = -0.01, mfrow = c(nplot, 1)),

main = NULL, range.bars = TRUE, ...,
col.range = "light gray")

1504 StructTS

Arguments

x stl object.

labels character of length 4 giving the names of the component time-series.

set.pars settings for par(.) when setting up the plot.

main plot main title.

range.bars logical indicating if each plot should have a bar at its right side which are of
equal heights in user coordinates.

... further arguments passed to or from other methods.

col.range colour to be used for the range bars, if plotted. Note this appears after ... and
so cannot be abbreviated.

See Also

plot.ts and stl, particularly for examples.

StructTS Fit Structural Time Series

Description

Fit a structural model for a time series by maximum likelihood.

Usage

StructTS(x, type = c("level", "trend", "BSM"), init = NULL,
fixed = NULL, optim.control = NULL)

Arguments

x a univariate numeric time series. Missing values are allowed.

type the class of structural model. If omitted, a BSM is used for a time series with
frequency(x) > 1, and a local trend model otherwise.

init initial values of the variance parameters.

fixed optional numeric vector of the same length as the total number of parameters.
If supplied, only NA entries in fixed will be varied. Probably most useful for
setting variances to zero.

optim.control List of control parameters for optim. Method "L-BFGS-B" is used.

Details

Structural time series models are (linear Gaussian) state-space models for (univariate) time series
based on a decomposition of the series into a number of components. They are specified by a set of
error variances, some of which may be zero.

The simplest model is the local level model specified by type = "level". This has an underlying
level µt which evolves by

µt+1 = µt + ξt, ξt ∼ N(0, σ2
ξ)

The observations are
xt = µt + εt, εt ∼ N(0, σ2

ε)

StructTS 1505

There are two parameters, σ2
ξ and σ2

ε . It is an ARIMA(0,1,1) model, but with restrictions on the
parameter set.

The local linear trend model, type = "trend", has the same measurement equation, but with a
time-varying slope in the dynamics for µt, given by

µt+1 = µt + νt + ξt, ξt ∼ N(0, σ2
ξ)

νt+1 = νt + ζt, ζt ∼ N(0, σ2
ζ)

with three variance parameters. It is not uncommon to find σ2
ζ = 0 (which reduces to the local level

model) or σ2
ξ = 0, which ensures a smooth trend. This is a restricted ARIMA(0,2,2) model.

The basic structural model, type = "BSM", is a local trend model with an additional seasonal
component. Thus the measurement equation is

xt = µt + γt + εt, εt ∼ N(0, σ2
ε)

where γt is a seasonal component with dynamics

γt+1 = −γt + · · ·+ γt−s+2 + ωt, ωt ∼ N(0, σ2
ω)

The boundary case σ2
ω = 0 corresponds to a deterministic (but arbitrary) seasonal pattern. (This is

sometimes known as the ‘dummy variable’ version of the BSM.)

Value

A list of class "StructTS" with components:

coef the estimated variances of the components.

loglik the maximized log-likelihood. Note that as all these models are non-stationary
this includes a diffuse prior for some observations and hence is not comparable
to arima nor different types of structural models.

loglik0 the maximized log-likelihood with the constant used prior to R 2.16.0, for back-
wards compatibility.

data the time series x.

residuals the standardized residuals.

fitted a multiple time series with one component for the level, slope and seasonal
components, estimated contemporaneously (that is at time t and not at the end
of the series).

call the matched call.

series the name of the series x.

code the convergence code returned by optim.

model, model0 Lists representing the Kalman Filter used in the fitting. See KalmanLike.
model0 is the initial state of the filter, model its final state.

xtsp the tsp attributes of x.

Note

Optimization of structural models is a lot harder than many of the references admit. For example,
the AirPassengers data are considered in Brockwell & Davis (1996): their solution appears to be
a local maximum, but nowhere near as good a fit as that produced by StructTS. It is quite common
to find fits with one or more variances zero, and this can include σ2

ε .

1506 summary.aov

References

Brockwell, P. J. & Davis, R. A. (1996). Introduction to Time Series and Forecasting. Springer, New
York. Sections 8.2 and 8.5.

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

Harvey, A. C. (1989) Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge
University Press.

Harvey, A. C. (1993) Time Series Models. 2nd Edition, Harvester Wheatsheaf.

See Also

KalmanLike, tsSmooth; stl for different kind of (seasonal) decomposition.

Examples

see also JohnsonJohnson, Nile and AirPassengers
require(graphics)

trees <- window(treering, start=0)
(fit <- StructTS(trees, type = "level"))
plot(trees)
lines(fitted(fit), col = "green")
tsdiag(fit)

(fit <- StructTS(log10(UKgas), type = "BSM"))
par(mfrow = c(4, 1)) # to give appropriate aspect ratio for next plot.
plot(log10(UKgas))
plot(cbind(fitted(fit), resids=resid(fit)), main = "UK gas consumption")

keep some parameters fixed; trace optimizer:
StructTS(log10(UKgas), type = "BSM", fixed = c(0.1,0.001,NA,NA),

optim.control = list(trace=TRUE))

summary.aov Summarize an Analysis of Variance Model

Description

Summarize an analysis of variance model.

Usage

S3 method for class ’aov’
summary(object, intercept = FALSE, split,

expand.split = TRUE, keep.zero.df = TRUE, ...)

S3 method for class ’aovlist’
summary(object, ...)

summary.aov 1507

Arguments

object An object of class "aov" or "aovlist".

intercept logical: should intercept terms be included?

split an optional named list, with names corresponding to terms in the model. Each
component is itself a list with integer components giving contrasts whose con-
tributions are to be summed.

expand.split logical: should the split apply also to interactions involving the factor?

keep.zero.df logical: should terms with no degrees of freedom be included?

... Arguments to be passed to or from other methods, for summary.aovlist in-
cluding those for summary.aov.

Value

An object of class c("summary.aov", "listof") or "summary.aovlist" respectively.

For fits with a single stratum the result will be a list of ANOVA tables, one for each response (even
if there is only one response): the tables are of class "anova" inheriting from class "data.frame".
They have columns "Df", "Sum Sq", "Mean Sq", as well as "F value" and "Pr(>F)" if there are
non-zero residual degrees of freedom. There is a row for each term in the model, plus one for
"Residuals" if there are any.

For multistratum fits the return value is a list of such summaries, one for each stratum.

Note

The use of expand.split = TRUE is little tested: it is always possible to set it to FALSE and specify
exactly all the splits required.

See Also

aov, summary, model.tables, TukeyHSD

Examples

For a simple example see example(aov)

Cochran and Cox (1957, p.164)
3x3 factorial with ordered factors, each is average of 12.
CC <- data.frame(

y = c(449, 413, 326, 409, 358, 291, 341, 278, 312)/12,
P = ordered(gl(3, 3)), N = ordered(gl(3, 1, 9))

)
CC.aov <- aov(y ~ N * P, data = CC , weights = rep(12, 9))
summary(CC.aov)

Split both main effects into linear and quadratic parts.
summary(CC.aov, split = list(N = list(L = 1, Q = 2),

P = list(L = 1, Q = 2)))

Split only the interaction
summary(CC.aov, split = list("N:P" = list(L.L = 1, Q = 2:4)))

split on just one var
summary(CC.aov, split = list(P = list(lin = 1, quad = 2)))

1508 summary.glm

summary(CC.aov, split = list(P = list(lin = 1, quad = 2)),
expand.split=FALSE)

summary.glm Summarizing Generalized Linear Model Fits

Description

These functions are all methods for class glm or summary.glm objects.

Usage

S3 method for class ’glm’
summary(object, dispersion = NULL, correlation = FALSE,

symbolic.cor = FALSE, ...)

S3 method for class ’summary.glm’
print(x, digits = max(3, getOption("digits") - 3),

symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class "glm", usually, a result of a call to glm.

x an object of class "summary.glm", usually, a result of a call to summary.glm.

dispersion the dispersion parameter for the family used. Either a single numerical value or
NULL (the default), when it is inferred from object (see ‘Details’).

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

digits the number of significant digits to use when printing.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (see symnum) rather
than as numbers.

signif.stars logical. If TRUE, ‘significance stars’ are printed for each coefficient.

... further arguments passed to or from other methods.

Details

print.summary.glm tries to be smart about formatting the coefficients, standard errors, etc. and ad-
ditionally gives ‘significance stars’ if signif.stars is TRUE. The coefficients component of the
result gives the estimated coefficients and their estimated standard errors, together with their ratio.
This third column is labelled t ratio if the dispersion is estimated, and z ratio if the dispersion
is known (or fixed by the family). A fourth column gives the two-tailed p-value corresponding to the
t or z ratio based on a Student t or Normal reference distribution. (It is possible that the dispersion
is not known and there are no residual degrees of freedom from which to estimate it. In that case
the estimate is NaN.)

Aliased coefficients are omitted in the returned object but restored by the print method.

Correlations are printed to two decimal places (or symbolically): to see the actual correlations print
summary(object)$correlation directly.

summary.glm 1509

The dispersion of a GLM is not used in the fitting process, but it is needed to find standard errors.
If dispersion is not supplied or NULL, the dispersion is taken as 1 for the binomial and Poisson
families, and otherwise estimated by the residual Chisquared statistic (calculated from cases with
non-zero weights) divided by the residual degrees of freedom.

summary can be used with Gaussian glm fits to handle the case of a linear regression with known
error variance, something not handled by summary.lm.

Value

summary.glm returns an object of class "summary.glm", a list with components

call the component from object.

family the component from object.

deviance the component from object.

contrasts the component from object.

df.residual the component from object.

null.deviance the component from object.

df.null the component from object.

deviance.resid the deviance residuals: see residuals.glm.

coefficients the matrix of coefficients, standard errors, z-values and p-values. Aliased coef-
ficients are omitted.

aliased named logical vector showing if the original coefficients are aliased.

dispersion either the supplied argument or the inferred/estimated dispersion if the latter is
NULL.

df a 3-vector of the rank of the model and the number of residual degrees of free-
dom, plus number of non-aliased coefficients.

cov.unscaled the unscaled (dispersion = 1) estimated covariance matrix of the estimated
coefficients.

cov.scaled ditto, scaled by dispersion.

correlation (only if correlation is true.) The estimated correlations of the estimated coef-
ficients.

symbolic.cor (only if correlation is true.) The value of the argument symbolic.cor.

See Also

glm, summary.

Examples

For examples see example(glm)

1510 summary.lm

summary.lm Summarizing Linear Model Fits

Description

summary method for class "lm".

Usage

S3 method for class ’lm’
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

S3 method for class ’summary.lm’
print(x, digits = max(3, getOption("digits") - 3),

symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class "lm", usually, a result of a call to lm.

x an object of class "summary.lm", usually, a result of a call to summary.lm.

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

digits the number of significant digits to use when printing.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (see symnum) rather
than as numbers.

signif.stars logical. If TRUE, ‘significance stars’ are printed for each coefficient.

... further arguments passed to or from other methods.

Details

print.summary.lm tries to be smart about formatting the coefficients, standard errors, etc. and
additionally gives ‘significance stars’ if signif.stars is TRUE.

Correlations are printed to two decimal places (or symbolically): to see the actual correlations print
summary(object)$correlation directly.

Value

The function summary.lm computes and returns a list of summary statistics of the fitted linear model
given in object, using the components (list elements) "call" and "terms" from its argument, plus

residuals the weighted residuals, the usual residuals rescaled by the square root of the
weights specified in the call to lm.

coefficients a p × 4 matrix with columns for the estimated coefficient, its standard error,
t-statistic and corresponding (two-sided) p-value. Aliased coefficients are omit-
ted.

aliased named logical vector showing if the original coefficients are aliased.

summary.manova 1511

sigma the square root of the estimated variance of the random error

σ̂2 =
1

n− p
∑
i

wiR
2
i ,

where Ri is the i-th residual, residuals[i].

df degrees of freedom, a 3-vector (p, n− p, p∗), the last being the number of non-
aliased coefficients.

fstatistic (for models including non-intercept terms) a 3-vector with the value of the F-
statistic with its numerator and denominator degrees of freedom.

r.squared R2, the ‘fraction of variance explained by the model’,

R2 = 1−
∑
iR

2
i∑

i(yi − y∗)2
,

where y∗ is the mean of yi if there is an intercept and zero otherwise.

adj.r.squared the above R2 statistic ‘adjusted’, penalizing for higher p.

cov.unscaled a p× p matrix of (unscaled) covariances of the β̂j , j = 1, . . . , p.

correlation the correlation matrix corresponding to the above cov.unscaled, if
correlation = TRUE is specified.

symbolic.cor (only if correlation is true.) The value of the argument symbolic.cor.

na.action from object, if present there.

See Also

The model fitting function lm, summary.

Function coef will extract the matrix of coefficients with standard errors, t-statistics and p-values.

Examples

##-- Continuing the lm(.) example:
coef(lm.D90)# the bare coefficients
sld90 <- summary(lm.D90 <- lm(weight ~ group -1))# omitting intercept
sld90
coef(sld90)# much more

summary.manova Summary Method for Multivariate Analysis of Variance

Description

A summary method for class "manova".

Usage

S3 method for class ’manova’
summary(object,

test = c("Pillai", "Wilks", "Hotelling-Lawley", "Roy"),
intercept = FALSE, tol = 1e-7, ...)

1512 summary.manova

Arguments

object An object of class "manova" or an aov object with multiple responses.

test The name of the test statistic to be used. Partial matching is used so the name
can be abbreviated.

intercept logical. If TRUE, the intercept term is included in the table.

tol tolerance to be used in deciding if the residuals are rank-deficient: see qr.

... further arguments passed to or from other methods.

Details

The summary.manova method uses a multivariate test statistic for the summary table. Wilks’ statis-
tic is most popular in the literature, but the default Pillai–Bartlett statistic is recommended by Hand
and Taylor (1987).

The table gives a transformation of the test statistic which has approximately an F distribution. The
approximations used follow S-PLUS and SAS (the latter apart from some cases of the Hotelling–
Lawley statistic), but many other distributional approximations exist: see Anderson (1984) and
Krzanowski and Marriott (1994) for further references. All four approximate F statistics are the
same when the term being tested has one degree of freedom, but in other cases that for the Roy
statistic is an upper bound.

The tolerance tol is applied to the QR decomposition of the residual correlation matrix (unless
some response has essentially zero residuals, when it is unscaled). Thus the default value guards
against very highly correlated responses: it can be reduced but doing so will allow rather inaccurate
results and it will normally be better to transform the responses to remove the high correlation.

Value

An object of class "summary.manova". If there is a positive residual degrees of freedom, this is a
list with components

row.names The names of the terms, the row names of the stats table if present.

SS A named list of sums of squares and product matrices.

Eigenvalues A matrix of eigenvalues.

stats A matrix of the statistics, approximate F value, degrees of freedom and P value.

otherwise components row.names, SS and Df (degrees of freedom) for the terms (and not the resid-
uals).

References

Anderson, T. W. (1994) An Introduction to Multivariate Statistical Analysis. Wiley.

Hand, D. J. and Taylor, C. C. (1987) Multivariate Analysis of Variance and Repeated Measures.
Chapman and Hall.

Krzanowski, W. J. (1988) Principles of Multivariate Analysis. A User’s Perspective. Oxford.

Krzanowski, W. J. and Marriott, F. H. C. (1994) Multivariate Analysis. Part I: Distributions, Ordi-
nation and Inference. Edward Arnold.

See Also

manova, aov

summary.nls 1513

Examples

Example on producing plastic film from Krzanowski (1998, p. 381)
tear <- c(6.5, 6.2, 5.8, 6.5, 6.5, 6.9, 7.2, 6.9, 6.1, 6.3,

6.7, 6.6, 7.2, 7.1, 6.8, 7.1, 7.0, 7.2, 7.5, 7.6)
gloss <- c(9.5, 9.9, 9.6, 9.6, 9.2, 9.1, 10.0, 9.9, 9.5, 9.4,

9.1, 9.3, 8.3, 8.4, 8.5, 9.2, 8.8, 9.7, 10.1, 9.2)
opacity <- c(4.4, 6.4, 3.0, 4.1, 0.8, 5.7, 2.0, 3.9, 1.9, 5.7,

2.8, 4.1, 3.8, 1.6, 3.4, 8.4, 5.2, 6.9, 2.7, 1.9)
Y <- cbind(tear, gloss, opacity)
rate <- factor(gl(2,10), labels=c("Low", "High"))
additive <- factor(gl(2, 5, length=20), labels=c("Low", "High"))

fit <- manova(Y ~ rate * additive)
summary.aov(fit) # univariate ANOVA tables
summary(fit, test="Wilks") # ANOVA table of Wilks’ lambda
summary(fit) # same F statistics as single-df terms

summary.nls Summarizing Non-Linear Least-Squares Model Fits

Description

summary method for class "nls".

Usage

S3 method for class ’nls’
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

S3 method for class ’summary.nls’
print(x, digits = max(3, getOption("digits") - 3),

symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class "nls".

x an object of class "summary.nls", usually the result of a call to summary.nls.

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

digits the number of significant digits to use when printing.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (see symnum) rather
than as numbers.

signif.stars logical. If TRUE, ‘significance stars’ are printed for each coefficient.

... further arguments passed to or from other methods.

1514 summary.princomp

Details

The distribution theory used to find the distribution of the standard errors and of the residual stan-
dard error (for t ratios) is based on linearization and is approximate, maybe very approximate.

print.summary.nls tries to be smart about formatting the coefficients, standard errors, etc. and
additionally gives ‘significance stars’ if signif.stars is TRUE.

Correlations are printed to two decimal places (or symbolically): to see the actual correlations print
summary(object)$correlation directly.

Value

The function summary.nls computes and returns a list of summary statistics of the fitted model
given in object, using the component "formula" from its argument, plus

residuals the weighted residuals, the usual residuals rescaled by the square root of the
weights specified in the call to nls.

coefficients a p × 4 matrix with columns for the estimated coefficient, its standard error,
t-statistic and corresponding (two-sided) p-value.

sigma the square root of the estimated variance of the random error

σ̂2 =
1

n− p
∑
i

R2
i ,

where Ri is the i-th weighted residual.
df degrees of freedom, a 2-vector (p, n − p). (Here and elsewhere n omits obser-

vations with zero weights.)
cov.unscaled a p× p matrix of (unscaled) covariances of the parameter estimates.
correlation the correlation matrix corresponding to the above cov.unscaled, if

correlation = TRUE is specified and there are a non-zero number of residual
degrees of freedom.

symbolic.cor (only if correlation is true.) The value of the argument symbolic.cor.

See Also

The model fitting function nls, summary.

Function coef will extract the matrix of coefficients with standard errors, t-statistics and p-values.

summary.princomp Summary method for Principal Components Analysis

Description

The summary method for class "princomp".

Usage

S3 method for class ’princomp’
summary(object, loadings = FALSE, cutoff = 0.1, ...)

S3 method for class ’summary.princomp’
print(x, digits = 3, loadings = x$print.loadings,

cutoff = x$cutoff, ...)

supsmu 1515

Arguments

object an object of class "princomp", as from princomp().

loadings logical. Should loadings be included?

cutoff numeric. Loadings below this cutoff in absolute value are shown as blank in the
output.

x an object of class "summary.princomp".

digits the number of significant digits to be used in listing loadings.

... arguments to be passed to or from other methods.

Value

object with additional components cutoff and print.loadings.

See Also

princomp

Examples

summary(pc.cr <- princomp(USArrests, cor=TRUE))
print(summary(princomp(USArrests, cor=TRUE),

loadings = TRUE, cutoff = 0.2), digits = 2)

supsmu Friedman’s SuperSmoother

Description

Smooth the (x, y) values by Friedman’s ‘super smoother’.

Usage

supsmu(x, y, wt, span = "cv", periodic = FALSE, bass = 0)

Arguments

x x values for smoothing

y y values for smoothing

wt case weights, by default all equal

span the fraction of the observations in the span of the running lines smoother, or
"cv" to choose this by leave-one-out cross-validation.

periodic if TRUE, the x values are assumed to be in [0, 1] and of period 1.

bass controls the smoothness of the fitted curve. Values of up to 10 indicate increas-
ing smoothness.

1516 symnum

Details

supsmu is a running lines smoother which chooses between three spans for the lines. The running
lines smoothers are symmetric, with k/2 data points each side of the predicted point, and values of
k as 0.5 * n, 0.2 * n and 0.05 * n, where n is the number of data points. If span is specified, a
single smoother with span span * n is used.

The best of the three smoothers is chosen by cross-validation for each prediction. The best spans are
then smoothed by a running lines smoother and the final prediction chosen by linear interpolation.

The FORTRAN code says: “For small samples (n < 40) or if there are substantial serial correlations
between observations close in x-value, then a pre-specified fixed span smoother (span > 0)
should be used. Reasonable span values are 0.2 to 0.4.”

Cases with non-finite values of x, y or wt are dropped, with a warning.

Value

A list with components

x the input values in increasing order with duplicates removed.

y the corresponding y values on the fitted curve.

References

Friedman, J. H. (1984) SMART User’s Guide. Laboratory for Computational Statistics, Stanford
University Technical Report No. 1.

Friedman, J. H. (1984) A variable span scatterplot smoother. Laboratory for Computational Statis-
tics, Stanford University Technical Report No. 5.

See Also

ppr

Examples

require(graphics)

with(cars, {
plot(speed, dist)
lines(supsmu(speed, dist))
lines(supsmu(speed, dist, bass = 7), lty = 2)
})

symnum Symbolic Number Coding

Description

Symbolically encode a given numeric or logical vector or array. Particularly useful for visualization
of structured matrices, e.g., correlation, sparse, or logical ones.

symnum 1517

Usage

symnum(x, cutpoints = c(0.3, 0.6, 0.8, 0.9, 0.95),
symbols = if(numeric.x) c(" ", ".", ",", "+", "*", "B")

else c(".", "|"),
legend = length(symbols) >= 3,
na = "?", eps = 1e-5, numeric.x = is.numeric(x),
corr = missing(cutpoints) && numeric.x,
show.max = if(corr) "1", show.min = NULL,
abbr.colnames = has.colnames,
lower.triangular = corr && is.numeric(x) && is.matrix(x),
diag.lower.tri = corr && !is.null(show.max))

Arguments

x numeric or logical vector or array.
cutpoints numeric vector whose values cutpoints[j] = cj (after augmentation, see corr

below) are used for intervals.
symbols character vector, one shorter than (the augmented, see corr below) cutpoints.

symbols[j]= sj are used as ‘code’ for the (half open) interval (cj , cj+1].
When numeric.x is FALSE, i.e., by default when argument x is logical, the
default is c(".","|") (graphical 0 / 1 s).

legend logical indicating if a "legend" attribute is desired.
na character or logical. How NAs are coded. If na == FALSE, NAs are coded in-

visibly, including the "legend" attribute below, which otherwise mentions NA
coding.

eps absolute precision to be used at left and right boundary.
numeric.x logical indicating if x should be treated as numbers, otherwise as logical.
corr logical. If TRUE, x contains correlations. The cutpoints are augmented by 0 and

1 and abs(x) is coded.
show.max if TRUE, or of mode character, the maximal cutpoint is coded especially.
show.min if TRUE, or of mode character, the minimal cutpoint is coded especially.
abbr.colnames logical, integer or NULL indicating how column names should be abbreviated (if

they are); if NULL (or FALSE and x has no column names), the column names
will all be empty, i.e., ""; otherwise if abbr.colnames is false, they are left
unchanged. If TRUE or integer, existing column names will be abbreviated to
abbreviate(*, minlength = abbr.colnames).

lower.triangular

logical. If TRUE and x is a matrix, only the lower triangular part of the matrix is
coded as non-blank.

diag.lower.tri logical. If lower.triangular and this are TRUE, the diagonal part of the matrix
is shown.

Value

An atomic character object of class noquote and the same dimensions as x.

If legend is TRUE (as by default when there are more than two classes), the result has an attribute
"legend" containing a legend of the returned character codes, in the form

c1s1c2s2 . . . sncn+1

where cj = cutpoints[j] and sj = symbols[j].

1518 symnum

Note

The optional (mostly logical) arguments all try to use smart defaults. Specifying them explicitly
may lead to considerably improved output in many cases.

Author(s)

Martin Maechler <maechler@stat.math.ethz.ch>

See Also

as.character; image

Examples

ii <- 0:8; names(ii) <- ii
symnum(ii, cut= 2*(0:4), sym = c(".", "-", "+", "$"))
symnum(ii, cut= 2*(0:4), sym = c(".", "-", "+", "$"), show.max=TRUE)

symnum(1:12 %% 3 == 0)# --> "|" = TRUE, "." = FALSE for logical

Pascal’s Triangle modulo 2 -- odd and even numbers:
N <- 38
pascal <- t(sapply(0:N, function(n) round(choose(n, 0:N - (N-n)%/%2))))
rownames(pascal) <- rep("", 1+N) # <-- to improve "graphic"
symnum(pascal %% 2, symbols = c(" ", "A"), numeric = FALSE)

##-- Symbolic correlation matrices:
symnum(cor(attitude), diag = FALSE)
symnum(cor(attitude), abbr.= NULL)
symnum(cor(attitude), abbr.= FALSE)
symnum(cor(attitude), abbr.= 2)

symnum(cor(rbind(1, rnorm(25), rnorm(25)^2)))
symnum(cor(matrix(rexp(30, 1), 5, 18))) # <<-- PATTERN ! --
symnum(cm1 <- cor(matrix(rnorm(90) , 5, 18))) # < White Noise SMALL n
symnum(cm1, diag=FALSE)
symnum(cm2 <- cor(matrix(rnorm(900), 50, 18))) # < White Noise "BIG" n
symnum(cm2, lower=FALSE)

NA’s:
Cm <- cor(matrix(rnorm(60), 10, 6)); Cm[c(3,6), 2] <- NA
symnum(Cm, show.max=NULL)

Graphical P-values (aka "significance stars"):
pval <- rev(sort(c(outer(1:6, 10^-(1:3)))))
symp <- symnum(pval, corr=FALSE,

cutpoints = c(0, .001,.01,.05, .1, 1),
symbols = c("***","**","*","."," "))

noquote(cbind(P.val = format(pval), Signif= symp))

t.test 1519

t.test Student’s t-Test

Description

Performs one and two sample t-tests on vectors of data.

Usage

t.test(x, ...)

Default S3 method:
t.test(x, y = NULL,

alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

S3 method for class ’formula’
t.test(formula, data, subset, na.action, ...)

Arguments

x a (non-empty) numeric vector of data values.

y an optional (non-empty) numeric vector of data values.

alternative a character string specifying the alternative hypothesis, must be one of
"two.sided" (default), "greater" or "less". You can specify just the initial
letter.

mu a number indicating the true value of the mean (or difference in means if you
are performing a two sample test).

paired a logical indicating whether you want a paired t-test.

var.equal a logical variable indicating whether to treat the two variances as being equal.
If TRUE then the pooled variance is used to estimate the variance otherwise the
Welch (or Satterthwaite) approximation to the degrees of freedom is used.

conf.level confidence level of the interval.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the
data values and rhs a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

1520 t.test

Details

The formula interface is only applicable for the 2-sample tests.

alternative = "greater" is the alternative that x has a larger mean than y.

If paired is TRUE then both x and y must be specified and they must be the same length. Missing
values are silently removed (in pairs if paired is TRUE). If var.equal is TRUE then the pooled
estimate of the variance is used. By default, if var.equal is FALSE then the variance is estimated
separately for both groups and the Welch modification to the degrees of freedom is used.

If the input data are effectively constant (compared to the larger of the two means) an error is
generated.

Value

A list with class "htest" containing the following components:

statistic the value of the t-statistic.

parameter the degrees of freedom for the t-statistic.

p.value the p-value for the test.

conf.int a confidence interval for the mean appropriate to the specified alternative hy-
pothesis.

estimate the estimated mean or difference in means depending on whether it was a one-
sample test or a two-sample test.

null.value the specified hypothesized value of the mean or mean difference depending on
whether it was a one-sample test or a two-sample test.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of t-test was performed.

data.name a character string giving the name(s) of the data.

See Also

prop.test

Examples

require(graphics)

t.test(1:10,y=c(7:20)) # P = .00001855
t.test(1:10,y=c(7:20, 200)) # P = .1245 -- NOT significant anymore

Classical example: Student’s sleep data
plot(extra ~ group, data = sleep)
Traditional interface
with(sleep, t.test(extra[group == 1], extra[group == 2]))
Formula interface
t.test(extra ~ group, data = sleep)

TDist 1521

TDist The Student t Distribution

Description

Density, distribution function, quantile function and random generation for the t distribution with
df degrees of freedom (and optional non-centrality parameter ncp).

Usage

dt(x, df, ncp, log = FALSE)
pt(q, df, ncp, lower.tail = TRUE, log.p = FALSE)
qt(p, df, ncp, lower.tail = TRUE, log.p = FALSE)
rt(n, df, ncp)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

df degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.

ncp non-centrality parameter δ; currently except for rt(), only for
abs(ncp) <= 37.62. If omitted, use the central t distribution.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The t distribution with df = ν degrees of freedom has density

f(x) =
Γ((ν + 1)/2)√
πνΓ(ν/2)

(1 + x2/ν)−(ν+1)/2

for all real x. It has mean 0 (for ν > 1) and variance ν
ν−2 (for ν > 2).

The general non-central t with parameters (ν, δ) = (df, ncp) is defined as the distribution of
Tν(δ) := (U + δ)/

√
V/ν where U and V are independent random variables, U ∼ N (0, 1) and

V ∼ χ2
ν (see Chisquare).

The most used applications are power calculations for t-tests:
Let T = X̄−µ0

S/
√
n

where X̄ is the mean and S the sample standard deviation (sd) of X1, X2, . . . , Xn

which are i.i.d. N (µ, σ2) Then T is distributed as non-central t with df = n−1 degrees of freedom
and non-centrality parameter ncp = (µ− µ0)

√
n/σ.

Value

dt gives the density, pt gives the distribution function, qt gives the quantile function, and rt gen-
erates random deviates.

Invalid arguments will result in return value NaN, with a warning.

1522 TDist

Note

Supplying ncp = 0 uses the algorithm for the non-central distribution, which is not the same algo-
rithm used if ncp is omitted. This is to give consistent behaviour in extreme cases with values of
ncp very near zero.

The code for non-zero ncp is principally intended to be used for moderate values of ncp: it will not
be highly accurate, especially in the tails, for large values.

Source

The central dt is computed via an accurate formula provided by Catherine Loader (see the reference
in dbinom).

For the non-central case of dt, C code contributed by Claus Ekstrøm based on the relationship (for
x 6= 0) to the cumulative distribution.

For the central case of pt, a normal approximation in the tails, otherwise via pbeta.

For the non-central case of pt based on a C translation of

Lenth, R. V. (1989). Algorithm AS 243 — Cumulative distribution function of the non-central t
distribution, Applied Statistics 38, 185–189.

This computes the lower tail only, so the upper tail suffers from cancellation and a warning will be
given when this is likely to be significant.

For central qt, a C translation of

Hill, G. W. (1970) Algorithm 396: Student’s t-quantiles. Communications of the ACM, 13(10),
619–620.

altered to take account of

Hill, G. W. (1981) Remark on Algorithm 396, ACM Transactions on Mathematical Software, 7,
250–1.

The non-central case is done by inversion.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (Except non-central versions.)

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
2, chapters 28 and 31. Wiley, New York.

See Also

Distributions for other standard distributions, including df for the F distribution.

Examples

require(graphics)

1 - pt(1:5, df = 1)
qt(.975, df = c(1:10,20,50,100,1000))

tt <- seq(0,10, len=21)
ncp <- seq(0,6, len=31)
ptn <- outer(tt,ncp, function(t,d) pt(t, df = 3, ncp=d))
t.tit <- "Non-central t - Probabilities"
image(tt,ncp,ptn, zlim=c(0,1), main = t.tit)

termplot 1523

persp(tt,ncp,ptn, zlim=0:1, r=2, phi=20, theta=200, main=t.tit,
xlab = "t", ylab = "non-centrality parameter",
zlab = "Pr(T <= t)")

plot(function(x) dt(x, df = 3, ncp = 2), -3, 11, ylim = c(0, 0.32),
main="Non-central t - Density", yaxs="i")

termplot Plot Regression Terms

Description

Plots regression terms against their predictors, optionally with standard errors and partial residuals
added.

Usage

termplot(model, data = NULL, envir = environment(formula(model)),
partial.resid = FALSE, rug = FALSE,
terms = NULL, se = FALSE,
xlabs = NULL, ylabs = NULL, main = NULL,
col.term = 2, lwd.term = 1.5,
col.se = "orange", lty.se = 2, lwd.se = 1,
col.res = "gray", cex = 1, pch = par("pch"),
col.smth = "darkred", lty.smth = 2, span.smth = 2/3,
ask = dev.interactive() && nb.fig < n.tms,
use.factor.levels = TRUE, smooth = NULL, ylim = "common",
...)

Arguments

model fitted model object

data data frame in which variables in model can be found

envir environment in which variables in model can be found

partial.resid logical; should partial residuals be plotted?

rug add rugplots (jittered 1-d histograms) to the axes?

terms which terms to plot (default NULL means all terms); a character vector, passed
to predict(.., term = "terms", terms = *).

se plot pointwise standard errors?

xlabs vector of labels for the x axes

ylabs vector of labels for the y axes

main logical, or vector of main titles; if TRUE, the model’s call is taken as main title,
NULL or FALSE mean no titles.

col.term, lwd.term

color and line width for the ‘term curve’, see lines.
col.se, lty.se, lwd.se

color, line type and line width for the ‘twice-standard-error curve’ when
se = TRUE.

1524 termplot

col.res, cex, pch

color, plotting character expansion and type for partial residuals, when
partial.resid = TRUE, see points.

ask logical; if TRUE, the user is asked before each plot, see par(ask=.).
use.factor.levels

Should x-axis ticks use factor levels or numbers for factor terms?

smooth NULL or a function with the same arguments as panel.smooth to draw a smooth
through the partial residuals for non-factor terms

lty.smth, col.smth, span.smth

Passed to smooth

ylim an optional range for the y axis, or "common" when a range sufficient for all the
plot will be computed, or "free" when limits are computed for each plot.

... other graphical parameters.

Details

The model object must have a predict method that accepts type = terms, e.g., glm in the stats
package, coxph and survreg in the survival package.

For the partial.resid = TRUE option model must have a residuals method that accepts
type = "partial", which lm and glm do.

The data argument should rarely be needed, but in some cases termplot may be unable to recon-
struct the original data frame. Using na.action=na.exclude makes these problems less likely.

Nothing sensible happens for interaction terms, and they may cause errors.

Value

The number of terms, invisibly.

See Also

For (generalized) linear models, plot.lm and predict.glm.

Examples

require(graphics)

had.splines <- "package:splines" %in% search()
if(!had.splines) rs <- require(splines)
x <- 1:100
z <- factor(rep(LETTERS[1:4],25))
y <- rnorm(100, sin(x/10)+as.numeric(z))
model <- glm(y ~ ns(x,6) + z)

par(mfrow=c(2,2)) ## 2 x 2 plots for same model :
termplot(model, main = paste("termplot(", deparse(model$call)," ...)"))
termplot(model, rug=TRUE)
termplot(model, partial.resid=TRUE, se = TRUE, main = TRUE)
termplot(model, partial.resid=TRUE, smooth=panel.smooth, span.smth=1/4)
if(!had.splines && rs) detach("package:splines")

http://CRAN.R-project.org/package=survival

terms 1525

terms Model Terms

Description

The function terms is a generic function which can be used to extract terms objects from various
kinds of R data objects.

Usage

terms(x, ...)

Arguments

x object used to select a method to dispatch.

... further arguments passed to or from other methods.

Details

There are methods for classes "aovlist", and "terms" "formula" (see terms.formula): the
default method just extracts the terms component of the object, or failing that a "terms" attribute
(as used by model.frame).

There are print and labels methods for class "terms": the latter prints the term labels (see
terms.object).

Value

An object of class c("terms", "formula") which contains the terms representation of a symbolic
model. See terms.object for its structure.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models in S eds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

terms.object, terms.formula, lm, glm, formula.

terms.formula Construct a terms Object from a Formula

Description

This function takes a formula and some optional arguments and constructs a terms object. The
terms object can then be used to construct a model.matrix.

1526 terms.object

Usage

S3 method for class ’formula’
terms(x, specials = NULL, abb = NULL, data = NULL, neg.out = TRUE,

keep.order = FALSE, simplify = FALSE, ...,
allowDotAsName = FALSE)

Arguments

x a formula.

specials which functions in the formula should be marked as special in the terms object?
A character vector or NULL.

abb Not implemented in R.

data a data frame from which the meaning of the special symbol . can be inferred. It
is unused if there is no . in the formula.

neg.out Not implemented in R.

keep.order a logical value indicating whether the terms should keep their positions. If FALSE
the terms are reordered so that main effects come first, followed by the interac-
tions, all second-order, all third-order and so on. Effects of a given order are
kept in the order specified.

simplify should the formula be expanded and simplified, the pre-1.7.0 behaviour?

... further arguments passed to or from other methods.

allowDotAsName normally . in a formula refers to the remaining variables contained in data.
Exceptionally, . can be treated as a name for non-standard uses of formulae.

Details

Not all of the options work in the same way that they do in S and not all are implemented.

Value

A terms.object object is returned. The object itself is the re-ordered (unless keep.order = TRUE)
formula. In all cases variables within an interaction term in the formula are re-ordered by the order-
ing of the "variables" attribute, which is the order in which the variables occur in the formula.

See Also

terms, terms.object

terms.object Description of Terms Objects

Description

An object of class terms holds information about a model. Usually the model was specified in
terms of a formula and that formula was used to determine the terms object.

terms.object 1527

Value

The object itself is simply the formula supplied to the call of terms.formula. The object has a
number of attributes and they are used to construct the model frame:

factors A matrix of variables by terms showing which variables appear in which terms.
The entries are 0 if the variable does not occur in the term, 1 if it does occur and
should be coded by contrasts, and 2 if it occurs and should be coded via dummy
variables for all levels (as when an intercept or lower-order term is missing). If
there are no terms other than an intercept and offsets, this is numeric(0).

term.labels A character vector containing the labels for each of the terms in the model,
except for offsets. Note that these are after possible re-ordering of terms.
Non-syntactic names will be quoted by backticks: this makes it easier to re-
construct the formula from the term labels.

variables A call to list of the variables in the model.

intercept Either 0, indicating no intercept is to be fit, or 1 indicating that an intercept is to
be fit.

order A vector of the same length as term.labels indicating the order of interaction
for each term.

response The index of the variable (in variables) of the response (the left hand side of the
formula). Zero, if there is no response.

offset If the model contains offset terms there is an offset attribute indicating which
variable(s) are offsets

specials If a specials argument was given to terms.formula there is a specials at-
tribute, a pairlist of vectors (one for each specified special function) giving nu-
meric indices of the arguments of the list returned as the variables attribute
which contain these special functions.

dataClasses optional. A named character vector giving the classes (as given by .MFclass)
of the variables used in a fit.

The object has class c("terms", "formula").

Note

These objects are different from those found in S. In particular there is no formula attribute: instead
the object is itself a formula. (Thus, the mode of a terms object is different.)

Examples of the specials argument can be seen in the aov and coxph functions, the latter from
package survival.

See Also

terms, formula.

Examples

use of specials (as used for gam() in packages mgcv and gam)
(tf <- terms(y ~ x + x:z + s(x), specials = "s"))
Note that the "factors" attribute has variables as row names
and term labels as column names, both as character vectors.
attr(tf, "specials") # index ’s’ variable(s)
rownames(attr(tf, "factors"))[attr(tf, "specials")$s]

http://CRAN.R-project.org/package=survival

1528 time

we can keep the order by
terms(y ~ x + x:z + s(x), specials = "s", keep.order = TRUE)

time Sampling Times of Time Series

Description

time creates the vector of times at which a time series was sampled.

cycle gives the positions in the cycle of each observation.

frequency returns the number of samples per unit time and deltat the time interval between
observations (see ts).

Usage

time(x, ...)
Default S3 method:
time(x, offset=0, ...)

cycle(x, ...)
frequency(x, ...)
deltat(x, ...)

Arguments

x a univariate or multivariate time-series, or a vector or matrix.
offset can be used to indicate when sampling took place in the time unit. 0 (the default)

indicates the start of the unit, 0.5 the middle and 1 the end of the interval.
... extra arguments for future methods.

Details

These are all generic functions, which will use the tsp attribute of x if it exists. time and cycle
have methods for class ts that coerce the result to that class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ts, start, tsp, window.

date for clock time, system.time for CPU usage.

Examples

require(graphics)

cycle(presidents)
a simple series plot
plot(as.vector(time(presidents)), as.vector(presidents), type="l")

toeplitz 1529

toeplitz Form Symmetric Toeplitz Matrix

Description

Forms a symmetric Toeplitz matrix given its first row.

Usage

toeplitz(x, ...)

Arguments

x the first row to form the Toeplitz matrix.

... potential further arguments (for methods); none here.

Value

The Toeplitz matrix.

Author(s)

A. Trapletti

Examples

x <- 1:5
toeplitz (x)

ts Time-Series Objects

Description

The function ts is used to create time-series objects.

as.ts and is.ts coerce an object to a time-series and test whether an object is a time series.

Usage

ts(data = NA, start = 1, end = numeric(), frequency = 1,
deltat = 1, ts.eps = getOption("ts.eps"), class = , names =)

as.ts(x, ...)
is.ts(x)

1530 ts

Arguments

data a numeric vector or matrix of the observed time-series values. A data frame will
be coerced to a numeric matrix via data.matrix.

start the time of the first observation. Either a single number or a vector of two
integers, which specify a natural time unit and a (1-based) number of samples
into the time unit. See the examples for the use of the second form.

end the time of the last observation, specified in the same way as start.

frequency the number of observations per unit of time.

deltat the fraction of the sampling period between successive observations; e.g., 1/12
for monthly data. Only one of frequency or deltat should be provided.

ts.eps time series comparison tolerance. Frequencies are considered equal if their ab-
solute difference is less than ts.eps.

class class to be given to the result, or none if NULL or "none". The default is "ts"
for a single series, c("mts", "ts") for multiple series.

names a character vector of names for the series in a multiple series: defaults to the
colnames of data, or Series 1, Series 2,

x an arbitrary R object.

... arguments passed to methods (unused for the default method).

Details

The function ts is used to create time-series objects. These are vector or matrices with class of "ts"
(and additional attributes) which represent data which has been sampled at equispaced points in
time. In the matrix case, each column of the matrix data is assumed to contain a single (univariate)
time series. Time series must have at least one observation, and although they need not be numeric
there is very limited support for non-numeric series.

Class "ts" has a number of methods. In particular arithmetic will attempt to align time axes, and
subsetting to extract subsets of series can be used (e.g., EuStockMarkets[, "DAX"]). However,
subsetting the first (or only) dimension will return a matrix or vector, as will matrix subsetting.
Subassignment can be used to replace values but not to extend a series (see window). There is a
method for t that transposes the series as a matrix (a one-column matrix if a vector) and hence
returns a result that does not inherit from class "ts".

The value of argument frequency is used when the series is sampled an integral number of times
in each unit time interval. For example, one could use a value of 7 for frequency when the data are
sampled daily, and the natural time period is a week, or 12 when the data are sampled monthly and
the natural time period is a year. Values of 4 and 12 are assumed in (e.g.) print methods to imply
a quarterly and monthly series respectively.

as.ts is generic. Its default method will use the tsp attribute of the object if it has one to set the
start and end times and frequency.

is.ts tests if an object is a time series. It is generic: you can write methods to handle specific
classes of objects, see InternalMethods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

ts-methods 1531

See Also

tsp, frequency, start, end, time, window; print.ts, the print method for time series objects;
plot.ts, the plot method for time series objects.

Examples

require(graphics)

ts(1:10, frequency = 4, start = c(1959, 2)) # 2nd Quarter of 1959
print(ts(1:10, frequency = 7, start = c(12, 2)), calendar = TRUE)
print.ts(.)
Using July 1954 as start date:
gnp <- ts(cumsum(1 + round(rnorm(100), 2)),

start = c(1954, 7), frequency = 12)
plot(gnp) # using ’plot.ts’ for time-series plot

Multivariate
z <- ts(matrix(rnorm(300), 100, 3), start=c(1961, 1), frequency=12)
class(z)
plot(z)
plot(z, plot.type="single", lty=1:3)

A phase plot:
plot(nhtemp, c(nhtemp[-1], NA), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")
a clearer way to do this would be
Not run:
plot(nhtemp, lag(nhtemp, 1), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")

End(Not run)

ts-methods Methods for Time Series Objects

Description

Methods for objects of class "ts", typically the result of ts.

Usage

S3 method for class ’ts’
diff(x, lag = 1, differences = 1, ...)

S3 method for class ’ts’
na.omit(object, ...)

Arguments

x an object of class "ts" containing the values to be differenced.

lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

1532 ts.plot

object a univariate or multivariate time series.
... further arguments to be passed to or from methods.

Details

The na.omit method omits initial and final segments with missing values in one or more of the
series. ‘Internal’ missing values will lead to failure.

Value

For the na.omit method, a time series without missing values. The class of object will be pre-
served.

See Also

diff; na.omit, na.fail, na.contiguous.

ts.plot Plot Multiple Time Series

Description

Plot several time series on a common plot. Unlike plot.ts the series can have a different time
bases, but they should have the same frequency.

Usage

ts.plot(..., gpars = list())

Arguments

... one or more univariate or multivariate time series.
gpars list of named graphics parameters to be passed to the plotting functions. Those

commonly used can be supplied directly in

Value

None.

Note

Although this can be used for a single time series, plot is easier to use and is preferred.

See Also

plot.ts

Examples

require(graphics)

ts.plot(ldeaths, mdeaths, fdeaths,
gpars=list(xlab="year", ylab="deaths", lty=c(1:3)))

ts.union 1533

ts.union Bind Two or More Time Series

Description

Bind time series which have a common frequency. ts.union pads with NAs to the total time cover-
age, ts.intersect restricts to the time covered by all the series.

Usage

ts.intersect(..., dframe = FALSE)
ts.union(..., dframe = FALSE)

Arguments

... two or more univariate or multivariate time series, or objects which can coerced
to time series.

dframe logical; if TRUE return the result as a data frame.

Details

As a special case, ... can contain vectors or matrices of the same length as the combined time
series of the time series present, as well as those of a single row.

Value

A time series object if dframe is FALSE, otherwise a data frame.

See Also

cbind.

Examples

ts.union(mdeaths, fdeaths)
cbind(mdeaths, fdeaths) # same as the previous line
ts.intersect(window(mdeaths, 1976), window(fdeaths, 1974, 1978))

sales1 <- ts.union(BJsales, lead = BJsales.lead)
ts.intersect(sales1, lead3 = lag(BJsales.lead, -3))

1534 tsdiag

tsdiag Diagnostic Plots for Time-Series Fits

Description

A generic function to plot time-series diagnostics.

Usage

tsdiag(object, gof.lag, ...)

Arguments

object a fitted time-series model

gof.lag the maximum number of lags for a Portmanteau goodness-of-fit test

... further arguments to be passed to particular methods

Details

This is a generic function. It will generally plot the residuals, often standardized, the autocorrelation
function of the residuals, and the p-values of a Portmanteau test for all lags up to gof.lag.

The methods for arima and StructTS objects plots residuals scaled by the estimate of their (indi-
vidual) variance, and use the Ljung–Box version of the portmanteau test.

Value

None. Diagnostics are plotted.

See Also

arima, StructTS, Box.test

Examples

Not run: require(graphics)

fit <- arima(lh, c(1,0,0))
tsdiag(fit)

see also examples(arima)

(fit <- StructTS(log10(JohnsonJohnson), type="BSM"))
tsdiag(fit)

End(Not run)

tsp 1535

tsp Tsp Attribute of Time-Series-like Objects

Description

tsp returns the tsp attribute (or NULL). It is included for compatibility with S version 2. tsp<- sets
the tsp attribute. hasTsp ensures x has a tsp attribute, by adding one if needed.

Usage

tsp(x)
tsp(x) <- value
hasTsp(x)

Arguments

x a vector or matrix or univariate or multivariate time-series.

value a numeric vector of length 3 or NULL.

Details

The tsp attribute was previously described here as c(start(x), end(x), frequency(x)), but
this is incorrect. It gives the start time in time units, the end time and the frequency.

Assignments are checked for consistency.

Assigning NULL which removes the tsp attribute and any "ts" (or "mts") class of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ts, time, start.

tsSmooth Use Fixed-Interval Smoothing on Time Series

Description

Performs fixed-interval smoothing on a univariate time series via a state-space model. Fixed-interval
smoothing gives the best estimate of the state at each time point based on the whole observed series.

Usage

tsSmooth(object, ...)

1536 Tukey

Arguments

object a time-series fit. Currently only class "StructTS" is supported

... possible arguments for future methods.

Value

A time series, with as many dimensions as the state space and results at each time point of the
original series. (For seasonal models, only the current seasonal component is returned.)

Author(s)

B. D. Ripley

References

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

See Also

KalmanSmooth, StructTS.

For examples consult AirPassengers, JohnsonJohnson and Nile.

Tukey The Studentized Range Distribution

Description

Functions of the distribution of the studentized range, R/s, where R is the range of a standard
normal sample and df × s2 is independently distributed as chi-squared with df degrees of freedom,
see pchisq.

Usage

ptukey(q, nmeans, df, nranges = 1, lower.tail = TRUE, log.p = FALSE)
qtukey(p, nmeans, df, nranges = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

q vector of quantiles.

p vector of probabilities.

nmeans sample size for range (same for each group).

df degrees of freedom for s (see below).

nranges number of groups whose maximum range is considered.

log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

If ng =nranges is greater than one, R is the maximum of ng groups of nmeans observations each.

TukeyHSD 1537

Value

ptukey gives the distribution function and qtukey its inverse, the quantile function.

Note

A Legendre 16-point formula is used for the integral of ptukey. The computations are relatively
expensive, especially for qtukey which uses a simple secant method for finding the inverse of
ptukey. qtukey will be accurate to the 4th decimal place.

Source

qtukey is in part adapted from Odeh and Evans (1974).

References

Copenhaver, Margaret Diponzio and Holland, Burt S. (1988) Multiple comparisons of simple effects
in the two-way analysis of variance with fixed effects. Journal of Statistical Computation and
Simulation, 30, 1–15.

Odeh, R. E. and Evans, J. O. (1974) Algorithm AS 70: Percentage Points of the Normal Distribu-
tion. Applied Statistics 23, 96–97.

See Also

Distributions for standard distributions, including pnorm and qnorm for the corresponding functions
for the normal distribution.

Examples

if(interactive())
curve(ptukey(x, nm=6, df=5), from=-1, to=8, n=101)

(ptt <- ptukey(0:10, 2, df= 5))
(qtt <- qtukey(.95, 2, df= 2:11))
The precision may be not much more than about 8 digits:
summary(abs(.95 - ptukey(qtt,2, df = 2:11)))

TukeyHSD Compute Tukey Honest Significant Differences

Description

Create a set of confidence intervals on the differences between the means of the levels of a factor
with the specified family-wise probability of coverage. The intervals are based on the Studentized
range statistic, Tukey’s ‘Honest Significant Difference’ method.

Usage

TukeyHSD(x, which, ordered = FALSE, conf.level = 0.95, ...)

1538 TukeyHSD

Arguments

x A fitted model object, usually an aov fit.

which A character vector listing terms in the fitted model for which the intervals should
be calculated. Defaults to all the terms.

ordered A logical value indicating if the levels of the factor should be ordered according
to increasing average in the sample before taking differences. If ordered is true
then the calculated differences in the means will all be positive. The significant
differences will be those for which the lwr end point is positive.

conf.level A numeric value between zero and one giving the family-wise confidence level
to use.

... Optional additional arguments. None are used at present.

Details

When comparing the means for the levels of a factor in an analysis of variance, a simple comparison
using t-tests will inflate the probability of declaring a significant difference when it is not in fact
present. This because the intervals are calculated with a given coverage probability for each interval
but the interpretation of the coverage is usually with respect to the entire family of intervals.

John Tukey introduced intervals based on the range of the sample means rather than the individual
differences. The intervals returned by this function are based on this Studentized range statistics.

The intervals constructed in this way would only apply exactly to balanced designs where there are
the same number of observations made at each level of the factor. This function incorporates an
adjustment for sample size that produces sensible intervals for mildly unbalanced designs.

If which specifies non-factor terms these will be dropped with a warning: if no terms are left this is
a an error.

Value

A list of class c("multicomp", "TukeyHSD"), with one component for each term requested in
which. Each component is a matrix with columns diff giving the difference in the observed means,
lwr giving the lower end point of the interval, upr giving the upper end point and p adj giving the
p-value after adjustment for the multiple comparisons.

There are print and plot methods for class "TukeyHSD". The plot method does not accept xlab,
ylab or main arguments and creates its own values for each plot.

Author(s)

Douglas Bates

References

Miller, R. G. (1981) Simultaneous Statistical Inference. Springer.

Yandell, B. S. (1997) Practical Data Analysis for Designed Experiments. Chapman & Hall.

See Also

aov, qtukey, model.tables, glht in package multcomp.

http://CRAN.R-project.org/package=multcomp

Uniform 1539

Examples

require(graphics)

summary(fm1 <- aov(breaks ~ wool + tension, data = warpbreaks))
TukeyHSD(fm1, "tension", ordered = TRUE)
plot(TukeyHSD(fm1, "tension"))

Uniform The Uniform Distribution

Description

These functions provide information about the uniform distribution on the interval from min to max.
dunif gives the density, punif gives the distribution function qunif gives the quantile function and
runif generates random deviates.

Usage

dunif(x, min=0, max=1, log = FALSE)
punif(q, min=0, max=1, lower.tail = TRUE, log.p = FALSE)
qunif(p, min=0, max=1, lower.tail = TRUE, log.p = FALSE)
runif(n, min=0, max=1)

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

min,max lower and upper limits of the distribution. Must be finite.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

If min or max are not specified they assume the default values of 0 and 1 respectively.

The uniform distribution has density

f(x) =
1

max−min

for min ≤ x ≤ max.

For the case of u := min == max, the limit case of X ≡ u is assumed, although there is no
density in that case and dunif will return NaN (the error condition).

runif will not generate either of the extreme values unless max = min or max-min is small com-
pared to min, and in particular not for the default arguments.

1540 uniroot

Note

The characteristics of output from pseudo-random number generators (such as precision and peri-
odicity) vary widely. See .Random.seed for more information on R’s random number generation
algorithms.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

RNG about random number generation in R.

Distributions for other standard distributions.

Examples

u <- runif(20)

The following relations always hold :
punif(u) == u
dunif(u) == 1

var(runif(10000))#- ~ = 1/12 = .08333

uniroot One Dimensional Root (Zero) Finding

Description

The function uniroot searches the interval from lower to upper for a root (i.e., zero) of the function
f with respect to its first argument.

Usage

uniroot(f, interval, ...,
lower = min(interval), upper = max(interval),
f.lower = f(lower, ...), f.upper = f(upper, ...),
tol = .Machine$double.eps^0.25, maxiter = 1000)

Arguments

f the function for which the root is sought.
interval a vector containing the end-points of the interval to be searched for the root.
... additional named or unnamed arguments to be passed to f

lower, upper the lower and upper end points of the interval to be searched.
f.lower, f.upper

the same as f(upper) and f(lower), respectively. Passing these values from the
caller where they are often known is more economical as soon as f() contains
non-trivial computations.

tol the desired accuracy (convergence tolerance).
maxiter the maximum number of iterations.

uniroot 1541

Details

Note that arguments after ... must be matched exactly.

Either interval or both lower and upper must be specified: the upper endpoint must be strictly
larger than the lower endpoint. The function values at the endpoints must be of opposite signs (or
zero).

The function uses Fortran subroutine ‘"zeroin"’ (from Netlib) based on algorithms given in the
reference below. They assume a continuous function (which then is known to have at least one root
in the interval).

Convergence is declared either if f(x) == 0 or the change in x for one step of the algorithm is less
than tol (plus an allowance for representation error in x).

If the algorithm does not converge in maxiter steps, a warning is printed and the current approxi-
mation is returned.

f will be called as f(x, ...) for a numeric value of x.

The argument passed to f has special semantics and is shared between calls. The function should
not copy it.

Value

A list with four components: root and f.root give the location of the root and the value of the
function evaluated at that point. iter and estim.prec give the number of iterations used and an
approximate estimated precision for root. (If the root occurs at one of the endpoints, the estimated
precision is NA.)

Source

Based on ‘zeroin.c’ in http://www.netlib.org/c/brent.shar.

References

Brent, R. (1973) Algorithms for Minimization without Derivatives. Englewood Cliffs, NJ: Prentice-
Hall.

See Also

polyroot for all complex roots of a polynomial; optimize, nlm.

Examples

require(utils) # for str

some platforms hit zero exactly on the first step:
if so the estimated precision is 2/3.
f <- function (x, a) x - a
str(xmin <- uniroot(f, c(0, 1), tol = 0.0001, a = 1/3))

handheld calculator example: fixed point of cos(.):
uniroot(function(x) cos(x) - x, lower = -pi, upper = pi, tol = 1e-9)$root

str(uniroot(function(x) x*(x^2-1) + .5, lower = -2, upper = 2,
tol = 0.0001))

str(uniroot(function(x) x*(x^2-1) + .5, lower = -2, upper = 2,

http://www.netlib.org/c/brent.shar

1542 update

tol = 1e-10))

Find the smallest value x for which exp(x) > 0 (numerically):
r <- uniroot(function(x) 1e80*exp(x) - 1e-300, c(-1000, 0), tol = 1e-15)
str(r, digits.d = 15) # around -745, depending on the platform.

exp(r$root) # = 0, but not for r$root * 0.999...
minexp <- r$root * (1 - 10*.Machine$double.eps)
exp(minexp) # typically denormalized

update Update and Re-fit a Model Call

Description

update will update and (by default) re-fit a model. It does this by extracting the call stored in the
object, updating the call and (by default) evaluating that call. Sometimes it is useful to call update
with only one argument, for example if the data frame has been corrected.

“Extracting the call” in update() and similar functions uses getCall() which itself is a (S3)
generic function with a default method that simply gets x$call.

Because of this, update() will often work (via its default method) on new model classes, either
automatically, or by providing a simple getCall() method for that class.

Usage

update(object, ...)
Default S3 method:
update(object, formula., ..., evaluate = TRUE)

getCall(x, ...)

Arguments

object, x An existing fit from a model function such as lm, glm and many others.

formula. Changes to the formula – see update.formula for details.

... Additional arguments to the call, or arguments with changed values. Use
name=NULL to remove the argument name.

evaluate If true evaluate the new call else return the call.

Value

If evaluate = TRUE the fitted object, otherwise the updated call.

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

update.formula

update.formula 1543

Examples

oldcon <- options(contrasts = c("contr.treatment", "contr.poly"))
Annette Dobson (1990) "An Introduction to Generalized Linear Models".
Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)
lm.D9 <- lm(weight ~ group)
lm.D9
summary(lm.D90 <- update(lm.D9, . ~ . - 1))
options(contrasts = c("contr.helmert", "contr.poly"))
update(lm.D9)
getCall(lm.D90)# "through the origin"

options(oldcon)

update.formula Model Updating

Description

update.formula is used to update model formulae. This typically involves adding or dropping
terms, but updates can be more general.

Usage

S3 method for class ’formula’
update(old, new, ...)

Arguments

old a model formula to be updated.

new a formula giving a template which specifies how to update.

... further arguments passed to or from other methods.

Details

Either or both of old and new can be objects such as length-one character vectors which can be
coerced to a formula via as.formula.

The function works by first identifying the left-hand side and right-hand side of the old formula. It
then examines the new formula and substitutes the lhs of the old formula for any occurrence of ‘.’
on the left of new, and substitutes the rhs of the old formula for any occurrence of ‘.’ on the right
of new. The result is then simplified via terms.formula(simplify = TRUE).

Value

The updated formula is returned. The environment of the result is that of old.

See Also

terms, model.matrix.

1544 var.test

Examples

update(y ~ x, ~ . + x2) #> y ~ x + x2
update(y ~ x, log(.) ~ .) #> log(y) ~ x

var.test F Test to Compare Two Variances

Description

Performs an F test to compare the variances of two samples from normal populations.

Usage

var.test(x, ...)

Default S3 method:
var.test(x, y, ratio = 1,

alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, ...)

S3 method for class ’formula’
var.test(formula, data, subset, na.action, ...)

Arguments

x, y numeric vectors of data values, or fitted linear model objects (inheriting from
class "lm").

ratio the hypothesized ratio of the population variances of x and y.

alternative a character string specifying the alternative hypothesis, must be one of
"two.sided" (default), "greater" or "less". You can specify just the initial
letter.

conf.level confidence level for the returned confidence interval.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the
data values and rhs a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

The null hypothesis is that the ratio of the variances of the populations from which x and y were
drawn, or in the data to which the linear models x and y were fitted, is equal to ratio.

varimax 1545

Value

A list with class "htest" containing the following components:

statistic the value of the F test statistic.

parameter the degrees of the freedom of the F distribution of the test statistic.

p.value the p-value of the test.

conf.int a confidence interval for the ratio of the population variances.

estimate the ratio of the sample variances of x and y.

null.value the ratio of population variances under the null.

alternative a character string describing the alternative hypothesis.

method the character string "F test to compare two variances".

data.name a character string giving the names of the data.

See Also

bartlett.test for testing homogeneity of variances in more than two samples from normal dis-
tributions; ansari.test and mood.test for two rank based (nonparametric) two-sample tests for
difference in scale.

Examples

x <- rnorm(50, mean = 0, sd = 2)
y <- rnorm(30, mean = 1, sd = 1)
var.test(x, y) # Do x and y have the same variance?
var.test(lm(x ~ 1), lm(y ~ 1)) # The same.

varimax Rotation Methods for Factor Analysis

Description

These functions ‘rotate’ loading matrices in factor analysis.

Usage

varimax(x, normalize = TRUE, eps = 1e-5)
promax(x, m = 4)

Arguments

x A loadings matrix, with p rows and k < p columns

m The power used the target for promax. Values of 2 to 4 are recommended.

normalize logical. Should Kaiser normalization be performed? If so the rows of x are
re-scaled to unit length before rotation, and scaled back afterwards.

eps The tolerance for stopping: the relative change in the sum of singular values.

1546 vcov

Details

These seek a ‘rotation’ of the factors x %*% T that aims to clarify the structure of the loadings
matrix. The matrix T is a rotation (possibly with reflection) for varimax, but a general linear
transformation for promax, with the variance of the factors being preserved.

Value

A list with components

loadings The ‘rotated’ loadings matrix, x %*% rotmat, of class "loadings".

rotmat The ‘rotation’ matrix.

References

Hendrickson, A. E. and White, P. O. (1964) Promax: a quick method for rotation to orthogonal
oblique structure. British Journal of Statistical Psychology, 17, 65–70.

Horst, P. (1965) Factor Analysis of Data Matrices. Holt, Rinehart and Winston. Chapter 10.

Kaiser, H. F. (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika
23, 187–200.

Lawley, D. N. and Maxwell, A. E. (1971) Factor Analysis as a Statistical Method. Second edition.
Butterworths.

See Also

factanal, Harman74.cor.

Examples

varimax with normalize = TRUE is the default
fa <- factanal(~., 2, data = swiss)
varimax(loadings(fa), normalize = FALSE)
promax(loadings(fa))

vcov Calculate Variance-Covariance Matrix for a Fitted Model Object

Description

Returns the variance-covariance matrix of the main parameters of a fitted model object.

Usage

vcov(object, ...)

Arguments

object a fitted model object, typically. Sometimes also a summary() object of such a
fitted model.

... additional arguments for method functions. For the glm method this can be used
to pass a dispersion parameter.

Weibull 1547

Details

This is a generic function. Functions with names beginning in vcov. will be methods for this func-
tion. Classes with methods for this function include: lm, mlm, glm, nls, summary.lm, summary.glm,
negbin, polr, rlm (in package MASS), multinom (in package nnet) gls, lme (in package nlme),
coxph and survreg (in package survival).

(vcov() methods for summary objects allow more efficient and still encapsulated access when both
summary(mod) and vcov(mod) are needed.)

Value

A matrix of the estimated covariances between the parameter estimates in the linear or non-linear
predictor of the model. This should have row and column names corresponding to the parameter
names given by the coef method.

Weibull The Weibull Distribution

Description

Density, distribution function, quantile function and random generation for the Weibull distribution
with parameters shape and scale.

Usage

dweibull(x, shape, scale = 1, log = FALSE)
pweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
qweibull(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
rweibull(n, shape, scale = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

shape, scale shape and scale parameters, the latter defaulting to 1.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The Weibull distribution with shape parameter a and scale parameter σ has density given by

f(x) = (a/σ)(x/σ)
a−1

exp(−(x/σ)
a
)

for x > 0. The cumulative distribution function is F (x) = 1− exp(−(x/σ)
a
) on x > 0, the mean

is E(X) = σΓ(1 + 1/a), and the V ar(X) = σ2(Γ(1 + 2/a)− (Γ(1 + 1/a))2).

http://CRAN.R-project.org/package=MASS
http://CRAN.R-project.org/package=nnet
http://CRAN.R-project.org/package=nlme
http://CRAN.R-project.org/package=survival

1548 weighted.mean

Value

dweibull gives the density, pweibull gives the distribution function, qweibull gives the quantile
function, and rweibull generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

Note

The cumulative hazardH(t) = − log(1−F (t)) is -pweibull(t, a, b, lower = FALSE, log = TRUE)
which is just H(t) = (t/b)

a.

Source

[dpq]weibull are calculated directly from the definitions. rweibull uses inversion.

References

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
1, chapter 21. Wiley, New York.

See Also

Distributions for other standard distributions, including the Exponential which is a special case of
the Weibull distribution.

Examples

x <- c(0,rlnorm(50))
all.equal(dweibull(x, shape = 1), dexp(x))
all.equal(pweibull(x, shape = 1, scale = pi), pexp(x, rate = 1/pi))
Cumulative hazard H():
all.equal(pweibull(x, 2.5, pi, lower.tail=FALSE, log.p=TRUE), -(x/pi)^2.5,

tol = 1e-15)
all.equal(qweibull(x/11, shape = 1, scale = pi), qexp(x/11, rate = 1/pi))

weighted.mean Weighted Arithmetic Mean

Description

Compute a weighted mean.

Usage

weighted.mean(x, w, ...)

Default S3 method:
weighted.mean(x, w, ..., na.rm = FALSE)

weighted.residuals 1549

Arguments

x an object containing the values whose weighted mean is to be computed.

w a numerical vector of weights the same length as x giving the weights to use for
elements of x.

... arguments to be passed to or from methods.

na.rm a logical value indicating whether NA values in x should be stripped before the
computation proceeds.

Details

This is a generic function and methods can be defined for the first argument x: apart from the
default methods there are methods for the date-time classes "POSIXct", "POSIXlt", "difftime"
and "Date". The default method will work for any numeric-like object for which [, multiplication,
division and sum have suitable methods, including complex vectors.

If w is missing then all elements of x are given the same weight, otherwise the weights coerced to
numeric by as.numeric and normalized to sum to one (if possible: if their sum is zero or infinite
the value is likely to be NaN).

Missing values in w are not handled specially and so give a missing value as the result. However, as
from R 2.11.0 zero weights are handled specially and the corresponding x values are omitted from
the sum.

Value

For the default method, a length-one numeric vector.

See Also

mean

Examples

GPA from Siegel 1994
wt <- c(5, 5, 4, 1)/15
x <- c(3.7,3.3,3.5,2.8)
xm <- weighted.mean(x, wt)

weighted.residuals Compute Weighted Residuals

Description

Computed weighted residuals from a linear model fit.

Usage

weighted.residuals(obj, drop0 = TRUE)

Arguments

obj R object, typically of class lm or glm.

drop0 logical. If TRUE, drop all cases with weights == 0.

1550 weights

Details

Weighted residuals are based on the deviance residuals, which for a lm fit are the raw residuals Ri
multiplied by

√
wi, where wi are the weights as specified in lm’s call.

Dropping cases with weights zero is compatible with influence and related functions.

Value

Numeric vector of length n′, where n′ is the number of of non-0 weights (drop0 = TRUE) or the
number of observations, otherwise.

See Also

residuals, lm.influence, etc.

Examples

following on from example(lm)

all.equal(weighted.residuals(lm.D9),
residuals(lm.D9))

x <- 1:10
w <- 0:9
y <- rnorm(x)
weighted.residuals(lmxy <- lm(y ~ x, weights = w))
weighted.residuals(lmxy, drop0 = FALSE)

weights Extract Model Weights

Description

weights is a generic function which extracts fitting weights from objects returned by modeling
functions.

Methods can make use of napredict methods to compensate for the omission of missing values.
The default methods does so.

Usage

weights(object, ...)

Arguments

object an object for which the extraction of model weights is meaningful.

... other arguments passed to methods.

Value

Weights extracted from the object object: the default method looks for component "weights" and
if not NULL calls napredict on it.

wilcox.test 1551

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

weights.glm

wilcox.test Wilcoxon Rank Sum and Signed Rank Tests

Description

Performs one- and two-sample Wilcoxon tests on vectors of data; the latter is also known as ‘Mann-
Whitney’ test.

Usage

wilcox.test(x, ...)

Default S3 method:
wilcox.test(x, y = NULL,

alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, exact = NULL, correct = TRUE,
conf.int = FALSE, conf.level = 0.95, ...)

S3 method for class ’formula’
wilcox.test(formula, data, subset, na.action, ...)

Arguments

x numeric vector of data values. Non-finite (e.g. infinite or missing) values will
be omitted.

y an optional numeric vector of data values: as with x non-finite values will be
omitted.

alternative a character string specifying the alternative hypothesis, must be one of
"two.sided" (default), "greater" or "less". You can specify just the initial
letter.

mu a number specifying an optional parameter used to form the null hypothesis. See
‘Details’.

paired a logical indicating whether you want a paired test.

exact a logical indicating whether an exact p-value should be computed.

correct a logical indicating whether to apply continuity correction in the normal approx-
imation for the p-value.

conf.int a logical indicating whether a confidence interval should be computed.

conf.level confidence level of the interval.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the
data values and rhs a factor with two levels giving the corresponding groups.

1552 wilcox.test

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. De-

faults to getOption("na.action").
... further arguments to be passed to or from methods.

Details

The formula interface is only applicable for the 2-sample tests.

If only x is given, or if both x and y are given and paired is TRUE, a Wilcoxon signed rank test of
the null that the distribution of x (in the one sample case) or of x - y (in the paired two sample
case) is symmetric about mu is performed.

Otherwise, if both x and y are given and paired is FALSE, a Wilcoxon rank sum test (equivalent
to the Mann-Whitney test: see the Note) is carried out. In this case, the null hypothesis is that the
distributions of x and y differ by a location shift of mu and the alternative is that they differ by some
other location shift (and the one-sided alternative "greater" is that x is shifted to the right of y).

By default (if exact is not specified), an exact p-value is computed if the samples contain less than
50 finite values and there are no ties. Otherwise, a normal approximation is used.

Optionally (if argument conf.int is true), a nonparametric confidence interval and an estimator
for the pseudomedian (one-sample case) or for the difference of the location parameters x-y is
computed. (The pseudomedian of a distribution F is the median of the distribution of (u + v)/2,
where u and v are independent, each with distribution F . If F is symmetric, then the pseudomedian
and median coincide. See Hollander & Wolfe (1973), page 34.) Note that in the two-sample case
the estimator for the difference in location parameters does not estimate the difference in medians
(a common misconception) but rather the median of the difference between a sample from x and a
sample from y.

If exact p-values are available, an exact confidence interval is obtained by the algorithm described in
Bauer (1972), and the Hodges-Lehmann estimator is employed. Otherwise, the returned confidence
interval and point estimate are based on normal approximations. These are continuity-corrected for
the interval but not the estimate (as the correction depends on the alternative).

With small samples it may not be possible to achieve very high confidence interval coverages. If
this happens a warning will be given and an interval with lower coverage will be substituted.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic with a name describing it.
parameter the parameter(s) for the exact distribution of the test statistic.
p.value the p-value for the test.
null.value the location parameter mu.
alternative a character string describing the alternative hypothesis.
method the type of test applied.
data.name a character string giving the names of the data.
conf.int a confidence interval for the location parameter. (Only present if argument

conf.int = TRUE.)
estimate an estimate of the location parameter. (Only present if argument

conf.int = TRUE.)

wilcox.test 1553

Warning

This function can use large amounts of memory and stack (and even crash R if the stack limit is
exceeded) if exact = TRUE and one sample is large (several thousands or more).

Note

The literature is not unanimous about the definitions of the Wilcoxon rank sum and Mann-Whitney
tests. The two most common definitions correspond to the sum of the ranks of the first sample with
the minimum value subtracted or not: R subtracts and S-PLUS does not, giving a value which is
larger by m(m + 1)/2 for a first sample of size m. (It seems Wilcoxon’s original paper used the
unadjusted sum of the ranks but subsequent tables subtracted the minimum.)

R’s value can also be computed as the number of all pairs (x[i], y[j]) for which y[j] is not
greater than x[i], the most common definition of the Mann-Whitney test.

References

David F. Bauer (1972), Constructing confidence sets using rank statistics. Journal of the American
Statistical Association 67, 687–690.

Myles Hollander and Douglas A. Wolfe (1973), Nonparametric Statistical Methods. New York:
John Wiley & Sons. Pages 27–33 (one-sample), 68–75 (two-sample).
Or second edition (1999).

See Also

psignrank, pwilcox.

wilcox_test in package coin for exact, asymptotic and Monte Carlo conditional p-values, includ-
ing in the presence of ties.

kruskal.test for testing homogeneity in location parameters in the case of two or more samples;
t.test for an alternative under normality assumptions [or large samples]

Examples

require(graphics)
One-sample test.
Hollander & Wolfe (1973), 29f.
Hamilton depression scale factor measurements in 9 patients with
mixed anxiety and depression, taken at the first (x) and second
(y) visit after initiation of a therapy (administration of a
tranquilizer).
x <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)
y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)
wilcox.test(x, y, paired = TRUE, alternative = "greater")
wilcox.test(y - x, alternative = "less") # The same.
wilcox.test(y - x, alternative = "less",

exact = FALSE, correct = FALSE) # H&W large sample
approximation

Two-sample test.
Hollander & Wolfe (1973), 69f.
Permeability constants of the human chorioamnion (a placental
membrane) at term (x) and between 12 to 26 weeks gestational
age (y). The alternative of interest is greater permeability
of the human chorioamnion for the term pregnancy.

http://CRAN.R-project.org/package=coin

1554 Wilcoxon

x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)
y <- c(1.15, 0.88, 0.90, 0.74, 1.21)
wilcox.test(x, y, alternative = "g") # greater
wilcox.test(x, y, alternative = "greater",

exact = FALSE, correct = FALSE) # H&W large sample
approximation

wilcox.test(rnorm(10), rnorm(10, 2), conf.int = TRUE)

Formula interface.
boxplot(Ozone ~ Month, data = airquality)
wilcox.test(Ozone ~ Month, data = airquality,

subset = Month %in% c(5, 8))

Wilcoxon Distribution of the Wilcoxon Rank Sum Statistic

Description

Density, distribution function, quantile function and random generation for the distribution of the
Wilcoxon rank sum statistic obtained from samples with size m and n, respectively.

Usage

dwilcox(x, m, n, log = FALSE)
pwilcox(q, m, n, lower.tail = TRUE, log.p = FALSE)
qwilcox(p, m, n, lower.tail = TRUE, log.p = FALSE)
rwilcox(nn, m, n)

Arguments

x, q vector of quantiles.

p vector of probabilities.

nn number of observations. If length(nn) > 1, the length is taken to be the num-
ber required.

m, n numbers of observations in the first and second sample, respectively. Can be
vectors of positive integers.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

This distribution is obtained as follows. Let x and y be two random, independent samples of size
m and n. Then the Wilcoxon rank sum statistic is the number of all pairs (x[i], y[j]) for which
y[j] is not greater than x[i]. This statistic takes values between 0 and m * n, and its mean and
variance are m * n / 2 and m * n * (m + n + 1) / 12, respectively.

If any of the first three arguments are vectors, the recycling rule is used to do the calculations for all
combinations of the three up to the length of the longest vector.

Wilcoxon 1555

Value

dwilcox gives the density, pwilcox gives the distribution function, qwilcox gives the quantile
function, and rwilcox generates random deviates.

Warning

These functions can use large amounts of memory and stack (and even crash R if the stack limit is
exceeded and stack-checking is not in place) if one sample is large (several thousands or more).

Note

S-PLUS uses a different (but equivalent) definition of the Wilcoxon statistic: see wilcox.test for
details.

Author(s)

Kurt Hornik

Source

These are calculated via recursion, based on cwilcox(k, m, n), the number of choices with statis-
tic k from samples of size m and n, which is itself calculated recursively and the results cached. Then
dwilcox and pwilcox sum appropriate values of cwilcox, and qwilcox is based on inversion.

rwilcox generates a random permutation of ranks and evaluates the statistic.

See Also

wilcox.test to calculate the statistic from data, find p values and so on.

Distributions for standard distributions, including dsignrank for the distribution of the one-sample
Wilcoxon signed rank statistic.

Examples

require(graphics)

x <- -1:(4*6 + 1)
fx <- dwilcox(x, 4, 6)
Fx <- pwilcox(x, 4, 6)

layout(rbind(1,2), widths=1, heights=c(3,2))
plot(x, fx,type=’h’, col="violet",

main= "Probabilities (density) of Wilcoxon-Statist.(n=6,m=4)")
plot(x, Fx,type="s", col="blue",

main= "Distribution of Wilcoxon-Statist.(n=6,m=4)")
abline(h=0:1, col="gray20",lty=2)
layout(1)# set back

N <- 200
hist(U <- rwilcox(N, m=4,n=6), breaks=0:25 - 1/2,

border="red", col="pink", sub = paste("N =",N))
mtext("N * f(x), f() = true \"density\"", side=3, col="blue")
lines(x, N*fx, type=’h’, col=’blue’, lwd=2)
points(x, N*fx, cex=2)

1556 window

Better is a Quantile-Quantile Plot
qqplot(U, qw <- qwilcox((1:N - 1/2)/N, m=4,n=6),

main = paste("Q-Q-Plot of empirical and theoretical quantiles",
"Wilcoxon Statistic, (m=4, n=6)",sep="\n"))

n <- as.numeric(names(print(tU <- table(U))))
text(n+.2, n+.5, labels=tU, col="red")

window Time Windows

Description

window is a generic function which extracts the subset of the object x observed between the times
start and end. If a frequency is specified, the series is then re-sampled at the new frequency.

Usage

window(x, ...)
S3 method for class ’ts’
window(x, ...)
Default S3 method:
window(x, start = NULL, end = NULL,

frequency = NULL, deltat = NULL, extend = FALSE, ...)

window(x, ...) <- value
S3 replacement method for class ’ts’
window(x, start, end, frequency, deltat, ...) <- value

Arguments

x a time-series (or other object if not replacing values).

start the start time of the period of interest.

end the end time of the period of interest.

frequency, deltat

the new frequency can be specified by either (or both if they are consistent).

extend logical. If true, the start and end values are allowed to extend the series. If
false, attempts to extend the series give a warning and are ignored.

... further arguments passed to or from other methods.

value replacement values.

Details

The start and end times can be specified as for ts. If there is no observation at the new start or
end, the immediately following (start) or preceding (end) observation time is used.

The replacement function has a method for ts objects, and is allowed to extend the series (with a
warning). There is no default method.

xtabs 1557

Value

The value depends on the method. window.default will return a vector or matrix with an appro-
priate tsp attribute.

window.ts differs from window.default only in ensuring the result is a ts object.

If extend = TRUE the series will be padded with NAs if needed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

time, ts.

Examples

window(presidents, 1960, c(1969,4)) # values in the 1960’s
window(presidents, deltat=1) # All Qtr1s
window(presidents, start=c(1945,3), deltat=1) # All Qtr3s
window(presidents, 1944, c(1979,2), extend=TRUE)

pres <- window(presidents, 1945, c(1949,4)) # values in the 1940’s
window(pres, 1945.25, 1945.50) <- c(60, 70)
window(pres, 1944, 1944.75) <- 0 # will generate a warning
window(pres, c(1945,4), c(1949,4), frequency=1) <- 85:89
pres

xtabs Cross Tabulation

Description

Create a contingency table (optionally a sparse matrix) from cross-classifying factors, usually con-
tained in a data frame, using a formula interface.

Usage

xtabs(formula = ~., data = parent.frame(), subset, sparse = FALSE,
na.action, exclude = c(NA, NaN), drop.unused.levels = FALSE)

Arguments

formula a formula object with the cross-classifying variables (separated by +) on the right
hand side (or an object which can be coerced to a formula). Interactions are not
allowed. On the left hand side, one may optionally give a vector or a matrix of
counts; in the latter case, the columns are interpreted as corresponding to the
levels of a variable. This is useful if the data have already been tabulated, see
the examples below.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

1558 xtabs

subset an optional vector specifying a subset of observations to be used.

sparse logical specifying if the result should be a sparse matrix, i.e., inheriting from
sparseMatrix Only works for two factors (since there are no higher-order
sparse array classes yet).

na.action a function which indicates what should happen when the data contain NAs.

exclude a vector of values to be excluded when forming the set of levels of the classifying
factors.

drop.unused.levels

a logical indicating whether to drop unused levels in the classifying factors. If
this is FALSE and there are unused levels, the table will contain zero marginals,
and a subsequent chi-squared test for independence of the factors will not work.

Details

There is a summary method for contingency table objects created by table or
xtabs(*, sparse=FALSE), which gives basic information and performs a chi-squared test
for independence of factors (note that the function chisq.test currently only handles 2-d tables).

If a left hand side is given in formula, its entries are simply summed over the cells corresponding
to the right hand side; this also works if the lhs does not give counts.

Value

By default, when sparse=FALSE, a contingency table in array representation of S3 class
c("xtabs", "table"), with a "call" attribute storing the matched call.

When sparse=TRUE, a sparse numeric matrix, specifically an object of S4 class dgTMatrix from
package Matrix.

See Also

table for traditional cross-tabulation, and as.data.frame.table which is the inverse operation
of xtabs (see the DF example below).

sparseMatrix on sparse matrices in package Matrix.

Examples

’esoph’ has the frequencies of cases and controls for all levels of
the variables ’agegp’, ’alcgp’, and ’tobgp’.
xtabs(cbind(ncases, ncontrols) ~ ., data = esoph)
Output is not really helpful ... flat tables are better:
ftable(xtabs(cbind(ncases, ncontrols) ~ ., data = esoph))
In particular if we have fewer factors ...
ftable(xtabs(cbind(ncases, ncontrols) ~ agegp, data = esoph))

This is already a contingency table in array form.
DF <- as.data.frame(UCBAdmissions)
Now ’DF’ is a data frame with a grid of the factors and the counts
in variable ’Freq’.
DF
Nice for taking margins ...
xtabs(Freq ~ Gender + Admit, DF)
And for testing independence ...
summary(xtabs(Freq ~ ., DF))

http://CRAN.R-project.org/package=Matrix
http://CRAN.R-project.org/package=Matrix

xtabs 1559

Create a nice display for the warp break data.
warpbreaks$replicate <- rep(1:9, len = 54)
ftable(xtabs(breaks ~ wool + tension + replicate, data = warpbreaks))

---- Sparse Examples ----

if(require("Matrix")) {
similar to "nlme"s ’ergoStool’ :
d.ergo <- data.frame(Type = paste0("T", rep(1:4, 9*4)),

Subj = gl(9,4, 36*4))
print(xtabs(~ Type + Subj, data=d.ergo)) # 4 replicates each
set.seed(15) # a subset of cases:
print(xtabs(~ Type + Subj, data=d.ergo[sample(36, 10),], sparse=TRUE))

Hypothetical two level setup:
inner <- factor(sample(letters[1:25], 100, replace = TRUE))
inout <- factor(sample(LETTERS[1:5], 25, replace = TRUE))
fr <- data.frame(inner = inner, outer = inout[as.integer(inner)])
print(xtabs(~ inner + outer, fr, sparse = TRUE))

}

1560 xtabs

Chapter 9

The stats4 package

stats4-package Statistical Functions using S4 Classes

Description

Statistical Functions using S4 classes.

Details

This package contains functions and classes for statistics using the S version 4 class system.

The methods currently support maximum likelihood (function mle() returning class "mle"), in-
cluding methods for logLik for use with AIC.

Author(s)

R Core Team and contributors worldwide

Maintainer: R Core Team <R-core@r-project.org>

coef-methods Methods for Function coef in Package stats4

Description

Extract the coefficient vector from "mle" objects.

Methods

signature(object = "ANY") Generic function: see coef.

signature(object = "mle") Extract the full coefficient vector (including any fixed coefficients)
from the fit.

signature(object = "summary.mle") Extract the coefficient vector and standard errors from
the summary of the fit.

1561

1562 mle

confint-methods Methods for Function confint in Package stats4

Description

Generate confidence intervals

Methods

signature(object = "ANY") Generic function: see confint.

signature(object = "mle") First generate profile and then confidence intervals from the profile.

signature(object = "profile.mle") Generate confidence intervals based on likelihood pro-
file.

logLik-methods Methods for Function logLik in Package stats4

Description

Extract the maximized log-likelihood from "mle" objects.

Methods

signature(object = "ANY") Generic function: see logLik.

signature(object = "mle") Extract log-likelihood from the fit.

Note

The mle method does not know about the number of observations unless nobs was specified on the
call and so may not be suitable for use with BIC.

mle Maximum Likelihood Estimation

Description

Estimate parameters by the method of maximum likelihood.

Usage

mle(minuslogl, start = formals(minuslogl), method = "BFGS",
fixed = list(), nobs, ...)

mle 1563

Arguments

minuslogl Function to calculate negative log-likelihood.

start Named list. Initial values for optimizer.

method Optimization method to use. See optim.

fixed Named list. Parameter values to keep fixed during optimization.

nobs optional integer: the number of observations, to be used for e.g. computing BIC.

... Further arguments to pass to optim.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate
covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

Value

An object of class mle-class.

Note

Be careful to note that the argument is -log L (not -2 log L). It is for the user to ensure that the
likelihood is correct, and that asymptotic likelihood inference is valid.

See Also

mle-class

Examples

Avoid printing to unwarranted accuracy
od <- options(digits = 5)
x <- 0:10
y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)

Easy one-dimensional MLE:
nLL <- function(lambda) -sum(stats::dpois(y, lambda, log=TRUE))
fit0 <- mle(nLL, start = list(lambda = 5), nobs = NROW(y))
For 1D, this is preferable:
fit1 <- mle(nLL, start = list(lambda = 5), nobs = NROW(y),

method = "Brent", lower = 1, upper = 20)
stopifnot(nobs(fit0) == length(y))

This needs a constrained parameter space: most methods will accept NA
ll <- function(ymax = 15, xhalf = 6) {

if(ymax > 0 && xhalf > 0)
-sum(stats::dpois(y, lambda = ymax/(1+x/xhalf), log = TRUE))

else NA
}
(fit <- mle(ll, nobs = length(y)))
mle(ll, fixed = list(xhalf = 6))
alternative using bounds on optimization
ll2 <- function(ymax = 15, xhalf = 6)

-sum(stats::dpois(y, lambda=ymax/(1+x/xhalf), log = TRUE))
mle(ll2, method = "L-BFGS-B", lower = rep(0, 2))

1564 mle-class

AIC(fit)
BIC(fit)

summary(fit)
logLik(fit)
vcov(fit)
plot(profile(fit), absVal = FALSE)
confint(fit)

Use bounded optimization
The lower bounds are really > 0,
but we use >=0 to stress-test profiling
(fit2 <- mle(ll, method = "L-BFGS-B", lower = c(0, 0)))
plot(profile(fit2), absVal=FALSE)

a better parametrization:
ll3 <- function(lymax = log(15), lxhalf = log(6))

-sum(stats::dpois(y, lambda=exp(lymax)/(1+x/exp(lxhalf)), log=TRUE))
(fit3 <- mle(ll3))
plot(profile(fit3), absVal = FALSE)
exp(confint(fit3))

options(od)

mle-class Class "mle" for Results of Maximum Likelihood Estimation

Description

This class encapsulates results of a generic maximum likelihood procedure.

Objects from the Class

Objects can be created by calls of the form new("mle", ...), but most often as the result of a call
to mle.

Slots

call: Object of class "language". The call to mle.

coef: Object of class "numeric". Estimated parameters.

fullcoef: Object of class "numeric". Fixed and estimated parameters.

vcov: Object of class "matrix". Approximate variance-covariance matrix.

min: Object of class "numeric". Minimum value of objective function.

details: a "list", as returned from optim.

minuslogl: Object of class "function". The negative loglikelihood function.

nobs: "integer" of length one. The number of observations (often NA, when not set in call explic-
itly).

method: Object of class "character". The optimization method used.

plot-methods 1565

Methods

confint signature(object = "mle"): Confidence intervals from likelihood profiles.

logLik signature(object = "mle"): Extract maximized log-likelihood.

profile signature(fitted = "mle"): Likelihood profile generation.

nobs signature(object = "mle"): Number of observations, here simply accessing the nobs slot
mentioned above.

show signature(object = "mle"): Display object briefly.

summary signature(object = "mle"): Generate object summary.

update signature(object = "mle"): Update fit.

vcov signature(object = "mle"): Extract variance-covariance matrix.

plot-methods Methods for Function plot in Package stats4

Description

Plot profile likelihoods for "mle" objects.

Usage

S4 method for signature ’profile.mle,missing’
plot(x, levels, conf = c(99, 95, 90, 80, 50)/100, nseg = 50,

absVal = TRUE, ...)

Arguments

x an object of class "profile.mle"

levels levels, on the scale of the absolute value of a t statistic, at which to interpolate
intervals. Usually conf is used instead of giving levels explicitly.

conf a numeric vector of confidence levels for profile-based confidence intervals on
the parameters.

nseg an integer value giving the number of segments to use in the spline interpolation
of the profile t curves.

absVal a logical value indicating whether or not the plots should be on the scale of the
absolute value of the profile t. Defaults to TRUE.

... other arguments to the plot function can be passed here.

Methods

signature(x = "ANY", y = "ANY") Generic function: see plot.

signature(x = "profile.mle", y = "missing") Plot likelihood profiles for x.

1566 profile-methods

profile-methods Methods for Function profile in Package stats4

Description

Profile likelihood for "mle" objects.

Usage

S4 method for signature ’mle’
profile(fitted, which = 1:p, maxsteps = 100, alpha = 0.01,

zmax = sqrt(qchisq(1 - alpha, 1L)), del = zmax/5,
trace = FALSE, ...)

Arguments

fitted Object to be profiled

which Optionally select subset of parameters to profile.

maxsteps Maximum number of steps to bracket zmax.

alpha Significance level corresponding to zmax, based on a Scheffe-style multiple test-
ing interval. Ignored if zmax is specified.

zmax Cutoff for the profiled value of the signed root-likelihood.

del Initial stepsize on root-likelihood scale.

trace Logical. Print intermediate results.

... Currently unused.

Details

The profiling algorithm tries to find an approximately evenly spaced set of at least five parameter
values (in each direction from the optimum) to cover the root-likelihood function. Some care is
taken to try and get sensible results in cases of high parameter curvature. Notice that it may not
always be possible to obtain the cutoff value, since the likelihood might level off.

Value

An object of class "profile.mle", see "profile.mle-class".

Methods

signature(fitted = "ANY") Generic function: see profile.

signature(fitted = "mle") Profile the likelihood in the vicinity of the optimum of an "mle"
object.

profile.mle-class 1567

profile.mle-class Class "profile.mle"; Profiling information for "mle" object

Description

Likelihood profiles along each parameter of likelihood function

Objects from the Class

Objects can be created by calls of the form new("profile.mle", ...), but most often by invok-
ing profile on an "mle" object.

Slots

profile: Object of class "list". List of profiles, one for each requested parameter. Each profile is
a data frame with the first column called z being the signed square root of the -2 log likelihood
ratio, and the others being the parameters with names prefixed by par.vals.

summary: Object of class "summary.mle". Summary of object being profiled.

Methods

confint signature(object = "profile.mle"): Use profile to generate approximate confidence
intervals for parameters.

plot signature(x = "profile.mle", y = "missing"): Plot profiles for each parameter.

See Also

mle, mle-class, summary.mle-class

show-methods Methods for Function show in Package stats4

Description

Show objects of classes mle and summary.mle

Methods

signature(object = "mle") Print simple summary of mle object. Just the coefficients and the
call.

signature(object = "summary.mle") Shows call, table of coefficients and standard errors, and
−2 logL.

1568 summary.mle-class

summary-methods Methods for Function summary in Package stats4

Description

Summarize objects

Methods

signature(object = "ANY") Generic function

signature(object = "mle") Generate a summary as an object of class "summary.mle", con-
taining estimates, asymptotic SE, and value of −2 logL.

summary.mle-class Class "summary.mle", Summary of "mle" Objects

Description

Extract of "mle" object

Objects from the Class

Objects can be created by calls of the form new("summary.mle", ...), but most often by invok-
ing summary on an "mle" object. They contain values meant for printing by show.

Slots

call: Object of class "language" The call that generated the "mle" object.

coef: Object of class "matrix". Estimated coefficients and standard errors

m2logL: Object of class "numeric". Minus twice the log likelihood.

Methods

show signature(object = "summary.mle"): Pretty-prints object

coef signature(object = "summary.mle"): Extracts the contents of the coef slot

See Also

summary, mle, mle-class

update-methods 1569

update-methods Methods for Function update in Package stats4

Description

Update "mle" objects.

Usage

S4 method for signature ’mle’
update(object, ..., evaluate = TRUE)

Arguments

object An existing fit.

... Additional arguments to the call, or arguments with changed values. Use
name=NULL to remove the argument name.

evaluate If true evaluate the new call else return the call.

Methods

signature(object = "ANY") Generic function: see update.

signature(object = "mle") Update a fit.

Examples

x <- 0:10
y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
ll <- function(ymax=15, xhalf=6)

-sum(stats::dpois(y, lambda=ymax/(1+x/xhalf), log=TRUE))
fit <- mle(ll)
note the recorded call contains ..1, a problem with S4 dispatch
update(fit, fixed=list(xhalf=3))

vcov-methods Methods for Function vcov in Package stats4

Description

Extract the approximate variance-covariance matrix from "mle" objects.

Methods

signature(object = "ANY") Generic function: see vcov.

signature(object = "mle") Extract the estimated variance-covariance matrix for the estimated
parameters (if any).

1570 vcov-methods

Chapter 10

The tcltk package

tcltk-package Tcl/Tk Interface

Description

Interface and language bindings to Tcl/Tk GUI elements.

Details

This package provides access to the platform-independent Tcl scripting language and Tk GUI ele-
ments. See TkWidgets for a list of supported widgets, TkWidgetcmds for commands to work with
them, and references in those files for more.

The Tcl/Tk documentation is in the directory ‘R_HOME/Tcl/doc’.

For a complete list of functions, use ls("package:tcltk").

Author(s)

R Core Team

Maintainer: R Core Team <R-core@r-project.org>

TclInterface Low-level Tcl/Tk Interface

Description

These functions and variables provide the basic glue between R and the Tcl interpreter and Tk GUI
toolkit. Tk windows may be represented via R objects. Tcl variables can be accessed via objects of
class tclVar and the C level interface to Tcl objects is accessed via objects of class tclObj.

1571

1572 TclInterface

Usage

.Tcl(...)

.Tcl.objv(objv)

.Tcl.args(...)

.Tcl.args.objv(...)

.Tcl.callback(...)

.Tk.ID(win)

.Tk.newwin(ID)

.Tk.subwin(parent)

.TkRoot

tkdestroy(win)
is.tkwin(x)

tclvalue(x)
tclvalue(x) <- value

tclVar(init="")
S3 method for class ’tclVar’
as.character(x, ...)
S3 method for class ’tclVar’
tclvalue(x)
S3 replacement method for class ’tclVar’
tclvalue(x) <- value

tclArray()
S3 method for class ’tclArray’
x[[...]]
S3 replacement method for class ’tclArray’
x[[...]] <- value
S3 method for class ’tclArray’
x$i
S3 replacement method for class ’tclArray’
x$i <- value

S3 method for class ’tclArray’
names(x)
S3 method for class ’tclArray’
length(x)

tclObj(x)
tclObj(x) <- value
S3 method for class ’tclVar’
tclObj(x)
S3 replacement method for class ’tclVar’
tclObj(x) <- value

as.tclObj(x, drop=FALSE)
is.tclObj(x)

S3 method for class ’tclObj’
as.character(x, ...)

TclInterface 1573

S3 method for class ’tclObj’
as.integer(x, ...)
S3 method for class ’tclObj’
as.double(x, ...)
S3 method for class ’tclObj’
as.logical(x, ...)
S3 method for class ’tclObj’
as.raw(x, ...)
S3 method for class ’tclObj’
tclvalue(x)

Default S3 method:
tclvalue(x)
Default S3 replacement method:
tclvalue(x) <- value

addTclPath(path = ".")
tclRequire(package, warn = TRUE)

Arguments

objv a named vector of Tcl objects

win a window structure

x an object

i character or (unquoted) name

drop logical. Indicates whether a single-element vector should be made into a simple
Tcl object or a list of length one

value For tclvalue assignments, a character string. For tclObj assignments, an ob-
ject of class tclObj

ID a window ID

parent a window which becomes the parent of the resulting window

path path to a directory containing Tcl packages

package a Tcl package name

warn logical. Warn if not found?

... Additional arguments. See below.

init initialization value

Details

Many of these functions are not intended for general use but are used internally by the commands
that create and manipulate Tk widgets and Tcl objects. At the lowest level .Tcl sends a command
as a text string to the Tcl interpreter and returns the result as an object of class tclObj (see below).
A newer variant .Tcl.objv accepts arguments in the form of a named list of tclObj objects.

.Tcl.args converts an R argument list of tag=value pairs to the Tcl -option value style, thus
enabling a simple translation between the two languages. To send a value with no preceding option
flag to Tcl, just use an untagged argument. In the rare case one needs an option with no subsequent
value tag=NULL can be used. Most values are just converted to character mode and inserted in the

1574 TclInterface

command string, but window objects are passed using their ID string, and callbacks are passed via
the result of .Tcl.callback. Tags are converted to option flags simply by prepending a -

.Tcl.args.objv serves a similar purpose as .Tcl.args but produces a list of tclObj objects
suitable for passing to .Tcl.objv. The names of the list are converted to Tcl option style internally
by .Tcl.objv.

Callbacks can be either atomic callbacks handled by .Tcl.callback or expressions. An expression
is treated as a list of atomic callbacks, with the following exceptions: if an element is a name, it
is first evaluated in the callers frame, and likewise if it is an explicit function definition; the break
expression is translated directly to the Tcl counterpart. .Tcl.callback converts R functions and
unevaluated calls to Tcl command strings. The argument must be either a function closure or
an object of mode "call" followed by an environment. The return value in the first case is of
the form R_call 0x408b94d4 in which the hexadecimal number is the memory address of the
function. In the second case it will be of the form R_call_lang 0x8a95904 0x819bfd0. For
expressions, a sequence of similar items is generated, separated by semicolons. .Tcl.args takes
special precautions to ensure that functions or calls will continue to exist at the specified address by
assigning the callback into the relevant window environment (see below).

Tk windows are represented as objects of class tkwin which are lists containing a ID field and an
env field which is an R environments, enclosed in the global environment. The value of the ID
field is identical to the Tk window name. The env environment contains a parent variable and a
num.subwin variable. If the window obtains sub-windows and callbacks, they are added as variables
to the environment. .TkRoot is the top window with ID "."; this window is not displayed in order
to avoid ill effects of closing it via window manager controls. The parent variable is undefined for
.TkRoot.

.Tk.ID extracts the ID of a window, .Tk.newwin creates a new window environment with a given
ID and .Tk.subwin creates a new window which is a sub-window of a given parent window.

tkdestroy destroys a window and also removes the reference to a window from its parent.

is.tkwin can be used to test whether a given object is a window environment.

tclVar creates a new Tcl variable and initializes it to init. An R object of class tclVar is created
to represent it. Using as.character on the object returns the Tcl variable name. Accessing the Tcl
variable from R is done using the tclvalue function, which can also occur on the left-hand side of
assignments. If tclvalue is passed an argument which is not a tclVar object, then it will assume
that it is a character string explicitly naming global Tcl variable. Tcl variables created by tclVar
are uniquely named and automatically unset by the garbage collector when the representing object
is no longer in use.

tclArray creates a new Tcl array and initializes it to the empty array. An R object of class tclArray
and inheriting from class tclVar is created to represent it. You can access elements of the Tcl
array using indexing with [[or $, which also allow replacement forms. Notice that Tcl arrays are
associative by nature and hence unordered; indexing with a numeric index i refers to the element
with the name as.character(i). Multiple indices are pasted together separated by commas to
form a single name. You can query the length and the set of names in an array using methods for
length and names, respectively; these cannot meaningfully be set so assignment forms exist only
to print an error message.

It is possible to access Tcl’s ‘dual-ported’ objects directly, thus avoiding parsing and deparsing of
their string representation. This works by using objects of class tclObj. The string representation
of such objects can be extracted (but not set) using tclvalue and conversion to vectors of mode
"character", "double", "integer", "logical". Conversely, such vectors can be converted using
as.tclObj. There is an ambiguity as to what should happen for length one vectors, controlled by
the drop argument; there are cases where the distinction matters to Tcl, although mostly it treats
them equivalently. Notice that tclvalue and as.character differ on an object whose string repre-
sentation has embedded spaces, the former is sometimes to be preferred, in particular when applied

tclServiceMode 1575

to the result of tclread, tkgetOpenFile, and similar functions. The as.raw method returns a raw
vector or a list of raw vectors and can be used to return binary data from Tcl.

The object behind a tclVar object is extracted using tclObj(x) which also allows an assignment
form, in which the right hand side of the assignment is automatically converted using as.tclObj.
There is a print method for tclObj objects; it prints <Tcl> followed by the string representation
of the object. Notice that as.character on a tclVar object is the name of the corresponding Tcl
variable and not the value.

Tcl packages can be loaded with tclRequire; it may be necessary to add the directory where they
are found to the Tcl search path with addTclPath. The return value is a class "tclObj" object if it
succeeds, or FALSE if it fails (when a warning is issued).

Note

Strings containing unbalanced braces are currently not handled well in many circumstances.

See Also

TkWidgets, TkCommands, TkWidgetcmds.

capabilities("tcltk") to see if Tcl/Tk support was compiled into this build of R.

Examples

Not run:
These cannot be run by example() but should be OK when pasted
into an interactive R session with the tcltk package loaded
.Tcl("format \"%s\n\" \"Hello, World!\"")
f <- function()cat("HI!\n")
.Tcl.callback(f)
.Tcl.args(text="Push!", command=f) # NB: Different address

xyzzy <- tclVar(7913)
tclvalue(xyzzy)
tclvalue(xyzzy) <- "foo"
as.character(xyzzy)
tcl("set", as.character(xyzzy))

top <- tktoplevel() # a Tk widget, see Tk-widgets
ls(envir=top$env, all=TRUE)
ls(envir=.TkRoot$env, all=TRUE)# .Tcl.args put a callback ref in here

End(Not run)

tclServiceMode Allow Tcl events to be serviced or not

Description

This function controls or reports on the Tcl service mode, i.e. whether Tcl will respond to events.

Usage

tclServiceMode(on = NULL)

1576 TkCommands

Arguments

on (logical) Whether event servicing is turned on.

Details

If called with on == NULL (the default), no change is made.

Note that this blocks all Tcl/Tk activity, including for widgets from other packages. It may be better
to manage mapping of windows individually.

Value

The value of the Tcl service mode before the call.

Examples

see demo(tkcanvas) for an example
Not run:
oldmode <- tclServiceMode(FALSE)
Do some work to create a nice picture.
Nothing will be displayed until...
tclServiceMode(oldmode)

End(Not run)
another idea is to use tkwm.withdraw() ... tkwm.deiconify()

TkCommands Tk non-widget commands

Description

These functions interface to Tk non-widget commands, such as the window manager interface com-
mands and the geometry managers.

Usage

tcl(...)
tktitle(x)

tktitle(x) <- value

tkbell(...)
tkbind(...)
tkbindtags(...)
tkfocus(...)
tklower(...)
tkraise(...)

tkclipboard.append(...)
tkclipboard.clear(...)

tkevent.add(...)

TkCommands 1577

tkevent.delete(...)
tkevent.generate(...)
tkevent.info(...)

tkfont.actual(...)
tkfont.configure(...)
tkfont.create(...)
tkfont.delete(...)
tkfont.families(...)
tkfont.measure(...)
tkfont.metrics(...)
tkfont.names(...)

tkgrab(...)
tkgrab.current(...)
tkgrab.release(...)
tkgrab.set(...)
tkgrab.status(...)

tkimage.cget(...)
tkimage.configure(...)
tkimage.create(...)
tkimage.names(...)

NB: some widgets also have a selection.clear command,
hence the "X".

tkXselection.clear(...)
tkXselection.get(...)
tkXselection.handle(...)
tkXselection.own(...)

tkwait.variable(...)
tkwait.visibility(...)
tkwait.window(...)

winfo actually has a large number of subcommands,
but it’s rarely used,
so use tkwinfo("atom", ...) etc. instead.

tkwinfo(...)

Window manager interface

tkwm.aspect(...)
tkwm.client(...)
tkwm.colormapwindows(...)
tkwm.command(...)
tkwm.deiconify(...)
tkwm.focusmodel(...)
tkwm.frame(...)
tkwm.geometry(...)

1578 TkCommands

tkwm.grid(...)
tkwm.group(...)
tkwm.iconbitmap(...)
tkwm.iconify(...)
tkwm.iconmask(...)
tkwm.iconname(...)
tkwm.iconposition(...)
tkwm.iconwindow(...)
tkwm.maxsize(...)
tkwm.minsize(...)
tkwm.overrideredirect(...)
tkwm.positionfrom(...)
tkwm.protocol(...)
tkwm.resizable(...)
tkwm.sizefrom(...)
tkwm.state(...)
tkwm.title(...)
tkwm.transient(...)
tkwm.withdraw(...)

Geometry managers

tkgrid(...)
tkgrid.bbox(...)
tkgrid.columnconfigure(...)
tkgrid.configure(...)
tkgrid.forget(...)
tkgrid.info(...)
tkgrid.location(...)
tkgrid.propagate(...)
tkgrid.rowconfigure(...)
tkgrid.remove(...)
tkgrid.size(...)
tkgrid.slaves(...)

tkpack(...)
tkpack.configure(...)
tkpack.forget(...)
tkpack.info(...)
tkpack.propagate(...)
tkpack.slaves(...)

tkplace(...)
tkplace.configure(...)
tkplace.forget(...)
tkplace.info(...)
tkplace.slaves(...)

Standard dialogs
tkgetOpenFile(...)
tkgetSaveFile(...)

TkCommands 1579

tkchooseDirectory(...)
tkmessageBox(...)
tkdialog(...)
tkpopup(...)

File handling functions
tclfile.tail(...)
tclfile.dir(...)
tclopen(...)
tclclose(...)
tclputs(...)
tclread(...)

Arguments

x A window object

value For tktitle assignments, a character string.

... Handled via .Tcl.args

Details

tcl provides a generic interface to calling any Tk or Tcl command by simply running
.Tcl.args.objv on the argument list and passing the result to .Tcl.objv. Most of the other
commands simply call tcl with a particular first argument and sometimes also a second argument
giving the subcommand.

tktitle and its assignment form provides an alternate interface to Tk’s wm title

There are far too many of these commands to describe them and their arguments in full. Please
refer to the Tcl/Tk documentation for details. With a few exceptions, the pattern is that Tk subcom-
mands like pack configure are converted to function names like tkpack.configure, and Tcl
subcommands are like tclfile.dir.

See Also

TclInterface, TkWidgets, TkWidgetcmds

Examples

Not run:
These cannot be run by examples() but should be OK when pasted
into an interactive R session with the tcltk package loaded

tt <- tktoplevel()
tkpack(l1<-tklabel(tt,text="Heave"), l2<-tklabel(tt,text="Ho"))
tkpack.configure(l1, side="left")

Try stretching the window and then

tkdestroy(tt)

End(Not run)

1580 tkProgressBar

tkpager Page file using Tk text widget

Description

This plugs into file.show, showing files in separate windows.

Usage

tkpager(file, header, title, delete.file)

Arguments

file character vector containing the names of the files to be displayed

header headers to use for each file

title common title to use for the window(s). Pasted together with the header to form
actual window title.

delete.file logical. Should file(s) be deleted after display?

Note

The "\b_" string used for underlining is currently quietly removed. The font and background colour
are currently hardcoded to Courier and gray90.

See Also

file.show

tkProgressBar Progress Bars via Tk

Description

Put up a Tk progress bar widget.

Usage

tkProgressBar(title = "R progress bar", label = "",
min = 0, max = 1, initial = 0, width = 300)

getTkProgressBar(pb)
setTkProgressBar(pb, value, title = NULL, label = NULL)
S3 method for class ’tkProgressBar’
close(con, ...)

tkProgressBar 1581

Arguments

title, label character strings, giving the window title and the label on the dialog box respec-
tively.

min, max (finite) numeric values for the extremes of the progress bar.

initial, value initial or new value for the progress bar.

width the width of the progress bar in pixels: the dialog box will be 40 pixels wider
(plus frame).

pb, con an object of class "tkProgressBar".

... for consistency with the generic.

Details

tkProgressBar will display a widget containing a label and progress bar.

setTkProgessBar will update the value and for non-NULL values, the title and label (provided there
was one when the widget was created). Missing (NA) and out-of-range values of value will be
(silently) ignored.

The progress bar should be closed when finished with.

This will use the ttk::progressbar widget for Tk version 8.5 or later, otherwise R’s copy of
BWidget’s progressbar.

Value

For tkProgressBar an object of class "tkProgressBar".

For getTkProgressBar and setTkProgressBar, a length-one numeric vector giving the previous
value (invisibly for setTkProgressBar).

See Also

txtProgressBar

winProgressBar for a version using Windows native controls (which this also does for Tk >= 8.5).

Examples

pb <- tkProgressBar("test progress bar", "Some information in %",
0, 100, 50)

Sys.sleep(0.5)
u <- c(0, sort(runif(20, 0 ,100)), 100)
for(i in u) {

Sys.sleep(0.1)
info <- sprintf("%d%% done", round(i))
setTkProgressBar(pb, i, sprintf("test (%s)", info), info)

}
Sys.sleep(5)
close(pb)

1582 TkWidgetcmds

tkStartGUI Tcl/Tk GUI startup

Description

Starts up the Tcl/Tk GUI

Usage

tkStartGUI()

Details

Starts a GUI console implemented via a Tk text widget. This should probably be called at most
once per session. Also redefines the file pager (as used by help()) to be the Tk pager.

Note

This function is not usable under Windows.

tkStartGUI() saves its evaluation environment as .GUIenv. This means that the user interface
elements can be accessed in order to extend the interface. The three main objects are named
Term, Menu, and Toolbar, and the various submenus and callback functions can be seen with
ls(envir=.GUIenv).

Author(s)

Peter Dalgaard

TkWidgetcmds Tk widget commands

Description

These functions interface to Tk widget commands.

Usage

tkactivate(widget, ...)
tkadd(widget, ...)
tkaddtag(widget, ...)
tkbbox(widget, ...)
tkcanvasx(widget, ...)
tkcanvasy(widget, ...)
tkcget(widget, ...)
tkcompare(widget, ...)
tkconfigure(widget, ...)
tkcoords(widget, ...)
tkcreate(widget, ...)
tkcurselection(widget,...)

TkWidgetcmds 1583

tkdchars(widget, ...)
tkdebug(widget, ...)
tkdelete(widget, ...)
tkdelta(widget, ...)
tkdeselect(widget, ...)
tkdlineinfo(widget, ...)
tkdtag(widget, ...)
tkdump(widget, ...)
tkentrycget(widget, ...)
tkentryconfigure(widget, ...)
tkfind(widget, ...)
tkflash(widget, ...)
tkfraction(widget, ...)
tkget(widget, ...)
tkgettags(widget, ...)
tkicursor(widget, ...)
tkidentify(widget, ...)
tkindex(widget, ...)
tkinsert(widget, ...)
tkinvoke(widget, ...)
tkitembind(widget, ...)
tkitemcget(widget, ...)
tkitemconfigure(widget, ...)
tkitemfocus(widget, ...)
tkitemlower(widget, ...)
tkitemraise(widget, ...)
tkitemscale(widget, ...)
tkmark.gravity(widget, ...)
tkmark.names(widget, ...)
tkmark.next(widget, ...)
tkmark.previous(widget, ...)
tkmark.set(widget, ...)
tkmark.unset(widget, ...)
tkmove(widget, ...)
tknearest(widget, ...)
tkpost(widget, ...)
tkpostcascade(widget, ...)
tkpostscript(widget, ...)
tkscan.mark(widget, ...)
tkscan.dragto(widget, ...)
tksearch(widget, ...)
tksee(widget, ...)
tkselect(widget, ...)
tkselection.adjust(widget, ...)
tkselection.anchor(widget, ...)
tkselection.clear(widget, ...)
tkselection.from(widget, ...)
tkselection.includes(widget, ...)
tkselection.present(widget, ...)
tkselection.range(widget, ...)
tkselection.set(widget, ...)
tkselection.to(widget,...)

1584 TkWidgetcmds

tkset(widget, ...)
tksize(widget, ...)
tktoggle(widget, ...)
tktag.add(widget, ...)
tktag.bind(widget, ...)
tktag.cget(widget, ...)
tktag.configure(widget, ...)
tktag.delete(widget, ...)
tktag.lower(widget, ...)
tktag.names(widget, ...)
tktag.nextrange(widget, ...)
tktag.prevrange(widget, ...)
tktag.raise(widget, ...)
tktag.ranges(widget, ...)
tktag.remove(widget, ...)
tktype(widget, ...)
tkunpost(widget, ...)
tkwindow.cget(widget, ...)
tkwindow.configure(widget, ...)
tkwindow.create(widget, ...)
tkwindow.names(widget, ...)
tkxview(widget, ...)
tkxview.moveto(widget, ...)
tkxview.scroll(widget, ...)
tkyposition(widget, ...)
tkyview(widget, ...)
tkyview.moveto(widget, ...)
tkyview.scroll(widget, ...)

Arguments

widget The widget this applies to

... Handled via .Tcl.args

Details

There are far too many of these commands to describe them and their arguments in full. Please
refer to the Tcl/Tk documentation for details. Except for a few exceptions, the pattern is that
Tcl widget commands possibly with subcommands like .a.b selection clear are converted to
function names like tkselection.clear and the widget is given as the first argument.

See Also

TclInterface, TkWidgets, TkCommands

Examples

Not run:
These cannot be run by examples() but should be OK when pasted
into an interactive R session with the tcltk package loaded

tt <- tktoplevel()
tkpack(txt.w <- tktext(tt))
tkinsert(txt.w, "0.0", "plot(1:10)")

TkWidgets 1585

callback function
eval.txt <- function()

eval(parse(text=tclvalue(tkget(txt.w, "0.0", "end"))))
tkpack(but.w <- tkbutton(tt,text="Submit", command=eval.txt))

Try pressing the button, edit the text and when finished:

tkdestroy(tt)

End(Not run)

TkWidgets Tk widgets

Description

Create Tk widgets and associated R objects.

Usage

tkwidget(parent, type, ...)

tkbutton(parent, ...)
tkcanvas(parent, ...)
tkcheckbutton(parent, ...)
tkentry(parent, ...)
ttkentry(parent, ...)
tkframe(parent, ...)
tklabel(parent, ...)
tklistbox(parent, ...)
tkmenu(parent, ...)
tkmenubutton(parent, ...)
tkmessage(parent, ...)
tkradiobutton(parent, ...)
tkscale(parent, ...)
tkscrollbar(parent, ...)
tktext(parent, ...)
tktoplevel(parent = .TkRoot, ...)

ttkbutton(parent, ...)
ttkcheckbutton(parent, ...)
ttkcombobox(parent, ...)
ttkframe(parent, ...)
ttkimage(parent, ...)
ttklabel(parent, ...)
ttklabelframe(parent, ...)
ttkmenubutton(parent, ...)
ttknotebook(parent, ...)
ttkpanedwindow(parent, ...)
ttkprogressbar(parent, ...)

1586 TkWidgets

ttkradiobutton(parent, ...)
ttkscrollbar(parent, ...)
ttkseparator(parent, ...)
ttksizegrip(parent, ...)
ttktreeview(parent, ...)

Arguments

parent Parent of widget window.

type string describing the type of widget desired.

... handled via .Tcl.args.

Details

These functions create Tk widgets. tkwidget creates a widget of a given type, the others simply
call tkwidget with the respective type argument.

The functions starting ttk are for the themed widget set for Tk 8.5 or later. A tutorial can be found
at http://www.tkdocs.com.

It is not possible to describe the widgets and their arguments in full. Please refer to the Tcl/Tk
documentation.

See Also

TclInterface, TkCommands, TkWidgetcmds

Examples

Not run:
These cannot be run by examples() but should be OK when pasted
into an interactive R session with the tcltk package loaded

tt <- tktoplevel()
label.widget <- tklabel(tt, text="Hello, World!")
button.widget <- tkbutton(tt, text="Push",

command=function()cat("OW!\n"))
tkpack(label.widget, button.widget) # geometry manager

see Tk-commands

Push the button and then...

tkdestroy(tt)

test for themed widgets
if(as.character(tcl("info", "tclversion")) >= "8.5") {

make use of themed widgets
list themes
as.character(tcl("ttk::style", "theme", "names"))
select a theme -- here pre-XP windows
tcl("ttk::style", "theme use", "winnative")

} else {
use Tk 8.0 widgets

}

End(Not run)

http://www.tkdocs.com

tk_choose.dir 1587

tk_choose.dir Choose a Folder Interactively

Description

Use a Tk widget to choose a directory interactively.

Usage

tk_choose.dir(default = "", caption = "Select directory")

Arguments

default which directory to show initially.

caption the caption on the selection dialog.

Value

A length-one character vector, character NA if ‘Cancel’ was selected.

See Also

tk_choose.files

Examples

Not run:
tk_choose.dir(getwd(), "Choose a suitable folder")

End(Not run)

tk_choose.files Choose a List of Files Interactively

Description

Use a Tk file dialog to choose a list of zero or more files interactively.

Usage

tk_choose.files(default = "", caption = "Select files",
multi = TRUE, filters = NULL, index = 1)

Arguments

default which filename to show initially.

caption the caption on the file selection dialog.

multi whether to allow multiple files to be selected.

filters two-column character matrix of filename filters.

index unused.

1588 tk_messageBox

Details

Unlike file.choose, tk_choose.files will always attempt to return a character vector giving a
list of files. If the user cancels the dialog, then zero files are returned, whereas file.choose would
signal an error.

The format of filters can be seen from the example. File patterns are specified via extensions,
with "*" meaning any file, and "" any file without an extension (a filename not containing a period).
(Other forms may work on specific platforms.) Note that the way to have multiple extensions for
one file type is to have multiple rows with the same name in the first column, and that whether the
extensions are named in file chooser widget is platform-specific. The format may change before
release.

Value

A character vector giving zero or more file paths.

Note

A bug in Tk 8.5.0–8.5.4 prevented multiple selections being used.

See Also

file.choose, tk_choose.dir

Examples

Filters <- matrix(c("R code", ".R", "R code", ".s",
"Text", ".txt", "All files", "*"),

4, 2, byrow = TRUE)
Filters
if(interactive()) tk_choose.files(filter = Filters)

tk_messageBox Tk Message Box

Description

An implementation of a generic message box using Tk

Usage

tk_messageBox(type = c("ok", "okcancel", "yesno", "yesnocancel",
"retrycancel", "aburtretrycancel"),

message, caption = "", default = "", ...)

Arguments

type character. The type of dialog box. It will have the buttons implied by its name.
message character. The information field of the dialog box.
caption the caption on the widget displayed.
default character. The name of the button to be used as the default.
... additional named arguments to be passed to the Tk function of this name. An

example is icon="warning".

tk_select.list 1589

Value

A character string giving the name of the button pressed.

See Also

tkmessageBox for a ‘raw’ interface.

tk_select.list Select Items from a List

Description

Select item(s) from a character vector using a Tk listbox.

Usage

tk_select.list(choices, preselect = NULL, multiple = FALSE, title = NULL)

Arguments

choices a character vector of items.

preselect a character vector, or NULL. If non-null and if the string(s) appear in the list, the
item(s) are selected initially.

multiple logical: can more than one item be selected?

title optional character string for window title, or NULL for no title.

Details

This is a version of select.list implemented as a Tk list box plus OK and Cancel buttons. There
will be a scrollbar if the list is too long to fit comfortably on the screen.

The dialog box is modal, so a selection must be made or cancelled before the R session can proceed.
As from R 2.10.1 double-clicking on an item is equivalent to selecting it and then clicking OK.

If Tk is version 8.5 or later, themed widgets will be used.

Value

A character vector of selected items. If multiple is false and no item was selected (or Cancel was
used), "" is returned. If multiple is true and no item was selected (or Cancel was used) then a
character vector of length 0 is returned.

See Also

select.list (a text version except on Windows and the Mac OS X GUI), menu (whose
graphics=TRUE mode uses this on most Unix-alikes).

1590 tk_select.list

Chapter 11

The tools package

tools-package Tools for Package Development

Description

Tools for package development, administration and documentation.

Details

This package contains tools for manipulating R packages and their documentation.

For a complete list of functions, use library(help="tools").

Author(s)

Kurt Hornik and Friedrich Leisch

Maintainer: R Core Team <R-core@r-project.org>

add_datalist Add a ‘datalist’ File to a Package

Description

The data() command with no arguments lists all the datasets available via data in attached pack-
ages, and to do so a per-package list is installed. Creating that list at install time can be slow for
packages with huge datasets, and can be expedited by a supplying ‘data/datalist’ file.

Usage

add_datalist(pkgpath, force = FALSE)

Arguments

pkgpath The path to a (source) package.

force logical: can an existing ‘data/datalist’ file be over-written?

1591

1592 bibstyle

Details

R CMD build will call this function to add a data list to packages with 1MB or more of data.

It is also helpful to give a ‘data/datalist’ file in packages whose datasets have many dependen-
cies, including loading the packages itself (and maybe others).

See Also

data.

The ‘Writing R Extensions’ manual.

bibstyle Select or define a bibliography style.

Description

This function defines and registers styles for rendering bibentry objects into Rd format, for later
conversion to text, HTML, etc.

Usage

bibstyle(style, envir, ..., .init = FALSE, .default = FALSE)

Arguments

style A character string naming the style.

envir (optional) An environment holding the functions to implement the style.

... Named arguments to add to the environment.

.init Whether to initialize the environment from the default style "JSS".

.default Whether to set the specified style as the default style.

Details

Rendering of bibentry objects may be done using routines modelled after those used by BibTeX.
This function allows environments to be created and manipulated to contain those routines.

There are two ways to create a new style environment. The easiest is to set .init = TRUE, in which
case the environment will be initialized with a copy of the default "JSS" environment. (This style
is modelled after the ‘jss.bst’ style used by the Journal of Statistical Software.) Alternatively, the
envir argument can be used to specify a completely new style environment.

To simply retrieve an existing style, specify style and no other arguments. To modify an existing
style, specify style and some named entries via (Modifying the default "JSS" style is discour-
aged.) Setting style to NULL or leaving it missing will retrieve the default style, but modifications
will not be allowed.

At a minimum, the environment should contain routines to render each of the 12 types of
bibliographic entry supported by bibentry as well as a routine to produce a sort key to
sort the entries. The former must be named formatArticle, formatBook, formatInbook,
formatIncollection, formatInProceedings, formatManual, formatMastersthesis,
formatMisc, formatPhdthesis, formatProceedings, formatTechreport and
formatUnpublished. Each of these takes one argument, a single unclass’ed entry from

buildVignettes 1593

the bibentry vector passed to the renderer, and should produce a single element character vector
(possibly containing newlines). The sort keys are produced by a function named sortKeys. It is
passed the original bibentry vector and should produce a sortable vector of the same length to
define the sort order.

Value

The environment which has been selected or created.

Author(s)

Duncan Murdoch

See Also

bibentry

Examples

refs <-
c(bibentry(bibtype = "manual",

title = "R: A Language and Environment for Statistical Computing",
author = person("R Core Team"),
organization = "R Foundation for Statistical Computing",
address = "Vienna, Austria",
year = 2010,
isbn = "3-900051-07-0",
url = "http://www.R-project.org"),

bibentry(bibtype = "article",
author = c(person(c("George", "E", "P"), "Box"),

person(c("David", "R"), "Cox")),
year = 1964,
title = "An Analysis of Transformations",
journal = "Journal of the Royal Statistical Society, Series B",
volume = 26,
pages = "211-252"))

bibstyle("unsorted", sortKeys = function(refs) seq_along(refs),
.init = TRUE)

print(refs, .bibstyle = "unsorted")

buildVignettes List and Build Package Vignettes

Description

Run Sweave and texi2dvi on all vignettes of a package.

Usage

buildVignettes(package, dir, lib.loc = NULL, quiet = TRUE, clean = TRUE)

pkgVignettes(package, dir, lib.loc = NULL)

1594 charsets

Arguments

package a character string naming an installed package. If given, Sweave files are
searched in subdirectory ‘doc’.

dir a character string specifying the path to a package’s root source directory. This
subdirectory ‘vignettes’ (or if it does not exist ‘inst/doc’) is searched for
Sweave files.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. The specified library trees
are used to search for package.

quiet logical. Run Sweave and texi2pdf in quiet mode.

clean Remove all files generated by the build, even if there were copies there before.

Details

buildVignettes is used by R CMD build and R CMD check to (re-)build vignette PDFs on
the Sweave sources.

Value

buildVignettes is called for its side effect of creating the PDF versions of all vignettes.

pkgVignettes returns an object of class "pkgVignettes" if a vignette directory is found, otherwise
NULL.

charsets Conversion Tables between Character Sets

Description

charset_to_Unicode is a matrix of Unicode points with columns for the common 8-bit encodings.

Adobe_glyphs is a dataframe which gives Adobe glyph names for Unicode points. It has two
character columns, "adobe" and "unicode" (a 4-digit hex representation).

Usage

charset_to_Unicode

Adobe_glyphs

Details

charset_to_Unicode is an integer matrix of class c("noquote", "hexmode") so prints in hex-
adecimal. The mappings are those used by libiconv: there are differences in the way quotes
and minus/hyphen are mapped between sources (and the postscript encoding files use a different
mapping).

Adobe_glyphs include all the Adobe glyph names which correspond to single Unicode char-
acters. It is sorted by Unicode point and within a point alphabetically on the glyph
(there can be more than one name for a Unicode point). The data are in the file
‘R_HOME/share/encodings/Adobe_glyphlist’.

checkFF 1595

Source

http://partners.adobe.com/public/developer/en/opentype/glyphlist.txt

Examples

find Adobe names for ISOLatin2 chars.
latin2 <- charset_to_Unicode[, "ISOLatin2"]
aUnicode <- as.numeric(paste("0x", Adobe_glyphs$unicode, sep=""))
keep <- aUnicode %in% latin2
aUnicode <- aUnicode[keep]
aAdobe <- Adobe_glyphs[keep, 1]
first match
aLatin2 <- aAdobe[match(latin2, aUnicode)]
all matches
bLatin2 <- lapply(1:256, function(x) aAdobe[aUnicode == latin2[x]])
format(bLatin2, justify="none")

checkFF Check Foreign Function Calls

Description

Performs checks on calls to compiled code from R code. Currently only checks whether the inter-
face functions such as .C and .Fortran are called with a "NativeSymbolInfo" first argument or
with argument PACKAGE specified, which is highly recommended to avoid name clashes in foreign
function calls.

Usage

checkFF(package, dir, file, lib.loc = NULL,
verbose = getOption("verbose"))

Arguments

package a character string naming an installed package. If given, the installed R code of
the package is checked.

dir a character string specifying the path to a package’s root source directory. This
should contain the subdirectory ‘R’ (for R code). Only used if package is not
given.

file the name of a file containing R code to be checked. Used if neither package nor
dir are given.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. The specified library trees
are used to search for package.

verbose a logical. If TRUE, additional diagnostics are printed (and the result is returned
invisibly).

http://partners.adobe.com/public/developer/en/opentype/glyphlist.txt

1596 checkMD5sums

Details

Note that we can only check if the name argument is a symbol or a character string, not what class
of object the symbol resolves to at run-time.

If the package has a namespace which contains a useDynLib directive, calls in top-level functions
in the package are not reported as their symbols will be preferentially looked up in the DLL named
in the first useDynLib directive.

As from R 2.15.2, this also checks that calls with PACKAGE specified are to the same package, and
reports separately those which are in base packages and those which are in other packages (and if
those packages are specified in the ‘DESCRIPTION’ file). Direct calls to the FORTRAN entry points
for LINPACK in R itself are not reported (but this does not include modifications of LINPACK
routines such as dqrls).

Value

An object of class "checkFF", which currently is a list of the (parsed) foreign function calls with a
character first argument and no PACKAGE argument.

There is a print method to display the information contained in such objects.

See Also

.C, .Fortran; Foreign.

Examples

order is pretty much random
checkFF(package = "stats", verbose = TRUE)

checkMD5sums Check and Create MD5 Checksum Files

Description

checkMD5sums checks the files against a file ‘MD5’.

Usage

checkMD5sums(package, dir)

Arguments

package the name of an installed package

dir the path to the top-level directory of an installed package.

Details

The file ‘MD5’ which is created is in a format which can be checked by md5sum -c MD5 if a suitable
command-line version of md5sum is available. (For Windows, one is supplied in the bundle at
http://www.murdoch-sutherland.com/Rtools.)

If dir is missing, an installed package of name package is searched for.

The private function tools:::.installMD5sums is used to create MD5 files in the Windows build.

http://www.murdoch-sutherland.com/Rtools

checkPoFiles 1597

Value

checkMD5sums returns a logical, NA if there is no ‘MD5’ file to be checked.

See Also

md5sum

checkPoFiles Check translation files for inconsistent format strings.

Description

These functions compare formats embedded in English messages with translated strings to check
for consistency. checkPoFile checks one file, while checkPoFiles checks all files for a specified
language.

Usage

checkPoFile(f, strictPlural = FALSE)
checkPoFiles(language, dir=".")

Arguments

f a character string giving a single filepath.
strictPlural whether to compare formats of singular and plural forms in a strict way.
language a character string giving a language code.
dir a path to a directory in which to check files.

Details

Part of R’s internationalization depends on translations of messages in ‘.po’ files. In these files
an ‘English’ message taken from the R sources is followed by a translation into another language.
Many of these messages are format strings for C or R sprintf and related functions. In these
cases, the translation must give a compatible format or an error will be generated when the message
is displayed.

The rules for compatibility differ between C and R in several ways. C supports several conversions
not supported by R, namely c, u, p, n. It is allowed in C’s sprintf() function to have more
arguments than are needed by the format string, but in R the counts must match exactly. R requires
types of arguments to match, whereas C will do the display whether it makes sense or not.

These functions compromise on the testing as follows. The additional formats allowed in C are ac-
cepted, and all differences in argument type or count are reported. As a consequence some reported
differences are not errors.

If the strictPlural argument is TRUE, then argument lists must agree exactly between singular
and plural forms of messages; if FALSE, then translations only need to match one or the other of the
two forms. When checkPoFiles calls checkPoFile, the strictPlural argument is set to TRUE
for files with names starting ‘R-’, and to FALSE otherwise.

Items marked as ‘fuzzy’ in the ‘.po’ file are not processed (as they are ignored by the message
compiler).

If a difference is found, the translated string is checked for variant percent signs (e.g. the wide
percent sign "\uFF05"). Such signs will not be recognized as format specifiers, and are likely to be
errors.

1598 checkRd

Value

Both functions return an object of S3 class "check_po_files". A print method is defined for this
class to display a report on the differences.

Author(s)

Duncan Murdoch

References

See the GNU gettext manual for the ‘.po’ file format:
http://www.gnu.org/software/gettext/manual/gettext.html.

See Also

xgettext, sprintf

Examples

Not run:
checkPoFiles("de", "/path/to/R/src/directory")

End(Not run)

checkRd Check an Rd Object

Description

Check an help file or the output of the parse_Rd function.

Usage

checkRd(Rd, defines = .Platform$OS.type, stages = "render",
unknownOK = TRUE, listOK = TRUE, ..., def_enc = FALSE)

Arguments

Rd a filename or Rd object to use as input.

defines string(s) to use in #ifdef tests.

stages at which stage ("build", "install", or "render") should \Sexpr macros be
executed? See the notes below.

unknownOK unrecognized macros are treated as errors if FALSE, otherwise warnings.

listOK unnecessary non-empty braces (e.g., around text, not as an argument) are treated
as errors if FALSE, otherwise warnings.

... additional parameters to pass to parse_Rd when Rd is a filename. One that is
often useful is encoding.

def_enc logical: has the package declared an encoding, so tests for non-ASCII text are
suppressed?

http://www.gnu.org/software/gettext/manual/gettext.html

checkRd 1599

Details

checkRd performs consistency checks on an Rd file, confirming that required sections are present,
etc.

It accepts a filename for an Rd file, and will use parse_Rd to parse it before applying the checks.
If so, warnings from parse_Rd are collected, together with those from the internal function
prepare_Rd, which does the #ifdef and \Sexpr processing, drops sections that would not be ren-
dered or are duplicated (and should not be) and removes empty sections.

An Rd object is passed through prepare_Rd, but it may already have been (and installed Rd objects
have).

Warnings are given a ‘level’: those from prepare_Rd have level 0. These include

All text must be in a section
Only one tag name section is allowed: the first will be used
Section name is unrecognized and will be dropped
Dropping empty section name

checkRd itself can show

7 Tag tag name not recognized
7 \tabular format must be simple text
7 Unrecognized \tabular format: . . .
7 Only n columns allowed in this table
7 Must have a tag name
7 Only one tag name is allowed
7 Tag tag name must not be empty
7 \docType must be plain text
5 Tag \method is only valid in \usage
5 Tag \dontrun is only valid in \examples
5 Tag tag name is invalid in a block name block
5 Title of \section must be non-empty plain text
5 \title content must be plain text
3 Empty section tag name

-1 Non-ASCII contents without declared encoding
-1 Non-ASCII contents in second part of \enc
-3 Tag ... is not valid in a code block
-3 Apparent non-ASCII contents without declared encoding
-3 Apparent non-ASCII contents in second part of \enc
-3 Unnecessary braces at . . .
-3 \method not valid outside a code block

and variations with \method replaced by \S3method or \S4method.

Note that both prepare_Rd and checkRd have tests for an empty section: that in checkRd is stricter
(essentially that nothing is output).

Value

This may fail through an R error, but otherwise warnings are collected as returned as an object
of class "checkRd", a character vector of messages. This class has a print method which only

1600 checkRdaFiles

prints unique messages, and has argument minlevel that can be used to select only more serious
messages. (This is set to -1 in R CMD check.)

Possible fatal errors are those from running the parser (e.g. a non-existent file, unclosed quoted
string, non-ASCII input without a specified encoding) or from prepare_Rd (multiple \Rdversion
declarations, invalid \encoding or \docType or \name sections, and missing or duplicate \name or
\title sections).

Author(s)

Duncan Murdoch, Brian Ripley

See Also

parse_Rd, Rd2HTML.

checkRdaFiles Report on Details of Saved Images or Re-saves them

Description

This reports for each of the files produced by save the size, if it was saved in ASCII or XDR binary
format, and if it was compressed (and if so in what format).

Usually such files have extension ‘.rda’ or ‘.RData’, hence the name of the function.

Usage

checkRdaFiles(paths)
resaveRdaFiles(paths, compress = c("auto", "gzip", "bzip2", "xz"),

compression_level)

Arguments

paths A character vector of paths to save files. If this specifies a single directory, it is
taken to refer to all ‘.rda’ and ‘.RData’ files in that directory.

compress, compression_level

type and level of compression: see save.

Details

compress = "auto" asks R to choose the compression and ignores compression_level. It will
try "gzip", "bzip2" and if the "gzip" compressed size is over 10Kb, "xz" and choose the smallest
compressed file (but with a 10% bias towards "gzip"). This can be slow.

Value

For checkRdaFiles, a data frame with rows names paths and columns

size numeric: file size in bytes, NA if the file does not exist.

ASCII logical: true for save(ASCII = TRUE), NA if the format is not that of an R save
file.

checkTnF 1601

compress character: type of compression. One of "gzip", "bzip2", "xz", "none" or
"unknown" (which means that if this is an R save file it is from a later version
of R).

version integer: the version of the save – usually 2 but 1 for very old files, and NA for
other files.

Examples

Not run:
from a package top-level source directory
paths <- sort(Sys.glob(c("data/*.rda", "data/*.RData")))
(res <- checkRdaFiles(paths))
pick out some that may need attention
bad <- is.na(res$ASCII) | res$ASCII | (res$size > 1e4 & res$compress == "none")
res[bad,]

End(Not run)

checkTnF Check R Packages or Code for T/F

Description

Checks the specified R package or code file for occurrences of T or F, and gathers the expression
containing these. This is useful as in R T and F are just variables which are set to the logicals TRUE
and FALSE by default, but are not reserved words and hence can be overwritten by the user. Hence,
one should always use TRUE and FALSE for the logicals.

Usage

checkTnF(package, dir, file, lib.loc = NULL)

Arguments

package a character string naming an installed package. If given, the installed R code
and the examples in the documentation files of the package are checked. R code
installed as an image file cannot be checked.

dir a character string specifying the path to a package’s root source directory. This
must contain the subdirectory ‘R’ (for R code), and should also contain ‘man’
(for documentation). Only used if package is not given. If used, the R code files
and the examples in the documentation files are checked.

file the name of a file containing R code to be checked. Used if neither package nor
dir are given.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. The specified library trees
are used to search for package.

1602 checkVignettes

Value

An object of class "checkTnF" which is a list containing, for each file where occurrences of T or F
were found, a list with the expressions containing these occurrences. The names of the list are the
corresponding file names.

There is a print method for nicely displaying the information contained in such objects.

checkVignettes Check Package Vignettes

Description

Check all Sweave files of a package by running Sweave and/or Stangle on them. All R source code
files found after the tangling step are sourceed to check whether all code can be executed without
errors.

Usage

checkVignettes(package, dir, lib.loc = NULL,
tangle = TRUE, weave = TRUE, latex = FALSE,
workdir = c("tmp", "src", "cur"),
keepfiles = FALSE)

Arguments

package a character string naming an installed package. If given, Sweave files are
searched in subdirectory ‘doc’.

dir a character string specifying the path to a package’s root source directory. This
subdirectory ‘inst/doc’ is searched for Sweave files.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. The specified library trees
are used to search for package.

tangle Perform a tangle and source the extracted code?

weave Perform a weave?

latex logical: if weave and latex are TRUE and there is no ‘Makefile’ in the vignettes
directory, run the weaved files through pdflatex.

workdir Directory used as working directory while checking the vignettes. If "tmp" then
a temporary directory is created, this is the default. If "src" then the direc-
tory containing the vignettes itself is used, if "cur" then the current working
directory of R is used.

keepfiles Delete files in the temporary directory? This option is ignored when
workdir != "tmp".

codoc 1603

Details

A ‘vignette’ is a file in the package’s ‘inst/doc’ directory with extension ‘.Rnw’ (preferred),
‘.Snw’, ‘.Rtex’ or ‘.Stex’ (and lower-case versions are also accepted).

If tangle is true, this function runs Stangle to produce (one or more) R code files from each
vignette, then sources each code file in turn.

If weave is true, the vignettes are run through Sweave, which will produce a ‘.tex’ file for each
vignette. If latex is also true, texi2pdf is run on the ‘.tex’ files from those vignettes which did
not give errors in the previous steps.

Value

An object of class "checkVignettes", which is a list with the error messages found during the
tangle, source, weave and latex steps. There is a print method for displaying the information
contained in such objects.

Note

Prior to R 2.13.0 this was the code used by R CMD check, but the latter is now more careful, running
the code for each vignette in a separate R session.

codoc Check Code/Documentation Consistency

Description

Find inconsistencies between actual and documented ‘structure’ of R objects in a package. codoc
compares names and optionally also corresponding positions and default values of the arguments
of functions. codocClasses and codocData compare slot names of S4 classes and variable names
of data sets, respectively.

Usage

codoc(package, dir, lib.loc = NULL,
use.values = NULL, verbose = getOption("verbose"))

codocClasses(package, lib.loc = NULL)
codocData(package, lib.loc = NULL)

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory. This
must contain the subdirectories ‘man’ with R documentation sources (in Rd for-
mat) and ‘R’ with R code. Only used if package is not given.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. The specified library trees
are used to search for package.

use.values if FALSE, do not use function default values when comparing code and docs.
Otherwise, compare all default values if TRUE, and only the ones documented in
the usage otherwise (default).

verbose a logical. If TRUE, additional diagnostics are printed.

1604 compactPDF

Details

The purpose of codoc is to check whether the documented usage of function objects agrees with
their formal arguments as defined in the R code. This is not always straightforward, in particular
as the usage information for methods to generic functions often employs the name of the generic
rather than the method.

The following algorithm is used. If an installed package is used, it is loaded (unless it is the base
package), after possibly detaching an already loaded version of the package. Otherwise, if the
sources are used, the R code files of the package are collected and sourced in a new environment.
Then, the usage sections of the Rd files are extracted and parsed ‘as much as possible’ to give the
formals documented. For interpreted functions in the code environment, the formals are compared
between code and documentation according to the values of the argument use.values. Synopsis
sections are used if present; their occurrence is reported if verbose is true.

If a package has a namespace both exported and unexported objects are checked, as well as regis-
tered S3 methods. (In the unlikely event of differences the order is exported objects in the package,
registered S3 methods and finally objects in the namespace and only the first found is checked.)

Currently, the R documentation format has no high-level markup for the basic ‘structure’ of classes
and data sets (similar to the usage sections for function synopses). Variable names for data frames
in documentation objects obtained by suitably editing ‘templates’ created by prompt are recognized
by codocData and used provided that the documentation object is for a single data frame (i.e., only
has one alias). codocClasses analogously handles slot names for classes in documentation objects
obtained by editing shells created by promptClass.

Help files named ‘pkgname-defunct.Rd’ for the appropriate pkgname are checked more loosely,
as they may have undocumented arguments.

Value

codoc returns an object of class "codoc". Currently, this is a list which, for each Rd object in
the package where an inconsistency was found, contains an element with a list of the mismatches
(which in turn are lists with elements code and docs, giving the corresponding arguments obtained
from the function’s code and documented usage).

codocClasses and codocData return objects of class "codocClasses" and "codocData", respec-
tively, with a structure similar to class "codoc".

There are print methods for nicely displaying the information contained in such objects.

Note

The default for use.values has been changed from FALSE to NULL, for R versions 1.9.0 and later.

See Also

undoc, QC

compactPDF Compact PDF Files

Description

Re-save PDF files (especially vignettes) more compactly. Support function for
R CMD build --compact-vignettes.

compactPDF 1605

Usage

compactPDF(paths,
qpdf = Sys.which(Sys.getenv("R_QPDF", "qpdf")),
gs_cmd = Sys.getenv("R_GSCMD", ""),
gs_quality = Sys.getenv("GS_QUALITY", "none"),
gs_extras = character())

S3 method for class ’compactPDF’
format(x, ratio = 0.9, diff = 1e4, ...)

Arguments

paths A character vector of paths to PDF files, or a length-one character vector naming
a directory, when all ‘.pdf’ files in that directory will be used.

qpdf Character string giving the path to the qpdf command. If empty, qpdf will not
be used.

gs_cmd Character string giving the path to the GhostScript executable, if that is to be
used. On Windows this is the path to ‘gswin32c.exe’ or ‘gswin64c.exe’. If
"", the function will try to find a platform-specific path to GhostScript.

gs_quality A character string indicating the quality required: the options are "none" (so
GhostScript is not used), "printer" (300dpi), "ebook" (150dpi) and "screen"
(72dpi).

gs_extras An optional character vector of further options to be passed to GhostScript.

x An object of class "compactPDF".

ratio, diff Limits for reporting: files are only reported whose sizes are reduced both by a
factor of ratio and by diff bytes.

... Further arguments to be passed to or from other methods.

Details

This by default makes use of qpdf, available from http://qpdf.sourceforge.net/ (including
as a Windows binary) and included with the CRAN Mac OS X distribution of R. If gs_cmd is
non-empty and gs_quality != "none", GhostScript will used first, then qpdf if it is available.
If gs_quality != "none" and gs_cmd is empty, an attempt will be made to find a GhostScript
executable.

qpdf and/or gs_cmd are run on all PDF files found, and those which are reduced in size by at least
10% and 10Kb are replaced.

The strategy of our use of qpdf is to (losslessly) compress both PDF streams and objects.
Ghostscript compresses streams and more (including downsampling and compressing embedded
images) and consequently is much slower and may lose quality (but can also produce much smaller
PDF files). However, quality "ebook" is perfectly adequate for screen viewing and printing on laser
printers.

Where PDF files are changed they will become PDF version 1.5 files: these have been supported by
Acrobat Reader since version 6 in 2003, so this is very unlikely to cause difficulties.

Stream compression is what most often has large gains: R’s pdf device prior to R 2.14.0 did not use
it, and older vignette PDFs often benefit from being re-generated. Most PDF documents are gen-
erated with object compression, but this does not seem to be the default for MiKTeX’s pdflatex.
For some PDF files (and especially package vignettes), using GhostScript can dramatically reduce
the space taken by embedded images (often screenshots).

http://qpdf.sourceforge.net/

1606 delimMatch

Where both Ghostscript and qpdf are selected (when gs_quality != "none" and both executables
are found), they are run in that order and the size reductions apply to the total compression achieved.

Value

An object of class c("compactPDF", "data.frame"). This has two columns, the old and new
sizes in bytes for the files that were changed.

There are format and print methods: the latter passes ... to the format method, so will accept
ratio and diff arguments.

Note

The external tools used may change in future releases.

See Also

resaveRdaFiles.

Many other (and sometimes more effective) tools to compact PDF files are available, including
Adobe Acrobat (not Reader). See the ‘Writing R Extensions’ manual.

delimMatch Delimited Pattern Matching

Description

Match delimited substrings in a character vector, with proper nesting.

Usage

delimMatch(x, delim = c("{", "}"), syntax = "Rd")

Arguments

x a character vector.

delim a character vector of length 2 giving the start and end delimiters. Future versions
might allow for arbitrary regular expressions.

syntax currently, always the string "Rd" indicating Rd syntax (i.e., ‘%’ starts a com-
ment extending till the end of the line, and ‘\’ escapes). Future versions might
know about other syntax, perhaps via ‘syntax tables’ allowing to flexibly specify
comment, escape, and quote characters.

Value

An integer vector of the same length as x giving the starting position (in characters) of the first
match, or −1 if there is none, with attribute "match.length" giving the length (in characters) of
the matched text (or −1 for no match).

See Also

regexpr for ‘simple’ pattern matching.

dependsOnPkgs 1607

Examples

x <- c("\\value{foo}", "function(bar)")
delimMatch(x)
delimMatch(x, c("(", ")"))

dependsOnPkgs Find Reverse Dependencies

Description

Find ‘reverse’ dependencies of packages, that is those packages which depend on this one, and
(optionally) so on recursively.

Usage

dependsOnPkgs(pkgs,
dependencies = c("Depends", "Imports", "LinkingTo"),
recursive = TRUE, lib.loc = NULL,

installed = installed.packages(lib.loc, fields = "Enhances"))

Arguments

pkgs a character vector of package names.

dependencies a character vector listing the types of dependencies, a subset of
c("Depends", "Imports", "LinkingTo", "Suggests", "Enhances").
Character string "all" is shorthand for that vector.

recursive logical: should reverse dependencies of reverse dependencies (and so on) be
included?

lib.loc a character vector of R library trees, or NULL for all known trees (see
.libPaths).

installed a result of calling installed.packages.

Value

A character vector of package names, which does not include any from pkgs.

Examples

there are few dependencies in a vanilla R installation
dependsOnPkgs("lattice")

1608 encoded_text_to_latex

encoded_text_to_latex Translate non-ASCII Text to LaTeX Escapes

Description

Translate non-ASCII characters in text to LaTeX escape sequences.

Usage

encoded_text_to_latex(x,
encoding = c("latin1", "latin2", "latin9",

"UTF-8", "utf8"))

Arguments

x a character vector.

encoding the encoding to be assumed. "latin9" is officially ISO-8859-15 or Latin-9, but
known as latin9 to LaTeX’s inputenc package.

Details

Non-ASCII characters in x are replaced by an appropriate LaTeX escape sequence, or ‘?’ if there is
no appropriate sequence.

Even if there is an appropriate sequence, it may not be supported by the font in use. Hyphen is
mapped to ‘\-’.

Value

A character vector of the same length as x.

See Also

iconv

Examples

x <- "fa\xE7ile"
encoded_text_to_latex(x, "latin1")
Not run:
create a tex file to show the upper half of 8-bit charsets
x <- rawToChar(as.raw(160:255), multiple=TRUE)
(x <- matrix(x, ncol=16, byrow=TRUE))
xx <- x
xx[] <- encoded_text_to_latex(x, "latin1") # or latin2 or latin9
xx <- apply(xx, 1, paste, collapse="&")
con <- file("test-encoding.tex", "w")
header <- c(
"\\documentclass{article}",
"\\usepackage[T1]{fontenc}",
"\\usepackage{Rd}",
"\\begin{document}",
"\\HeaderA{test}{}{test}",

fileutils 1609

"\\begin{Details}\relax",
"\\Tabular{cccccccccccccccc}{")
trailer <- c("}", "\\end{Details}", "\\end{document}")
writeLines(header, con)
writeLines(paste(xx, "\\", sep=""), con)
writeLines(trailer, con)
close(con)
and some UTF_8 chars
x <- intToUtf8(as.integer(

c(160:383,0x0192,0x02C6,0x02C7,0x02CA,0x02D8,
0x02D9, 0x02DD, 0x200C, 0x2018, 0x2019, 0x201C,
0x201D, 0x2020, 0x2022, 0x2026, 0x20AC)),

multiple=TRUE)
x <- matrix(x, ncol=16, byrow=TRUE)
xx <- x
xx[] <- encoded_text_to_latex(x, "UTF-8")
xx <- apply(xx, 1, paste, collapse="&")
con <- file("test-utf8.tex", "w")
writeLines(header, con)
writeLines(paste(xx, "\\", sep=""), con)
writeLines(trailer, con)
close(con)

End(Not run)

fileutils File Utilities

Description

Utilities for listing files, and manipulating file paths.

Usage

file_ext(x)
file_path_as_absolute(x)
file_path_sans_ext(x, compression = FALSE)

list_files_with_exts(dir, exts, all.files = FALSE,
full.names = TRUE)

list_files_with_type(dir, type, all.files = FALSE,
full.names = TRUE, OS_subdirs = .OStype())

Arguments

x character vector giving file paths.

compression logical: should compression extension ‘.gz’, ‘.bz2’ or ‘.xz’ be removed first?

dir a character string with the path name to a directory.

exts a character vector of possible file extensions.

all.files a logical. If FALSE (default), only visible files are considered; if TRUE, all files
are used.

1610 getDepList

full.names a logical indicating whether the full paths of the files found are returned (de-
fault), or just the file names.

type a character string giving the ‘type’ of the files to be listed, as characterized by
their extensions. Currently, possible values are "code" (R code), "data" (data
sets), "demo" (demos), "docs" (R documentation), and "vignette" (vignettes).

OS_subdirs a character vector with the names of OS-specific subdirectories to possibly
include in the listing of R code and documentation files. By default, the
value of the environment variable R_OSTYPE, or if this is empty, the value of
.Platform$OS.type, is used.

Details

file_ext returns the file (name) extensions. (Only purely alphanumeric extensions are recognized.)

file_path_as_absolute turns a possibly relative file path absolute, performing tilde expansion if
necessary. As from R 2.13.0 this is a wrapper for normalizePath. Currently, x must be a single
existing path.

file_path_sans_ext returns the file paths without extensions. (Only purely alphanumeric exten-
sions are recognized.)

list_files_with_exts returns the paths or names of the files in directory dir with extension
matching one of the elements of exts. Note that by default, full paths are returned, and that only
visible files are used.

list_files_with_type returns the paths of the files in dir of the given ‘type’, as determined by
the extensions recognized by R. When listing R code and documentation files, files in OS-specific
subdirectories are included if present according to the value of OS_subdirs. Note that by default,
full paths are returned, and that only visible files are used.

See Also

file.path, file.info, list.files

Examples

dir <- file.path(R.home(), "library", "stats")
list_files_with_exts(file.path(dir, "demo"), "R")
list_files_with_type(file.path(dir, "demo"), "demo") # the same
file_path_sans_ext(list.files(file.path(R.home("modules"))))

getDepList Functions to Retrieve Dependency Information

Description

Given a dependency matrix, will create a DependsList object for that package which will include
the dependencies for that matrix, which ones are installed, which unresolved dependencies were
found online, which unresolved dependencies were not found online, and any R dependencies.

getDepList 1611

Usage

getDepList(depMtrx, instPkgs, recursive = TRUE, local = TRUE,
reduce = TRUE, lib.loc = NULL)

pkgDepends(pkg, recursive = TRUE, local = TRUE, reduce = TRUE,
lib.loc = NULL)

Arguments

depMtrx A dependency matrix as from package.dependencies

pkg The name of the package

instPkgs A matrix specifying all packages installed on the local system, as from
installed.packages

recursive Whether or not to include indirect dependencies

local Whether or not to search only locally

reduce Whether or not to collapse all sets of dependencies to a minimal value

lib.loc What libraries to use when looking for installed packages. NULL indicates all
library directories in the user’s .libPaths().

Details

The function pkgDepends is a convenience function which wraps getDepList and takes as input
a package name. It will then query installed.packages and also generate a dependency matrix,
calling getDepList with this information and returning the result.

These functions will retrieve information about the dependencies of the matrix, resulting in a
DependsList object. This is a list with four elements:

Depends A vector of the dependencies for this package.

Installed A vector of the dependencies which have been satisfied by the currently installed pack-
ages.

Found A list representing the dependencies which are not in Installed but were found online.
This list has element names which are the URLs for the repositories in which packages were
found and the elements themselves are vectors of package names which were found in the
respective repositories. If local=TRUE, the Found element will always be empty.

R Any R version dependencies.

If recursive is TRUE, any package that is specified as a dependency will in turn have its dependen-
cies included (and so on), these are known as indirect dependencies. If recursive is FALSE, only
the dependencies directly stated by the package will be used.

If local is TRUE, the system will only look at the user’s local install and not online to find unresolved
dependencies.

If reduce is TRUE, the system will collapse the fields in the DependsList object
such that a minimal set of dependencies are specified (for instance if there was
‘foo, foo (>= 1.0.0), foo (>= 1.3.0)’, it would only return ‘foo (>= 1.3.0)’).

Value

An object of class "DependsList".

1612 HTMLheader

Author(s)

Jeff Gentry

See Also

installFoundDepends

Examples

pkgDepends("tools", local = FALSE)

HTMLheader Generate a standard HTML header for R help

Description

This function generates the standard HTML header used on R help pages.

Usage

HTMLheader(title = "R", logo = TRUE, up = NULL,
top = file.path(Rhome, "doc/html/index.html"),
Rhome = "",
css = file.path(Rhome, "doc/html/R.css"),
headerTitle = paste("R:", title),
outputEncoding = "UTF-8")

Arguments

title The title to display and use in the HTML headers. Should have had any HTML
escaping already done.

logo Whether to display the R logo after the title.
up Which page (if any) to link to on the “up” button.
top Which page (if any) to link to on the “top” button.
Rhome A relative path to the R home directory. See the ‘Details’.
css The relative URL for the Cascading Style Sheet.
headerTitle The title used in the headers.
outputEncoding The declared encoding for the whole page.

Details

The up and top links should be relative to the current page. The Rhome path default works with
dynamic help; for static help, a relative path (e.g. ‘../..’) to it should be used.

Value

A character vector containing the lines of an HTML header which can be used to start a page in the
R help system.

Examples

cat(HTMLheader("This is a sample header"), sep="\n")

HTMLlinks 1613

HTMLlinks Collect HTML Links from Package Documentation

Description

Compute relative file paths for URLs to other package’s installed HTML documentation.

Usage

findHTMLlinks(pkgDir = "", lib.loc = NULL, level = 0:2)

Arguments

pkgDir the top-level directory of an installed package. The default indicates no package.

lib.loc character vector describing the location of R library trees to scan: the default
indicates .libPaths().

level Which level(s) to include.

Details

findHTMLlinks tries to resolve links from one help page to another. It uses in decreasing priority

• The package in pkgDir: this is used when converting HTML help for that package (level 0).

• The base and recommended packages (level 1).

• Other packages found in the library trees specified by lib.loc in the order of the trees and
alphabetically within a library tree (level 2).

Value

A named character vector of file paths, relative to the ‘html’ directory of an installed package. So
these are of the form ‘"../../somepkg/html/sometopic.html"’.

Author(s)

Duncan Murdoch, Brian Ripley

installFoundDepends A function to install unresolved dependencies

Description

This function will take the Found element of a pkgDependsList object and attempt to install all of
the listed packages from the specified repositories.

Usage

installFoundDepends(depPkgList, ...)

1614 md5sum

Arguments

depPkgList A Found element from a pkgDependsList object

... Arguments to pass on to install.packages

Details

This function takes as input the Found list from a pkgDependsList object. This list will have ele-
ment names being URLs corresponding to repositories and the elements will be vectors of package
names. For each element, install.packages is called for that URL to install all packages listed in
the vector.

Author(s)

Jeff Gentry

See Also

pkgDepends, install.packages

Examples

Set up a temporary directory to install packages to
tmp <- tempfile()
dir.create(tmp)

pDL <- pkgDepends("tools",local=FALSE)
installFoundDepends(pDL$Found, destdir=tmp)

md5sum Compute MD5 Checksums

Description

Compute the 32-byte MD5 checksums of one or more files.

Usage

md5sum(files)

Arguments

files character. The paths of file(s) to be check-summed.

Value

A character vector of the same length as files, with names equal to files. The elements will be
NA for non-existent or unreadable files, otherwise a 32-character string of hexadecimal digits.

On Windows all files are read in binary mode (as the md5sum utilities there do): on other OSes the
files are read in the default way.

package.dependencies 1615

See Also

checkMD5sums

Examples

as.vector(md5sum(dir(R.home(), pattern="^COPY", full.names=TRUE)))

package.dependencies Check Package Dependencies

Description

Parses and checks the dependencies of a package against the currently installed version of R (and
other packages).

Usage

package.dependencies(x, check = FALSE,
depLevel = c("Depends", "Imports", "Suggests"))

Arguments

x A matrix of package descriptions as returned by available.packages.

check If TRUE, return logical vector of check results. If FALSE, return parsed list of
dependencies.

depLevel Whether to look for Depends or Suggests level dependencies.

Details

Currently we only check if the package conforms with the currently running version of R. In the
future we might add checks for inter-package dependencies.

See Also

update.packages

package_dependencies Computations on the Dependency Hierarchy of Packages

Description

Find (recursively) dependencies or reverse dependencies of packages.

Usage

package_dependencies(packages = NULL, db,
which = c("Depends", "Imports", "LinkingTo"),

recursive = FALSE, reverse = FALSE)

1616 parseLatex

Arguments

packages a character vector of package names.

db character matrix as from available.packages(), or data frame variants thereof.
Alternatively, a package database like the one available from http://cran.
R-project.org/web/packages/packages.rds.

which a character vector listing the types of dependencies, a subset of
c("Depends", "Imports", "LinkingTo", "Suggests", "Enhances").
Character string "all" is shorthand for that vector, character string "most" for
the same vector without "Enhances".

recursive logical: should (reverse) dependencies of (reverse) dependencies (and so on) be
included?

reverse logical: if FALSE (default), regular dependencies are calculated, otherwise re-
verse dependencies.

Value

Named list with one element for each package in argument packages, each consists of a character
vector naming the (recursive) (reverse) dependencies of that package.

For given packages which are not found in the db, NULL entries are returned, as opposed to
character(0) entries which indicate no dependencies.

See Also

dependsOnPkgs, and package.dependencies for checking dependencies

Examples

Not run:
pdb <- available.packages()
deps <- package_dependencies(packages = "MASS", pdb,

which = c("Depends", "Imports", "LinkingTo", "Suggests"),
recursive = TRUE, reverse = TRUE)

length(deps$MASS)

End(Not run)

parseLatex These experimental functions work with a subset of LaTeX code.

Description

The parseLatex function parses LaTeX source, producing a structured object; deparseLatex re-
verses the process. The latexToUtf8 function takes a LaTeX object, and processes a number of
different macros to convert them into the corresponding UTF-8 characters.

Usage

parseLatex(text, filename = deparse(substitute(text)), verbose = FALSE,
verbatim = c("verbatim", "verbatim*", "Sinput", "Soutput"))

deparseLatex(x, dropBraces=FALSE)
latexToUtf8(x)

http://cran.R-project.org/web/packages/packages.rds
http://cran.R-project.org/web/packages/packages.rds

parse_Rd 1617

Arguments

text A character vector containing LaTeX source code.

filename A filename to use in syntax error messages.

verbose If TRUE, print debug error messages.

verbatim A character vector containing the names of LaTeX environments holding verba-
tim text.

x A "LaTeX" object.

dropBraces Drop unnecessary braces when displaying a "LaTeX" object.

Details

The parser does not recognize all legal LaTeX code, only relatively simple examples. It does not
associate arguments with macros, that needs to be done after parsing, with knowledge of the defini-
tions of each macro. The main intention for this function is to process simple LaTeX code used in
bibliographic references, not fully general LaTeX documents.

Verbose text is allowed in two forms: the \verb macro (with single character delimiters), and envi-
ronments whose names are listed in the verbatim argument.

Value

The parseLatex() function returns a recursive object of class "LaTeX". Each of the entries in this
object will have a "latex_tag" attribute identifying its syntactic role.

The deparseLatex() function returns a single element character vector, possibly containing em-
bedded newlines.

The latexToUtf8() function returns a modified version of the "LaTeX" object that was passed to
it.

Author(s)

Duncan Murdoch

Examples

latex <- parseLatex("fa\\c{c}ile")
deparseLatex(latexToUtf8(latex))

parse_Rd Parse an Rd file

Description

This function reads an R documentation (Rd) file and parses it, for processing by other functions.

1618 parse_Rd

Usage

parse_Rd(file, srcfile = NULL, encoding = "unknown",
verbose = FALSE, fragment = FALSE, warningCalls = TRUE)

S3 method for class ’Rd’
print(x, deparse = FALSE, ...)
S3 method for class ’Rd’
as.character(x, deparse = FALSE, ...)

Arguments

file A filename or text-mode connection. At present filenames work best.

srcfile NULL, or a "srcfile" object. See the ‘Details’ section.

encoding Encoding to be assumed for input strings.

verbose Logical indicating whether detailed parsing information should be printed.

fragment Logical indicating whether file represents a complete Rd file, or a fragment.

warningCalls Logical: should parser warnings include the call?

x An object of class Rd.

deparse If TRUE, attempt to reinstate the escape characters so that the resulting characters
will parse to the same object.

... Further arguments to be passed to or from other methods.

Details

This function parses ‘Rd’ files according to the specification given in http://developer.
r-project.org/parseRd.pdf.

It generates a warning for each parse error and attempts to continue parsing. In order to continue, it
is generally necessary to drop some parts of the file, so such warnings should not be ignored.

Value

parse_Rd returns an object of class "Rd". The internal format of this object is subject to change.
The as.character() and print() methods defined for the class return character vectors and print
them, respectively.

Files without a marked encoding are by default assumed to be in the native encoding. An alternate
default can be set using the encoding argument. All text in files is translated to the UTF-8 encoding
in the parsed object.

Author(s)

Duncan Murdoch

References

http://developer.r-project.org/parseRd.pdf

See Also

Rd2HTML for the converters that use the output of parse_Rd().

http://developer.r-project.org/parseRd.pdf
http://developer.r-project.org/parseRd.pdf
http://developer.r-project.org/parseRd.pdf

pskill 1619

pskill Kill a Process

Description

pskill sends a signal to a process, usually to terminate it.

Usage

pskill(pid, signal = SIGTERM)

SIGHUP
SIGINT
SIGQUIT
SIGKILL
SIGTERM
SIGSTOP
SIGTSTP
SIGCHLD
SIGUSR1
SIGUSR2

Arguments

pid positive integers: one or more process IDs as returned by Sys.getpid.

signal integer, most often one of the symbolic constants.

Details

Signals are a C99 concept, but only a small number are required to be supported (of those listed,
only SIGINT and SIGTERM). They are much more widely used on POSIX operating systems (which
should define all of those listed here), which also support a kill system call to send a signal to a
process, most often to terminate it. Function pskill provides a wrapper: it silently ignores invalid
values of its arguments, including zero or negative pids.

In normal use on a Unix-alike, Ctrl-C sends SIGINT, Ctrl-\ sends SIGQUIT and Ctrl-Z sends
SIGTSTP: that and SIGSTOP suspend a process which can be resumed by SIGCONT.

The signals are small integers, but the actual numeric values are not standardized (and most do differ
between OSes). The SIG* objects contain the appropriate integer values for the current platform (or
NA_INTEGER_ if the signal is not defined).

Only SIGINT and SIGKILL will be defined on Windows, and pskill will always use the Windows
system call TerminateProcess.

Value

A logical vector of the same length as pid, TRUE (for success) or FALSE, invisibly.

See Also

Package parallel has several means to launch child processes which record the process IDs.

psnice

1620 psnice

Examples

Not run:
pskill(c(237, 245), SIGKILL)

End(Not run)

psnice Get or Set the Priority (Niceness) of a Process

Description

Get or set the ‘niceness’ of the current process, or one or more other processes.

Usage

psnice(pid = Sys.getpid(), value = NA_integer_)

Arguments

pid positive integers: the process IDs of one of more processes: defaults to the R
session process.

value The niceness to be set, or NA for an enquiry.

Details

POSIX operating systems have a concept of process priorities, usually from 0 to 39 (or 40) with 20
being a normal priority and (somewhat confusingly) larger numeric values denoting lower priority.
To add to the confusion, there is a ‘niceness’ value, the amount by which the priority numerically
exceeds 20 (which can be negative). Processes with high niceness will receive less CPU time than
those with normal priority. On some OSes, processes with niceness +19 are only run when the
system would otherwise be idle.

On many OSes utilities such as top report the priority and not the niceness. Niceness is used by the
utility ‘/usr/bin/renice’: ‘/usr/bin/nice’ (and /usr/bin/renice -n) specifies an increment
in niceness.

Only privileged users (usually super-users) can lower the niceness.

Windows has a slightly different concept of ‘priority classes’. We have mapped the idle priority to
niceness 19, ‘below normal’ to 15, normal to 0, ‘above normal’ to -5 and ‘realtime’ to -10. Unlike
Unix-alikes, a non-privileged user can increase the priority class on Windows (but using ‘realtime’
is inadvisable).

Value

An integer vector of previous niceness values, NA if unknown for any reason.

See Also

Various functions in package parallel create child processes whose priority may need to be changed.

pskill.

QC 1621

QC QC Checks for R Code and/or Documentation

Description

Functions for performing various quality checks.

Usage

checkDocFiles(package, dir, lib.loc = NULL)
checkDocStyle(package, dir, lib.loc = NULL)
checkReplaceFuns(package, dir, lib.loc = NULL)
checkS3methods(package, dir, lib.loc = NULL)

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory. This
should contain the subdirectories ‘R’ (for R code) and ‘man’ with R documenta-
tion sources (in Rd format). Only used if package is not given.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. The specified library trees
are used to search for package.

Details

checkDocFiles checks, for all Rd files in a package, whether all arguments shown in the usage
sections of the Rd file are documented in its arguments section. It also reports duplicated entries in
the arguments section, and ‘over-documented’ arguments which are given in the arguments section
but not in the usage. Note that the match is for the usage section and not a possibly existing synopsis
section, as the usage is what gets displayed.

checkDocStyle investigates how (S3) methods are shown in the usages of the Rd files in a pack-
age. It reports the methods shown by their full name rather than using the Rd \method markup
for indicating S3 methods. Earlier versions of R also reported about methods shown along with
their generic, which typically caused problems for the documentation of the primary argument in
the generic and its methods. With \method now being expanded in a way that class information is
preserved, joint documentation is no longer necessarily a problem. (The corresponding information
is still contained in the object returned by checkDocStyle.)

checkReplaceFuns checks whether replacement functions or S3/S4 replacement methods in the
package R code have their final argument named value.

checkS3methods checks whether all S3 methods defined in the package R code have all arguments
of the corresponding generic, with positional arguments of the generics in the same positions for
the method. As an exception, the first argument of a formula method may be called formula
even if this is not the name used by the generic. The rules when ... is involved are subtle:
see the source code. Functions recognized as S3 generics are those with a call to UseMethod in
their body, internal S3 generics (see InternalMethods), and S3 group generics (see Math). Possible
dispatch under a different name is not taken into account. The generics are sought first in the given
package, then in the base package and (currently) the packages graphics, stats, and utils added
in R 1.9.0 by splitting the former base, and, if an installed package is tested, also in the loaded
namespaces/packages listed in the package’s ‘DESCRIPTION’ Depends field.

1622 Rd2HTML

If using an installed package, the checks needing access to all R objects of the package will load
the package (unless it is the base package), after possibly detaching an already loaded version of
the package.

Value

The functions return objects of class the same as the respective function names containing the in-
formation about problems detected. There are print methods for nicely displaying the information
contained in such objects.

Rd2HTML Rd Converters

Description

These functions take the output of the parse_Rd function and produce a help page from it. As they
are mainly intended for internal use, their interfaces are subject to change.

Usage

Rd2HTML(Rd, out = "", package = "", defines = .Platform$OS.type,
Links = NULL, Links2 = NULL,
stages = "render", outputEncoding = "UTF-8",
dynamic = FALSE, no_links = FALSE, fragment = FALSE,
stylesheet = "R.css", ...)

Rd2txt(Rd, out = "", package = "", defines = .Platform$OS.type,
stages = "render", outputEncoding = "",
fragment = FALSE, options, ...)

Rd2latex(Rd, out = "", defines = .Platform$OS.type,
stages = "render", outputEncoding = "ASCII",
fragment = FALSE, ..., writeEncoding = TRUE)

Rd2ex(Rd, out = "", defines = .Platform$OS.type,
stages = "render", outputEncoding = "UTF-8", ...)

Arguments

Rd a filename or Rd object to use as input.

out a filename or connection object to which to write the output.

package the package to list in the output.

defines string(s) to use in #ifdef tests.

stages at which stage ("build", "install", or "render") should \Sexpr macros be
executed? See the notes below.

outputEncoding see the ‘Encodings’ section below.

dynamic logical: set links for render-time resolution by dynamic help system.

no_links logical: suppress hyperlinks to other help topics. Used by R CMD Rdconv.

fragment logical: should fragments of Rd files be accepted? See the notes below.

Rd2HTML 1623

stylesheet character: a URL for a stylesheet to be used in the header of the HTML output
page.

Links, Links2 NULL or a named (by topics) character vector of links, as returned by
findHTMLlinks.

options An optional named list of options to pass to Rd2txt_options.
... additional parameters to pass to parse_Rd when Rd is a filename.
writeEncoding should \inputencoding lines be written in the file for non-ASCII encodings?

Details

These functions convert help documents: Rd2HTML produces HTML, Rd2txt produces plain text,
Rd2latex produces LaTeX. Rd2ex extracts the examples in the format used by example and R
utilities.

Each of the functions accepts a filename for an Rd file, and will use parse_Rd to parse it before
applying the conversions or checks.

The difference between arguments Link and Link2 is that links are looked in them in turn, so
lazy-evaluation can be used to only do a second-level search for links if required.

Note that the default for Rd2latex is to output ASCII, including using the second option of \enc
markup. This was chosen because use of UTF-8 in LaTeX requires version ‘2005/12/01’ or later,
and even with that version the coverage of UTF-8 glyphs is not extensive (and not even as complete
as Latin-1).

Rd2txt will format text paragraphs to a width determined by width, with appropriate margins. The
default is to be close to the rendering in versions of R < 2.10.0.

Rd2txt will use directional quotes (see sQuote) if option "useFancyQuotes" is true (the default)
and the current locale uses a single-byte encoding (except C). (Directional quotes are not attempted
in CJK locales as they are usually double-width, which looks wrong with English text.)

Various aspects of formatting by Rd2txt are controlled by the options argument, documented
with the Rd2txt_options function. Changes made using options are temporary, those made with
Rd2txt_options are persistent.

When fragment = TRUE, the Rd file will be rendered with no processing of \Sexpr elements or
conditional defines using #ifdef or #ifndef. Normally a fragment represents text within a section,
but if the first element of the fragment is a section macro, the whole fragment will be rendered as a
series of sections, without the usual sorting.

Value

These functions are executed mainly for the side effect of writing the converted help page. Their
value is the name of the output file (invisibly). For Rd2latex, the output name is given an at-
tribute "latexEncoding" giving the encoding of the file in a form suitable for use with the LaTeX
‘inputenc’ package.

Encodings

Rd files are normally intended to be rendered on a wide variety of systems, so care must be taken in
the encoding of non-ASCII characters. In general, any such encoding should be declared using the
‘encoding’ section for there to be any hope of correct rendering.

For output, the outputEncoding argument will be used: outputEncoding = "" will choose the
native encoding for the current system.

If the text cannot be converted to the outputEncoding, byte substitution will be used (see iconv):
Rd2latex and Rd2ex give a warning.

1624 Rd2txt_options

Note

The \Sexpr macro is a new addition to Rd files. It includes R code that will be executed at one of
three times: build time (when a package’s source code is built into a tarball), install time (when
the package is installed or built into a binary package), and render time (when the man page is
converted to a readable format).

For example, this man page was:

1. built on 2012-10-27 at 05:08:33,

2. installed on 2012-10-27 at 05:08:33, and

3. rendered on 2012-10-27 at 05:16:57.

Author(s)

Duncan Murdoch, Brian Ripley

References

http://developer.r-project.org/parseRd.pdf

See Also

parse_Rd, checkRd, findHTMLlinks, Rd2txt_options.

Examples

Not run:
Simulate install and rendering of this page in HTML and text format:

Rd <- file.path("src/library/tools/man/Rd2HTML.Rd")

outfile <- tempfile(fileext = ".html")
browseURL(Rd2HTML(Rd, outfile, package = "tools",

stages = c("install", "render")))

outfile <- tempfile(fileext = ".txt")
file.show(Rd2txt(Rd, outfile, package = "tools",

stages = c("install", "render")))

checkRd(Rd) # A stricter test than Rd2HTML uses

End(Not run)

Rd2txt_options Set formatting options for text help

Description

This function sets various options for displaying text help.

http://developer.r-project.org/parseRd.pdf

Rd2txt_options 1625

Usage

Rd2txt_options(...)

Arguments

... A list containing named options, or options passed as individual named argu-
ments. See below for currently defined ones.

Details

This function persistently sets various formatting options for the Rd2txt function which is used in
displaying text format help. Currently defined options are:

width (default 80): The width of the output page.

minIndent (default 10): The minimum indent to use in a list.

extraIndent (default 4): The extra indent to use in each level of nested lists.

sectionIndent (default 5): The indent level for a section.

sectionExtra (default 2): The extra indentation for each nested section level.

itemBullet (default "* ", with the asterisk replaced by a Unicode bullet in UTF-8 and most Win-
dows locales): The symbol to use as a bullet in itemized lists.

enumFormat : A function to format item numbers in enumerated lists.

showURLs (default FALSE): Whether to show URLs when expanding \href tags.

code_quote (default TRUE): Whether to render \code and similar with single quotes.

underline_titles default TRUE): Whether to render section titles with underlines (via backspacing).

Value

If called with no arguments, returns all option settings in a list. Otherwise, it changes the named
settings and invisibly returns their previous values.

Author(s)

Duncan Murdoch

See Also

Rd2txt

Examples

saveOpts <- Rd2txt_options()
saveOpts
Rd2txt_options(minIndent=4)
Rd2txt_options()
Rd2txt_options(saveOpts)
Rd2txt_options()

1626 Rdiff

Rdiff Difference R Output Files

Description

Given two R output files, compute differences ignoring headers, footers and some other differences.

Usage

Rdiff(from, to, useDiff = FALSE, forEx = FALSE, nullPointers = TRUE,
Log = FALSE)

Arguments

from, to filepaths to be compared

useDiff should diff always be used to compare results?

forEx logical: extra pruning for ‘-Ex.Rout’ files to exclude the header.

nullPointers logical: should the displayed addresses of pointers be set to 0x00000000 before
comparison?

Log logical: should the returned value include a log of differences found?

Details

The R startup banner and any timing information from R CMD BATCH are removed from both
files, together with lines about loading packages. UTF-8 fancy quotes (see sQuote) and on Win-
dows, Windows’ so-called ‘smart quotes’ are mapped to a simple quote. Addresses of environ-
ments, compiled bytecode and other exotic types expressed as hex addresses (e.g. <environment:
0x12345678>) are mapped to 0x00000000. The files are then compared line-by-line. If there are
the same number of lines and useDiff is false, a simple diff-like display of differences is printed,
otherwise diff -bw is called on the edited files.

As from R 2.14.0 this can compare uncompressed PDF files, ignoring differences in creation and
modification dates.

Value

If Log is true, a list with components status (see below) and out, a character vector of descriptions
of differences, possibly of zero length.

Otherwise, a status indicator, 0L if and only if no differences were found.

See Also

The shell script run as R CMD Rdiff.

Rdindex 1627

Rdindex Generate Index from Rd Files

Description

Print a 2-column index table with names and titles from given R documentation files to a given
output file or connection. The titles are nicely formatted between two column positions (typically
25 and 72, respectively).

Usage

Rdindex(RdFiles, outFile = "", type = NULL,
width = 0.9 * getOption("width"), indent = NULL)

Arguments

RdFiles a character vector specifying the Rd files to be used for creating the index, either
by giving the paths to the files, or the path to a single directory with the sources
of a package.

outFile a connection, or a character string naming the output file to print to. "" (the
default) indicates output to the console.

type a character string giving the documentation type of the Rd files to be included in
the index, or NULL (the default). The type of an Rd file is typically specified via
the \docType tag; if type is "data", Rd files whose only keyword is datasets
are included as well.

width a positive integer giving the target column for wrapping lines in the output.

indent a positive integer specifying the indentation of the second column. Must not be
greater than width/2, and defaults to width/3.

Details

If a name is not a valid alias, the first alias (or the empty string if there is none) is used instead.

RdTextFilter Select text in an Rd file.

Description

This function blanks out all non-text in an Rd file, for spell checking or other uses.

Usage

RdTextFilter(ifile, encoding = "unknown", keepSpacing = TRUE,
drop = character(), keep = character())

1628 Rdutils

Arguments

ifile An input file specified as a filename or connection, or an "Rd" object from
parse_Rd.

encoding An encoding name to pass to parse_Rd.

keepSpacing Whether to try to leave the text in the same lines and columns as in the original
file.

drop Additional sections of the Rd to drop.

keep Sections of the Rd file to keep.

Details

This function parses the Rd file, then walks through it, element by element. Items with tag "TEXT"
are kept in the same position as they appeared in the original file, while other parts of the file are
replaced with blanks, so a spell checker such as aspell can check only the text and report the
position in the original file. (If keepSpacing is FALSE, blank filling will not occur, and text will not
be output in its original location.)

By default, the tags \S3method, \S4method, \command, \docType, \email, \encoding, \file, \key-
word, \link, \linkS4class, \method, \pkg, and \var are skipped. Additional tags can be skipped by
listing them in the drop argument; listing tags in the keep argument will stop them from being
skipped. It is also possible to keep any of the c("RCODE", "COMMENT", "VERB") tags, which
correspond to R-like code, comments, and verbatim text respectively, or to drop "TEXT".

Value

A character vector which if written to a file, one element per line, would duplicate the text elements
of the original Rd file.

Note

The filter attempts to merge text elements into single words when markup in the Rd file is used to
highlight just the start of a word.

Author(s)

Duncan Murdoch

See Also

aspell, for which this is an acceptable filter.

Rdutils Rd Utilities

Description

Utilities for computing on the information in Rd objects.

Usage

Rd_db(package, dir, lib.loc = NULL)

read.00Index 1629

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory. This
should contain the subdirectory ‘man’ with R documentation sources (in Rd for-
mat). Only used if package is not given.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. The specified library trees
are used to search for package.

Details

Rd_db builds a simple database of all Rd objects in a package, as a list of the results of running
parse_Rd on the Rd source files in the package and processing platform conditionals.

See Also

parse_Rd

Examples

Build the Rd db for the (installed) base package.
db <- Rd_db("base")

Keyword metadata per Rd object.
keywords <- lapply(db, tools:::.Rd_get_metadata, "keyword")
Tabulate the keyword entries.
kw_table <- sort(table(unlist(keywords)))
The 5 most frequent ones:
rev(kw_table)[1 : 5]
The "most informative" ones:
kw_table[kw_table == 1]

Concept metadata per Rd file.
concepts <- lapply(db, tools:::.Rd_get_metadata, "concept")
How many files already have \concept metadata?
sum(sapply(concepts, length) > 0)
How many concept entries altogether?
length(unlist(concepts))

read.00Index Read 00Index-style Files

Description

Read item/description information from ‘00Index’-like files. Such files are description lists ren-
dered in tabular form, and currently used for the ‘INDEX’ and ‘demo/00Index’ files of add-on pack-
ages.

Usage

read.00Index(file)

1630 readNEWS

Arguments

file the name of a file to read data values from. If the specified file is "", then input
is taken from the keyboard (in this case input can be terminated by a blank line).
Alternatively, file can be a connection, which will be opened if necessary,
and if so closed at the end of the function call.

Value

A character matrix with 2 columns named "Item" and "Description" which hold the items and
descriptions.

See Also

formatDL for the inverse operation of creating a 00Index-style file from items and their descriptions.

readNEWS Read R’s NEWS file or a similar one

Description

Read/check R’s ‘NEWS’ file or a similarly formatted one. This was an experimental feature added in
R 2.4.0: as from R 2.12.0 the preferred format is ‘NEWS.Rd’.

Usage

readNEWS(file = file.path(R.home(), "NEWS"), trace = FALSE,
chop = c("first", "1", "par1", "keepAll"))

checkNEWS(file = file.path(R.home(), "NEWS"))

Arguments

file the name of the file which the data are to be read from. Alternatively, file can
be a connection, which will be opened if necessary, and can also be a complete
URL. For more details, see the file argument of read.table.

trace logical indicating if the recursive reading should be traced, i.e., print what it is
doing.

chop a character string specifying how the news entries should be chopped;
chop = "keepAll" saves the full entries.

Details

readNEWS() reads a pre-R-2.12.0-style ‘NEWS’ file; checkNEWS() checks for common errors in
formatting. Currently it detects an incorrect number of spaces before the "o" item marker.

If non-ASCII characters are needed, the ‘NEWS’ file may be encoded in UTF-8 with a byte-order
mark (BOM) at the beginning, which readNEWS() will recognize. Other encodings will display
incorrectly on some systems. However, BOMs are discouraged on many systems and not all editors
recognize them, so ‘NEWS’ files should normally be written in ASCII.

showNonASCII 1631

Value

readNEWS() returns an (S3) object of class "newsTree"; effectively a list of lists which is a tree
of NEWS entries.

checkNEWS() returns TRUE if no suspected errors are found, or prints a message for each suspected
error and returns FALSE.

Note that this was only ever experimental and may be removed soon, since the NEWS-file format
is not longer supported (but there are examples ‘ONEWS’, ‘OONEWS’ and perhaps in packages).

Examples

NEWStr <- readNEWS(trace = TRUE)# chop = "first" (= "first non-empty")
keep the full NEWS entry text i.e. "no chopping":
NEWStrA <- readNEWS(chop = "keepAll")
object.size(NEWStr)
object.size(NEWStrA) ## (no chopping) ==> about double the size

str(NEWStr, max.level = 3)

str(NEWStr[[c("2.3", "2.3.1")]], max.level=2, vec.len=1)

NEWStr [[c("2.3", "2.3.1", "NEW FEATURES")]]
NEWStrA[[c("2.4", "2.4.0", "NEW FEATURES")]]

Check the current NEWS file

stopifnot(checkNEWS())

showNonASCII Pick Out Non-ASCII Characters

Description

This function prints elements of a character vector which contain non-ASCII bytes, printing such
bytes as a escape like ‘<fc>’.

Usage

showNonASCII(x)

showNonASCIIfile(file)

Arguments

x a character vector.
file path to a file.

Details

This was originally written to help detect non-portable text in files in packages.

It prints all element of x which contain non-ASCII characters, preceded by the element number and
with non-ASCII bytes highlighted via iconv(sub = "byte").

1632 startDynamicHelp

Value

The elements of x containing non-ASCII characters will be returned invisibly.

Examples

out <- c(
"fa\xE7ile test of showNonASCII():",
"\\details{",
" This is a good line",
" This has an \xfcmlaut in it.",
" OK again.",
"}")
f <- tempfile()
cat(out, file = f, sep = "\n")

showNonASCIIfile(f)
unlink(f)

startDynamicHelp Start the Dynamic HTML Help System

Description

This function starts the internal help server, so that HTML help pages are rendered when requested.

Usage

startDynamicHelp(start=TRUE)

Arguments

start logical: whether to start or shut down the dynamic help system.

Details

This function starts the internal HTTP server, which runs on the loopback interface (127.0.0.1).
If options("help.ports") is set to a vector of integer values, startDynamicHelp will try those
ports in order; otherwise, it tries up to 10 random ports to find one not in use. It can be disabled by
setting the environment variable R_DISABLE_HTTPD to a non-empty value.

startDynamicHelp is called by functions that need to use the server, so would rarely be called
directly by a user.

Note that options(help_type="html") must be set to actually make use of HTML help, although
it might be the default for an R installation.

If the server cannot be started or is disabled, help.start will be unavailable and requests for
HTML help will give text help (with a warning).

The browser in use does need to be able to connect to the loopback interface: occasionally it is set
to use a proxy for HTTP on all interfaces, which will not work – the solution is to add an exception
for 127.0.0.1.

Value

The chosen port number is returned invisibly (which will be 0 if the server has been stopped).

SweaveTeXFilter 1633

See Also

help.start and help(help_type = "html") will attempt to start the HTTP server if required

Rd2HTML is used to render the package help pages.

SweaveTeXFilter Strip R code out of Sweave file

Description

This function blanks out code chunks and Noweb markup in an Sweave input file, for spell checking
or other uses.

Usage

SweaveTeXFilter(ifile, encoding = "unknown")

Arguments

ifile Input file or connection.

encoding Text encoding to pass to readLines.

Details

This function blanks out all Noweb markup and code chunks from an Sweave input file, leaving
behind the LaTeX source, so that a LaTeX-aware spelling checker can check it and report errors in
their original locations.

Value

A character vector which if written to a file, one element per line, would duplicate the text elements
of the original Rd file.

Author(s)

Duncan Murdoch

See Also

aspell, for which this is used with filter="Sweave".

1634 testInstalledPackage

testInstalledPackage Test Installed Packages

Description

These functions allow an installed package to be tested, or all base and recommended packages.

Usage

testInstalledPackage(pkg, lib.loc = NULL, outDir = ".",
types = c("examples", "tests", "vignettes"),
srcdir = NULL, Ropts = "")

testInstalledPackages(outDir = ".", errorsAreFatal = TRUE,
scope = c("both", "base", "recommended"),
types = c("examples", "tests", "vignettes"),
srcdir = NULL, Ropts = "")

testInstalledBasic(scope = c("basic", "devel", "both"))

Arguments

pkg name of an installed package.
lib.loc library path(s) in which to look for the package. See library.
outDir the directory into which to write the output files: this should already exist.
types type(s) of tests to be done.
errorsAreFatal logical: should testing terminate at the first error?
srcdir Optional directory to look for .save files.
Ropts Additional options such as ‘-d valgrind’ to be passed to R CMD BATCH when

running examples or tests.
scope Which set(s) should be tested?

Details

These tests depend on having the package example files installed (which is the default). If package-
specific tests are found in a ‘tests’ directory they can be tested: these are not installed by default,
but will be if R CMD INSTALL --install-tests was used. Finally, the R code in any vignettes
can be extracted and tested.
Package tests are run in a ‘pkg-tests’ subdirectory of ‘outDir’, and leave their output there.
testInstalledBasic runs the basic tests, if installed. This should be run with LC_COLLATE=C set:
the function tries to set this by it may not work on all OSes. For non-English locales it may be
desirable to set environment variables LANGUAGE to ‘en’ and LC_TIME to ‘C’ to reduce the number
of differences from reference results.
The package-specific tests for the base and recommended packages are an optional part of the
install. Currently testing requires a Unix-like diff for a full report if more than simple differences
are found.

Value

Invisibly 0L for success, 1L for failure.

texi2dvi 1635

texi2dvi Compile LaTeX Files

Description

Run latex and bibtex until all cross-references are resolved and create either a dvi or PDF file.

Usage

texi2dvi(file, pdf = FALSE, clean = FALSE, quiet = TRUE,
texi2dvi = getOption("texi2dvi"),
texinputs = NULL, index = TRUE)

texi2pdf(file, clean = FALSE, quiet = TRUE,
texi2dvi = getOption("texi2dvi"),
texinputs = NULL, index = TRUE)

Arguments

file character. Name of LaTeX source file.

pdf logical. If TRUE, a PDF file is produced instead of the default dvi file (texi2dvi
command line option ‘--pdf’).

clean logical. If TRUE, all auxiliary files are removed (texi2dvi command line option
‘--clean’). May not work on some platforms.

quiet logical. No output unless an error occurs. Ignored if emulation (see the
texi2dvi argument) is used.

texi2dvi character (or NULL). Script or program used to compile a TeX file to dvi or PDF,
respectively. The default (selected by "" or NULL) is to look for an executable
on the search path and otherwise emulate the script with system calls.

texinputs NULL or a character vector of paths to add to the LaTeX and bibtex input search
paths.

index logical: should indices be prepared?

Details

texi2pdf is a wrapper for the common case of texi2dvi(pdf = TRUE).

Despite the name, this is used in R to compile LaTeX files, specifically those generated from
vignettes. It ensures that the ‘R_HOME/share/texmf’ directory is in the TEXINPUTS path, so
R style files such as ‘Sweave’ and ‘Rd’ will be found. The search path used is first the ex-
isting TEXINPUTS setting (or the current directory if unset), then elements of texinputs, then
‘R_HOME/share/texmf’ and finally the default path. Analogous changes are made to BIBINPUTS
and BSTINPUTS settings.

MiKTeX has a texi2dvi executable but no other Windows TeX installation that we know of does,
so emulation is used on e.g. TeXLive installations on Windows.

Occasionally indices contain special characters which cause indexing to fail (particularly when us-
ing the ‘hyperref’ LaTeX package) even on valid input. The argument index = FALSE is provided
to allow package manuals to be made when this happens: it uses emulation.

1636 toHTML

Value

Invisible NULL. Used for the side effect of creating a dvi or PDF file in the current working directory
(and maybe other files, especially if clean = FALSE).

Note

There are various versions of the texi2dvi script on Unix-alikes and quite a number of bugs have
been seen, some of which this R wrapper works around.

One that is current is that it may not work correctly for paths which contain spaces, nor even if the
absolute path to a file would contain spaces.

The three possible approaches all have their quirks. For example the Unix-alike texi2dvi script
removes ancillary files that already exist but the other two approaches do not (and may get confused
by such files).

Author(s)

Originally Achim Zeileis but largely rewritten by R-core.

toHTML Display an object in HTML.

Description

This generic function generates a complete HTML page from an object.

Usage

toHTML(x, ...)
S3 method for class ’packageIQR’
toHTML(x, ...)
S3 method for class ’news_db’
toHTML(x, ...)

Arguments

x An object to display.

... Optional parameters for methods; the "packageIQR" and "news_db" methods
pass these to HTMLheader.

Value

A character vector to display the object x. The "packageIQR" method is designed to display lists
in the R help system.

See Also

HTMLheader

Examples

cat(toHTML(demo(package="base")), sep="\n")

tools-deprecated 1637

tools-deprecated Deprecated Objects in Package tools

Description

The functions or variables listed here are provided for compatibility with older versions of R only,
and may be defunct as soon as of the next release.

See Also

Deprecated, Defunct

toRd Generic function to convert object to a fragment of Rd code.

Description

Methods for this function render their associated classes as a fragment of Rd code, which can then
be rendered into text, HTML, or LaTeX.

Usage

toRd(obj, ...)
S3 method for class ’bibentry’
toRd(obj, style = NULL, ...)

Arguments

obj The object to be rendered.

style The style to be used in converting a bibentry object.

... Additional arguments used by methods.

Details

See bibstyle for a discussion of styles. The default style = NULL value gives the default style.

Value

Returns a character vector containing a fragment of Rd code that could be parsed and rendered.
The default method converts obj to mode character, then escapes any Rd markup within it. The
bibentry method converts an object of that class to markup appropriate for use in a bibliography.

1638 undoc

undoc Find Undocumented Objects

Description

Finds the objects in a package which are undocumented, in the sense that they are visible to the user
(or data objects or S4 classes provided by the package), but no documentation entry exists.

Usage

undoc(package, dir, lib.loc = NULL)

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory. This
must contain the subdirectory ‘man’ with R documentation sources (in Rd for-
mat), and at least one of the ‘R’ or ‘data’ subdirectories with R code or data
objects, respectively.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. The specified library trees
are used to search for package.

Details

This function is useful for package maintainers mostly. In principle, all user-level R objects should
be documented.

The base package is special as it contains the primitives and these do not have definitions available
at code level. We provide equivalent closures in environments .ArgsEnv and .GenericArgsEnv in
the base package that are used for various purposes: undoc("base") checks that all the primitives
that are not language constructs are prototyped in those environments and no others are.

Value

An object of class "undoc" which is a list of character vectors containing the names of the undocu-
mented objects split according to documentation type.

There is a print method for nicely displaying the information contained in such objects.

See Also

codoc, QC

Examples

undoc("tools") # Undocumented objects in ’tools’

vignetteDepends 1639

vignetteDepends Retrieve Dependency Information for a Vignette

Description

Given a vignette name, will create a DependsList object that reports information about the pack-
ages the vignette depends on.

Usage

vignetteDepends(vignette, recursive = TRUE, reduce = TRUE,
local = TRUE, lib.loc = NULL)

Arguments

vignette The path to the vignette source

recursive Whether or not to include indirect dependencies

reduce Whether or not to collapse all sets of dependencies to a minimal value

local Whether or not to search only locally

lib.loc What libraries to search in locally

Details

If recursive is TRUE, any package that is specified as a dependency will in turn have its dependen-
cies included (and so on), these are known as indirect dependencies. If recursive is FALSE, only the
dependencies directly named by the vignette will be used.

If local is TRUE, the system will only look at the user’s local machine and not online to find
dependencies.

If reduce is TRUE, the system will collapse the fields in the DependsList object
such that a minimal set of dependencies are specified (for instance if there was
‘foo, foo (>= 1.0.0), foo (>= 1.3.0’, it would only return ‘foo (>= 1.3.0)’).

Value

An object of class "DependsList".

Author(s)

Jeff Gentry

See Also

pkgDepends

Examples

This may not be installed
gridEx <- system.file("doc", "grid.Rnw", package = "grid")
vignetteDepends(gridEx)

1640 write_PACKAGES

write_PACKAGES Generate PACKAGES files

Description

Generate ‘PACKAGES’ and ‘PACKAGES.gz’ files for a repository of source or Mac/Windows binary
packages.

Usage

write_PACKAGES(dir = ".", fields = NULL,
type = c("source", "mac.binary", "win.binary"),
verbose = FALSE, unpacked = FALSE, subdirs = FALSE,
latestOnly = TRUE, addFiles = FALSE)

Arguments

dir Character vector describing the location of the repository (directory including
source or binary packages) to generate the ‘PACKAGES’ and ‘PACKAGES.gz’ files
from and write them to.

fields a character vector giving the fields to be used in the ‘PACKAGES’ and
‘PACKAGES.gz’ files in addition to the default ones, or NULL (default). The de-
fault corresponds to the fields needed by available.packages: "Package",
"Version", "Priority", "Depends", "Imports", "LinkingTo", "Suggests",
"Enhances", "OS_type", "License" and "Archs", and those fields will always
be included, plus the file name in field "File" if addFile = TRUE and the path
to the subdirectory in field "Path" if subdirectories are used.

type Type of packages: currently source ‘.tar.gz’ archives, and Mac or Windows
binary (‘.tgz’ or ‘.zip’, respectively) packages are supported. Defaults to
"win.binary" on Windows and to "source" otherwise.

verbose logical. Should packages be listed as they are processed?

unpacked a logical indicating whether the package contents are available in unpacked form
or not (default).

subdirs either logical (to indicate if subdirectories should be included, recursively) or a
character vector of name of subdirectories to include.

latestOnly logical: if multiple versions of a package are available should only the latest
version be included?

addFiles logical: should the filenames be included as field ‘File’ in the ‘PACKAGES’ file.

Details

write_PACKAGES scans the named directory for R packages, extracts information from each pack-
age’s ‘DESCRIPTION’ file, and writes this information into the ‘PACKAGES’ and ‘PACKAGES.gz’ files.

Including non-latest versions of packages is only useful if they have less constraining version re-
quirements, so for example latestOnly = FALSE could be used for a source repository when
‘foo_1.0’ depends on ‘R >= 2.15.0’ but ‘foo_0.9’ is available which depends on ‘R >= 2.11.0’.

Support for repositories with subdirectories and hence for subdirs != FALSE was added in R
2.7.0: this depends on recording a "Path" field in the ‘PACKAGES’ file.

xgettext 1641

Support for more general file names (e.g. other types of compression) via a "File" field in the
‘PACKAGES’ file was added in R 2.10.0 and can be used by download.packages. If the file names
are not of the standard form, use addFiles = TRUE.

type = "win.binary" uses unz connections to read all ‘DESCRIPTION’ files contained in the
(zipped) binary packages for Windows in the given directory dir, and builds files ‘PACKAGES’ and
‘PACKAGES.gz’ files from this information.

Value

Invisibly returns the number of packages described in the resulting ‘PACKAGES’ and ‘PACKAGES.gz’
files. If 0, no packages were found and no files were written.

Note

Processing ‘.tar.gz’ archives to extract the ‘DESCRIPTION’ files is quite slow.

This function can be useful on other OSes to prepare a repository to be accessed by Windows
machines, so type = "win.binary" should work on all OSes.

Author(s)

Uwe Ligges and R-core.

See Also

See read.dcf and write.dcf for reading ‘DESCRIPTION’ files and writing the ‘PACKAGES’ and
‘PACKAGES.gz’ files.

Examples

Not run:
write_PACKAGES("c:/myFolder/myRepository") # on Windows
write_PACKAGES("/pub/RWin/bin/windows/contrib/2.9",

type="win.binary") # on Linux

End(Not run)

xgettext Extract Translatable Messages from R Files in a Package

Description

For each file in the ‘R’ directory (including system-specific subdirectories) of a package, extract the
unique arguments passed to stop, warning, message, gettext and gettextf, or to ngettext.

Usage

xgettext(dir, verbose = FALSE, asCall = TRUE)

xngettext(dir, verbose = FALSE)

xgettext2pot(dir, potFile)

1642 xgettext

Arguments

dir the directory of a source package.

verbose logical: should each file be listed as it is processed?

asCall logical: if TRUE each argument is returned whole, otherwise the strings within
each argument are extracted.

potFile name of po template file to be produced. Defaults to ‘R-pkgname.pot’ where
pkgname is the basename of ‘dir’.

Details

Leading and trailing white space (space, tab and linefeed) is removed for calls to gettext,
gettextf, stop, warning, and message, as it is by the internal code that passes strings for transla-
tion.

We look to see if these functions were called with domain = NA and if so omit the call if
asCall = TRUE: note that the call might contain a call to gettext which would be visible if
asCall = FALSE.

xgettext2pot calls xgettext and then xngettext, and writes a PO template file for use with the
GNU Gettext tools. This ensures that the strings for simple translation are unique in the file (as
GNU Gettext requires), but does not do so for ngettext calls (and the rules are not stated in the
Gettext manual).

If applied to the base package, this also looks in the ‘.R’ files in ‘R_HOME/share/R’.

Value

For xgettext, a list of objects of class "xgettext" (which has a print method), one per source
file that potentially contains translatable strings.

For xngettext, a list of objects of class "xngettext", which are themselves lists of length-2
character strings.

Examples

Not run: ## in a source-directory build of R:
xgettext(file.path(R.home(), "src", "library", "splines"))

End(Not run)

Chapter 12

The utils package

utils-package The R Utils Package

Description

R utility functions

Details

This package contains a collection of utility functions.

For a complete list, use library(help="utils").

Author(s)

R Core Team and contributors worldwide

Maintainer: R Core Team <R-core@r-project.org>

adist Approximate String Distances

Description

Compute the approximate string distance between character vectors. The distance is a generalized
Levenshtein (edit) distance, giving the minimal possibly weighted number of insertions, deletions
and substitutions needed to transform one string into another.

Usage

adist(x, y = NULL, costs = NULL, counts = FALSE, fixed = TRUE,
partial = !fixed, ignore.case = FALSE, useBytes = FALSE)

1643

1644 adist

Arguments

x a character vector.

y a character vector, or NULL (default) indicating taking x as y.

costs a numeric vector or list with names partially matching ‘insertions’,
‘deletions’ and ‘substitutions’ giving the respective costs for computing
the Levenshtein distance, or NULL (default) indicating using unit cost for all
three possible transformations.

counts a logical indicating whether to optionally return the transformation counts (num-
bers of insertions, deletions and substitutions) as the "counts" attribute of the
return value.

fixed a logical. If TRUE (default), the x elements are used as string literals. Oth-
erwise, they are taken as regular expressions and partial = TRUE is im-
plied (corresponding to the approximate string distance used by agrep with
fixed = FALSE.

partial a logical indicating whether the transformed x elements must exactly match the
complete y elements, or only substrings of these. The latter corresponds to the
approximate string distance used by agrep (by default).

ignore.case a logical. If TRUE, case is ignored for computing the distances.

useBytes a logical. If TRUE distance computations are done byte-by-byte rather than
character-by-character.

Details

The (generalized) Levenshtein (or edit) distance between two strings s and t is the minimal pos-
sibly weighted number of insertions, deletions and substitutions needed to transform s into t (so
that the transformation exactly matches t). This distance is computed for partial = FALSE,
currently using a dynamic programming algorithm (see, e.g., http://en.wikipedia.org/wiki/
Levenshtein_distance) with space and time complexity O(mn), where m and n are the lengths
of s and t , respectively. Additionally computing the transformation sequence and counts is
O(max(m,n)).

The generalized Levenshtein distance can also be used for approximate (fuzzy) string matching, in
which case one finds the substring of t with minimal distance to the pattern s (which could be taken
as a regular expression, in which case the principle of using the leftmost and longest match applies),
see, e.g., http://en.wikipedia.org/wiki/Approximate_string_matching. This distance is
computed for partial = TRUE using ‘tre’ by Ville Laurikari (http://http://laurikari.net/
tre/) and corresponds to the distance used by agrep. In this case, the given cost values are coerced
to integer.

Note that the costs for insertions and deletions can be different, in which case the distance between
s and t can be different from the distance between t and s .

Value

A matrix with the approximate string distances of the elements of x and y, with rows and columns
corresponding to x and y, respectively.

If counts is TRUE, the transformation counts are returned as the "counts" attribute of this matrix,
as a 3-dimensional array with dimensions corresponding to the elements of x, the elements of y,
and the type of transformation (insertions, deletions and substitutions), respectively. Additionally,
if partial = FALSE, the transformation sequences are returned as the "trafos" attribute of the
return value, as character strings with elements ‘M’, ‘I’, ‘D’ and ‘S’ indicating a match, insertion,

http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/Approximate_string_matching
http://http://laurikari.net/tre/
http://http://laurikari.net/tre/

alarm 1645

deletion and substitution, respectively. If partial = FALSE, the offsets (positions of the first and
last element) of the matched substrings are returned as the "offsets" attribute of the return value
(with both offsets −1 in case of no match).

See Also

agrep for approximate string matching (fuzzy matching) using the generalized Levenshtein dis-
tance.

Examples

Cf. http://en.wikipedia.org/wiki/Levenshtein_distance
adist("kitten", "sitting")
To see the transformation counts for the Levenshtein distance:
drop(attr(adist("kitten", "sitting", counts = TRUE), "counts"))
To see the transformation sequences:
attr(adist(c("kitten", "sitting"), counts = TRUE), "trafos")

Cf. the examples for agrep:
adist("lasy", "1 lazy 2")
For a "partial approximate match" (as used for agrep):
adist("lasy", "1 lazy 2", partial = TRUE)

alarm Alert the User

Description

Gives an audible or visual signal to the user.

Usage

alarm()

Details

alarm() works by sending a "\a" character to the console. On most platforms this will ring a bell,
beep, or give some other signal to the user (unless standard output has been redirected).

As from R 2.14.0 it attempts to flush the console (see flush.console).

Value

No useful value is returned.

Examples

alarm()

1646 apropos

apropos Find Objects by (Partial) Name

Description

apropos() returns a character vector giving the names of all objects in the search list matching
what.

find() is a different user interface to the same task.

Usage

apropos(what, where = FALSE, ignore.case = TRUE, mode = "any")

find(what, mode = "any", numeric = FALSE, simple.words = TRUE)

Arguments

what character string with name of an object, or more generally a regular expression
to match against.

where, numeric a logical indicating whether positions in the search list should also be returned

ignore.case logical indicating if the search should be case-insensitive, TRUE by de-
fault. Note that in R versions prior to 2.5.0, the default was implicitly
ignore.case = FALSE.

mode character; if not "any", only objects whose mode equals mode are searched.

simple.words logical; if TRUE, the what argument is only searched as whole word.

Details

If mode != "any" only those objects which are of mode mode are considered. If where is TRUE, the
positions in the search list are returned as the names attribute.

find is a different user interface for the same task as apropos. However, by default
(simple.words == TRUE), only full words are searched with grep(fixed = TRUE).

Value

For apropos character vector, sorted by name, possibly with names giving the (numerical) positions
on the search path.

For find, either a character vector of environment names, or for numeric = TRUE, a numerical
vector of positions on the search path, with names giving the names of the corresponding environ-
ments.

Author(s)

Kurt Hornik and Martin Maechler (May 1997).

See Also

glob2rx to convert wildcard patterns to regular expressions.

objects for listing objects from one place, help.search for searching the help system, search for
the search path.

aregexec 1647

Examples

require(stats)

Not run: apropos("lm")
apropos("GLM") # more than a dozen
that may include internal objects starting ’.__C__’ if
methods is attached
apropos("GLM", ignore.case = FALSE) # not one
apropos("lq")

cor <- 1:pi
find("cor") #> ".GlobalEnv" "package:stats"
find("cor", numeric=TRUE) # numbers with these names
find("cor", numeric=TRUE, mode="function")# only the second one
rm(cor)

Not run: apropos(".", mode="list") # a long list

need a DOUBLE backslash ’\\’ (in case you don’t see it anymore)
apropos("\\[")

Not run: # everything
length(apropos("."))

those starting with ’pr’
apropos("^pr")

the 1-letter things
apropos("^.$")
the 1-2-letter things
apropos("^..?$")
the 2-to-4 letter things
apropos("^.{2,4}$")

the 8-and-more letter things
apropos("^.{8,}$")
table(nchar(apropos("^.{8,}$")))

End(Not run)

aregexec Approximate String Match Positions

Description

Determine positions of approximate string matches.

Usage

aregexec(pattern, text, max.distance = 0.1, costs = NULL,
ignore.case = FALSE, fixed = FALSE, useBytes = FALSE)

1648 aregexec

Arguments

pattern a non-empty character string or a character string containing a regular expression
(for fixed = FALSE) to be matched. Coerced by as.character to a string if
possible.

text character vector where matches are sought. Coerced by as.character to a
character vector if possible.

max.distance maximum distance allowed for a match. See agrep.

costs cost of transformations. See agrep.

ignore.case a logical. If TRUE, case is ignored for computing the distances.

fixed If TRUE, the pattern is matched literally (as is). Otherwise (default), it is matched
as a regular expression.

useBytes a logical. If TRUE comparisons are byte-by-byte rather than character-by-
character.

Details

aregexec provides a different interface to approximate string matching than agrep (along the lines
of the interfaces to exact string matching provided by regexec and grep).

Note that by default, agrep performs literal matches, whereas aregexec performs regular expres-
sion matches.

See agrep and adist for more information about approximate string matching and distances.

Comparisons are byte-by-byte if pattern or any element of text is marked as "bytes".

Value

A list of the same length as text, each element of which is either −1 if there is no match, or a
sequence of integers with the starting positions of the match and all substrings corresponding to
parenthesized subexpressions of pattern, with attribute "match.length" an integer vector giving
the lengths of the matches (or −1 for no match).

See Also

regmatches for extracting the matched substrings.

Examples

Cf. the examples for agrep.
x <- c("1 lazy", "1", "1 LAZY")
aregexec("laysy", x, max.distance = 2)
aregexec("(lay)(sy)", x, max.distance = 2)
aregexec("(lay)(sy)", x, max.distance = 2, ignore.case = TRUE)
m <- aregexec("(lay)(sy)", x, max.distance = 2)
regmatches(x, m)

arrangeWindows 1649

arrangeWindows Rearrange windows in the R GUI.

Description

This function allows you to tile or cascade windows, or to minimize or restore them.

Usage

arrangeWindows(action, windows, preserve = TRUE, outer = FALSE)

Arguments

action The action to perform on the windows. The choices are
c("vertical", "horizontal", "cascade", "minimize", "restore")
with default "vertical"; see the Details below for the interpretation. Abbrevi-
ations may be used.

windows A list of window handles, by default produced by getWindowsHandles().

preserve If TRUE, when tiling preserve the outer boundary of the collection of windows;
otherwise make them as large as will fit.

outer This argument is only used in MDI mode. If TRUE, tile the windows on the
system desktop. Otherwise, tile them within the MDI frame.

Details

The actions are as follows:

"vertical" Tile vertically.

"horizontal" Tile horizontally.

"cascade" Cascade the windows.

"minimize" Minimize all of the windows.

"restore" Restore all of the windows to normal size (not minimized, not maximized).

The tiling and cascading are done by the standard Windows API functions, but unlike those func-
tions, they will apply to all of the windows in the windows list.

By default, windows is set to the result of getWindowsHandles() (with one exception described
below). This will select windows belonging to the current R process. However, if the global en-
vironment contains a variable named .arrangeWindowsDefaults, it will be used as the argument
list instead. See the getWindowsHandles man page for a discussion of the optional arguments to
that function.

When action="restore" is used with windows unspecified, minimized = TRUE is added to the
argument list of getWindowsHandles so that minimized windows will be restored.

In MDI mode, by default tiling and cascading will happen within the R GUI frame. However, if
outer=TRUE, tiling is done on the system desktop. This will generally not give desirable results if
any R child windows are included within windows.

Value

This function is called for the side effect of arranging the windows. The list of window handles is
returned invisibly.

1650 aspell

Author(s)

Duncan Murdoch

See Also

getWindowsHandles

Examples

Not run:
arrangeWindows("v")
This default is useful only in SDI mode: it will tile any Firefox window
along with the R windows
.arrangeWindowsDefaults <- list(c("R", "all"), pattern=c("", "Firefox"))
arrangeWindows("v")

End(Not run)

aspell Spell Check Interface

Description

Spell check given files via Aspell, Hunspell or Ispell.

Usage

aspell(files, filter, control = list(), encoding = "unknown",
program = NULL)

Arguments

files a character vector with the names of files to be checked.

filter an optional filter for processing the files before spell checking, given as either a
function (with formals ifile and encoding), or a character string specifying a
built-in filter, or a list with the name of a built-in filter and additional arguments
to be passed to it. See Details for available filters. If missing or NULL, no filtering
is performed.

control a list or character vector of control options for the spell checker.

encoding the encoding of the files. Recycled as needed.

program a character string giving the name (if on the system path) or full path of the
spell check program to be used, or NULL (default). By default, the system path
is searched for aspell, hunspell and ispell (in that order), and the first one
found is used.

aspell-utils 1651

Details

The spell check programs employed must support the so-called Ispell pipe interface activated via
command line option ‘-a’. In addition to the programs, suitable dictionaries need to be avail-
able. See http://aspell.net, http://hunspell.sourceforge.net/ and http://lasr.cs.
ucla.edu/geoff/ispell.html, respectively, for obtaining the Aspell, Hunspell and (Interna-
tional) Ispell programs and dictionaries.

Currently the only available built-in filters are "Rd", corresponding to RdTextFilter, and
"Sweave", corresponding to SweaveTeXFilter.

The print method has for the objects returned by aspell has an indent argument controlling the
indentation of the positions of possibly mis-spelled words. The default is 2; Emacs users may find
it useful to use an indentation of 0 and visit output in grep-mode. It also has a verbose argument:
when this is true, suggestions for replacements are shown as well.

Value

A data frame inheriting from aspell (which has a useful print method) with the information about
possibly mis-spelled words.

See Also

aspell-utils for utilities for spell checking packages.

Package Aspell on Omegahat (http://www.omegahat.org/Aspell) for a fine-grained R interface
to the Aspell library.

Examples

Not run:
To check all Rd files in a directory, (additonally) skipping the
\references sections.
files <- Sys.glob("*.Rd")
aspell(files, filter = list("Rd", drop = "\references"))

To check all Sweave files
files <- Sys.glob(c("*.Rnw", "*.Snw", "*.rnw", "*.snw"))
aspell(files, filter = "Sweave", control = "-t")

To check all Texinfo files (Aspell only)
files <- Sys.glob("*.texi")
aspell(files, control = "--mode=texinfo")

End(Not run)

aspell-utils Spell Check Utilities

Description

Utilities for spell checking packages via Aspell, Hunspell or Ispell.

http://aspell.net
http://hunspell.sourceforge.net/
http://lasr.cs.ucla.edu/geoff/ispell.html
http://lasr.cs.ucla.edu/geoff/ispell.html
http://www.omegahat.org/Aspell

1652 aspell-utils

Usage

aspell_package_Rd_files(dir, drop = c("\\author", "\\references"),
control = list(), program = NULL)

aspell_package_vignettes(dir, control = list(), program = NULL)
aspell_write_personal_dictionary_file(x, out, language = "en",

program = NULL)

Arguments

dir a character string specifying the path to a package’s root directory.

drop a character vector naming additional Rd sections to drop when selecting text via
RdTextFilter.

control a list or character vector of control options for the spell checker.

program a character string giving the name (if on the system path) or full path of the
spell check program to be used, or NULL (default). By default, the system path
is searched for aspell, hunspell and ispell (in that order), and the first one
found is used.

x a character vector, or the result of a call to aspell().

out a character string naming the personal dictionary file to write to.

language a character string indicating a language as used by Aspell.

Details

aspell_package_Rd_files and aspell_package_vignettes perform spell checking on the Rd
files and vignettes of the package with root directory dir. They determine the respective files, apply
the appropriate filters, and run the spell checker.

When using Aspell, the vignette checking skips parameters and/or options of commands \Sexpr,
\citep, \code, \pkg, \proglang and \samp. Further commands can be added by adding --add-tex-
command options to the control argument. E.g., to skip both option and parameter of \mycmd,
add --add-tex-command=’mycmd op’.

Suitable values for control, program and drop and personal dictionaries can also be specified
using a package defaults file which should go as ‘defaults.R’ into the ‘.aspell’ subdirectory of
dir, and provides defaults via assignments of suitable named lists, as e.g.

vignettes <- list(control = "--add-tex-command=’mycmd op’")

for vignettes (when using Aspell) and assigning to Rd_files for Rd files defaults, and using ele-
ments program, drop and personal for the respective default values.

Maintainers of packages using both English and American spelling will find it convenient
to pass control options ‘--master=en_US’ and ‘--add-extra-dicts=en_GB’ to Aspell and
‘-d en_US,en_GB’ to Hunspell (provided that the corresponding dictionaries are installed).

One can also use personal dictionaries containing additional words to be accepted as spelled cor-
rectly. Via aspell_write_personal_dictionary_file, a personal dictionary file can be created
by either giving the words directly as a character vector, or as an object from a call to aspell() (in
which case all possibly misspelled words contained in the object are taken). Most conveniently, the
file is then moved to the package source ‘.aspell’ subdirectory (named, e.g., ‘vignettes.pws’)
and then activated via the defaults file using, e.g.,

vignettes <- list(control = "--add-tex-command=’mycmd op’",
personal = "vignettes.pws")

available.packages 1653

See Also

aspell

available.packages List Available Packages at CRAN-like Repositories

Description

available.packages returns a matrix of details corresponding to packages currently available at
one or more repositories. The current list of packages is downloaded over the internet (or copied
from a local mirror).

Usage

available.packages(contriburl = contrib.url(getOption("repos"), type),
method, fields = NULL,
type = getOption("pkgType"),
filters = NULL)

Arguments

contriburl URL(s) of the ‘contrib’ sections of the repositories. Specify this argument
only if your repository mirror is incomplete, e.g., because you burned only the
‘contrib’ section on a CD.

method download method, see download.file.

type character string, indicate which type of packages: see install.packages.

fields a character vector giving the fields to extract from the ‘PACKAGES’ file(s) in addi-
tion to the default ones, or NULL (default). Unavailable fields result in NA values.

filters a character vector or list or NULL (default). See ‘Details’.

Details

The list is either copied from a local mirror (specified by a ‘file://’ URI) or downloaded. If
downloaded, the list is cached for the R session in a per-repository file in tempdir() with a name
like

repos_http%3a%2f%2fcran.r-project.org%2fsrc%2fcontrib.rds

By default, this includes only packages whose version and OS requirements are met by the running
version of R, and only gives information on the latest versions of packages.

Argument filters can be used to select which of the packages on the reposito-
ries are reported. It is called with its default value (NULL) by functions such as
install.packages: this value corresponds to getOption("available_packages_filters")
and to c("R_version", "OS_type", "subarch", "duplicates") if that is unset or set to NULL.

The built-in filters are

"R_version" exclude packages whose R version requirements are not met

1654 BATCH

"OS_type" exclude packages whose OS requirement is incompatible with this version of R: that is
exclude Windows-only packages on a Unix-alike platform and vice versa.

"subarch" for binary packages, exclude those with compiled code that is not available for the
current sub-architecture, e.g. exclude packages only compiled for 32-bit Windows on a 64-bit
Windows R.

"duplicates" only report the latest version where more than one version is available, and only
report the first-named repository (in contriburl) with the latest version if that is in more
than one repository.

"license/FOSS" include only packages for which installation can proceed solely based on pack-
ages which can be verified as Free or Open Source Software (FOSS, e.g., http://en.
wikipedia.org/wiki/FOSS) employing the available license specifications. Thus both the
package and any packages that it depends on to load need to be known to be FOSS.
Note that this does depend on the repository supplying license information.

If all the filters are from this set they can be specified as a character vector; otherwise filters
should be a list with elements which are character strings, user-defined functions or add = TRUE
(see below).

User-defined filters are functions which take a single argument, a matrix of the form returned by by
available.packages, and return a matrix consisting of a subset of the rows of the argument.

The special ‘filter’ add = TRUE appends the other elements of the filter list to the default filters.

Value

A matrix with one row per package, row names the package names and column names "Package",
"Version", "Priority", "Depends", "Imports", "LinkingTo", "Suggests", "Enhances",
"OS_type", "License", "File" and "Repository". Additional columns can be specified using
the fields argument.

See Also

install.packages, download.packages, contrib.url.

The ‘R Installation and Administration’ manual for how to set up a repository.

Examples

Not run:
restrict install.packages() (etc) to known-to-be-FOSS packages
options(available_packages_filters =

c("R_version", "OS_type", "subarch", "duplicates", "license/FOSS"))

End(Not run)

BATCH Batch Execution of R

Description

Run R non-interactively with input from infile and send output (stdout/stderr) to another file.

http://en.wikipedia.org/wiki/FOSS
http://en.wikipedia.org/wiki/FOSS

bibentry 1655

Usage

R CMD BATCH [options] infile [outfile]

Arguments

infile the name of a file with R code to be executed.

options a list of R command line options, e.g., for setting the amount of memory avail-
able and controlling the load/save process. If infile starts with a ‘-’, use ‘--’
as the final option. The default options are ‘--restore --save’.

outfile the name of a file to which to write output. If not given, the name used is that of
infile, with a possible ‘.R’ extension stripped, and ‘.Rout’ appended.

Details

Use R CMD BATCH --help to be reminded of the usage.

By default, the input commands are printed along with the output. To suppress this behavior, add
options(echo = FALSE) at the beginning of infile, or use option ‘--slave’.

Files with an incomplete last line (no end of line mark) are accepted.

A final expression ‘proc.time()’ will be executed after the input script unless the latter calls
q(runLast=FALSE) or is aborted. This can be suppressed by the option ‘--no-timing’.

Additional options can be set by the environment variable R_BATCH_OPTIONS: these come after
‘--restore --save’ and before any options given on the command line.

bibentry Bibliography Entries

Description

Functionality for representing and manipulating bibliographic information in enhanced BibTeX
style.

Usage

bibentry(bibtype, textVersion = NULL, header = NULL, footer = NULL,
key = NULL, ..., other = list(),
mheader = NULL, mfooter = NULL)

S3 method for class ’bibentry’
print(x, style = "text", .bibstyle = "JSS", ...)

Arguments

bibtype a character string with a BibTeX entry type. See Entry Types for details.

textVersion a character string with a text representation of the reference to optionally be
employed for printing.

header a character string with optional header text.

footer a character string with optional footer text.

key a character string giving the citation key for the entry.

1656 bibentry

... for bibentry: arguments of the form tag=value giving the fields of the entry,
with tag and value the name and value of the field, respectively. Arguments with
empty values are dropped. See Entry Fields for details.
For the print method, extra parameters to pass to the renderer.

other a list of arguments as in ... (useful in particular for fields named the same as
formals of bibentry).

mheader a character string with optional “outer” header text.

mfooter a character string with optional “outer” footer text.

x an object inheriting from class "bibentry".

style a character string specifying the print style. Must be a unique abbreviation (with
case ignored) of the available styles, see Details.

.bibstyle a character string naming a bibliography style.

Details

The bibentry objects created by bibentry can represent an arbitrary positive number of references.
One can use c() to combine bibentry objects, and hence in particular build a multiple reference
object from single reference ones. Alternatively, one can use bibentry to directly create a multiple
reference object by “vectorizing” the given arguments, i.e., use character vectors instead of character
strings.

The print method for bibentry objects provides a choice between seven different styles: plain text
(style "text"), BibTeX ("Bibtex"), a mixture of plain text and BibTeX as traditionally used for
citations ("citation"), HTML ("html"), LaTeX ("latex"), R code ("R"), and a simple copy of
the textVersion elements (style "textVersion"). The "text", "html" and "latex" styles make
use of the .bibstyle argument using the bibstyle function. When printing bibentry objects in
citation style, a header/footer for each item can be displayed as well as a mheader/mfooter for
the whole vector of references.

The print method is based on a format method which provides the same styles, and for formatting
as R code a choice between giving a character vector with one bibentry() call for each bibentry
(as commonly used in ‘CITATION’ files), or a character string with one collapsed call, obtained by
combining the individual calls with c() if there is more than one bibentry. This can be controlled
by setting the option collapse to FALSE (default) or TRUE, respectively. (Printing in R style always
collapses to a single call.)

There is also a toBibtex method for direct conversion to BibTeX.

Value

bibentry produces an object of class "bibentry".

Entry Types

bibentry creates "bibentry" objects, which are modeled after BibTeX entries. The entry should
be a valid BibTeX entry type, e.g.,

Article: An article from a journal or magazine.

Book: A book with an explicit publisher.

InBook: A part of a book, which may be a chapter (or section or whatever) and/or a range of pages.

InCollection: A part of a book having its own title.

InProceedings: An article in a conference proceedings.

bibentry 1657

Manual: Technical documentation like a software manual.

MastersThesis: A Master’s thesis.

Misc: Use this type when nothing else fits.

PhdThesis: A PhD thesis.

Proceedings: The proceedings of a conference.

TechReport: A report published by a school or other institution, usually numbered within a series.

Unpublished: A document having an author and title, but not formally published.

Entry Fields

The ... argument of bibentry can be any number of BibTeX fields, including

address: The address of the publisher or other type of institution.

author: The name(s) of the author(s), either as a character string in the format described in the
LaTeX book, or a person object.

booktitle: Title of a book, part of which is being cited.

chapter: A chapter (or section or whatever) number.

editor: Name(s) of editor(s), same format as author.

institution: The publishing institution of a technical report.

journal: A journal name.

note: Any additional information that can help the reader. The first word should be capitalized.

number: The number of a journal, magazine, technical report, or of a work in a series.

pages: One or more page numbers or range of numbers.

publisher: The publisher’s name.

school: The name of the school where a thesis was written.

series: The name of a series or set of books.

title: The work’s title.

volume: The volume of a journal or multi-volume book.

year: The year of publication.

See Also

person

Examples

R reference
rref <- bibentry(

bibtype = "Manual",
title = "R: A Language and Environment for Statistical Computing",
author = person("R Core Team"),
organization = "R Foundation for Statistical Computing",
address = "Vienna, Austria",
year = 2010,
isbn = "3-900051-07-0",
url = "http://www.R-project.org/")

Different printing styles

1658 bibentry

print(rref)
print(rref, style = "Bibtex")
print(rref, style = "citation")
print(rref, style = "html")
print(rref, style = "latex")
print(rref, style = "R")

References for boot package and associated book
bref <- c(

bibentry(
bibtype = "Manual",
title = "boot: Bootstrap R (S-PLUS) Functions",
author = c(

person("Angelo", "Canty", role = "aut",
comment = "S original"),

person(c("Brian", "D."), "Ripley", role = c("aut", "trl", "cre"),
comment = "R port, author of parallel support",
email = "ripley@stats.ox.ac.uk")

),
year = "2012",
note = "R package version 1.3-4",
url = "http://CRAN.R-project.org/package=boot",
key = "boot-package"

),

bibentry(
bibtype = "Book",
title = "Bootstrap Methods and Their Applications",
author = as.person("Anthony C. Davison [aut], David V. Hinkley [aut]"),
year = "1997",
publisher = "Cambridge University Press",
address = "Cambridge",
isbn = "0-521-57391-2",
url = "http://statwww.epfl.ch/davison/BMA/",
key = "boot-book"

)
)

Combining and subsetting
c(rref, bref)
bref[2]

Extracting fields
bref$author
bref[1]$author
bref[1]$author[2]$email

Convert to BibTeX
toBibtex(bref)

Format in R style
One bibentry() call for each bibentry:
writeLines(paste(format(bref, "R"), collapse = "\n\n"))
One collapsed call:
writeLines(format(bref, "R", collapse = TRUE))

browseEnv 1659

browseEnv Browse Objects in Environment

Description

The browseEnv function opens a browser with list of objects currently in sys.frame() environ-
ment.

Usage

browseEnv(envir = .GlobalEnv, pattern,
excludepatt = "^last\\.warning",
html = .Platform$GUI != "AQUA",
expanded = TRUE, properties = NULL,
main = NULL, debugMe = FALSE)

Arguments

envir an environment the objects of which are to be browsed.

pattern a regular expression for object subselection is passed to the internal ls() call.

excludepatt a regular expression for dropping objects with matching names.

html is used to display the workspace on a HTML page in your favorite browser. The
default except when running from R.app on OS X.

expanded whether to show one level of recursion. It can be useful to switch it to FALSE if
your workspace is large. This option is ignored if html is set to FALSE.

properties a named list of global properties (of the objects chosen) to be showed in the
browser; when NULL (as per default), user, date, and machine information is
used.

main a title string to be used in the browser; when NULL (as per default) a title is
constructed.

debugMe logical switch; if true, some diagnostic output is produced.

Details

Very experimental code: displays a static HTML page on all platforms except R.app on Mac OS X.

Only allows one level of recursion into object structures.

It can be generalized. See sources for details. Most probably, this should rather work through using
the ‘tkWidget’ package (from www.Bioconductor.org).

See Also

str, ls.

www.Bioconductor.org

1660 browseURL

Examples

if(interactive()) {
create some interesting objects :
ofa <- ordered(4:1)
ex1 <- expression(1+ 0:9)
ex3 <- expression(u,v, 1+ 0:9)
example(factor, echo = FALSE)
example(table, echo = FALSE)
example(ftable, echo = FALSE)
example(lm, echo = FALSE, ask = FALSE)
example(str, echo = FALSE)

and browse them:
browseEnv()

a (simple) function’s environment:
af12 <- approxfun(1:2, 1:2, method = "const")
browseEnv(envir = environment(af12))

}

browseURL Load URL into a WWW Browser

Description

Load a given URL into a WWW browser.

Usage

browseURL(url, browser = getOption("browser"), encodeIfNeeded = FALSE)

Arguments

url a non-empty character string giving the URL to be loaded.

browser a non-empty character string giving the name of the program to be used as hy-
pertext browser. It should be in the PATH, or a full path specified. Alternatively,
an R function to be called to invoke the browser.
Under Windows NULL is also allowed (and is the default), and implies that the
file association mechanism will be used.

encodeIfNeeded Should the URL be encoded by URLencode before passing to the browser? This
is not needed (and might be harmful) if the browser program/function itself
does encoding, and can be harmful for ‘file://’ URLs on some systems and
for ‘http://’ URLs passed to some CGI applications. Fortunately, most URLs
do not need encoding.

Details

The default browser is set by option "browser", in turn set by the environment variable R_BROWSER
if that is set, otherwise to NULL. To suppress showing URLs altogether, use the value "false".

Some browsers have required : be replaced by | in file paths: others do not accept that. All seem
to accept \ as a path separator even though the RFC1738 standard requires /.

To suppress showing URLs altogether, set browser="false".

browseVignettes 1661

Examples

Not run: browseURL("http://www.r-project.org")
browseURL("file://d:/R/R-2.5.1/doc/html/index.html",

browser="C:/Program Files/Mozilla Firefox/firefox.exe")

End(Not run)

browseVignettes List Vignettes in an HTML Browser

Description

List available vignettes in an HTML browser with links to PDF, LaTeX/noweb source, and (tangled)
R code (if available).

Usage

browseVignettes(package = NULL, lib.loc = NULL, all = TRUE)

S3 method for class ’browseVignettes’
print(x, ...)

Arguments

package a character vector with the names of packages to search through, or NULL in
which "all" packages (as defined by argument all) are searched.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known.

all logical; if TRUE search all available packages in the library trees specified by
lib.loc, and if FALSE, search only attached packages.

x Object of class browseVignettes.
... Further arguments, ignored by the print method.

Details

Function browseVignettes returns an object of the same class; the print method displays it as an
HTML page in a browser (using browseURL).

See Also

browseURL, vignette

Examples

Not run:
List vignettes from all *attached* packages
browseVignettes(all = FALSE)

List vignettes from a specific package
browseVignettes("grid")

End(Not run)

1662 bug.report

bug.report Send a Bug Report

Description

Invokes an editor or email program to write a bug report or opens a web page for bug submission.
Some standard information on the current version and configuration of R are included automatically.

Usage

bug.report(subject = "", address,
file = "R.bug.report", package = NULL, lib.loc = NULL,
...)

Arguments

subject Subject of the email.

address Recipient’s email address, where applicable: for package bug reports sent by
email this defaults to the address of the package maintainer (the first if more
than one is listed).

file filename to use (if needed) for setting up the email.

package Optional character vector naming a single package which is the subject of the
bug report.

lib.loc A character vector describing the location of R library trees in which to search
for the package, or NULL. The default value of NULL corresponds to all libraries
currently known.

... additional named arguments such as method and ccaddress to pass to
create.post.

Details

If package is NULL or a base package, this opens the R bugs tracker at http://bugs.r-project.
org/.

If package is specified, it is assumed that the bug report is about that package, and parts of its
‘DESCRIPTION’ file are added to the standard information. If the package has a BugReports field in
the ‘DESCRIPTION’ file, that URL will be opened using browseURL, otherwise an email directed to
the package maintainer will be generated using create.post.

Value

Nothing useful.

When is there a bug?

If R executes an illegal instruction, or dies with an operating system error message that indicates a
problem in the program (as opposed to something like “disk full”), then it is certainly a bug.

Taking forever to complete a command can be a bug, but you must make certain that it was really
R’s fault. Some commands simply take a long time. If the input was such that you KNOW it should
have been processed quickly, report a bug. If you don’t know whether the command should take a
long time, find out by looking in the manual or by asking for assistance.

http://bugs.r-project.org/
http://bugs.r-project.org/

bug.report 1663

If a command you are familiar with causes an R error message in a case where its usual definition
ought to be reasonable, it is probably a bug. If a command does the wrong thing, that is a bug. But
be sure you know for certain what it ought to have done. If you aren’t familiar with the command,
or don’t know for certain how the command is supposed to work, then it might actually be working
right. Rather than jumping to conclusions, show the problem to someone who knows for certain.

Finally, a command’s intended definition may not be best for statistical analysis. This is a very
important sort of problem, but it is also a matter of judgement. Also, it is easy to come to such a
conclusion out of ignorance of some of the existing features. It is probably best not to complain
about such a problem until you have checked the documentation in the usual ways, feel confident
that you understand it, and know for certain that what you want is not available. The mailing list
r-devel@r-project.org is a better place for discussions of this sort than the bug list.

If you are not sure what the command is supposed to do after a careful reading of the manual this
indicates a bug in the manual. The manual’s job is to make everything clear. It is just as important
to report documentation bugs as program bugs.

If the online argument list of a function disagrees with the manual, one of them must be wrong, so
report the bug.

How to report a bug

When you decide that there is a bug, it is important to report it and to report it in a way which is
useful. What is most useful is an exact description of what commands you type, from when you
start R until the problem happens. Always include the version of R, machine, and operating system
that you are using; type version in R to print this. To help us keep track of which bugs have been
fixed and which are still open please send a separate report for each bug.

The most important principle in reporting a bug is to report FACTS, not hypotheses or categoriza-
tions. It is always easier to report the facts, but people seem to prefer to strain to posit explanations
and report them instead. If the explanations are based on guesses about how R is implemented,
they will be useless; we will have to try to figure out what the facts must have been to lead to such
speculations. Sometimes this is impossible. But in any case, it is unnecessary work for us.

For example, suppose that on a data set which you know to be quite large the command
data.frame(x, y, z, monday, tuesday) never returns. Do not report that data.frame() fails
for large data sets. Perhaps it fails when a variable name is a day of the week. If this is so then when
we got your report we would try out the data.frame() command on a large data set, probably with
no day of the week variable name, and not see any problem. There is no way in the world that we
could guess that we should try a day of the week variable name.

Or perhaps the command fails because the last command you used was a [method that had a bug
causing R’s internal data structures to be corrupted and making the data.frame() command fail
from then on. This is why we need to know what other commands you have typed (or read from
your startup file).

It is very useful to try and find simple examples that produce apparently the same bug, and somewhat
useful to find simple examples that might be expected to produce the bug but actually do not. If
you want to debug the problem and find exactly what caused it, that is wonderful. You should still
report the facts as well as any explanations or solutions.

Invoking R with the ‘--vanilla’ option may help in isolating a bug. This ensures that the site
profile and saved data files are not read.

A bug report can be generated using the function bug.report(). For reports on R this will open the
Web page at http://bugs.R-project.org/: for a contributed package it will open the package’s
bug tracker Web page or help you compose an email to the maintainer.

Bug reports on contributed packages should not be sent to the R bug tracker: rather make use of
the package argument.

http://bugs.R-project.org/

1664 capture.output

Author(s)

This help page is adapted from the Emacs manual and the R FAQ

See Also

help.request which you possibly should try before bug.report.

create.post, which handles emailing reports.

The R FAQ, also sessionInfo() from which you may add to the bug report.

capture.output Send Output to a Character String or File

Description

Evaluates its arguments with the output being returned as a character string or sent to a file. Related
to sink in the same way that with is related to attach.

Usage

capture.output(..., file = NULL, append = FALSE)

Arguments

... Expressions to be evaluated.

file A file name or a connection, or NULL to return the output as a character vector.
If the connection is not open, it will be opened initially and closed on exit.

append logical. If file a file name or unopened connection, append or overwrite?

Details

An attempt is made to write output as far as possible to file if there is an error in evaluating the
expressions, but for file = NULL all output will be lost.

Value

A character string (if file=NULL), or invisible NULL.

See Also

sink, textConnection

Examples

require(stats)
glmout <- capture.output(example(glm))
glmout[1:5]
capture.output(1+1, 2+2)
capture.output({1+1; 2+2})
Not run:
on Unix with enscript available
ps <- pipe("enscript -o tempout.ps","w")

choose.dir 1665

capture.output(example(glm), file=ps)
close(ps)

End(Not run)

choose.dir Choose a Folder Interactively

Description

Use a Windows shell folder widget to choose a folder interactively.

Usage

choose.dir(default = "", caption = "Select folder")

Arguments

default which folder to show initially.

caption the caption on the selection dialog.

Details

This brings up the Windows shell folder selection widget. With the default default = "", ‘My
Computer’ (or similar) is initially selected.

To workaround a bug, on Vista and later only folders under ‘Computer’ are accessible via the
widget.

Value

A length-one character vector, character NA if ‘Cancel’ was selected.

See Also

choose.files

Examples

if (interactive())
choose.dir(getwd(), "Choose a suitable folder")

1666 choose.files

choose.files Choose a List of Files Interactively

Description

Use a Windows file dialog to choose a list of zero or more files interactively.

Usage

choose.files(default = "", caption = "Select files",
multi = TRUE, filters = Filters,
index = nrow(Filters))

Filters

Arguments

default which filename to show initially

caption the caption on the file selection dialog

multi whether to allow multiple files to be selected

filters a matrix of filename filters (see Details)

index which row of filters to use by default

Details

Unlike file.choose, choose.files will always attempt to return a character vector giving a list
of files. If the user cancels the dialog, then zero files are returned, whereas file.choose would
signal an error. choose.dir chooses a directory.

Windows file dialog boxes include a list of ‘filters’, which allow the file selection to be limited to
files of specific types. The filters argument to choose.files allows the list of filters to be set. It
should be an n by 2 character matrix. The first column gives, for each filter, the description the user
will see, while the second column gives the mask(s) to select those files. If more than one mask is
used, separate them by semicolons, with no spaces. The index argument chooses which filter will
be used initially.

Filters is a matrix giving the descriptions and masks for the file types that R knows about. Print it
to see typical formats for filter specifications. The examples below show how particular filters may
be selected.

If you would like to display files in a particular directory, give a fully qualified file mask (e.g.,
"c:*.*") in the default argument. If a directory is not given, the dialog will start in the current
directory the first time, and remember the last directory used on subsequent invocations.

There is a buffer limit on the total length of the selected filenames: it is large but this function is not
intended to select thousands of files, when the limit might be reached.

Value

A character vector giving zero or more file paths.

chooseBioCmirror 1667

See Also

file.choose, choose.dir.

Sys.glob or list.files to select multiple files by pattern.

Examples

if (interactive())
choose.files(filters = Filters[c("zip", "All"),])

chooseBioCmirror Select a Bioconductor Mirror

Description

Interact with the user to choose a Bioconductor mirror.

Usage

chooseBioCmirror(graphics = getOption("menu.graphics"))

Arguments

graphics logical. If true, use a graphical list: on Windows or Mac OS X GUI use a list
box, and on a Unix-alike if package tcltk and an X server are available, use a
Tk widget. Otherwise use a text menu.

Details

This sets the option "BioC_mirror": it needs to be used before a call to setRepositories.

In addition to the Bioconductor master site (in Seattle, USA), there currently are mirrors in Bethesda
(USA), Dortmund (Germany), Bergen (Norway) and Cambridge (UK).

Value

None: this function is invoked for its side effect of updating options("BioC_mirror").

See Also

setRepositories, chooseCRANmirror.

1668 citation

chooseCRANmirror Select a CRAN Mirror

Description

Interact with the user to choose a CRAN mirror.

Usage

chooseCRANmirror(graphics = getOption("menu.graphics"))

getCRANmirrors(all = FALSE, local.only = FALSE)

Arguments

graphics Logical. If true, use a graphical list: on Windows or Mac OS X GUI use a list
box, and on a Unix-alike if package tcltk and an X server are available, use a
Tk widget. Otherwise use a text menu.

all Logical, get all known mirrors or only the ones flagged as OK.

local.only Logical, try to get most recent list from CRAN or use file on local disk only.

Details

A list of mirrors is stored in file ‘R_HOME/doc/CRAN_mirrors.csv’, but first an on-line list of
current mirrors is consulted, and the file copy used only if the on-line list is inaccessible.

This function was originally written to support a Windows GUI menu item, but is also called by
contrib.url if it finds the initial dummy value of options("repos").

Value

None for chooseCRANmirror(), this function is invoked for its side effect of updating
options("repos").

getCRANmirrors() returns a data frame with mirror information.

See Also

setRepositories, chooseBioCmirror, contrib.url.

citation Citing R and R Packages in Publications

Description

How to cite R and R packages in publications.

Usage

citation(package = "base", lib.loc = NULL, auto = NULL)
readCitationFile(file, meta = NULL)

citation 1669

Arguments

package a character string with the name of a single package. An error occurs if more
than one package name is given.

lib.loc a character vector with path names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

auto a logical indicating whether the default citation auto-generated from the pack-
age ‘DESCRIPTION’ metadata should be used or not, or NULL (default), in-
dicating that a ‘CITATION’ file is used if it exists, or an object of class
"packageDescription" with package metadata (see below).

file a file name.

meta a list of package metadata as obtained by packageDescription, or NULL (the
default).

Details

The R core development team and the very active community of package authors have invested a
lot of time and effort in creating R as it is today. Please give credit where credit is due and cite R
and R packages when you use them for data analysis.

Execute function citation() for information on how to cite the base R system in publications. If
the name of a non-base package is given, the function either returns the information contained in the
‘CITATION’ file of the package or auto-generates citation information. In the latter case the package
‘DESCRIPTION’ file is parsed, the resulting citation object may be arbitrarily bad, but is quite useful
(at least as a starting point) in most cases.

In R >= 2.14.0, one can use a ‘Authors@R’ field in ‘DESCRIPTION’ to provide (R code giving) a
person object with a refined, machine-readable description of the package “authors” (in particular
specifying their precise roles). Only those with an author role will be included in the auto-generated
citation.

If only one reference is given, the print method for the object returned by citation() shows both
a text version and a BibTeX entry for it, if a package has more than one reference then only the
text versions are shown. The BibTeX versions can be obtained using function toBibtex() (see the
examples below).

The ‘CITATION’ file of an R package should be placed in the ‘inst’ subdirectory of the package
source. The file is an R source file and may contain arbitrary R commands including conditionals
and computations. Function readCitationFile() is used by citation() to extract the informa-
tion in ‘CITATION’ files. The file is source()ed by the R parser in a temporary environment and all
resulting bibliographic objects (specifically, of class "bibentry") are collected.

Traditionally, the ‘CITATION’ file contained zero or more calls to citHeader, then one or more calls
to citEntry, and finally zero or more calls to citFooter, where in fact citHeader and citFooter
are simply wrappers to paste, with their ... argument passed on to paste as is. R 2.12.0 adds a
new "bibentry" class for improved representation and manipulation of bibliographic information
(in fact, the old mechanism is implemented using the new one), and one can write ‘CITATION’ files
using the unified bibentry interface. Such files are not usable with versions of R prior to 2.12.0.

In R >= 2.14.0, one can include an auto-generated package citation in the ‘CITATION’ file via
citation(auto = meta).

readCitationFile makes use of the Encoding element (if any) of meta to determine the encoding
of the file.

1670 citEntry

Value

An object inheriting from class "bibentry".

See Also

bibentry

Examples

the basic R reference
citation()

references for a package -- might not have these installed
if(nchar(system.file(package="lattice"))) citation("lattice")
if(nchar(system.file(package="foreign"))) citation("foreign")

extract the bibtex entry from the return value
x <- citation()
toBibtex(x)

citEntry Bibliography Entries (Older Interface)

Description

Functionality for specifying bibliographic information in enhanced BibTeX style.

Usage

citEntry(entry, textVersion, header = NULL, footer = NULL, ...)
citHeader(...)
citFooter(...)

Arguments

entry a character string with a BibTeX entry type. See section Entry Types in
bibentry for details.

textVersion a character string with a text representation of the reference.
header a character string with optional header text.
footer a character string with optional footer text.
... for citEntry, arguments of the form tag=value giving the fields of the entry,

with tag and value the name and value of the field, respectively. See section
Entry Fields in bibentry for details.
For citHeader and citFooter, character strings.

Value

citEntry produces an object of class "bibentry".

See Also

citation for more information about citing R and R packages and ‘CITATION’ files; bibentry for
the newer functionality for representing and manipulating bibliographic information.

clipboard 1671

clipboard Read/Write to/from the Windows Clipboard

Description

Transfer text between a character vector and the Windows clipboard.

Usage

getClipboardFormats(numeric = FALSE)
readClipboard(format = 1, raw = FALSE)
writeClipboard(str, format = 1)

Arguments

numeric logical: should the result be in human-readable form (the default) or raw num-
bers?

format an integer giving the desired format.

raw should the value be returned as a raw vector rather than as a character vector?

str a character vector or a raw vector.

Details

The Windows clipboard offers data in a number of formats: see e.g. http://msdn2.microsoft.
com/en-us/library/ms649013.aspx.

The standard formats include

CF_TEXT 1 Text in the machine’s locale
CF_BITMAP 2
CF_METAFILEPICT 3 Metafile picture
CF_SYLK 4 Symbolic link
CF_DIF 5 Data Interchange Fornat
CF_TIFF 6 Tagged-Image File Format
CF_OEMTEXT 7 Text in the OEM codepage
CF_DIB 8 Device-Independent Bitmap
CF_PALETTE 9
CF_PENDATA 10
CF_RIFF 11 Audio data
CF_WAVE 12 Audio data
CF_UNICODETEXT 13 Text in Unicode (UCS-2)
CF_ENHMETAFILE 14 Enhanced metafile
CF_HDROP 15 Drag-and-drop data
CF_LOCALE 16 Locale for the text on the clipboard
CF_MAX 17 Shell-oriented formats

Applications normally make data available in one or more of these and possibly additional private
formats. Use raw = TRUE to read binary formats, raw = FALSE (the default) for text formats. The
current codepage is used to convert text to Unicode text, and information on that is contained in the
CF_LOCALE format. (Take care if you are running R in a different locale from Windows.)

http://msdn2.microsoft.com/en-us/library/ms649013.aspx
http://msdn2.microsoft.com/en-us/library/ms649013.aspx

1672 close.socket

The writeClipboard function will write a character vector as text or Unicode text with standard
CR-LF line terminators. It will copy a raw vector directly to the clipboard without any changes.

Value

For getClipboardFormats, a character or integer vector of available formats, in numeric order. If
non human-readable character representation is known, the number is returned.

For readClipboard, a character vector by default, a raw vector if raw is TRUE, or NULL, if the format
is unavailable.

For writeClipboard an invisible logical indicating success or failure.

See Also

file which can be used to set up a connection to a clipboard.

close.socket Close a Socket

Description

Closes the socket and frees the space in the file descriptor table. The port may not be freed imme-
diately.

Usage

close.socket(socket, ...)

Arguments

socket A socket object

... further arguments passed to or from other methods.

Value

logical indicating success or failure

Author(s)

Thomas Lumley

See Also

make.socket, read.socket

combn 1673

combn Generate All Combinations of n Elements, Taken m at a Time

Description

Generate all combinations of the elements of x taken m at a time. If x is a positive integer, returns
all combinations of the elements of seq(x) taken m at a time. If argument FUN is not NULL, applies a
function given by the argument to each point. If simplify is FALSE, returns a list; otherwise returns
an array, typically a matrix. ... are passed unchanged to the FUN function, if specified.

Usage

combn(x, m, FUN = NULL, simplify = TRUE, ...)

Arguments

x vector source for combinations, or integer n for x <- seq_len(n).

m number of elements to choose.

FUN function to be applied to each combination; default NULL means the identity, i.e.,
to return the combination (vector of length m).

simplify logical indicating if the result should be simplified to an array (typi-
cally a matrix); if FALSE, the function returns a list. Note that when
simplify = TRUE as by default, the dimension of the result is simply deter-
mined from FUN(1st combination) (for efficiency reasons). This will badly fail
if FUN(u) is not of constant length.

... optionally, further arguments to FUN.

Value

a list or array, see the simplify argument above. In the latter case, the identity
dim(combn(n,m)) == c(m, choose(n,m)) holds.

Author(s)

Scott Chasalow wrote the original in 1994 for S; R package combinat and documentation by Vince
Carey <stvjc@channing.harvard.edu>; small changes by the R core team, notably to return an
array in all cases of simplify = TRUE, e.g., for combn(5,5).

References

Nijenhuis, A. and Wilf, H.S. (1978) Combinatorial Algorithms for Computers and Calculators;
Academic Press, NY.

See Also

choose for fast computation of the number of combinations. expand.grid for creating a data frame
from all combinations of factors or vectors.

http://CRAN.R-project.org/package=combinat

1674 compareVersion

Examples

combn(letters[1:4], 2)
(m <- combn(10, 5, min)) # minimum value in each combination
mm <- combn(15, 6, function(x) matrix(x, 2,3))
stopifnot(round(choose(10,5)) == length(m),

c(2,3, round(choose(15,6))) == dim(mm))

Different way of encoding points:
combn(c(1,1,1,1,2,2,2,3,3,4), 3, tabulate, nbins = 4)

Compute support points and (scaled) probabilities for a
Multivariate-Hypergeometric(n = 3, N = c(4,3,2,1)) p.f.:
table.mat(t(combn(c(1,1,1,1,2,2,2,3,3,4), 3, tabulate,nbins=4)))

Assuring the identity
for(n in 1:7)
for(m in 0:n) stopifnot(is.array(cc <- combn(n, m)),

dim(cc) == c(m, choose(n,m)))

compareVersion Compare Two Package Version Numbers

Description

Compare two package version numbers to see which is later.

Usage

compareVersion(a, b)

Arguments

a, b Character strings representing package version numbers.

Details

R package version numbers are of the form x.y-z for integers x, y and z, with components after
x optionally missing (in which case the version number is older than those with the components
present).

Value

0 if the numbers are equal, -1 if b is later and 1 if a is later (analogous to the C function strcmp).

See Also

package_version, library, packageStatus.

Examples

compareVersion("1.0", "1.0-1")
compareVersion("7.2-0","7.1-12")

contrib.url 1675

contrib.url Find Appropriate Paths in CRAN-like Repositories

Description

contrib.url adds the appropriate type-specific path within a repository to each URL in repos.

Usage

contrib.url(repos, type = getOption("pkgType"))

Arguments

repos character vector, the base URL(s) of the repositories to use.

type character string, indicating which type of packages: see install.packages.

Value

A character vector of the same length as repos.

See Also

available.packages, download.packages, install.packages.

The ‘R Installation and Administration’ manual for how to set up a repository.

count.fields Count the Number of Fields per Line

Description

count.fields counts the number of fields, as separated by sep, in each of the lines of file read.

Usage

count.fields(file, sep = "", quote = "\"’", skip = 0,
blank.lines.skip = TRUE, comment.char = "#")

Arguments

file a character string naming an ASCII data file, or a connection, which will be
opened if necessary, and if so closed at the end of the function call.

sep the field separator character. Values on each line of the file are separated by this
character. By default, arbitrary amounts of whitespace can separate fields.

quote the set of quoting characters

skip the number of lines of the data file to skip before beginning to read data.
blank.lines.skip

logical: if TRUE blank lines in the input are ignored.

comment.char character: a character vector of length one containing a single character or an
empty string.

1676 create.post

Details

This used to be used by read.table and can still be useful in discovering problems in reading a
file by that function.

For the handling of comments, see scan.

Value

A vector with the numbers of fields found.

See Also

read.table

Examples

cat("NAME", "1:John", "2:Paul", file = "foo", sep = "\n")
count.fields("foo", sep = ":")
unlink("foo")

create.post Ancillary Function for Preparing Emails and Postings

Description

An ancillary function used by bug.report and help.request to prepare emails for submission to
package maintainers or to R mailing lists.

Usage

create.post(instructions = character(), description = "post",
subject = "",
method = getOption("mailer"),
address = "the relevant mailing list",
ccaddress = getOption("ccaddress", ""),
filename = "R.post", info = character())

Arguments

instructions Character vector of instructions to put at the top of the template email.

description Character string: a description to be incorporated into messages.

subject Subject of the email. Optional except for the "mailx" method.

method Submission method, one of "none", "mailto", "gnudoit", "ess" or (Unix
only) "mailx". See ‘Details’.

address Recipient’s email address, where applicable: for package bug reports sent by
email this defaults to the address of the package maintainer (the first if more
than one is listed).

ccaddress Optional email address for copies with the "mailx" and "mailto" methods.
Use ccaddress = "" for no copy.

filename Filename to use for setting up the email (or storing it when method is "none" or
sending mail fails).

data 1677

info character vector of information to include in the template email below the
‘please do not edit the information below’ line.

Details

What this does depends on the method. The function first creates a template email body.

none A file editor (see file.edit) is opened with instructions and the template email. When this
returns, the completed email is in file file ready to be read/pasted into an email program.

mailto This opens the default email program with a template email (including address, Cc: address
and subject) for you to edit and send.
This works where default mailers are set up (usual on Mac OS X and Windows, and where
xdg-open is available and configured on other Unix-alikes: if that fails it tries the browser set
by R_BROWSER).
This is the ‘factory-fresh’ default method as from R 2.13.0.

mailx (Unix-alikes only.) A file editor (see file.edit) is opened with instructions and the tem-
plate email. When this returns, it is mailed using a Unix command line mail utility such as
mailx, to the address (and optionally, the Cc: address) given.

gnudoit An (X)emacs mail buffer is opened for the email to be edited and sent: this requires the
gnudoit program to be available. Currently subject is ignored.

ess The body of the template email is sent to stdout.

Value

Invisible NULL.

See Also

bug.report, help.request.

data Data Sets

Description

Loads specified data sets, or list the available data sets.

Usage

data(..., list = character(), package = NULL, lib.loc = NULL,
verbose = getOption("verbose"), envir = .GlobalEnv)

Arguments

... a sequence of names or literal character strings.

list a character vector.

package a character vector giving the package(s) to look in for data sets, or NULL.
By default, all packages in the search path are used, then the ‘data’ subdirectory
(if present) of the current working directory.

1678 data

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known.

verbose a logical. If TRUE, additional diagnostics are printed.

envir the environment where the data should be loaded.

Details

Currently, four formats of data files are supported:

1. files ending ‘.R’ or ‘.r’ are source()d in, with the R working directory changed temporarily
to the directory containing the respective file. (data ensures that the utils package is attached,
in case it had been run via utils::data.)

2. files ending ‘.RData’ or ‘.rda’ are load()ed.

3. files ending ‘.tab’, ‘.txt’ or ‘.TXT’ are read using read.table(..., header = TRUE), and
hence result in a data frame.

4. files ending ‘.csv’ or ‘.CSV’ are read using read.table(..., header = TRUE, sep = ";"),
and also result in a data frame.

If more than one matching file name is found, the first on this list is used. (Files with extensions
‘.txt’, ‘.tab’ or ‘.csv’ can be compressed, with or without further extension ‘.gz’, ‘.bz2’ or
‘.xz’.)

The data sets to be loaded can be specified as a sequence of names or character strings, or as the
character vector list, or as both.

For each given data set, the first two types (‘.R’ or ‘.r’, and ‘.RData’ or ‘.rda’ files) can create
several variables in the load environment, which might all be named differently from the data set.
The third and fourth types will always result in the creation of a single variable with the same name
(without extension) as the data set.

If no data sets are specified, data lists the available data sets. It looks for a new-style data index
in the ‘Meta’ or, if this is not found, an old-style ‘00Index’ file in the ‘data’ directory of each
specified package, and uses these files to prepare a listing. If there is a ‘data’ area but no index,
available data files for loading are computed and included in the listing, and a warning is given: such
packages are incomplete. The information about available data sets is returned in an object of class
"packageIQR". The structure of this class is experimental. Where the datasets have a different
name from the argument that should be used to retrieve them the index will have an entry like
beaver1 (beavers) which tells us that dataset beaver1 can be retrieved by the call data(beaver).

If lib.loc and package are both NULL (the default), the data sets are searched for in all the currently
loaded packages then in the ‘data’ directory (if any) of the current working directory.

If lib.loc = NULL but package is specified as a character vector, the specified package(s) are
searched for first amongst loaded packages and then in the default library/ies (see .libPaths).

If lib.loc is specified (and not NULL), packages are searched for in the specified library/ies, even
if they are already loaded from another library.

To just look in the ‘data’ directory of the current working directory, set package = character(0)
(and lib.loc = NULL, the default).

Value

A character vector of all data sets specified, or information about all available data sets in an object
of class "packageIQR" if none were specified.

dataentry 1679

Note

One can take advantage of the search order and the fact that a ‘.R’ file will change directory. If
raw data are stored in ‘mydata.txt’ then one can set up ‘mydata.R’ to read ‘mydata.txt’ and
pre-process it, e.g., using transform. For instance one can convert numeric vectors to factors with
the appropriate labels. Thus, the ‘.R’ file can effectively contain a metadata specification for the
plaintext formats.

See Also

help for obtaining documentation on data sets, save for creating the second (‘.rda’) kind of data,
typically the most efficient one.

The ‘Writing R Extensions’ for considerations in preparing the ‘data’ directory of a package.

Examples

require(utils)
data() # list all available data sets
try(data(package = "rpart"))# list the data sets in the rpart package
data(USArrests, "VADeaths") # load the data sets ’USArrests’ and ’VADeaths’
help(USArrests) # give information on data set ’USArrests’

dataentry Spreadsheet Interface for Entering Data

Description

A spreadsheet-like editor for entering or editing data.

Usage

data.entry(..., Modes = NULL, Names = NULL)
dataentry(data, modes)
de(..., Modes = list(), Names = NULL)

Arguments

... A list of variables: currently these should be numeric or character vectors or list
containing such vectors.

Modes The modes to be used for the variables.

Names The names to be used for the variables.

data A list of numeric and/or character vectors.

modes A list of length up to that of data giving the modes of (some of) the variables.
list() is allowed.

1680 dataentry

Details

The data entry editor is only available on some platforms and GUIs. Where available it provides a
means to visually edit a matrix or a collection of variables (including a data frame) as described in
the Notes section.

data.entry has side effects, any changes made in the spreadsheet are reflected in the variables. The
functions de, de.ncols, de.setup and de.restore are designed to help achieve these side effects.
If the user passes in a matrix, X say, then the matrix is broken into columns before dataentry is
called. Then on return the columns are collected and glued back together and the result assigned to
the variable X. If you don’t want this behaviour use dataentry directly.

The primitive function is dataentry. It takes a list of vectors of possibly different lengths and
modes (the second argument) and opens a spreadsheet with these variables being the columns. The
columns of the dataentry window are returned as vectors in a list when the spreadsheet is closed.

de.ncols counts the number of columns which are supplied as arguments to data.entry. It at-
tempts to count columns in lists, matrices and vectors. de.setup sets things up so that on return the
columns can be regrouped and reassigned to the correct name. This is handled by de.restore.

Value

de and dataentry return the edited value of their arguments. data.entry invisibly returns a vector
of variable names but its main value is its side effect of assigning new version of those variables in
the user’s workspace.

Note

The details of interface to the data grid may differ by platform and GUI. The following description
applies to the GraphApp-based implementation under Windows.

You can navigate around the grid using the cursor keys or by clicking with the (left) mouse button
on any cell. The active cell is highlighted by thickening the surrounding rectangle. Moving to the
right or down will scroll the grid as needed: there is no constraint to the rows or columns currently
in use.

There are alternative ways to navigate using the keys. Return and (keypad) Enter and LineFeed all
move down. Tab moves right and Shift-Tab move left. Home moves to the top left.

PageDown or Control-F moves down a page, and PageUp or Control-B up by a page. End will show
the last used column and the last few rows used (in any column).

Using any other key starts an editing process on the currently selected cell: moving away from that
cell enters the edited value whereas Esc cancels the edit and restores the previous value. When the
editing process starts the cell is cleared. The cursor changes to an I-beam to indicate that the cell is
in enter mode. In numerical columns (the default) only letters making up a valid number (including
-.eE) are accepted, and entering an invalid edited value (such as blank) enters NA in that cell. The
last entered value can be deleted using the BackSpace or Del(ete) key. Only a limited number of
characters (currently 29) can be entered in a cell, and if necessary only the start or end of the string
will be displayed, with the omissions indicated by > or <. (The start is shown except when editing.)

Double-clicking on a cell selects the cell and makes it into an editable field (a cursor will appear
at the end of the text and it will change to the text highlight colour). The edited text is entered by
selecting another cell, for example by hitting Return. There is no way to cancel the edits. The field
will be expanded to the right if necessary to accommodate existing long strings, so it is preferable
not to edit in the right-most displayed column. (The editable field is itself scrollable.)

Entering a value in a cell further down a column than the last used cell extends the variable and fills
the gap (if any) by NAs (not shown on screen).

debugger 1681

The column names can only be selected by clicking in them. This gives a popup menu to select
the column type (currently Real (numeric) or Character) or to change the name. Changing the type
converts the current contents of the column (and converting from Character to Real may generate
NAs.) Enter the changes made in the popup window by clicking on its close box.

New columns are created by entering values in them (and not by just assigning a new name). The
mode of the column is auto-detected from the first value entered: if this is a valid number it gives a
numeric column. Unused columns are ignored, so adding data in var5 to a three-column grid adds
one extra variable, not two.

There is a popup-menu accessed by right-clicking anywhere in the window that refers to the cur-
rently selected cell. This can copy the value to or paste from the clipboard, or paste in common
values in that column. Copying and pasting can also be accessed by the usual keyboard shortcuts
Control-C and Control-V.

Columns can be resized by selecting and dragging a line (the cursor will change) within limits:
columns must be between 4 and 50 chars wide. The Autosize item on the popup menu will resize
the currently selected column.

Control-L will refresh the display, recalculating field widths to fit the current entries.

In the default mode the column widths are chosen to fit the contents of each column, with a de-
fault of 10 characters for empty columns. you can specify fixed column widths by setting option
de.cellwidth to the required fixed width (in characters). (set it to zero to return to variable widths).
The displayed width of any field is limited to 50 characters (and by the window width).

The initial size of the data editor window is taken from the default dimensions of a pager (see
Rconsole), but adjusted downwards to show a whole number of rows and columns.

See Also

vi, edit: edit uses dataentry to edit data frames.

Examples

call data entry with variables x and y
Not run: data.entry(x,y)

debugger Post-Mortem Debugging

Description

Functions to dump the evaluation environments (frames) and to examine dumped frames.

Usage

dump.frames(dumpto = "last.dump", to.file = FALSE)
debugger(dump = last.dump)

Arguments

dumpto a character string. The name of the object or file to dump to.

to.file logical. Should the dump be to an R object or to a file?

dump An R dump object created by dump.frames.

1682 debugger

Details

To use post-mortem debugging, set the option error to be a call to dump.frames. By default this
dumps to an R object last.dump in the workspace, but it can be set to dump to a file (a dump
of the object produced by a call to save). The dumped object contain the call stack, the active
environments and the last error message as returned by geterrmessage.

When dumping to file, dumpto gives the name of the dumped object and the file name has ‘.rda’
appended.

A dump object of class "dump.frames" can be examined by calling debugger. This will give the
error message and a list of environments from which to select repeatedly. When an environment is
selected, it is copied and the browser called from within the copy. Note that not all the information
in the original frame will be available, e.g. promises which have not yet been evaluated and the
contents of any ... argument.

If dump.frames is installed as the error handler, execution will continue even in non-interactive
sessions. See the examples for how to dump and then quit.

Value

Invisible NULL.

Note

Functions such as sys.parent and environment applied to closures will not work correctly inside
debugger.

If the error occurred when computing the default value of a formal argument the debugger will
report “recursive default argument reference” when trying to examine that environment.

Of course post-mortem debugging will not work if R is too damaged to produce and save the dump,
for example if it has run out of workspace.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

options for setting error options; recover is an interactive debugger working similarly to
debugger but directly after the error occurs.

Examples

Not run:
options(error=quote(dump.frames("testdump", TRUE)))

f <- function() {
g <- function() stop("test dump.frames")
g()

}
f() # will generate a dump on file "testdump.rda"
options(error=NULL)

possibly in another R session
load("testdump.rda")

demo 1683

debugger(testdump)
Available environments had calls:
1: f()
2: g()
3: stop("test dump.frames")

Enter an environment number, or 0 to exit
Selection: 1
Browsing in the environment with call:
f()
Called from: debugger.look(ind)
Browse[1]> ls()
[1] "g"
Browse[1]> g
function() stop("test dump.frames")
<environment: 759818>
Browse[1]>
Available environments had calls:
1: f()
2: g()
3: stop("test dump.frames")

Enter an environment number, or 0 to exit
Selection: 0

A possible setting for non-interactive sessions
options(error=quote({dump.frames(to.file=TRUE); q()}))

End(Not run)

demo Demonstrations of R Functionality

Description

demo is a user-friendly interface to running some demonstration R scripts. demo() gives the list of
available topics.

Usage

demo(topic, package = NULL, lib.loc = NULL,
character.only = FALSE, verbose = getOption("verbose"),
echo = TRUE, ask = getOption("demo.ask"))

Arguments

topic the topic which should be demonstrated, given as a name or literal character
string, or a character string, depending on whether character.only is FALSE
(default) or TRUE. If omitted, the list of available topics is displayed.

package a character vector giving the packages to look into for demos, or NULL. By de-
fault, all packages in the search path are used.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

1684 DLL.version

character.only logical; if TRUE, use topic as character string.

verbose a logical. If TRUE, additional diagnostics are printed.

echo a logical. If TRUE, show the R input when sourcing.

ask a logical (or "default") indicating if devAskNewPage(ask=TRUE) should be
called before graphical output happens from the demo code. The value
"default" (the factory-fresh default) means to ask if echo == TRUE and the
graphics device appears to be interactive. This parameter applies both to any
currently opened device and to any devices opened by the demo code. If this
is evaluated to TRUE and the session is interactive, the user is asked to press
RETURN to start.

Details

If no topics are given, demo lists the available demos. The corresponding information is returned in
an object of class "packageIQR".

See Also

source and devAskNewPage which are called by demo.

Examples

demo() # for attached packages

All available demos:
demo(package = .packages(all.available = TRUE))

Display a demo, pausing between pages
demo(lm.glm, package="stats", ask=TRUE)

Display it without pausing
demo(lm.glm, package="stats", ask=FALSE)

Not run:
ch <- "scoping"
demo(ch, character = TRUE)

End(Not run)

Find the location of a demo
system.file("demo", "lm.glm.R", package="stats")

DLL.version DLL Version Information

Description

Return the version of the package and the version of R used to build the DLL, if available.

download.file 1685

Usage

DLL.version(path)

Arguments

path character vector of length one giving the complete path to the DLL.

Value

If the DLL does not exist, NULL.

A character vector of length two, giving the DLL version and the version of R used to build the
DLL. If the information is not available, the corresponding string is empty.

Examples

DLL.version(file.path(R.home("bin"), "R.dll"))
DLL.version(file.path(R.home(), "library/stats/libs", .Platform$r_arch, "stats.dll"))

download.file Download File from the Internet

Description

This function can be used to download a file from the Internet.

Usage

download.file(url, destfile, method, quiet = FALSE, mode = "w",
cacheOK = TRUE, extra = getOption("download.file.extra"))

Arguments

url A character string naming the URL of a resource to be downloaded.

destfile A character string with the name where the downloaded file is saved. Tilde-
expansion is performed.

method Method to be used for downloading files. Currently download methods
"internal", "wget", "curl" and "lynx" are available, and there is a value
"auto": see ‘Details’ and ‘Note’.
The method can also be set through the option "download.file.method": see
options().

quiet If TRUE, suppress status messages (if any), and the progress bar.

mode character. The mode with which to write the file. Useful values are "w", "wb"
(binary), "a" (append) and "ab". Only used for the "internal" method. (See
also ‘Details’.)

cacheOK logical. Is a server-side cached value acceptable? Implemented for the
"internal", "wget" and "curl" methods.

extra character vector of additional command-line arguments for the "wget", "curl"
and "lynx" methods.

1686 download.file

Details

The function download.file can be used to download a single file as described by url from the
internet and store it in destfile. The url must start with a scheme such as ‘http://’, ‘ftp://’
or ‘file://’.

If method = "auto" is chosen (the default), the internal method is used on Windows.

cacheOK = FALSE is useful for ‘http://’ URLs, and will attempt to get a copy directly from
the site rather than from an intermediate cache. (Not all platforms support it.) It is used by
available.packages.

The remaining details apply to method "internal" only.

Note that ‘https://’ URLs are only supported if ‘--internet2’ or environment variable
R_WIN_INTERNET2 was set or setInternet2(TRUE) was used (to make use of Internet Explorer
internals), and then only if the certificate is considered to be valid.

See url for how ‘file://’ URLs are interpreted, especially on Windows. This function does
decode encoded URLs.

The timeout for many parts of the transfer can be set by the option timeout which defaults to 60
seconds.

The level of detail provided during transfer can be set by the quiet argument and the
internet.info option. The details depend on the platform and scheme, but setting
internet.info to 0 gives all available details, including all server responses. Using 2 (the de-
fault) gives only serious messages, and 3 or more suppresses all messages.

A progress bar tracks the transfer. If the file length is known, the full width of the bar is the known
length. Otherwise the initial width represents 100 Kbytes and is doubled whenever the current width
is exceeded.

If mode is not supplied and url ends in one of .gz, .bz2, .xz, .tgz, .zip, .rda or .RData a binary
transfer is done. Since Windows (unlike Unix-alikes) does distinguish between text and binary files,
care is needed that other binary file types are transferred with mode = "wb".

There is an alternative method if you have Internet Explorer 4 or later installed. You can use the
command line flag ‘--internet2’, or call setInternet2(TRUE) and then the ‘Internet Options’
of the system are used to choose proxies and so on; these are set in the Control Panel and are those
used for Internet Explorer. That version does not support cacheOK = FALSE.

Method "wget" can be used with proxy firewalls which require user/password authentication if
proper values are stored in the configuration file for wget.

Value

An (invisible) integer code, 0 for success and non-zero for failure. For the "wget" and "lynx"
methods this is the status code returned by the external program. The "internal" method can
return 1, but will in most cases throw an error.

Setting Proxies

This applies to the internal code only.

Proxies can be specified via environment variables. Setting "no_proxy" to "*" stops any
proxy being tried. Otherwise the setting of "http_proxy" or "ftp_proxy" (or failing that, the
all upper-case version) is consulted and if non-empty used as a proxy site. For FTP trans-
fers, the username and password on the proxy can be specified by "ftp_proxy_user" and
"ftp_proxy_password". The form of "http_proxy" should be "http://proxy.dom.com/" or
"http://proxy.dom.com:8080/" where the port defaults to 80 and the trailing slash may be omit-
ted. For "ftp_proxy" use the form "ftp://proxy.dom.com:3128/" where the default port is 21.

download.packages 1687

These environment variables must be set before the download code is first used: they cannot be
altered later by calling Sys.setenv.

Usernames and passwords can be set for HTTP proxy transfers via environment variable
http_proxy_user in the form user:passwd. Alternatively, http_proxy can be of the form
"http://user:pass@proxy.dom.com:8080/" for compatibility with wget. Only the HTTP/1.0
basic authentication scheme is supported. Under Windows, if http_proxy_user is set to "ask"
then a dialog box will come up for the user to enter the username and password. NB: you will be
given only one opportunity to enter this, but if proxy authentication is required and fails there will
be one further prompt per download.

Note

Methods "wget" and "lynx" are mainly for historical compatibility, but they and "curl" can be
used for URLs (e.g. ‘https://’ URLs or those that use cookies) which the internal method does
not support. They will block all other activity on the R process.

For methods "wget", "curl"and "lynx" a system call is made to the tool given by method, and the
respective program must be installed on your system and be in the search path for executables.

wget (http://www.gnu.org/software/wget/) is commonly installed on Unix-alikes (but not OS
X). Windows binaries are available from Cygwin, gnuwin32 and elsewhere.

curl (http://curl.haxx.se/) is installed on OS X and commonly on Unix-alikes. Windows
binaries are available at that URL.

lynx (http://lynx.browser.org/ is of historical interest.

See Also

options to set the HTTPUserAgent, timeout and internet.info options.

url for a finer-grained way to read data from URLs.

url.show, available.packages, download.packages for applications.

Contributed package RCurl provides more comprehensive facilities to download from URLs.

download.packages Download Packages from CRAN-like Repositories

Description

These functions can be used to automatically compare the version numbers of installed packages
with the newest available version on the repositories and update outdated packages on the fly.

Usage

download.packages(pkgs, destdir, available = NULL,
repos = getOption("repos"),
contriburl = contrib.url(repos, type),
method, type = getOption("pkgType"), ...)

http://www.gnu.org/software/wget/
http://curl.haxx.se/
http://lynx.browser.org/
http://CRAN.R-project.org/package=RCurl

1688 edit

Arguments

pkgs character vector of the names of packages whose latest available versions should
be downloaded from the repositories.

destdir directory where downloaded packages are to be stored.

available an object as returned by available.packages listing packages available at the
repositories, or NULL which makes an internal call to available.packages.

repos character vector, the base URL(s) of the repositories to use, i.e., the URL of the
CRAN master such as "http://cran.r-project.org" or its Statlib mirror,
"http://lib.stat.cmu.edu/R/CRAN".

contriburl URL(s) of the contrib sections of the repositories. Use this argument only if your
repository mirror is incomplete, e.g., because you burned only the ‘contrib’
section on a CD. Overrides argument repos.

method Download method, see download.file.

type character string, indicate which type of packages: see install.packages.

... additional arguments to be passed to download.file.

Details

download.packages takes a list of package names and a destination directory, downloads the
newest versions and saves them in destdir. If the list of available packages is not given as ar-
gument, it is obtained from repositories. If a repository is local, i.e. the URL starts with "file:",
then the packages are not downloaded but used directly. Both "file:" and "file:///" are allowed
as prefixes to a file path. Use the latter only for URLs: see url for their interpretation. (Other forms
of ‘file://’ URLs are not supported.)

Value

A two-column matrix of names and destination file names of those packages successfully down-
loaded. If packages are not available or there is a problem with the download, suitable warnings are
given.

See Also

available.packages, contrib.url.

The main use is by install.packages.

See download.file for how to handle proxies and other options to monitor file transfers.

The ‘R Installation and Administration’ manual for how to set up a repository.

edit Invoke a Text Editor

Description

Invoke a text editor on an R object.

edit 1689

Usage

Default S3 method:
edit(name = NULL, file = "", title = NULL,

editor = getOption("editor"), ...)

vi(name = NULL, file = "")
emacs(name = NULL, file = "")
pico(name = NULL, file = "")
xemacs(name = NULL, file = "")
xedit(name = NULL, file = "")

Arguments

name a named object that you want to edit. If name is missing then the file specified
by file is opened for editing.

file a string naming the file to write the edited version to.

title a display name for the object being edited.

editor a string naming the text editor you want to use. On Unix the default is set from
the environment variables EDITOR or VISUAL if either is set, otherwise vi is used.
On Windows it defaults to "internal", the script editor. On the Mac OS X GUI
the argument is ignored and the document editor is always used.

... further arguments to be passed to or from methods.

Details

edit invokes the text editor specified by editor with the object name to be edited. It is a generic
function, currently with a default method and one for data frames and matrices.

data.entry can be used to edit data, and is used by edit to edit matrices and data frames on
systems for which data.entry is available.

It is important to realize that edit does not change the object called name. Instead, a copy of name
is made and it is that copy which is changed. Should you want the changes to apply to the object
name you must assign the result of edit to name. (Try fix if you want to make permanent changes
to an object.)

In the form edit(name), edit deparses name into a temporary file and invokes the editor editor
on this file. Quitting from the editor causes file to be parsed and that value returned. Should an
error occur in parsing, possibly due to incorrect syntax, no value is returned. Calling edit(), with
no arguments, will result in the temporary file being reopened for further editing.

Note that deparsing is not perfect, and the object recreated after editing can differ in subtle ways
from that deparsed: see dput and .deparseOpts. (The deparse options used are the same as the
defaults for dump.) Editing a function will preserve its environment. See edit.data.frame for
further changes that can occur when editing a data frame or matrix.

Currently only the internal editor in Windows makes use of the title option; it displays the given
name in the window header.

Note

The functions vi, emacs, pico, xemacs, xedit rely on the corresponding editor being available and
being on the path. This is system-dependent.

1690 edit.data.frame

See Also

edit.data.frame, data.entry, fix.

Examples

Not run:
use xedit on the function mean and assign the changes
mean <- edit(mean, editor = "xedit")

use vi on mean and write the result to file mean.out
vi(mean, file = "mean.out")

End(Not run)

edit.data.frame Edit Data Frames and Matrices

Description

Use data editor on data frame or matrix contents.

Usage

S3 method for class ’data.frame’
edit(name, factor.mode = c("character", "numeric"),

edit.row.names = any(row.names(name) != 1:nrow(name)), ...)

S3 method for class ’matrix’
edit(name, edit.row.names = !is.null(dn[[1]]), ...)

Arguments

name A data frame or (numeric, logical or character) matrix.

factor.mode How to handle factors (as integers or using character levels) in a data frame.

edit.row.names logical. Show the row names (if they exist) be displayed as a separate editable
column? It is an error to ask for this on a matrix with NULL row names.

... further arguments passed to or from other methods.

Details

At present, this only works on simple data frames containing numeric, logical or character vectors
and factors, and numeric, logical or character matrices. Any other mode of matrix will give an error,
and a warning is given when the matrix has a class (which will be discarded).

Data frame columns are coerced on input to character unless numeric (in the sense of is.numeric),
logical or factor. A warning is given when classes are discarded. Special characters (tabs, non-
printing ASCII, etc.) will be displayed as escape sequences.

Factors columns are represented in the spreadsheet as either numeric vectors (which are more suit-
able for data entry) or character vectors (better for browsing). After editing, vectors are padded
with NA to have the same length and factor attributes are restored. The set of factor levels can not
be changed by editing in numeric mode; invalid levels are changed to NA and a warning is issued. If

edit.data.frame 1691

new factor levels are introduced in character mode, they are added at the end of the list of levels in
the order in which they encountered.

It is possible to use the data-editor’s facilities to select the mode of columns to swap between
numerical and factor columns in a data frame. Changing any column in a numerical matrix to
character will cause the result to be coerced to a character matrix. Changing the mode of logical
columns is not supported.

For a data frame, the row names will be taken from the original object if edit.row.names = FALSE
and the number of rows is unchanged, and from the edited output if edit.row.names = TRUE and
there are no duplicates. (If the row.names column is incomplete, it is extended by entries like
row223.) In all other cases the row names are replaced by seq(length=nrows).

For a matrix, colnames will be added (of the form col7) if needed. The rownames will be taken
from the original object if edit.row.names = FALSE and the number of rows is unchanged (other-
wise NULL), and from the edited output if edit.row.names = TRUE. (If the row.names column is
incomplete, it is extended by entries like row223.)

Editing a matrix or data frame will lose all attributes apart from the row and column names.

Value

The edited data frame or matrix.

Note

fix(dataframe) works for in-place editing by calling this function.

If the data editor is not available, a dump of the object is presented for editing using the default
method of edit.

At present the data editor is limited to 65535 rows.

Author(s)

Peter Dalgaard

See Also

data.entry, edit

Examples

Not run:
edit(InsectSprays)
edit(InsectSprays, factor.mode="numeric")

End(Not run)

1692 example

example Run an Examples Section from the Online Help

Description

Run all the R code from the Examples part of R’s online help topic topic with two possible
exceptions, dontrun and dontshow, see ‘Details’ below.

Usage

example(topic, package = NULL, lib.loc = NULL,
character.only = FALSE, give.lines = FALSE, local = FALSE,
echo = TRUE, verbose = getOption("verbose"),
setRNG = FALSE, ask = getOption("example.ask"),
prompt.prefix = abbreviate(topic, 6))

Arguments

topic name or literal character string: the online help topic the examples of which
should be run.

package a character vector giving the package names to look into for the topic, or NULL
(the default), when all packages on the search path are used.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

character.only a logical indicating whether topic can be assumed to be a character string.

give.lines logical: if true, the lines of the example source code are returned as a character
vector.

local logical: if TRUE evaluate locally, if FALSE evaluate in the workspace.

echo logical; if TRUE, show the R input when sourcing.

verbose logical; if TRUE, show even more when running example code.

setRNG logical or expression; if not FALSE, the random number generator state
is saved, then initialized to a specified state, the example is run and the
(saved) state is restored. setRNG = TRUE sets the same state as R CMD check
does for running a package’s examples. This is currently equivalent to
setRNG = {RNGkind("default", "default"); set.seed(1)}.

ask logical (or "default") indicating if devAskNewPage(ask=TRUE) should be
called before graphical output happens from the example code. The value
"default" (the factory-fresh default) means to ask if echo == TRUE and the
graphics device appears to be interactive. This parameter applies both to any
currently opened device and to any devices opened by the example code.

prompt.prefix character; prefixes the prompt to be used if echo = TRUE.

example 1693

Details

If lib.loc is not specified, the packages are searched for amongst those already loaded, then in
the libraries given by .libPaths(). If lib.loc is specified, packages are searched for only in the
specified libraries, even if they are already loaded from another library. The search stops at the first
package found that has help on the topic.

An attempt is made to load the package before running the examples, but this will not replace a
package loaded from another location.

If local = TRUE objects are not created in the workspace and so not available for examination
after example completes: on the other hand they cannot overwrite objects of the same name in the
workspace.

As detailed in the manual Writing R Extensions, the author of the help page can markup parts of
the examples for two exception rules

dontrun encloses code that should not be run.

dontshow encloses code that is invisible on help pages, but will be run both by the package check-
ing tools, and the example() function. This was previously testonly, and that form is still
accepted.

Value

The value of the last evaluated expression, unless give.lines is true, where a character vector is
returned.

Author(s)

Martin Maechler and others

See Also

demo

Examples

example(InsectSprays)
force use of the standard package ’stats’:
example("smooth", package="stats", lib.loc=.Library)

set RNG *before* example as when R CMD check is run:

r1 <- example(quantile, setRNG = TRUE)
x1 <- rnorm(1)
u <- runif(1)
identical random numbers
r2 <- example(quantile, setRNG = TRUE)
x2 <- rnorm(1)
stopifnot(identical(r1, r2))
but x1 and x2 differ since the RNG state from before example()
differs and is restored!
x1; x2

Exploring examples code:
How large are the examples of "lm...()" functions?
lmex <- sapply(apropos("^lm", mode="function"),

example, character.only=TRUE, give.lines=TRUE)

1694 file.edit

sapply(lmex, length)

file.edit Edit One or More Files

Description

Edit one or more files in a text editor.

Usage

file.edit(..., title = file, editor = getOption("editor"),
fileEncoding = "")

Arguments

... one or more character vectors containing the names of the files to be displayed.
These will be tilde-expanded: see path.expand.

title the title to use in the editor; defaults to the filename.

editor the text editor to be used. See ‘Details’.

fileEncoding the encoding to assume for the file: the default is to assume the native encoding.
See the ‘Encoding’ section of the help for file.

Details

The behaviour of this function is very system dependent. Currently files can be opened only one at
a time on Unix; on Windows, the internal editor allows multiple files to be opened, but has a limit
of 50 simultaneous edit windows.

The title argument is used for the window caption in Windows, and is currently ignored on other
platforms.

The fileEncoding argument was added in R 2.13.0: any error in re-encoding the files to the native
encoding will cause the function to fail.

The default for editor is system-dependent. On Windows it defaults to "internal", the script
editor, and in the Mac OS X GUI the document editor is used whatever the value of editor. On
Unix the default is set from the environment variables EDITOR or VISUAL if either is set, otherwise
vi is used.

UTF-8-encoded paths not valid in the current locale can be used.

See Also

files, file.show, edit, fix,

Examples

Not run:
open two R scripts for editing
file.edit("script1.R", "script2.R")

End(Not run)

file_test 1695

file_test Shell-style Tests on Files

Description

Utility for shell-style file tests.

Usage

file_test(op, x, y)

Arguments

op a character string specifying the test to be performed. Unary tests (only x is used)
are "-f" (existence and not being a directory), "-d" (existence and directory)
and "-x" (executable as a file or searchable as a directory). Binary tests are
"-nt" (strictly newer than, using the modification dates) and "-ot" (strictly
older than): in both cases the test is false unless both files exist.

x,y character vectors giving file paths.

Details

‘Existence’ here means being on the file system and accessible by the stat system call (or a 64-bit
extension) – on a Unix-alike this requires execute permission on all of the directories in the path
that leads to the file, but no permissions on the file itself.

For the meaning of "-x" on Windows see file.access.

See Also

file.exists which only tests for existence (test -e on some systems) but not for not being a
directory.

file.path, file.info

Examples

dir <- file.path(R.home(), "library", "stats")
file_test("-d", dir)
file_test("-nt", file.path(dir, "R"), file.path(dir, "demo"))

findLineNum Find the Location of a Line of Source Code, or Set a Breakpoint There.

Description

These functions locate objects containing particular lines of source code, using the information
saved when the code was parsed with options(keep.source = TRUE).

1696 findLineNum

Usage

findLineNum(srcfile, line, nameonly = TRUE,
envir = parent.frame(), lastenv)

setBreakpoint(srcfile, line, nameonly = TRUE,
envir = parent.frame(), lastenv, verbose = TRUE,
tracer, print = FALSE, clear = FALSE, ...)

Arguments

srcfile The name of the file containing the source code.

line The line number within the file. See Details for an alternate way to specify this.

nameonly If TRUE (the default), we require only a match to basename(srcfile), not to
the full path.

envir Where do we start looking for function objects?

lastenv Where do we stop? See the Details.

verbose Should we print information on where breakpoints were set?

tracer An optional tracer function to pass to trace. By default, a call to browser is
inserted.

print The print argument to pass to trace.

clear If TRUE, call untrace rather than trace.

... Additional arguments to pass to trace.

Details

The findLineNum function searches through all objects in environment envir, its parent, grandpar-
ent, etc., all the way back to lastenv.

lastenv defaults to the global environment if envir is not specified, and to the root environment
emptyenv() if envir is specified. (The first default tends to be quite fast, and will usually find all
user code other than S4 methods; the second one is quite slow, as it will typically search all attached
system libraries.)

For convenience, envir may be specified indirectly: if it is not an environment, it will be replaced
with environment(envir).

setBreakpoint is a simple wrapper function for trace and untrace. It will set or clear breakpoints
at the locations found by findLineNum.

The srcfile is normally a filename entered as a character string, but it may be a "srcfile" object,
or it may include a suffix like "filename.R#nn", in which case the number nn will be used as a
default value for line.

As described in the description of the where argument on the man page for trace, the R package
system uses a complicated scheme that may include more than one copy of a function in a pack-
age. The user will typically see the public one on the search path, while code in the package will
see a private one in the package NAMESPACE. If you set envir to the environment of a func-
tion in the package, by default findLineNum will find both versions, and setBreakpoint will set
the breakpoint in both. (This can be controlled using lastenv; e.g. envir=environment(foo),
lastenv=globalenv() will find only the private copy, as the search is stopped before seeing the
public copy.)

S version 4 methods are also somewhat tricky to find. They are stored with the generic function,
which may be in the base or other package, so it is usually necessary to have lastenv=emptyenv()

fix 1697

in order to find them. In some cases transformations are done by R when storing them and
findLineNum may not be able to find the original code. Many special cases, e.g. methods on
primitive generics, are not yet supported.

Value

fineLineNum returns a list of objects containing location information. A print method is defined
for them.

setBreakpoint has no useful return value; it is called for the side effect of calling trace or
untrace.

Author(s)

Duncan Murdoch

See Also

trace

Examples

Not run:
Find what function was defined in the file mysource.R at line 100:
findLineNum("mysource.R#100")

Set a breakpoint in both copies of that function, assuming one is in the
same namespace as myfunction and the other is on the search path
setBreakpoint("mysource.R#100", envir=myfunction)

End(Not run)

fix Fix an Object

Description

fix invokes edit on x and then assigns the new (edited) version of x in the user’s workspace.

Usage

fix(x, ...)

Arguments

x the name of an R object, as a name or a character string.

... arguments to pass to editor: see edit.

Details

The name supplied as x need not exist as an R object, in which case a function with no arguments
and an empty body is supplied for editing.

Editing an R object may change it in ways other than are obvious: see the comment under edit.
See edit.data.frame for changes that can occur when editing a data frame or matrix.

1698 format

See Also

edit, edit.data.frame

Examples

Not run:
Assume ’my.fun’ is a user defined function :
fix(my.fun)
now my.fun is changed
Also,
fix(my.data.frame) # calls up data editor
fix(my.data.frame, factor.mode="char") # use of ...

End(Not run)

flush.console Flush Output to A Console

Description

This does nothing except on console-based versions of R. On the Mac OS X and Windows GUIs, it
ensures that the display of output in the console is current, even if output buffering is on.

Usage

flush.console()

format Format Unordered and Ordered Lists

Description

Format unordered (itemize) and ordered (enumerate) lists.

Usage

formatUL(x, label = "*", offset = 0,
width = 0.9 * getOption("width"))

formatOL(x, type = "arabic", offset = 0, start = 1,
width = 0.9 * getOption("width"))

Arguments

x a character vector of list items.

label a character string used for labelling the items.

offset a non-negative integer giving the offset (indentation) of the list.

width a positive integer giving the target column for wrapping lines in the output.

getAnywhere 1699

type a character string specifying the ‘type’ of the labels in the ordered list. If
"arabic" (default), arabic numerals are used. For "Alph" or "alph", single
upper or lower case letters are employed (in this case, the number of the last
item must not exceed 26. Finally, for "Roman" or "roman", the labels are given
as upper or lower case roman numerals (with the number of the last item max-
imally 3899). type can be given as a unique abbreviation of the above, or as
one of the HTML style tokens "1" (arabic), "A"/"a" (alphabetic), or "I"/"i"
(roman), respectively.

start a positive integer specifying the starting number of the first item in an ordered
list.

Value

A character vector with the formatted entries.

See Also

formatDL for formatting description lists.

Examples

A simpler recipe.
x <- c("Mix dry ingredients thoroughly.",

"Pour in wet ingredients.",
"Mix for 10 minutes.",
"Bake for one hour at 300 degrees.")

Format and output as an unordered list.
writeLines(formatUL(x))
Format and output as an ordered list.
writeLines(formatOL(x))
Ordered list using lower case roman numerals.
writeLines(formatOL(x, type = "i"))
Ordered list using upper case letters and some offset.
writeLines(formatOL(x, type = "A", offset = 5))

getAnywhere Retrieve an R Object, Including from a Namespace

Description

These functions locate all objects with name matching their argument, whether visible on the search
path, registered as an S3 method or in a namespace but not exported. getAnywhere() returns the
objects and argsAnywhere() returns the arguments of any objects that are functions.

Usage

getAnywhere(x)
argsAnywhere(x)

Arguments

x a character string or name.

1700 getFromNamespace

Details

These functions look at all loaded namespaces, whether or not they are associated with a package
on the search list.

They do not search literally “anywhere”: for example, local evaluation frames and namespaces that
are not loaded will not be searched.

Where functions are found as registered S3 methods, an attempt is made to find which namespace
registered them. This may not be correct, especially if namespaces have been unloaded.

Value

For getAnywhere() an object of class "getAnywhere". This is a list with components

name the name searched for

objs a list of objects found

where a character vector explaining where the object(s) were found

visible logical: is the object visible

dups logical: is the object identical to one earlier in the list.

In computing whether objects are identical, their environments are ignored.

Normally the structure will be hidden by the print method. There is a [method to extract one or
more of the objects found.

For argsAnywhere() one or more argument lists as returned by args.

See Also

getS3method to find the method which would be used: this might not be the one of those returned
by getAnywhere since it might have come from a namespace which was unloaded or be registered
under another name.

get, getFromNamespace, args

Examples

getAnywhere("format.dist")
getAnywhere("simpleLoess") # not exported from stats
argsAnywhere(format.dist)

getFromNamespace Utility functions for Developing Namespaces

Description

Utility functions to access and replace the non-exported functions in a namespace, for use in devel-
oping packages with namespaces.

They should not be used in production code.

getFromNamespace 1701

Usage

getFromNamespace(x, ns, pos = -1, envir = as.environment(pos))

assignInNamespace(x, value, ns, pos = -1,
envir = as.environment(pos))

assignInMyNamespace(x, value)

fixInNamespace(x, ns, pos = -1, envir = as.environment(pos), ...)

Arguments

x an object name (given as a character string).

value an R object.

ns a namespace, or character string giving the namespace.

pos where to look for the object: see get.

envir an alternative way to specify an environment to look in.

... arguments to pass to the editor: see edit.

Details

assignInMyNamespace is intended to be called from functions within a package, and chooses the
namespace as the environment of the function calling it.

The namespace can be specified in several ways. Using, for example, ns = "stats" is the most
direct, but a loaded package with a namespace can be specified via any of the methods used for get:
ns can also be the environment printed as <namespace:foo>.

getFromNamespace is similar to (but predates) the ::: operator, but is more flexible in how the
namespace is specified.

fixInNamespace invokes edit on the object named x and assigns the revised object in place of the
original object. For compatibility with fix, x can be unquoted.

Value

getFromNamespace returns the object found (or gives an error).

assignInNamespace, assignInMyNamespace and fixInNamespace are invoked for their side ef-
fect of changing the object in the namespace.

Warning

assignInNamespace should not be used in final code, and will in future throw an error if called
from a package. Already certain uses are disallowed.

Note

assignInNamespace and fixInNamespace change the copy in the namespace, but not any copies
already exported from the namespace, in particular an object of that name in the package (if already
attached) and any copies already imported into other namespaces. They are really intended to be
used only for objects which are not exported from the namespace. They do attempt to alter a copy
registered as an S3 method if one is found.

They can only be used to change the values of objects in the namespace, not to create new objects.

1702 getS3method

See Also

get, fix, getS3method

Examples

getFromNamespace("findGeneric", "utils")
Not run:
fixInNamespace("predict.ppr", "stats")
stats:::predict.ppr
getS3method("predict", "ppr")
alternatively
fixInNamespace("predict.ppr", pos = 3)
fixInNamespace("predict.ppr", pos = "package:stats")

End(Not run)

getS3method Get An S3 Method

Description

Get a method for an S3 generic, possibly from a namespace or the generic’s registry.

Usage

getS3method(f, class, optional = FALSE)

Arguments

f character: name of the generic.

class character: name of the class.

optional logical: should failure to find the generic or a method be allowed?

Details

S3 methods may be hidden in namespaces, and will not then be found by get: this function can
retrieve such functions, primarily for debugging purposes.

Further, S3 methods can be registered on the generic when a namespace is loaded, and the registered
method will be used if none is visible (using namespace scoping rules).

It is possible that which S3 method will be used may depend on where the generic f is called from:
getS3method returns the method found if f were called from the same environment.

Value

The function found, or NULL if no function is found and optional = TRUE.

See Also

methods, get, getAnywhere

getWindowsHandle 1703

Examples

require(stats)
exists("predict.ppr") # false
getS3method("predict", "ppr")

getWindowsHandle Get a Windows Handle

Description

Get the Windows handle of a window or of the R process.

Usage

getWindowsHandle(which = "Console")

Arguments

which A string (see below), or the number of a graphics device window

Details

getWindowsHandle gets the Windows handle. Possible choices for which are:

"Console" The console window handle.
"Frame" The MDI frame window handle.
"Process" The process pseudo-handle.
A device number The window handle of a graphics device

These values are not normally useful to users, but may be used by developers making add-ons to R.

NULL is returned for the Frame handle if not running in MDI mode, for the Console handle when
running Rterm, for any unrecognized string for which, or for a graphics device with no correspond-
ing window.

Other windows (help browsers, etc.) are not accessible through this function.

Value

An external pointer holding the Windows handle, or NULL.

Note

As from R 2.6.0, this function returns an external pointer rather than an integer value, and
which = "ProcessId" is no longer supported. Use Sys.getpid for the latter.

See Also

getIdentification, getWindowsHandles

Examples

getWindowsHandle()

1704 getWindowsHandles

getWindowsHandles Get handles of windows.

Description

This function gets the Windows handles of visible top level windows or windows within the R MDI
frame.

Usage

getWindowsHandles(which = "R", pattern = "", minimized = FALSE)

Arguments

which A vector of strings "R" or "all" (possibly with repetitions). See the Details sec-
tion.

pattern A vector of patterns that the titles of the windows must match.

minimized A logical vector indicating whether minimized windows should be considered.

Details

This function will search for Windows handles, for passing to external GUIs or to the
arrangeWindows function. Each of the arguments may be a vector of values. These will be treated
as follows:

• The arguments will all be recycled to the same length.

• The corresponding elements of each argument will be applied in separate searches.

• The final result will be the union of the windows identified in each of the searches.

If an element of which is "R", only windows belonging to the current R process will be returned.
In MDI mode, those will be the child windows within the R GUI frame. In SDI mode, all windows
belonging to the process will be included.

If the element is "all", then top level windows will be returned.

The elements of pattern will be used to make a subset of windows whose title text matches (ac-
cording to grep) the pattern.

If minimized = FALSE, minimized windows will be ignored.

Value

A list of external pointers containing the window handles.

Author(s)

Duncan Murdoch

See Also

arrangeWindows

glob2rx 1705

Examples

getWindowsHandles()
getWindowsHandles("all")

glob2rx Change Wildcard or Globbing Pattern into Regular Expression

Description

Change wildcard aka globbing patterns into the corresponding regular expressions (regexp).

Usage

glob2rx(pattern, trim.head = FALSE, trim.tail = TRUE)

Arguments

pattern character vector

trim.head logical specifying if leading "^.*" should be trimmed from the result.

trim.tail logical specifying if trailing ".*$" should be trimmed from the result.

Details

This takes a wildcard as used by most shells and returns an equivalent regular expression. ? is
mapped to . (match a single character), * to .* (match any string, including an empty one), and
the pattern is anchored (it must start at the beginning and end at the end). Optionally, the resulting
regexp is simplified.

Note that now even (, [and { can be used in pattern, but glob2rx() may not work correctly with
arbitrary characters in pattern.

Value

A character vector of the same length as the input pattern where each wildcard is translated to the
corresponding regular expression.

Author(s)

Martin Maechler, Unix/sed based version, 1991; current: 2004

See Also

regexp about regular expression, sub, etc about substitutions using regexps.

1706 globalVariables

Examples

stopifnot(glob2rx("abc.*") == "^abc\\.",
glob2rx("a?b.*") == "^a.b\\.",
glob2rx("a?b.*", trim.tail=FALSE) == "^a.b\\..*$",
glob2rx("*.doc") == "^.*\\.doc$",
glob2rx("*.doc", trim.head=TRUE) == "\\.doc$",
glob2rx("*.t*") == "^.*\\.t",
glob2rx("*.t??") == "^.*\\.t..$",
glob2rx("*[*") == "^.*\\["

)

globalVariables Declare Variables to be Treated as Global in Checking a Package

Description

The names supplied are of functions or other objects that should be regarded as defined globally
when the check tool is applied to this package. The call to globalVariables will be included
in the package’s source. Repeated calls in the same package accumulate the names of the global
variables.

Typical examples are the fields and methods in reference classes, which appear to be global ob-
jects to codetools. (This case is handled automatically by setRefClass() and friends, using the
supplied field and method names.)

Usage

globalVariables(names, package, add = TRUE)

Arguments

names The character vector of object names. If omitted, the current list of global vari-
ables declared in the package will be returned, unchanged.

package The relevant package, usually the character string name of the package but op-
tionally its corresponding namespace environment.
When the call to globalVariables comes in the package’s source file, the ar-
gument is normally omitted, as in the example below.

add Should the contents of names be added to the current global variables or replace
it?

Details

The list of declared global variables is stored in a metadata object in the package’s namespace,
assuming the globalVariables call(s) occur as top-level calls in the package’s source code.

The check command, as implemented in package utils, queries the global variables list before
checking the R source code in the package for possible problems.

Value

The current list of declared global variables, possibly modified by this call.

head 1707

Note

The global variables list really belongs to a restricted scope (a function or a group of method defini-
tions, for example) rather than the package as a whole. However, implementing finer control would
require changes in check and/or in codetools, so in this version the information is stored at the
package level.

Author(s)

John Chambers

Examples

Not run:
assume your package has some code that assigns ".obj1" and ".obj2"
but not in a way that codetools can find. In the same source file
(to remind you that you did it) add:
utils::globalVariables(c(".obj1", "obj2"))

End(Not run)

head Return the First or Last Part of an Object

Description

Returns the first or last parts of a vector, matrix, table, data frame or function. Since head() and
tail() are generic functions, they may also have been extended to other classes.

Usage

head(x, ...)
Default S3 method:
head(x, n = 6L, ...)
S3 method for class ’data.frame’
head(x, n = 6L, ...)
S3 method for class ’matrix’
head(x, n = 6L, ...)
S3 method for class ’ftable’
head(x, n = 6L, ...)
S3 method for class ’table’
head(x, n = 6L, ...)
S3 method for class ’function’
head(x, n = 6L, ...)

tail(x, ...)
Default S3 method:
tail(x, n = 6L, ...)
S3 method for class ’data.frame’
tail(x, n = 6L, ...)
S3 method for class ’matrix’
tail(x, n = 6L, addrownums = TRUE, ...)

1708 head

S3 method for class ’ftable’
tail(x, n = 6L, addrownums = FALSE, ...)
S3 method for class ’table’
tail(x, n = 6L, addrownums = TRUE, ...)
S3 method for class ’function’
tail(x, n = 6L, ...)

Arguments

x an object

n a single integer. If positive, size for the resulting object: number of elements for
a vector (including lists), rows for a matrix or data frame or lines for a function.
If negative, all but the n last/first number of elements of x.

addrownums if there are no row names, create them from the row numbers.

... arguments to be passed to or from other methods.

Details

For matrices, 2-dim tables and data frames, head() (tail()) returns the first (last) n rows when
n > 0 or all but the last (first) n rows when n < 0. head.matrix() and tail.matrix() are ex-
ported. For functions, the lines of the deparsed function are returned as character strings.

If a matrix has no row names, then tail() will add row names of the form "[n,]" to the result,
so that it looks similar to the last lines of x when printed. Setting addrownums = FALSE
suppresses this behaviour.

Value

An object (usually) like x but generally smaller. For ftable objects x, a transformed format(x).

Author(s)

Patrick Burns, improved and corrected by R-Core. Negative argument added by Vincent Goulet.

Examples

head(letters)
head(letters, n = -6L)

head(freeny.x, n = 10L)
head(freeny.y)

tail(letters)
tail(letters, n = -6L)

tail(freeny.x)
tail(freeny.y)

tail(library)

head(stats::ftable(Titanic))

help 1709

help Documentation

Description

help is the primary interface to the help systems.

Usage

help(topic, package = NULL, lib.loc = NULL,
verbose = getOption("verbose"),
try.all.packages = getOption("help.try.all.packages"),
help_type = getOption("help_type"))

Arguments

topic usually, a name or character string specifying the topic for which help is sought.
A character string (enclosed in explicit single or double quotes) is always taken
as naming a topic.
If the value of topic is a length-one character vector the topic is taken to be the
value of the only element. Otherwise topic must be a name or a reserved word
(if syntactically valid) or character string.
See ‘Details’ for what happens if this is omitted.

package a name or character vector giving the packages to look into for documentation,
or NULL. By default, all packages in the search path are used. To avoid a name
being deparsed use e.g. (pkg_ref) (see the examples).

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries. This is not used for HTML
help (see ‘Details’.

verbose logical; if TRUE, the file name is reported.
try.all.packages

logical; see Note.

help_type character string: the type of help required. Possible values are "text", "html"
and "pdf". Case is ignored, and partial matching is allowed.

Details

The following types of help are available:

• Plain text help

• HTML help pages with hyperlinks to other topics, shown in a browser by browseURL. If for
some reason HTML help is unavailable (see startDynamicHelp), plain text help will be used
instead.

• For help only, typeset as PDF – see the section on ‘Offline help’.

The default for the type of help is selected when R is installed – the ‘factory-fresh’ default is HTML
help.

1710 help

The rendering of text help will use directional quotes in suitable locales (UTF-8 and single-byte
Windows locales): sometimes the fonts used do not support these quotes so this can be turned off
by setting options(useFancyQuotes = FALSE).

topic is not optional: if it is omitted R will give

• If a package is specified, (text or, in interactive use only, HTML) information on the package,
including hints/links to suitable help topics.

• If lib.loc only is specified, a (text) list of available packages.

• Help on help itself if none of the first three arguments is specified.

Some topics need to be quoted (by backticks) or given as a character string. These include those
which cannot syntactically appear on their own such as unary and binary operators, function and
control-flow reserved words (including if, else for, in, repeat, while, break and next). The
other reserved words can be used as if they were names, for example TRUE, NA and Inf.

If multiple help files matching topic are found, in interactive use a menu is presented for the user
to choose one: in batch use the first on the search path is used. (For HTML help the menu will be
an HTML page, otherwise a graphical menu if possible if getOption("menu.graphics") is true,
the default.)

Note that HTML help does not make use of lib.loc: it will always look first in the attached
packages and then along .libPaths().

Offline help

Typeset documentation is produced by running the LaTeX version of the help page through
pdflatex: this will produce a PDF file.

The appearance of the output can be customized through a file ‘Rhelp.cfg’ somewhere in your La-
TeX search path: this will be input as a LaTeX style file after Rd.sty. Some environment variables
are consulted, notably R_PAPERSIZE (via getOption("papersize")) and R_RD4PDF (see ‘Making
manuals’ in the ‘R Installation and Administration Manual’).

If there is a function offline_help_helper in the workspace or further down the search path it is
used to do the typesetting, otherwise the function of that name in the utils namespace (to which
the first paragraph applies). It should accept at least two arguments, the name of the LaTeX file to
be typeset and the type (which as from R 2.15.0 is ignored). As from R 2.14.0 it should accept
a third argument, texinputs, which will give the graphics path when the help document contains
figures, and will otherwise not be supplied.

Note

Unless lib.loc is specified explicitly, the loaded packages are searched before those in the speci-
fied libraries. This ensures that if a library is loaded from a library not in the known library trees,
then the help from the loaded library is used. If lib.loc is specified explicitly, the loaded packages
are not searched.

If this search fails and argument try.all.packages is TRUE and neither packages nor lib.loc
is specified, then all the packages in the known library trees are searched for help on topic and
a list of (any) packages where help may be found is displayed (with hyperlinks for help_type =
"html"). NB: searching all packages can be slow, especially the first time (caching of files by the
OS can expedite subsequent searches dramatically).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

help.request 1711

See Also

? for shortcuts to help topics.

help.search() or ?? for finding help pages on a vague topic; help.start() which opens the
HTML version of the R help pages; library() for listing available packages and the help objects
they contain; data() for listing available data sets; methods().

Use prompt() to get a prototype for writing help pages of your own package.

Examples

help()
help(help) # the same

help(lapply)

help("for") # or ?"for", but quotes/backticks are needed

help(package="splines") # get help even when package is not loaded

topi <- "women"
help(topi)

try(help("bs", try.all.packages=FALSE)) # reports not found (an error)
help("bs", try.all.packages=TRUE) # reports can be found

in package ’splines’

For programmatic use:
topic <- "family"; pkg_ref <- "stats"
help((topic), (pkg_ref))

help.request Send a Post to R-help

Description

Prompts the user to check they have done all that is expected of them before sending a post to the R-
help mailing list, provides a template for the post with session information included and optionally
sends the email (on Unix systems).

Usage

help.request(subject = "",
address = "r-help@R-project.org",
file = "R.help.request", ...)

Arguments

subject subject of the email. Please do not use single quotes (’) in the subject! Post
separate help requests for multiple queries.

address recipient’s email address.
file filename to use (if needed) for setting up the email.
... additional named arguments such as method and ccaddress to pass to

create.post.

1712 help.search

Details

This function is not intended to replace the posting guide. Please read the guide before posting to
R-help or using this function (see http://www.r-project.org/posting-guide.html).

The help.request function:

• asks whether the user has consulted relevant resources, stopping and opening the relevant URL
if a negative response if given.

• checks whether the current version of R is being used and whether the add-on packages are
up-to-date, giving the option of updating where necessary.

• asks whether the user has prepared appropriate (minimal, reproducible, self-contained, com-
mented) example code ready to paste into the post.

Once this checklist has been completed a template post is prepared including current session infor-
mation, and passed to create.post.

Value

Nothing useful.

Author(s)

Heather Turner, based on the then current code and help page of bug.report().

See Also

The posting guide (http://www.r-project.org/posting-guide.html), also sessionInfo()
from which you may add to the help request.

create.post.

help.search Search the Help System

Description

Allows for searching the help system for documentation matching a given character string in the
(file) name, alias, title, concept or keyword entries (or any combination thereof), using either fuzzy
matching or regular expression matching. Names and titles of the matched help entries are displayed
nicely formatted.

Vignette names, titles and keywords and demo names and titles may also be searched.

Usage

help.search(pattern, fields = c("alias", "concept", "title"),
apropos, keyword, whatis, ignore.case = TRUE,
package = NULL, lib.loc = NULL,
help.db = getOption("help.db"),
verbose = getOption("verbose"),
rebuild = FALSE, agrep = NULL, use_UTF8 = FALSE,
types = getOption("help.search.types"))

??pattern
field??pattern

http://www.r-project.org/posting-guide.html
http://www.r-project.org/posting-guide.html

help.search 1713

Arguments

pattern a character string to be matched in the specified fields. If this is given, the
arguments apropos, keyword, and whatis are ignored.

fields a character vector specifying the fields of the help database to be searched. The
entries must be abbreviations of "name", "title", "alias", "concept", and
"keyword", corresponding to the help page’s (file) name, its title, the topics and
concepts it provides documentation for, and the keywords it can be classified to.
See below for how vignettes and demos are searched.

apropos a character string to be matched in the help page topics and title.
keyword a character string to be matched in the help page ‘keywords’. ‘Key-

words’ are really categories: the standard categories are listed in file
‘R.home("doc")/KEYWORDS’ (see also the example) and some package writers
have defined their own. If keyword is specified, agrep defaults to FALSE.

whatis a character string to be matched in the help page topics.
ignore.case a logical. If TRUE, case is ignored during matching; if FALSE, pattern matching

is case sensitive.
package a character vector with the names of packages to search through, or NULL in

which case all available packages in the library trees specified by lib.loc are
searched.

lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to all libraries currently known.

help.db a character string giving the file path to a previously built and saved help
database, or NULL.

verbose logical; if TRUE, the search process is traced. Integer values are also accepted,
with TRUE being equivalent to 2, and 1 being less verbose. On Windows a
progress bar is shown during rebuilding, and on Unix a heartbeat is shown for
verbose = 1 and a package-by-package list for verbose >= 2.

rebuild a logical indicating whether the help database should be rebuilt. This will be
done automatically if lib.loc or the search path is changed, or if package is
used and a value is not found.

agrep if NULL (the default unless keyword is used) and the character string to be
matched consists of alphanumeric characters, whitespace or a dash only, ap-
proximate (fuzzy) matching via agrep is used unless the string has fewer than 5
characters; otherwise, it is taken to contain a regular expression to be matched
via grep. If FALSE, approximate matching is not used. Otherwise, one can give
a numeric or a list specifying the maximal distance for the approximate match,
see argument max.distance in the documentation for agrep.

use_UTF8 logical: should be results be given in UTF-8 encoding? Also changes the mean-
ing of regexps in agrep to be Perl regexps.

types a character vector listing the types of documentation to search. The entries must
be abbreviations of "vignette" "help" or "demo". Results will be presented
in the order specified.

field a single value of fields to search.

Details

Upon installation of a package, a pre-built help.search index is serialized as ‘hsearch.rds’ in the
‘Meta’ directory (provided the package has any help pages). Vignettes are also indexed in the
‘Meta/vignette.rds’ file. These files are used to create the help search database.

1714 help.search

The arguments apropos and whatis play a role similar to the Unix commands with the same names.

Searching with agrep = FALSE will be several times faster than the default (once the database is
built). However, as from R 2.10.0 approximate searches should be fast enough (around a second
with 2000 packages installed).

If possible, the help database is saved in memory for use by subsequent calls in the session.

Note that currently the aliases in the matching help files are not displayed.

As with ?, in ?? the pattern may be prefixed with a package name followed by :: or ::: to limit
the search to that package.

Vignettes are searched as follows. The "name" and "alias" are both the base of the vignette
filename, and the "concept" entries are taken from the \VignetteKeywords entries. Vignettes
are not classified using the help system "keyword" classifications. Demos are handled similarly to
vignettes, without the "concept" search.

Value

The results are returned in a list object of class "hsearch", which has a print method for nicely
formatting the results of the query. This mechanism is experimental, and may change in future
versions of R.

In R.app on Mac OS X, this will show up a browser with selectable items. On exiting this browser,
the help pages for the selected items will be shown in separate help windows.

The internal format of the class is undocumented and subject to change.

See Also

help; help.start for starting the hypertext (currently HTML) version of R’s online documenta-
tion, which offers a similar search mechanism.

RSiteSearch to access an on-line search of R resources.

apropos uses regexps and has nice examples.

Examples

help.search("linear models") # In case you forgot how to fit linear
models

help.search("non-existent topic")

??utils::help # All the topics matching "help" in the utils package

Not run:
help.search("print") # All help pages with topics or title

matching ’print’
help.search(apropos = "print") # The same

help.search(keyword = "hplot") # All help pages documenting high-level
plots.

file.show(file.path(R.home("doc"), "KEYWORDS")) # show all keywords

Help pages with documented topics starting with ’try’.
help.search("\\btry", fields = "alias")

End(Not run)

help.start 1715

help.start Hypertext Documentation

Description

Start the hypertext (currently HTML) version of R’s online documentation.

Usage

help.start(update = FALSE, gui = "irrelevant",
browser = getOption("browser"), remote = NULL)

Arguments

update logical: should this attempt to update the package index to reflect the currently
available packages. (Not attempted if remote is non-NULL.)

gui just for compatibility with S-PLUS.

browser the name of the program to be used as hypertext browser. It should be in the
PATH, or a full path specified. Alternatively, it can be an R function which will
be called with a URL as its only argument. This option is normally unset on
Windows, when the file-association mechanism will be used.

remote A character string giving a valid URL for the ‘R_HOME’ directory on a remote
location.

Details

Unless remote is specified this requires the HTTP server to be available (it will be started if possible:
see startDynamicHelp).

One of the links on the index page is the HTML package index,
‘R.home("docs")/html/packages.html’, which can be remade by make.packages.html(). For
local operation, the HTTP server will remake a temporary version of this list when the link is first
clicked, and each time thereafter check if updating is needed (if .libPaths has changed or any of
the directories has been changed). This can be slow, and using update = TRUE will ensure that the
packages list is updated before launching the index page.

Argument remote can be used to point to HTML help published by another R installation: it will
typically only show packages from the main library of that installation.

See Also

help() for on- and off-line help in other formats.

browseURL for how the help file is displayed.

RSiteSearch to access an on-line search of R resources.

Examples

help.start()
Not run:

End(Not run)

1716 INSTALL

INSTALL Install Add-on Packages

Description

Utility for installing add-on packages.

Usage

R CMD INSTALL [options] [-l lib] pkgs

Arguments

pkgs a space-separated list with the path names of the packages to be installed.

lib the path name of the R library tree to install to. Also accepted in the form
‘--library=lib’. Paths including spaces should be quoted, using the conven-
tions for the shell in use.

options a space-separated list of options through which in particular the process for
building the help files can be controlled. Use R CMD INSTALL --help for the
full current list of options.

Details

This will stop at the first error, so if you want all the pkgs to be tried, call this via a shell loop.

If used as R CMD INSTALL pkgs without explicitly specifying lib, packages are installed into the
library tree rooted at the first directory in the library path which would be used by R run in the
current environment.

To install into the library tree lib , use R CMD INSTALL -l lib pkgs . This prepends lib to the
library path for duration of the install, so required packages in the installation directory will be
found (and used in preference to those in other libraries).

It is possible that environment variable TMPDIR will need to be set (although R CMD tries to set it
suitably otherwise): use forward slashes and no spaces for the path to a writable directory.

Both lib and the elements of pkgs may be absolute or relative path names of directories. pkgs may
also contain names of package archive files: these are then extracted to a temporary directory. These
are tarballs containing a single directory, optionally compressed by gzip, bzip2, xz or compress.
Finally, zipped binary packages (as created by R CMD INSTALL --build) can be supplied.

Tarballs are by default unpackaged by the internal untar function: if needed an external tar com-
mand can be specified by the environment variable R_INSTALL_TAR: please ensure that it can handle
the type of compression used on the tarball. (This is sometimes needed for tarballs containing in-
valid or unsupported sections, and can be faster on very large tarballs. Setting R_INSTALL_TAR to
‘tar.exe’ has been needed to overcome permissions issues on some Windows systems.)

The package sources can be cleaned up prior to installation by ‘--preclean’ or after by ‘--clean’:
cleaning is essential if the sources are to be used with more than one architecture or platform.

If the attempt to install the package fails, leftovers are removed. If the package was already installed,
the old version is restored. This happens either if a command encounters an error or if the install is
interrupted from the keyboard: after cleaning up the script terminates.

For details of the locking which is done, see the section ‘Locking’ in the help for
install.packages.

install.packages 1717

Option ‘--build’ can be used to zip up the installed package for distribution.

By default a package is installed with static HTML help pages if and only if R was: use options
‘--html’ and ‘--no-html’ to override this.

Packages are not by default installed keeping the source formatting (see the keep.source argument
to source): this can be enabled by the option ‘--with-keep.source’ or by setting environment
variable R_KEEP_PKG_SOURCE to yes.

Use R CMD INSTALL --help for concise usage information, including all the available options.

Note

The options do not have to precede ‘pkgs’ on the command line, although it will be more legible
if they do. All the options are processed before any packages, and where options have conflicting
effects the last one will win.

See Also

REMOVE and library for information on using several library trees; update.packages for auto-
matic update of packages using the internet (or other R level installation of packages, such as by
install.packages).

The section on “Add-on packages” in “R Installation and Administration” and the chapter on “Cre-
ating R packages” in “Writing R Extensions” (on the Help menu in RGui), RShowDoc and the
‘doc/manual’ subdirectory of the R source tree).

install.packages Install Packages from Repositories or Local Files

Description

Download and install packages from CRAN-like repositories or from local files.

Usage

install.packages(pkgs, lib, repos = getOption("repos"),
contriburl = contrib.url(repos, type),
method, available = NULL, destdir = NULL,
dependencies = NA, type = getOption("pkgType"),
configure.args = getOption("configure.args"),
configure.vars = getOption("configure.vars"),
clean = FALSE, Ncpus = getOption("Ncpus", 1L),
libs_only = FALSE, INSTALL_opts, ...)

Arguments

pkgs character vector of the names of packages whose current versions should be
downloaded from the repositories.
If repos = NULL, a character vector of file paths of ‘.zip’ files containing bi-
nary builds of packages. Source directories or ‘.tar.gz’ archives may also be
installed, but some packages need suitable tools installed (see the ‘Details’ sec-
tion).
If this is missing or a zero-length character vector, a listbox of available packages
is presented where possible in an interactive R session.

1718 install.packages

lib character vector giving the library directories where to install the packages. Re-
cycled as needed. If missing, defaults to the first element of .libPaths().

repos character vector, the base URLs of the repositories to use, e.g., the URL of a
CRAN mirror such as "http://cran.us.r-project.org".
Can be NULL to install from local files (with extension ‘.tar.gz’ for source
packages).

contriburl URL(s) of the contrib sections of the repositories. Use this argument only if your
repository mirror is incomplete, e.g., because you burned only the ‘contrib’
section on a CD. Overrides argument repos. As with repos, can also be NULL
to install from local files.

method download method, see download.file.

available an object as returned by available.packages listing packages available
at the repositories, or NULL when the function makes an internal call to
available.packages.

destdir directory where downloaded packages are stored. If it is NULL (the default) a
subdirectory downloaded_packages of the session temporary directory will be
used (and the files will be deleted at the end of the session).

dependencies logical indicating to also install uninstalled packages which these pack-
ages depend on/link to/import/suggest (and so on recursively). Not
used if repos = NULL. Can also be a character vector, a subset of
c("Depends", "Imports", "LinkingTo", "Suggests", "Enhances").
Only supported if lib is of length one (or missing), so it is unambiguous where
to install the dependent packages. If this is not the case it is ignored, with a
warning.
The default, NA, means c("Depends", "Imports", "LinkingTo").
TRUE means (as from R 2.15.0) to use
c("Depends", "Imports", "LinkingTo", "Suggests") for pkgs and
c("Depends", "Imports", "LinkingTo") for added dependencies: this
installs all the packages needed to run pkgs, their examples, tests and vignettes
(if the package author specified them correctly).

type character, indicating the type of package to download and install.
Possible values are "source", "mac.binary.leopard" and "win.binary": the
binary types can be listed and downloaded but not installed on other platforms.
The default is the appropriate binary type on Windows and on the CRAN binary
Mac OS X distribution, otherwise "source". For the platforms where binary
packages are the default, an alternative is "both" which means ‘try binary if
available, otherwise try source’. (This will only choose the binary package if its
version number is no older than the source version.)

configure.args (not used on Windows) a character vector or a named list. If a character vector
with no names is supplied, the elements are concatenated into a single string
(separated by a space) and used as the value for the ‘--configure-args’ flag in
the call to R CMD INSTALL. If the character vector has names these are assumed
to identify values for ‘--configure-args’ for individual packages. This allows
one to specify settings for an entire collection of packages which will be used
if any of those packages are to be installed. (These settings can therefore be
re-used and act as default settings.)
A named list can be used also to the same effect, and that allows multi-element
character strings for each package which are concatenated to a single string to
be used as the value for ‘--configure-args’.

install.packages 1719

configure.vars (not used on Windows) analogous to configure.args for flag
‘--configure-vars’, which is used to set environment variables for the
configure run.

clean a logical value indicating whether to specify to add the ‘--clean’ flag to the call
to R CMD INSTALL. This is sometimes used to perform additional operations at
the end of the package installation in addition to removing intermediate files.

Ncpus The number of parallel processes to use for a parallel install of more than one
source package. Values greater than one are supported if the make command
specified by Sys.getenv("MAKE", "make") accepts argument -k -j Nc-
pus .

libs_only a logical value: should the ‘--libs-only’ option be used to install only addi-
tional sub-architectures? (See also INSTALL_opts.) This can also be used on
Windows to install just the DLL(s) from a binary package, e.g. to add 64-bit
DLLs to a 32-bit install.

INSTALL_opts an optional character vector of additional option(s) to be
passed to R CMD INSTALL for a source package install. E.g.
c("--html", "--no-multiarch").

... Arguments to be passed to download.file (e.g. quiet = TRUE), or to the func-
tions for binary installs on Mac OS X and Windows (which accept an argument
"lock": see the section on ‘Locking’).

Details

R packages are primarily distributed as source packages, but binary packages (a packaging up
of the installed package) are also supported, and the type most commonly used on Windows and
from the CRAN distribution for Mac OS X. This function can install either type where supported,
either by downloading a file from a repository or from a local file. The default type is given by
getOption("pkgType"): this defaults to "source" apart from under Windows or a CRAN binary
distribution for Mac OS X.

This is the main function to install packages. It takes a vector of names and a destination library,
downloads the packages from the repositories and installs them. (If the library is omitted it defaults
to the first directory in .libPaths(), with a message if there is more than one.) If lib is omitted or
is of length one and is not a (group) writable directory, the code offers to create a personal library
tree (the first element of Sys.getenv("R_LIBS_USER")) and install there. Detection of a writable
directory is problematic on Windows: see the ‘Note’ section.

For source packages from a repository an attempt is made to install the packages in an order that
respects their dependencies. This does assume that all the entries in lib are on the default library
path for installs (set by R_LIBS).

Using packages with type = "source" always works on Windows provided the package contains
no C/C++/Fortran code that needs compilation. Otherwise you will need to have installed the Rtools
collection as described in the ‘R for Windows FAQ’ and you must have the PATH environment
variable set up as required by Rtools.

When installing a binary package, install.packages will abort the install if it detects that the
package is already installed and is currently in use. In some circumstances (e.g. multiple instances
of R running at the same time and sharing a library) it will not detect a problem, but the installation
may fail.

You are advised to run update.packages before install.packages to ensure that any already
installed dependencies have their latest versions.

Argument libs_only = TRUE is supported for source installs and for Windows binary installs.

1720 install.packages

For binary installs, the function also checks for the availability of a source package on the same
repository, and reports if the source package has a later version, or is available but no binary version
is. This check can be suppressed by

options(install.packages.check.source = "no")

Value

Invisible NULL.

Locking

There are various options for locking: these differ between source and binary installs.

By default for a source install, the library directory is ‘locked’ by creating a directory ‘00LOCK’
within it. This has two purposes: it prevents any other process installing into that library concur-
rently, and is used to store any previous version of the package to restore on error. A finer-grained
locking is provided by the option ‘--pkglock’ which creates a separate lock for each package: this
allows enough freedom for parallel installation. Per-package locking is the default when installing
a single package, and for multiple packages when Ncpus > 1L. Finally locking (and restoration on
error) can be suppressed by ‘--no-lock’.

For a Mac OS X or Windows binary install, no locking is done by default. Setting argument lock
to TRUE (it defaults to the value of getOption("install.lock", FALSE)) will use per-directory
locking as described for source installs: if the value is "pkglock" per-package locking will be used.

If package locking is used on Windows with libs_only = TRUE and the installation fails, the
package will be restored to its previous state.

Note that it is possible for the package installation to fail so badly that the lock directory is not
removed: this inhibits any further installs to the library directory (or for --pkglock, of the package)
until the lock directory is removed manually.

Parallel installs

Parallel installs are attempted if pkgs has length greater than one and Ncpus > 1. It makes use
of a parallel make, so the make specified (default make) when R was built must be capable of sup-
porting make -j n: GNU make and dmake do, but FreeBSD and Solaris make do not: if necessary
environment variable MAKE can be set for the current session to select a suitable make.

install.packages needs to be able to compute all the dependencies of pkgs from available,
including if one element of pkgs depends indirectly on another. This means that if for example you
are installing CRAN packages which depend on Bioconductor packages which in turn depend on
CRAN packages, available needs to cover both CRAN and Bioconductor packages.

Note

install.packages tries to detect if you have write permission on the library directories specified,
but Windows reports unreliably. If there is only one library directory (the default), R tries to find
out by creating a test directory, but even this need not be the whole story. Under Windows Vista
and later you may have permission to write in a library directory but lack permission to write binary
files (such as ‘.dll’ files) there. See the ‘R for Windows FAQ’ for workarounds.

installed.packages 1721

See Also

update.packages, available.packages, download.packages, installed.packages,
contrib.url.

See download.file for how to handle proxies and other options to monitor file transfers.

INSTALL, REMOVE, remove.packages, library, .packages, read.dcf

The ‘R Installation and Administration’ manual for how to set up a repository.

Examples

Not run:
install.packages(

c("XML_0.99-5.tar.gz",
"../../Interfaces/Perl/RSPerl_0.8-0.tar.gz"),

repos = NULL,
configure.args = c(XML = ’--with-xml-config=xml-config’,

RSPerl = "--with-modules=’IO Fcntl’"))

End(Not run)

installed.packages Find Installed Packages

Description

Find (or retrieve) details of all packages installed in the specified libraries.

Usage

installed.packages(lib.loc = NULL, priority = NULL,
noCache = FALSE, fields = NULL,
subarch = .Platform$r_arch)

Arguments

lib.loc character vector describing the location of R library trees to search through, or
NULL for all known trees (see .libPaths).

priority character vector or NULL (default). If non-null, used to select packages; "high"
is equivalent to c("base", "recommended"). To select all packages without an
assigned priority use priority = "NA".

noCache Do not use cached information, nor cache it.

fields a character vector giving the fields to extract from each package’s DESCRIPTION
file in addition to the default ones, or NULL (default). Unavailable fields result in
NA values.

subarch character string or NULL. If non-null and non-empty, used to select packages
which are installed for that sub-architecture.

1722 localeToCharset

Details

installed.packages scans the ‘DESCRIPTION’ files of each package found along lib.loc and
returns a matrix of package names, library paths and version numbers.

The information found is cached (by library) for the R session and specified fields argument,
and updated only if the top-level library directory has been altered, for example by installing or
removing a package. If the cached information becomes confused, it can be refreshed by running
installed.packages(noCache = TRUE).

Value

A matrix with one row per package, row names the package names and column names (cur-
rently) "Package", "LibPath", "Version", "Priority", "Depends", "Imports", "LinkingTo",
"Suggests", "Enhances", "OS_type", "License" and "Built" (the R version the package was
built under). Additional columns can be specified using the fields argument.

Note

This can be slow when thousands of packages are installed, so do not use this to find out if a named
package is installed (use system.file or find.package) nor to find out if a package is usable
(call require and check the return value) nor to find details of a small number of packages (use
packageDescription). It needs to read several files per installed package, which will be slow on
Windows and on some network-mounted file systems.

See Also

update.packages, install.packages, INSTALL, REMOVE.

Examples

confine search to .Library for speed
str(ip <- installed.packages(.Library, priority = "high"))
ip[, c(1,3:5)]
plic <- installed.packages(.Library, priority = "high", fields = "License")
what licenses are there:
table(plic[, "License"])

localeToCharset Select a Suitable Encoding Name from a Locale Name

Description

This functions aims to find a suitable coding for the locale named, by default the current locale, and
if it is a UTF-8 locale a suitable single-byte encoding.

Usage

localeToCharset(locale = Sys.getlocale("LC_CTYPE"))

Arguments

locale character string naming a locale.

ls.str 1723

Details

The operation differs by OS. A Windows locale is specified like
"English_United Kingdom.1252". The final component gives the codepage, and this de-
fines the encoding.

In the C locale the answer will be "ASCII".

Value

A character vector naming an encoding and possibly a fallback single-encoding, NA if unknown.

Note

The encoding names are those used by libiconv, and ought also to work with glibc but maybe
not with commercial Unixen.

See Also

Sys.getlocale, iconv.

Examples

localeToCharset()

ls.str List Objects and their Structure

Description

ls.str and lsf.str are variations of ls applying str() to each matched name: see section Value.

Usage

ls.str(pos = -1, name, envir, all.names = FALSE,
pattern, mode = "any")

lsf.str(pos = -1, envir, ...)

S3 method for class ’ls_str’
print(x, max.level = 1, give.attr = FALSE, ...,

digits = max(1, getOption("str")$digits.d))

Arguments

pos integer indicating search path position.

name optional name indicating search path position, see ls.

envir environment to use, see ls.

all.names logical indicating if names which begin with a . are omitted; see ls.

pattern a regular expression passed to ls. Only names matching pattern are consid-
ered.

1724 maintainer

max.level maximal level of nesting which is applied for displaying nested structures, e.g.,
a list containing sub lists. Default 1: Display only the first nested level.

give.attr logical; if TRUE (default), show attributes as sub structures.

mode character specifying the mode of objects to consider. Passed to exists and get.

x an object of class "ls_str".

... further arguments to pass. lsf.str passes them to ls.str which passes them
on to ls. The (non-exported) print method print.ls_str passes them to str.

digits the number of significant digits to use for printing.

Value

ls.str and lsf.str return an object of class "ls_str", basically the character vector of matching
names (functions only for lsf.str), similarly to ls, with a print() method that calls str() on
each object.

Author(s)

Martin Maechler

See Also

str, summary, args.

Examples

require(stats)

lsf.str()#- how do the functions look like which I am using?
ls.str(mode = "list") #- what are the structured objects I have defined?

create a few objects
example(glm, echo = FALSE)
ll <- as.list(LETTERS)
print(ls.str(), max.level = 0)# don’t show details

which base functions have "file" in their name ?
lsf.str(pos = length(search()), pattern = "file")

demonstrating that ls.str() works inside functions
["browser/debug mode"]:
tt <- function(x, y=1) { aa <- 7; r <- x + y; ls.str() }
(nms <- sapply(strsplit(capture.output(tt(2))," *: *"), ‘[‘, 1))
stopifnot(nms == c("aa", "r","x","y"))

maintainer Show Package Maintainer

Description

Show the name and email address of the maintainer of a package.

make.packages.html 1725

Usage

maintainer(pkg)

Arguments

pkg Character string. The name of a single package.

Details

Accesses the package description to return the name and email address of the maintainer.

Questions about contributed packages should often be addressed to the package maintainer; ques-
tions about base packages should usually be addressed to the R-help or R-devel mailing lists. Bug
reports should be submitted using the bug.report function.

Value

A character string giving the name and email address of the maintainer of the package, or NA if no
such package is installed.

Author(s)

David Scott <d.scott@auckland.ac.nz> from code on R-help originally due to Charlie Sharpsteen
<source@sharpsteen.net>; multiple corrections by R-core.

References

https://stat.ethz.ch/pipermail/r-help/2010-February/230027.html

See Also

packageDescription, bug.report

Examples

maintainer("MASS")

make.packages.html Update HTML Package List

Description

Re-create the HTML list of packages.

Usage

make.packages.html(lib.loc = .libPaths(), temp = FALSE,
verbose = TRUE, docdir = R.home("doc"))

https://stat.ethz.ch/pipermail/r-help/2010-February/230027.html

1726 make.socket

Arguments

lib.loc character vector. List of libraries to be included.

temp logical: should the package indices be created in a temporary location for use
by the HTTP server?

verbose logical. If true, print out a message. On Windows, show a progress bar.

docdir If temp is false, directory in whose ‘html’ directory the ‘packages.html’ file is
to be created/updated.

Details

This creates the ‘packages.html’ file, either a temporary copy for use by help.start, or the copy
in ‘R_HOME\doc\html’ (for which you will need write permission).

It can be very slow, as all the package ‘DESCRIPTION’ files in all the library trees are read.

For temp = TRUE there is some caching of information, so the file will only be re-created if lib.loc
or any of the directories it lists have been changed.

Value

Invisible logical, with FALSE indicating a failure to create the file, probably due to lack of suitable
permissions.

See Also

help.start

Examples

Not run:
make.packages.html()
this can be slow for large numbers of installed packages.

End(Not run)

make.socket Create a Socket Connection

Description

With server = FALSE attempts to open a client socket to the specified port and host. With
server = TRUE the R process listens on the specified port for a connection and then returns a
server socket. It is a good idea to use on.exit to ensure that a socket is closed, as you only get 64
of them.

Usage

make.socket(host = "localhost", port, fail = TRUE, server = FALSE)

make.socket 1727

Arguments

host name of remote host

port port to connect to/listen on

fail failure to connect is an error?

server a server socket?

Value

An object of class "socket", a list with components:

socket socket number. This is for internal use. On a Unix-alike it is a file descriptor.

port port number of the connection.

host name of remote computer.

Warning

I don’t know if the connecting host name returned when server = TRUE can be trusted. I suspect
not.

Author(s)

Thomas Lumley

References

Adapted from Luke Tierney’s code for XLISP-Stat, in turn based on code from Robbins and Rob-
bins “Practical UNIX Programming”.

See Also

close.socket, read.socket

Examples

daytime <- function(host = "localhost"){
a <- make.socket(host, 13)
on.exit(close.socket(a))
read.socket(a)

}
Official time (UTC) from US Naval Observatory
Not run: daytime("tick.usno.navy.mil")

1728 memory.size

memory.size Report on Memory Allocation

Description

memory.size reports the current or maximum memory allocation of the malloc function used in
this version of R.

memory.limit reports or increases the limit in force on the total allocation.

Usage

memory.size(max = FALSE)

memory.limit(size = NA)

Arguments

max logical. If TRUE the maximum amount of memory obtained from the OS is
reported, if FALSE the amount currently in use, if NA the memory limit.

size numeric. If NA report the memory limit, otherwise request a new limit, in Mb.
Only values of up to 4095 are allowed on 32-bit R builds, but see ‘Details’.

Details

Command-line flag ‘--max-mem-size’ sets the maximum value of obtainable memory (including
a very small amount of housekeeping overhead). This cannot exceed 3Gb on 32-bit Windows, and
most versions are limited to 2Gb. The minimum is currently 32Mb.

If 32-bit R is run on most 64-bit versions of Windows the maximum value of obtainable memory is
just under 4Gb. For a 64-bit versions of R under 64-bit Windows the limit is currently 8Tb.

Memory limits can only be increased.

Environment variable R_MAX_MEM_SIZE provides another way to specify the initial limit.

Value

Size in Mb (1048576 bytes), rounded to 0.01 Mb for memory.size and rounded down for
memory.limit.

See Also

Memory-limits for other limits.

The rw-FAQ for more details and references.

Examples

memory.size()
memory.size(TRUE)
memory.limit()

menu 1729

menu Menu Interaction Function

Description

menu presents the user with a menu of choices labelled from 1 to the number of choices. To exit
without choosing an item one can select ‘0’.

Usage

menu(choices, graphics = FALSE, title = NULL)

Arguments

choices a character vector of choices

graphics a logical indicating whether a graphics menu should be used if available.

title a character string to be used as the title of the menu. NULL is also accepted.

Details

If graphics = TRUE and a windowing system is available (Windows, Mac OS X or X11 via Tcl/Tk)
a listbox widget is used, otherwise a text menu. It is an error to use menu in a non-interactive session.

Ten or fewer items will be displayed in a single column, more in multiple columns if possible within
the current display width.

No title is displayed if title is NULL or "".

Value

The number corresponding to the selected item, or 0 if no choice was made.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

select.list, which is used to implement the graphical menu, and allows multiple selections.

Examples

Not run:
switch(menu(c("List letters", "List LETTERS")) + 1,

cat("Nothing done\n"), letters, LETTERS)

End(Not run)

1730 methods

methods List Methods for S3 Generic Functions or Classes

Description

List all available methods for an S3 generic function, or all methods for a class.

Usage

methods(generic.function, class)

Arguments

generic.function

a generic function, or a character string naming a generic function.

class a symbol or character string naming a class: only used if generic.function is
not supplied.

Details

Function methods can be used to find out about the methods for a particular generic function or
class. The functions listed are those which are named like methods and may not actually be methods
(known exceptions are discarded in the code). Note that the listed methods may not be user-visible
objects, but often help will be available for them.

If class is used, we check that a matching generic can be found for each user-visible object named.
If generic.function is given, there is a warning if it appears not to be a generic function. (The
check for being generic used can be fooled.)

Value

An object of class "MethodsFunction", a character vector of function names with an "info" at-
tribute. There is a print method which marks with an asterisk any methods which are not visible:
such functions can be examined by getS3method or getAnywhere.

The "info" attribute is a data frame, currently with a logical column, visible and a factor column
from (indicating where the methods were found).

Note

This scheme is called S3 (S version 3). For new projects, it is recommended to use the more
flexible and robust S4 scheme provided in the methods package. Functions can have both S3 and
S4 methods, and function showMethods will list the S4 methods (possibly none).

The original methods function was written by Martin Maechler.

References

Chambers, J. M. (1992) Classes and methods: object-oriented programming in S. Appendix A of
Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

mirrorAdmin 1731

See Also

S3Methods, class, getS3method.

For S4, showMethods, Methods.

Examples

require(stats)

methods(summary)
methods(class = "aov")
methods("[[") # uses C-internal dispatching
methods("$")
methods("$<-") # replacement function
methods("+") # binary operator
methods("Math") # group generic
require(graphics)
methods("axis") # looks like it has methods, but not generic
Not run:
methods(print) # over 100

End(Not run)
--> help(showMethods) for related examples

mirrorAdmin Managing Repository Mirrors

Description

Functions helping to maintain CRAN, some of them may also be useful for administrators of other
repository networks.

Usage

mirror2html(mirrors = NULL, file = "mirrors.html",
head = "mirrors-head.html", foot = "mirrors-foot.html")

checkCRAN(method)

Arguments

mirrors A data frame, by default the CRAN list of mirrors is used.

file A connection or a character string.

head Name of optional header file.

foot Name of optional footer file.

method Download method, see download.file.

Details

mirror2html creates the HTML file for the CRAN list of mirrors and invisibly returns the HTML
text.

checkCRAN performs a sanity checks on all CRAN mirrors.

1732 news

modifyList Recursively Modify Elements of a List

Description

Modifies a possibly nested list recursively by changing a subset of elements at each level to match
a second list.

Usage

modifyList(x, val)

Arguments

x a named list, possibly empty.

val a named list with components to replace corresponding components in x.

Value

A modified version of x, with the modifications determined as follows (here, list elements are
identified by their names). Elements in val which are missing from x are added to x. For el-
ements that are common to both but are not both lists themselves, the component in x is re-
placed by the one in val. For common elements that are both lists, x[[name]] is replaced by
modifyList(x[[name]], val[[name]]).

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

Examples

foo <- list(a = 1, b = list(c = "a", d = FALSE))
bar <- modifyList(foo, list(e = 2, b = list(d = TRUE)))
str(foo)
str(bar)

news Build and Query R or Package News Information

Description

Build and query the news for R or add-on packages.

Usage

news(query, package = "R", lib.loc = NULL, format = NULL,
reader = NULL, db = NULL)

news 1733

Arguments

query an expression for selecting news entries

package a character string giving the name of an installed add-on package, or "R".

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known.

format Not yet used.

reader Not yet used.

db a news db obtained from news().

Details

If package is "R" (default), a news db is built with the news since the 2.10.0 release of R (corre-
sponding to R’s top-level ‘NEWS’ file). Otherwise, if the given add-on package can be found in the
given libraries, it is attempted to read its news in structured form from files ‘inst/NEWS.Rd’, ‘NEWS’
or ‘inst/NEWS’ (in that order).

File ‘inst/NEWS.Rd’ should be an Rd file given the entries as Rd \itemize lists, grouped according to
version using section elements with names starting with a suitable prefix (e.g, “Changes in version”
followed by a space and the version number, and optionally followed by a space and a parenthesized
ISO 8601 (%Y-%m-%d, see strptime) format date, and possibly further grouped according to
categories using \subsection elements named as the categories.

The plain text ‘NEWS’ files in add-on packages use a variety of different formats; the default news
reader should be capable to extract individual news entries from a majority of packages from the
standard repositories, which use (slight variations of) the following format:

• Entries are grouped according to version, with version header “Changes in version” at the
beginning of a line, followed by a version number, optionally followed by an ISO 8601 format
date, possibly parenthesized.

• Entries may be grouped according to category, with a category header (different from a version
header) starting at the beginning of a line.

• Entries are written as itemize-type lists, using one of ‘o’, ‘*’, ‘-’ or ‘+’ as item tag. Entries
must be indented, and ideally use a common indentation for the item texts.

Additional formats and readers may be supported in the future.

Package tools provides an (internal) utility function news2Rd to convert plain text ‘NEWS’ files to
Rd. For ‘NEWS’ files in a format which can successfully be handled by the default reader, package
maintainers can use tools:::news2Rd(dir, "NEWS.Rd"), possibly with additional argument
codify = TRUE, with dir a character string specifying the path to a package’s root directory. Upon
success, the ‘NEWS.Rd’ file can further be improved and then be moved to the ‘inst’ subdirectory
of the package source directory.

The news db built is a character data frame inheriting from "news_db" with variables Version,
Category, Date and Text, where the last contains the entry texts read, and the other variables may
be NA if they were missing or could not be determined.

Using query, one can select news entries from the db. If missing or NULL, the complete db is
returned. Otherwise, query should be an expression involving (a subset of) the variables Version,
Category, Date and Text, and when evaluated within the db returning a logical vector with length
the number of entries in the db. The entries for which evaluation gave TRUE are selected. When
evaluating, Version and Date are coerced to numeric_version and Date objects, respectively, so
that the comparison operators for these classes can be employed.

1734 object.size

Value

An data frame inheriting from class "news_db".

Examples

Build a db of all R news entries.
db <- news()
Bug fixes with PR number in 2.11.0.
news(Version == "2.11.0" & grepl("^BUG", Category) & grepl("PR#", Text),

db = db)
Which categories have been in use? % R-core maybe should standardize a bit more
sort(table(db[,"Category"]), decreasing=TRUE)
Entries with version >= 2.10.1 (including "2.10.1 patched"):
table(news(Version >= "2.10.1", db = db)$Version)

object.size Report the Space Allocated for an Object

Description

Provides an estimate of the memory that is being used to store an R object.

Usage

object.size(x)

S3 method for class ’object_size’
print(x, quote = FALSE, units = "b", ...)

Arguments

x An R object.

quote logical, indicating whether or not the result should be printed with surrounding
quotes.

units The units to be used in printing the size. Other allowed values are "Kb", "Mb",
"Gb" and "auto" (see ‘Details’). As from R 2.14.0, "KB" etc are also accepted.

... Arguments to be passed to or from other methods.

Details

Exactly which parts of the memory allocation should be attributed to which object is not clear-
cut. This function merely provides a rough indication: it should be reasonably accurate for atomic
vectors, but does not detect if elements of a list are shared, for example. (Sharing amongst elements
of a character vector is taken into account, but not that between character vectors in a single object.)

The calculation is of the size of the object, and excludes the space needed to store its name in the
symbol table.

Associated space (e.g. the environment of a function and what the pointer in a EXTPTRSXP points
to) is not included in the calculation.

package.skeleton 1735

Object sizes are larger on 64-bit builds than 32-bit ones, but will very likely be the same on different
platforms with the same word length and pointer size.
units = "auto" in the print method chooses the largest units in which the result is one or more
(before rounding). Values in kilobytes, megabytes or gigabytes are rounded to the nearest 0.1.

Value

An object of class "object_size" with a length-one double value, an estimate of the memory
allocation attributable to the object in bytes.

See Also

Memory-limits for the design limitations on object size.

Examples

object.size(letters)
object.size(ls)
print(object.size(library), units = "auto")
find the 10 largest objects in the base package
z <- sapply(ls("package:base"), function(x)

object.size(get(x, envir = baseenv())))
as.matrix(rev(sort(z))[1:10])

package.skeleton Create a Skeleton for a New Source Package

Description

package.skeleton automates some of the setup for a new source package. It creates directories,
saves functions, data, and R code files to appropriate places, and creates skeleton help files and a
‘Read-and-delete-me’ file describing further steps in packaging.

Usage

package.skeleton(name = "anRpackage", list,
environment = .GlobalEnv,
path = ".", force = FALSE, namespace = TRUE,
code_files = character())

Arguments

name character string: the package name and directory name for your package.
list character vector naming the R objects to put in the package. Usually, at most

one of list, environment, or code_files will be supplied. See ‘Details’.
environment an environment where objects are looked for. See ‘Details’.
path path to put the package directory in.
force If FALSE will not overwrite an existing directory.
namespace a logical, no longer used, and hence deprecated. A NAMESPACE file is always

created to export all objects whose names begin with a letter, plus all S4 methods
and classes.

code_files a character vector with the paths to R code files to build the package around. See
‘Details’.

1736 package.skeleton

Details

The arguments list, environment, and code_files provide alternative ways to initialize the
package. If code_files is supplied, the files so named will be sourced to form the environment,
then used to generate the package skeleton. Otherwise list defaults to the non-hidden files in
environment (those whose name does not start with .), but can be supplied to select a subset of the
objects in that environment.

Stubs of help files are generated for functions, data objects, and S4 classes and methods, using the
prompt, promptClass, and promptMethods functions.

The package sources are placed in subdirectory name of path. If code_files is supplied, these
files are copied; otherwise, objects will be dumped into individual source files. The file names in
code_files should have suffix ".R" and be in the current working directory.

The filenames created for source and documentation try to be valid for all OSes known to run R.
Invalid characters are replaced by ‘_’, invalid names are preceded by ‘zz’, names are converted to
lower case (to avoid case collisions on case-insensitive file systems) and finally the converted names
are made unique by make.unique(sep = "_"). This can be done for code and help files but not
data files (which are looked for by name). Also, the code and help files should have names starting
with an ASCII letter or digit, and this is checked and if necessary z prepended.

When you are done, delete the ‘Read-and-delete-me’ file, as it should not be distributed.

Value

Used for its side-effects.

References

Read the Writing R Extensions manual for more details.

Once you have created a source package you need to install it: see the R Installation and Adminis-
tration manual, INSTALL and install.packages.

See Also

prompt, promptClass, and promptMethods.

Examples

require(stats)
two functions and two "data sets" :
f <- function(x,y) x+y
g <- function(x,y) x-y
d <- data.frame(a=1, b=2)
e <- rnorm(1000)

package.skeleton(list=c("f","g","d","e"), name="mypkg")

packageDescription 1737

packageDescription Package Description

Description

Parses and returns the ‘DESCRIPTION’ file of a package.

Usage

packageDescription(pkg, lib.loc = NULL, fields = NULL,
drop = TRUE, encoding = "")

packageVersion(pkg, lib.loc = NULL)

Arguments

pkg a character string with the package name.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

fields a character vector giving the tags of fields to return (if other fields occur in the
file they are ignored).

drop If TRUE and the length of fields is 1, then a single character string with
the value of the respective field is returned instead of an object of class
"packageDescription".

encoding If there is an Encoding field, to what encoding should re-encoding be attempted?
If NA, no re-encoding. The other values are as used by iconv, so the default ""
indicates the encoding of the current locale.

Details

A package will not be ‘found’ unless it has a ‘DESCRIPTION’ file which contains a valid Version
field. Different warnings are given when no package directory is found and when there is a suitable
directory but no valid ‘DESCRIPTION’ file.

An attached environment named to look like a package (e.g. package:utils2) will be ignored.

packageVersion() is a convenience shortcut, allowing things like
if (packageVersion("MASS") < "7.3") { do.things } .

Value

If a ‘DESCRIPTION’ file for the given package is found and can successfully be read,
packageDescription returns an object of class "packageDescription", which is a named list
with the values of the (given) fields as elements and the tags as names, unless drop = TRUE.

If parsing the ‘DESCRIPTION’ file was not successful, it returns a named list of NAs with the field
tags as names if fields is not null, and NA otherwise.

packageVersion() returns a (length-one) object of class "package_version".

See Also

read.dcf

1738 packageStatus

Examples

packageDescription("stats")
packageDescription("stats", fields = c("Package", "Version"))

packageDescription("stats", fields = "Version")
packageDescription("stats", fields = "Version", drop = FALSE)

if(packageVersion("MASS") < "7.3")
message("you need to update ’MASS’")

packageStatus Package Management Tools

Description

Summarize information about installed packages and packages available at various repositories, and
automatically upgrade outdated packages.

Usage

packageStatus(lib.loc = NULL, repositories = NULL, method,
type = getOption("pkgType"))

S3 method for class ’packageStatus’
summary(object, ...)

S3 method for class ’packageStatus’
update(object, lib.loc = levels(object$inst$LibPath),

repositories = levels(object$avail$Repository), ...)

S3 method for class ’packageStatus’
upgrade(object, ask = TRUE, ...)

Arguments

lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to all libraries currently known.

repositories a character vector of URLs describing the location of R package repositories on
the Internet or on the local machine.

method Download method, see download.file.

type type of package distribution: see install.packages.

object an object of class "packageStatus" as returned by packageStatus.

ask if TRUE, the user is prompted which packages should be upgraded and which
not.

... currently not used.

packageStatus 1739

Details

The URLs in repositories should be full paths to the appropriate contrib sections of the reposi-
tories. The default is contrib.url(getOption("repos")).

There are print and summary methods for the "packageStatus" objects: the print method gives
a brief tabular summary and the summary method prints the results.

The update method updates the "packageStatus" object. The upgrade method is similar to
update.packages: it offers to install the current versions of those packages which are not cur-
rently up-to-date.

Value

An object of class "packageStatus". This is a list with two components

inst a data frame with columns as the matrix returned by installed.packages plus
"Status", a factor with levels c("ok", "upgrade"). Only the newest version
of each package is reported, in the first repository in which it appears.

avail a data frame with columns as the matrix returned by
available.packages plus "Status", a factor with levels
c("installed", "not installed", "unavailable")..

For the summary method the result is also of class "summary.packageStatus" with additional
components

Libs a list with one element for each library

Repos a list with one element for each repository

with the elements being lists of character vectors of package name for each status.

See Also

installed.packages, available.packages

Examples

Not run:
x <- packageStatus()
print(x)
summary(x)
upgrade(x)
x <- update(x)
print(x)

End(Not run)

1740 person

page Invoke a Pager on an R Object

Description

Displays a representation of the object named by x in a pager via file.show.

Usage

page(x, method = c("dput", "print"), ...)

Arguments

x An R object, or a character string naming an object.

method The default method is to dump the object via dput. An alternative is to use
print and capture the output to be shown in the pager.

... additional arguments for dput, print or file.show (such as title).

Details

If x is a length-one character vector, it is used as the name of an object to look up in the environment
from which page is called. All other objects are displayed directly.

A default value of title is passed to file.show if one is not supplied in

See Also

file.show, edit, fix.

To go to a new page when graphing, see frame.

Examples

Not run: ## four ways to look at the code of ’page’
page(page) # as an object
page("page") # a character string
v <- "page"; page(v) # a length-one character vector
page(utils::page) # a call

End(Not run)

person Persons

Description

A class and utility methods for holding information about persons like name and email address.

person 1741

Usage

person(given = NULL, family = NULL, middle = NULL,
email = NULL, role = NULL, comment = NULL,
first = NULL, last = NULL)

Default S3 method:
as.person(x)
S3 method for class ’person’
format(x,

include = c("given", "family", "email", "role", "comment"),
braces = list(given = "", family = "", email = c("<", ">"),

role = c("[", "]"), comment = c("(", ")")),
collapse = list(given = " ", family = " ", email = ", ",

role = ", ", comment = ", "),
...
)

Arguments

given a character vector with the given names, or a list thereof.
family a character string with the family name, or a list thereof.
middle a character string with the collapsed middle name(s). Deprecated, see Details.
email a character string giving the email address, or a list thereof.
role a character string specifying the role of the person (see Details), or a list thereof.
comment a character string providing a comment, or a list thereof.
first a character string giving the first name. Deprecated, see Details.
last a character string giving the last name. Deprecated, see Details.
x a character string for the as.person default method; an object of class "person"

otherwise.
include a character vector giving the fields to be included when formatting.
braces a list of characters (see Details).
collapse a list of characters (see Details).
... currently not used.

Details

Objects of class "person" can hold information about an arbitrary positive number of persons.
These can be obtained by one call to person() with list arguments, or by first creating objects
representing single persons and combining these via c().

The format() method collapses information about persons into character vectors (one string for
each person): the fields in include are selected, each collapsed to a string using the respective
element of collapse and subsequently “embraced” using the respective element of braces, and
finally collapsed into one string separated by white space. If braces and/or collapse do not
specify characters for all fields, the defaults shown in the usage are imputed. The print() method
calls the format() method and prints the result, the toBibtex() method creates a suitable BibTeX
representation.

Person objects can be subscripted by fields (using $) or by position (using [).

as.person() is a generic function. Its default method tries to reverse the default person formatting,
and can also handle formatted person entries collapsed by comma or "and" (with appropriate white
space).

1742 person

Personal names are rather tricky, e.g., http://en.wikipedia.org/wiki/Personal_name.

The current implementation (starting from R 2.12.0) of the "person" class uses the notions of given
(including middle names) and family names, as specified by given and family respectively. Earlier
versions used a scheme based on first, middle and last names, as appropriate for most of Western
culture where the given name precedes the family name, but not universal, as some other cultures
place it after the family name, or use no family name. To smooth the transition to the new scheme,
arguments first, middle and last are still supported, but their use is deprecated and they must
not be given in combination with the corresponding new style arguments.

The new scheme also adds the possibility of specifying roles based on a subset of the MARC Value
List for Relators and Roles (http://www.loc.gov/standards/sourcelist/relator-role.
html). When giving the roles of persons in the context of authoring R packages, the following
usage is suggested.

"aut" (Author) Use for full authors who have made substantial contributions to the package and
should show up in the package citation.

"com" (Compiler) Use for persons who collected code (potentially in other languages) but did not
make further substantial contributions to the package.

"ctb" (Contributor) Use for authors who have made smaller contributions (such as code patches
etc.) but should not show up in the package citation.

"cph" (Copyright holder) Use for all copyright holders.

"cre" (Creator) Use for the package maintainer.

"ths" (Thesis advisor) If the package is part of a thesis, use for the thesis advisor.

"trl" (Translator) If the R code is a translation from another language (typically S), use for the
translator to R.

In the old scheme, person objects were used for single persons, and a separate "personList" class
with corresponding creator personList() for collections of these. The new scheme employs a
single class for information about an arbitrary positive number of persons, eliminating the need for
the personList mechanism.

Value

person() and as.person() return objects of class "person".

See Also

citation

Examples

Create a person object directly ...
p1 <- person("Karl", "Pearson", email = "pearson@stats.heaven")

... or convert a string.
p2 <- as.person("Ronald Aylmer Fisher")

Combining and subsetting.
p <- c(p1, p2)
p[1]
p[-1]

Extracting fields.

http://en.wikipedia.org/wiki/Personal_name
http://www.loc.gov/standards/sourcelist/relator-role.html
http://www.loc.gov/standards/sourcelist/relator-role.html

PkgUtils 1743

p$family
p$email
p[1]$email

Specifying package authors, example from "boot":
AC is the first author [aut] who wrote the S original.
BR is the second author [aut], who translated the code to R [trl],
and maintains the package [cre].
b <- c(person("Angelo", "Canty", role = "aut", comment =

"S original, http://statwww.epfl.ch/davison/BMA/library.html"),
person(c("Brian", "D."), "Ripley", role = c("aut", "trl", "cre"),

comment = "R port", email = "ripley@stats.ox.ac.uk")
)

b

Formatting.
format(b)
format(b, include = c("family", "given", "role"),

braces = list(family = c("", ","), role = c("(Role(s): ", ")")))

Conversion to BibTeX author field.
paste(format(b, include = c("given", "family")), collapse = " and ")
toBibtex(b)

PkgUtils Utilities for Building and Checking Add-on Packages

Description

Utilities for checking whether the sources of an R add-on package work correctly, and for building
a source package from them.

Usage

R CMD check [options] pkgdirs
R CMD build [options] pkgdirs

Arguments

pkgdirs a list of names of directories with sources of R add-on packages. For check
these can also be the filenames of compressed tar archives with extension
‘.tar.gz’, ‘.tgz’, ‘.tar.bz2’ or ‘.tar.xz’ (where supported by tar).

options further options to control the processing, or for obtaining information about us-
age and version of the utility.

Details

R CMD check checks R add-on packages from their sources, performing a wide variety of diagnostic
checks.

R CMD build builds R source tarballs. The name(s) of the packages are taken from the
‘DESCRIPTION’ files and not from the directory names. As from R 2.13.0 this works entirely on
a copy of the supplied source directories.

1744 prompt

Use R CMD foo --help to obtain usage information on utility foo .

The defaults for some of the options to R CMD build can be set by environment variables
_R_BUILD_RESAVE_DATA_ and _R_BUILD_COMPACT_VIGNETTES_: see ‘Writing R Extensions’.
Many of the checks in R CMD check can be turned off or on by environment variables: see Chapter
6 of the ‘R Internals’ manual.

R CMD build uses the external tar program given by the TAR environment variable (which is set
when R was configured on a Unix-alike).

R CMD check by default unpacks tarballs by the internal untar function: if needed an external tar
command can be specified by the environment variable R_INSTALL_TAR: please ensure that it can
handle the type of compression used on the tarball. (This is sometimes needed for tarballs contain-
ing invalid or unsupported sections, and can be faster on very large tarballs. Setting R_INSTALL_TAR
to ‘tar.exe’ has been needed to overcome permissions issues on some Windows systems.)

Note

They make use of a temporary directory specified by the environment variable TMPDIR and default-
ing to ‘c:/TEMP’. Do ensure that if set forward slashes are used.

See Also

The sections on “Checking and building packages” and “Processing Rd format” in “Writing R
Extensions” (see the Manuals sub-menu of the Help menu on the console).

prompt Produce Prototype of an R Documentation File

Description

Facilitate the constructing of files documenting R objects.

Usage

prompt(object, filename = NULL, name = NULL, ...)

Default S3 method:
prompt(object, filename = NULL, name = NULL,

force.function = FALSE, ...)

S3 method for class ’data.frame’
prompt(object, filename = NULL, name = NULL, ...)

Arguments

object an R object, typically a function for the default method. Can be missing when
name is specified.

filename usually, a connection or a character string giving the name of the file to which
the documentation shell should be written. The default corresponds to a file
whose name is name followed by ".Rd". Can also be NA (see below).

name a character string specifying the name of the object.
force.function a logical. If TRUE, treat object as function in any case.
... further arguments passed to or from other methods.

prompt 1745

Details

Unless filename is NA, a documentation shell for object is written to the file specified by
filename, and a message about this is given. For function objects, this shell contains the proper
function and argument names. R documentation files thus created still need to be edited and moved
into the ‘man’ subdirectory of the package containing the object to be documented.

If filename is NA, a list-style representation of the documentation shell is created and returned.
Writing the shell to a file amounts to cat(unlist(x), file = filename, sep = "\n"), where
x is the list-style representation.

When prompt is used in for loops or scripts, the explicit name specification will be useful.

Value

If filename is NA, a list-style representation of the documentation shell. Otherwise, the name of the
file written to is returned invisibly.

Warning

The default filename may not be a valid filename under limited file systems (e.g. those on Windows).

Currently, calling prompt on a non-function object assumes that the object is in fact a data set and
hence documents it as such. This may change in future versions of R. Use promptData to create
documentation skeletons for data sets.

Note

The documentation file produced by prompt.data.frame does not have the same format as many
of the data frame documentation files in the base package. We are trying to settle on a preferred
format for the documentation.

Author(s)

Douglas Bates for prompt.data.frame

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

promptData, help and the chapter on “Writing R documentation” in “Writing R Extensions” (see
the ‘doc/manual’ subdirectory of the R source tree).

For creation of many help pages (for a package), see package.skeleton.

To prompt the user for input, see readline.

Examples

require(graphics)
prompt(plot.default)
prompt(interactive, force.function = TRUE)
unlink("plot.default.Rd")
unlink("interactive.Rd")

1746 promptData

prompt(women) # data.frame
unlink("women.Rd")

prompt(sunspots) # non-data.frame data
unlink("sunspots.Rd")

Not run:
Create a help file for each function in the .GlobalEnv:
for(f in ls()) if(is.function(get(f))) prompt(name = f)

End(Not run)

promptData Generate Outline Documentation for a Data Set

Description

Generates a shell of documentation for a data set.

Usage

promptData(object, filename = NULL, name = NULL)

Arguments

object an R object to be documented as a data set.

filename usually, a connection or a character string giving the name of the file to which
the documentation shell should be written. The default corresponds to a file
whose name is name followed by ".Rd". Can also be NA (see below).

name a character string specifying the name of the object.

Details

Unless filename is NA, a documentation shell for object is written to the file specified by
filename, and a message about this is given.

If filename is NA, a list-style representation of the documentation shell is created and returned.
Writing the shell to a file amounts to cat(unlist(x), file = filename, sep = "\n"), where
x is the list-style representation.

Currently, only data frames are handled explicitly by the code.

Value

If filename is NA, a list-style representation of the documentation shell. Otherwise, the name of the
file written to is returned invisibly.

See Also

prompt

promptPackage 1747

Examples

promptData(sunspots)
unlink("sunspots.Rd")

promptPackage Generate a Shell for Documentation of a Package

Description

Generates a shell of documentation for an installed or source package.

Usage

promptPackage(package, lib.loc = NULL, filename = NULL,
name = NULL, final = FALSE)

Arguments

package a character string with the name of an installed or source package to be docu-
mented.

lib.loc a character vector describing the location of R library trees to search through,
or NULL. The default value of NULL corresponds to all libraries currently known.
For a source package this should specify the parent directory of the package’s
sources.

filename usually, a connection or a character string giving the name of the file to which
the documentation shell should be written. The default corresponds to a file
whose name is name followed by ".Rd". Can also be NA (see below).

name a character string specifying the name of the help topic, typically of the form
‘<pkg>-package’.

final a logical value indicating whether to attempt to create a usable version of the
help topic, rather than just a shell.

Details

Unless filename is NA, a documentation shell for package is written to the file specified by
filename, and a message about this is given.

If filename is NA, a list-style representation of the documentation shell is created and returned.
Writing the shell to a file amounts to cat(unlist(x), file = filename, sep = "\n"), where
x is the list-style representation.

If final is TRUE, the generated documentation will not include the place-holder slots for manual
editing, it will be usable as-is. In most cases a manually edited file is preferable (but final = TRUE
is certainly less work).

Value

If filename is NA, a list-style representation of the documentation shell. Otherwise, the name of the
file written to is returned invisibly.

1748 Question

See Also

prompt

Examples

filename <- tempfile()
promptPackage("utils", filename = filename)
file.show(filename)
unlink(filename)

Question Documentation Shortcuts

Description

These functions provide access to documentation. Documentation on a topic with name name (typ-
ically, an R object or a data set) can be displayed by either help("name") or ?name.

Usage

?topic

type?topic

Arguments

topic Usually, a name or character string specifying the topic for which help is sought.

Alternatively, a function call to ask for documentation on a corresponding S4
method: see the section on S4 method documentation. The calls pkg::topic
and pkg:::topic are treated specially, and look for help on topic in package
pkg .

type the special type of documentation to use for this topic; for example, if the type
is class, documentation is provided for the class with name topic. See the
Section ‘S4 Method Documentation’ for the uses of type to get help on formal
methods, including methods?function and method?call .

Details

This is a shortcut to help and uses its default type of help.

Some topics need to be quoted (by backticks) or given as a character string. There include those
which cannot syntactically appear on their own such as unary and binary operators, function and
control-flow reserved words (including if, else for, in, repeat, while, break and next. The
other reserved words can be used as if they were names, for example TRUE, NA and Inf.

Question 1749

S4 Method Documentation

Authors of formal (‘S4’) methods can provide documentation on specific methods, as well as overall
documentation on the methods of a particular function. The "?" operator allows access to this
documentation in three ways.

The expression methods?f will look for the overall documentation methods for the function f .
Currently, this means the documentation file containing the alias f-methods.

There are two different ways to look for documentation on a particular method. The first is to supply
the topic argument in the form of a function call, omitting the type argument. The effect is to look
for documentation on the method that would be used if this function call were actually evaluated.
See the examples below. If the function is not a generic (no S4 methods are defined for it), the help
reverts to documentation on the function name.

The "?" operator can also be called with doc_type supplied as method; in this case also, the topic
argument is a function call, but the arguments are now interpreted as specifying the class of the
argument, not the actual expression that will appear in a real call to the function. See the examples
below.

The first approach will be tedious if the actual call involves complicated expressions, and may be
slow if the arguments take a long time to evaluate. The second approach avoids these issues, but
you do have to know what the classes of the actual arguments will be when they are evaluated.

Both approaches make use of any inherited methods; the signature of the method to be looked up is
found by using selectMethod (see the documentation for getMethod).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

help

?? for finding help pages on a vague topic.

Examples

?lapply

?"for" # but quotes/backticks are needed
?‘+‘

?women # information about data set "women"

Not run:
require(methods)
define a S4 generic function and some methods
combo <- function(x, y) c(x, y)
setGeneric("combo")
setMethod("combo", c("numeric", "numeric"), function(x, y) x+y)

assume we have written some documentation
for combo, and its methods

?combo # produces the function documentation

1750 rcompgen

methods?combo # looks for the overall methods documentation

method?combo("numeric", "numeric") # documentation for the method above

?combo(1:10, rnorm(10)) # ... the same method, selected according to
the arguments (one integer, the other numeric)

?combo(1:10, letters) # documentation for the default method

End(Not run)

rcompgen A Completion Generator for R

Description

This package provides a mechanism to generate relevant completions from a partially completed
command line. It is not intended to be useful by itself, but rather in conjunction with other mech-
anisms that use it as a backend. The functions listed in the usage section provide a simple control
and query mechanism. The actual interface consists of a few unexported functions described further
down.

Usage

rc.settings(ops, ns, args, func, ipck, S3, data, help,
argdb, files)

rc.status()
rc.getOption(name)
rc.options(...)

.DollarNames(x, pattern)

Default S3 method:
.DollarNames(x, pattern = "")
S3 method for class ’list’
.DollarNames(x, pattern = "")
S3 method for class ’environment’
.DollarNames(x, pattern = "")

Arguments

ops, ns, args, func, ipck, S3, data, help, argdb, files

logical, turning some optional completion features on and off.

ops: activates completion after the $ and @ operators
ns: controls namespace related completions
args: enables completion of function arguments

rcompgen 1751

func: enables detection of functions. If enabled, a customizable extension ("("
by default) is appended to function names. The process of determining
whether a potential completion is a function requires evaluation, including
for lazy loaded symbols. This is extremely undesirable for large objects,
because of potentially wasteful use of memory in addition to the time over-
head associated with loading. For this reason, this feature is disabled by
default.

S3: when args=TRUE, activates completion on arguments of all S3 methods
(otherwise just the generic, which usually has very few arguments)

ipck: enables completion of installed package names inside library and
require

data: enables completion of data sets (including those already visible) inside
data

help: enables completion of help requests starting with a question mark, by
looking inside help index files

argdb: when args=TRUE, completion is attempted on function arguments. Gen-
erally, the list of valid arguments is determined by dynamic calls to args.
While this gives results that are technically correct, the use of the ... ar-
gument often hides some useful arguments. To give more flexibility in this
regard, an optional table of valid arguments names for specific functions is
retained internally. Setting argdb=TRUE enables preferential lookup in this
internal data base for functions with an entry in it. Of course, this is useful
only when the data base contains information about the function of inter-
est. Some functions are included in the package (the maintainer is happy
to add more upon request), and more can be added by the user through the
unexported function .addFunctionInfo (see below).

files: enables filename completion in R code. This is initially set to FALSE, in
which case the underlying completion front-end can take over (and hope-
fully do a better job than we would have done). For systems where no such
facilities exist, this can be set to TRUE if file name completion is desired.
This is used on Windows (where file paths including spaces do work): on
Unix-alikes readline’s filename completion is normally used.

All settings are turned on by default except ipck, func and files. Turn more
off if your CPU cycles are valuable; you will still retain basic completion on
names of objects in the search list. See below for additional details.

name, ... user-settable options. Currently valid names are

function.suffix: default "("
funarg.suffix: default " = "

package.suffix default "::"

See options for detailed usage description.

x An R object for which valid names after "$" are computed and returned.

pattern A regular expression. Only matching names are returned.

Details

There are several types of completion, some of which can be disabled using rc.settings. The most
basic level, which can not be turned off once the package is loaded, provides completion on names
visible on the search path, along with a few special keywords (e.g. TRUE). This type of completion
is not attempted if the partial ‘word’ (a.k.a. token) being completed is empty (since there would be
too many completions). The more advanced types of completion are described below.

1752 rcompgen

Completion after extractors $ and @: When the ops setting is turned on, completion after $ and
@ is attempted. This requires the prefix to be evaluated, which is attempted unless it involves
an explicit function call (implicit function calls involving the use of [, $, etc do not inhibit
evaluation).
Valid completions after the $ extractor are determined by the generic function .DollarNames.
Some basic methods are provided, and more can be written for custom classes.

Completion inside namespaces: When the ns setting is turned on, completion inside namespaces
is attempted when a token is preceded by the :: or ::: operators. Additionally, the ba-
sic completion mechanism is extended to include attached namespaces, or more precisely,
foopkg:: becomes a valid completion of foo if the return value of search() includes the
string "package:foopkg".
The completion of package namespaces applies only to attached packages, i.e. if MASS is not
attached (whether or not it is loaded), MAS will not complete to MASS::. However, attempted
completion inside an apparent namespace will attempt to load the namespace if it is not already
loaded, e.g. trying to complete on MASS::fr will load MASS (but not necessarily attach it) even
if it is not already loaded.

Completion of function arguments: When the args setting is turned on, completion on function
arguments is attempted whenever deemed appropriate. The mechanism used will currently
fail if the relevant function (at the point where completion is requested) was entered on a
previous prompt (which implies in particular that the current line is being typed in response to
a continuation prompt, usually +). Note that separation by newlines is fine.
The list of possible argument completions that is generated can be misleading. There is no
problem for non-generic functions (except that ... is listed as a completion; this is inten-
tional as it signals the fact that the function can accept further arguments). However, for
generic functions, it is practically impossible to give a reliable argument list without evaluat-
ing arguments (and not even then, in some cases), which is risky (in addition to being difficult
to code, which is the real reason it hasn’t even been tried), especially when that argument is
itself an inline function call. Our compromise is to consider arguments of all currently avail-
able methods of that generic. This has two drawbacks. First, not all listed completions may be
appropriate in the call currently being constructed. Second, for generics with many methods
(like print and plot), many matches will need to be considered, which may take a noticeable
amount of time. Despite these drawbacks, we believe this behaviour to be more useful than
the only other practical alternative, which is to list arguments of the generic only.
Only S3 methods are currently supported in this fashion, and that can be turned off using the
S3 setting.
Since arguments can be unnamed in R function calls, other types of completion are also ap-
propriate whenever argument completion is. Since there are usually many many more visible
objects than formal arguments of any particular function, possible argument completions are
often buried in a bunch of other possibilities. However, recall that basic completion is sup-
pressed for blank tokens. This can be useful to list possible arguments of a function. For
example, trying to complete seq([TAB] and seq(from = 1, [TAB]) will both list only the
arguments of seq (or any of its methods), whereas trying to complete seq(length[TAB] will
list both the length.out argument and the length(function as possible completions. Note
that no attempt is made to remove arguments already supplied, as that would incur a further
speed penalty.

Special functions: For a few special functions (library, data, etc), the first argument is treated
specially, in the sense that normal completion is suppressed, and some function specific com-
pletions are enabled if so requested by the settings. The ipck setting, which controls whether
library and require will complete on installed packages, is disabled by default because
the first call to installed.packages is potentially time consuming (e.g. when packages
are installed on a remote network file server). Note, however, that the results of a call to

rcompgen 1753

installed.packages is cached, so subsequent calls are usually fast, so turning this option on
is not particularly onerous even in such situations.

Value

rc.status returns, as a list, the contents of an internal (unexported) environment that is used to
record the results of the last completion attempt. This can be useful for debugging. For such use,
one must resist the temptation to use completion when typing the call to rc.status itself, as that
then becomes the last attempt by the time the call is executed.

The items of primary interest in the returned list are:

comps the possible completions generated by the last call to .completeToken, as a
character vector

token the token that was (or, is to be) completed, as set by the last call to
.assignToken (possibly inside a call to .guessTokenFromLine)

linebuffer the full line, as set by the last call to .assignLinebuffer

start the start position of the token in the line buffer, as set by the last call to
.assignStart

end the end position of the token in the line buffer, as set by the last call to
.assignEnd

fileName logical, indicating whether the cursor is currently inside quotes. If so, no com-
pletion is attempted. A reasonable default behaviour for the backend in that case
is to fall back to filename completion.

fguess the name of the function rcompgen thinks the cursor is currently inside
isFirstArg logical. If cursor is inside a function, is it the first argument?

In addition, the components settings and options give the current values of settings and options
respectively.

rc.getOption and rc.options behave much like getOption and options respectively.

Unexported API

There are several unexported functions in the package. Of these, a few are special because they
provide the API through which other mechanisms can make use of the facilities provided by this
package (they are unexported because they are not meant to be called directly by users). The usage
of these functions are:

.assignToken(text)

.assignLinebuffer(line)

.assignStart(start)

.assignEnd(end)

.completeToken()

.retrieveCompletions()

.getFileComp()

.guessTokenFromLine()

.win32consoleCompletion(linebuffer, cursorPosition,
check.repeat = TRUE,
minlength = -1)

.addFunctionInfo(...)

1754 rcompgen

The first four functions set up a completion attempt by specifying the token to be completed (text),
and indicating where (start and end, which should be integers) the token is placed within the
complete line typed so far (line).

Potential completions of the token are generated by .completeToken, and the completions can be
retrieved as an R character vector using .retrieveCompletions.

If the cursor is inside quotes, no completion is attempted. The function .getFileComp can be used
after a call to .completeToken to determine if this is the case (returns TRUE), and alternative com-
pletions generated as deemed useful. In most cases, filename completion is a reasonable fallback.

The .guessTokenFromLine function is provided for use with backends that do not already break a
line into tokens. It requires the linebuffer and endpoint (cursor position) to be already set, and itself
sets the token and the start position. It returns the token as a character string. (This is used by the
ESS completion hook example given in the examples/altesscomp.el file.)

The .win32consoleCompletion is similar in spirit, but is more geared towards the Windows GUI
(or rather, any front-end that has no completion facilities of its own). It requires the linebuffer
and cursor position as arguments, and returns a list with three components, addition, possible
and comps. If there is an unambiguous extension at the current position, addition contains the
additional text that should be inserted at the cursor. If there is more than one possibility, these are
available either as a character vector of preformatted strings in possible, or as a single string in
comps. possible consists of lines formatted using the current width option, so that printing them
on the console one line at a time will be a reasonable way to list them. comps is a space separated
(collapsed) list of the same completions, in case the front-end wishes to display it in some other
fashion.

The minlength argument can be used to suppress completion when the token is too short (which can
be useful if the front-end is set up to try completion on every keypress). If check.repeat is TRUE,
it is detected if the same completion is being requested more than once in a row, and ambiguous
completions are returned only in that case. This is an attempt to emulate GNU Readline behaviour,
where a single TAB completes up to any unambiguous part, and multiple possibilities are reported
only on two consecutive TABs.

As the various front-end interfaces evolve, the details of these functions are likely to change as well.

The function .addFunctionInfo can be used to add information about the permitted argument
names for specific functions. Multiple named arguments are allowed in calls to it, where the tags
are names of functions and values are character vectors representing valid arguments. When the
argdb setting is TRUE, these are used as a source of valid argument names for the relevant functions.

Note

If you are uncomfortable with unsolicited evaluation of pieces of code, you should set ops = FALSE.
Otherwise, trying to complete foo@ba will evaluate foo, trying to complete foo[i,1:10]$ba will
evaluate foo[i,1:10], etc. This should not be too bad, as explicit function calls (involving paren-
theses) are not evaluated in this manner. However, this will affect lazy loaded symbols (and pre-
sumably other promise type thingies).

Author(s)

Deepayan Sarkar, <deepayan.sarkar@r-project.org>

read.DIF 1755

read.DIF Data Input from Spreadsheet

Description

Reads a file in Data Interchange Format (DIF) and creates a data frame from it. DIF is a format for
data matrices such as single spreadsheets.

Usage

read.DIF(file, header = FALSE,
dec = ".", row.names, col.names,
as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE,
blank.lines.skip = TRUE,
stringsAsFactors = default.stringsAsFactors(),
transpose = FALSE)

Arguments

file the name of the file which the data are to be read from, or a connection, or a
complete URL.
The name "clipboard" may also be used on Windows, in which case
read.DIF("clipboard") will look for a DIF format entry in the Windows clip-
board.

header a logical value indicating whether the spreadsheet contains the names of the
variables as its first line. If missing, the value is determined from the file format:
header is set to TRUE if and only if the first row contains only character values
and the top left cell is empty.

dec the character used in the file for decimal points.

row.names a vector of row names. This can be a vector giving the actual row names, or a
single number giving the column of the table which contains the row names, or
character string giving the name of the table column containing the row names.
If there is a header and the first row contains one fewer field than the number of
columns, the first column in the input is used for the row names. Otherwise if
row.names is missing, the rows are numbered.
Using row.names = NULL forces row numbering.

col.names a vector of optional names for the variables. The default is to use "V" followed
by the column number.

as.is the default behavior of read.DIF is to convert character variables to factors.
The variable as.is controls the conversion of columns not otherwise specified
by colClasses. Its value is either a vector of logicals (values are recycled if
necessary), or a vector of numeric or character indices which specify which
columns should not be converted to factors.
Note: In releases prior to R 2.12.1, cells marked as being of character type
were converted to logical, numeric or complex using type.convert as in
read.table.

1756 read.DIF

Note: to suppress all conversions including those of numeric columns, set
colClasses = "character".

Note that as.is is specified per column (not per variable) and so includes the
column of row names (if any) and any columns to be skipped.

na.strings a character vector of strings which are to be interpreted as NA values. Blank
fields are also considered to be missing values in logical, integer, numeric and
complex fields.

colClasses character. A vector of classes to be assumed for the columns. Recycled as
necessary, or if the character vector is named, unspecified values are taken to be
NA.

Possible values are NA (when type.convert is used), "NULL" (when the column
is skipped), one of the atomic vector classes (logical, integer, numeric, complex,
character, raw), or "factor", "Date" or "POSIXct". Otherwise there needs to
be an as method (from package methods) for conversion from "character" to
the specified formal class.

Note that colClasses is specified per column (not per variable) and so includes
the column of row names (if any).

nrows the maximum number of rows to read in. Negative values are ignored.

skip the number of lines of the data file to skip before beginning to read data.

check.names logical. If TRUE then the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names. If necessary they are
adjusted (by make.names) so that they are, and also to ensure that there are no
duplicates.

blank.lines.skip

logical: if TRUE blank lines in the input are ignored.

stringsAsFactors

logical: should character vectors be converted to factors?

transpose logical, indicating if the row and column interpretation should be transposed.
Microsoft’s Excel has been known to produce (non-standard conforming) DIF
files which would need transpose = TRUE to be read correctly.

Value

A data frame (data.frame) containing a representation of the data in the file. Empty input is an
error unless col.names is specified, when a 0-row data frame is returned: similarly giving just a
header line if header = TRUE results in a 0-row data frame.

Note

The columns referred to in as.is and colClasses include the column of row names (if any).

Less memory will be used if colClasses is specified as one of the six atomic vector classes.

Author(s)

R Core; transpose option by Christoph Buser, ETH Zurich

read.fortran 1757

References

The DIF format specification can be found by searching on http://www.wotsit.org/; the op-
tional header fields are ignored. See also http://en.wikipedia.org/wiki/Data_Interchange_
Format.

The term is likely to lead to confusion: Windows will have a ‘Windows Data Interchange Format
(DIF) data format’ as part of its WinFX system, which may or may not be compatible.

See Also

The R Data Import/Export manual.

scan, type.convert, read.fwf for reading f ixed width f ormatted input; read.table;
data.frame.

Examples

read.DIF() needs transpose=TRUE for file exported from Excel
udir <- system.file("misc", package="utils")
dd <- read.DIF(file.path(udir, "exDIF.dif"), header= TRUE, transpose=TRUE)
dc <- read.csv(file.path(udir, "exDIF.csv"), header= TRUE)
stopifnot(identical(dd,dc), dim(dd) == c(4,2))

read.fortran Read Fixed-Format Data

Description

Read fixed-format data files using Fortran-style format specifications.

Usage

read.fortran(file, format, ..., as.is = TRUE, colClasses = NA)

Arguments

file File or connection to read from
format Character vector or list of vectors. See ‘Details’ below.
... Other arguments for read.fwf
as.is Keep characters as characters?
colClasses Variable classes to override defaults. See read.table for details.

Details

The format for a field is of one of the following forms: rFl.d, rDl.d, rXl, rAl, rIl, where l is the
number of columns, d is the number of decimal places, and r is the number of repeats. F and D are
numeric formats, A is character, I is integer, and X indicates columns to be skipped. The repeat code
r and decimal place code d are always optional. The length code l is required except for X formats
when r is present.

For a single-line record, format should be a character vector. For a multiline record it should be a
list with a character vector for each line.

Skipped (X) columns are not passed to read.fwf, so colClasses, col.names, and similar argu-
ments passed to read.fwf should not reference these columns.

http://www.wotsit.org/
http://en.wikipedia.org/wiki/Data_Interchange_Format
http://en.wikipedia.org/wiki/Data_Interchange_Format

1758 read.fwf

Value

A data frame

Note

read.fortran does not use actual Fortran input routines, so the formats are at best rough approx-
imations to the Fortran ones. In particular, specifying d > 0 in the F or D format will shift the
decimal d places to the left, even if it is explicitly specified in the input file.

See Also

read.fwf, read.table, read.csv

Examples

ff <- tempfile()
cat(file=ff, "123456", "987654", sep="\n")
read.fortran(ff, c("F2.1","F2.0","I2"))
read.fortran(ff, c("2F1.0","2X","2A1"))
unlink(ff)
cat(file=ff, "123456AB", "987654CD", sep="\n")
read.fortran(ff, list(c("2F3.1","A2"), c("3I2","2X")))
unlink(ff)
Note that the first number is read differently than Fortran would
read it:
cat(file=ff, "12.3456", "1234567", sep="\n")
read.fortran(ff, "F7.4")
unlink(ff)

read.fwf Read Fixed Width Format Files

Description

Read a table of fixed width formatted data into a data.frame.

Usage

read.fwf(file, widths, header = FALSE, sep = "\t",
skip = 0, row.names, col.names, n = -1,
buffersize = 2000, ...)

Arguments

file the name of the file which the data are to be read from.
Alternatively, file can be a connection, which will be opened if necessary, and
if so closed at the end of the function call.

widths integer vector, giving the widths of the fixed-width fields (of one line), or list of
integer vectors giving widths for multiline records.

header a logical value indicating whether the file contains the names of the variables as
its first line. If present, the names must be delimited by sep.

read.fwf 1759

sep character; the separator used internally; should be a character that does not occur
in the file (except in the header).

skip number of initial lines to skip; see read.table.

row.names see read.table.

col.names see read.table.

n the maximum number of records (lines) to be read, defaulting to no limit.

buffersize Maximum number of lines to read at one time

... further arguments to be passed to read.table. Useful further arguments include
as.is, na.strings, colClasses and strip.white.

Details

Multiline records are concatenated to a single line before processing. Fields that are of zero-width
or are wholly beyond the end of the line in file are replaced by NA.

Negative-width fields are used to indicate columns to be skipped, e.g., -5 to skip 5 columns. These
fields are not seen by read.table and so should not be included in a col.names or colClasses
argument (nor in the header line, if present).

Reducing the buffersize argument may reduce memory use when reading large files with long
lines. Increasing buffersize may result in faster processing when enough memory is available.

Value

A data.frame as produced by read.table which is called internally.

Author(s)

Brian Ripley for R version: original Perl by Kurt Hornik.

See Also

scan and read.table.

Examples

ff <- tempfile()
cat(file=ff, "123456", "987654", sep="\n")
read.fwf(ff, widths=c(1,2,3)) #> 1 23 456 \ 9 87 654
read.fwf(ff, widths=c(1,-2,3)) #> 1 456 \ 9 654
unlink(ff)
cat(file=ff, "123", "987654", sep="\n")
read.fwf(ff, widths=c(1,0, 2,3)) #> 1 NA 23 NA \ 9 NA 87 654
unlink(ff)
cat(file=ff, "123456", "987654", sep="\n")
read.fwf(ff, widths=list(c(1,0, 2,3), c(2,2,2))) #> 1 NA 23 456 98 76 54
unlink(ff)

1760 read.socket

read.socket Read from or Write to a Socket

Description

read.socket reads a string from the specified socket, write.socket writes to the specified socket.
There is very little error checking done by either.

Usage

read.socket(socket, maxlen = 256L, loop = FALSE)
write.socket(socket, string)

Arguments

socket a socket object.

maxlen maximum length (in bytes) of string to read.

loop wait for ever if there is nothing to read?

string string to write to socket.

Value

read.socket returns the string read as a length-one character vector.

write.socket returns the number of bytes written.

Author(s)

Thomas Lumley

See Also

close.socket, make.socket

Examples

finger <- function(user, host = "localhost", port = 79, print = TRUE)
{

if (!is.character(user))
stop("user name must be a string")

user <- paste(user,"\r\n")
socket <- make.socket(host, port)
on.exit(close.socket(socket))
write.socket(socket, user)
output <- character(0)
repeat{

ss <- read.socket(socket)
if (ss == "") break
output <- paste(output, ss)

}
close.socket(socket)
if (print) cat(output)
invisible(output)

read.table 1761

}
Not run:
finger("root") ## only works if your site provides a finger daemon
End(Not run)

read.table Data Input

Description

Reads a file in table format and creates a data frame from it, with cases corresponding to lines and
variables to fields in the file.

Usage

read.table(file, header = FALSE, sep = "", quote = "\"’",
dec = ".", row.names, col.names,
as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#",
allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(),
fileEncoding = "", encoding = "unknown", text)

read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".",
fill = TRUE, comment.char="", ...)

read.csv2(file, header = TRUE, sep = ";", quote="\"", dec=",",
fill = TRUE, comment.char="", ...)

read.delim(file, header = TRUE, sep = "\t", quote="\"", dec=".",
fill = TRUE, comment.char="", ...)

read.delim2(file, header = TRUE, sep = "\t", quote="\"", dec=",",
fill = TRUE, comment.char="", ...)

Arguments

file the name of the file which the data are to be read from. Each row of the table
appears as one line of the file. If it does not contain an absolute path, the file
name is relative to the current working directory, getwd(). Tilde-expansion is
performed where supported. As from R 2.10.0 this can be a compressed file (see
file).
Alternatively, file can be a readable text-mode connection (which will be
opened for reading if necessary, and if so closed (and hence destroyed) at
the end of the function call). (If stdin() is used, the prompts for lines may
be somewhat confusing. Terminate input with a blank line or an EOF signal,
Ctrl-D on Unix and Ctrl-Z on Windows. Any pushback on stdin() will be
cleared before return.)

1762 read.table

file can also be a complete URL. (For the supported URL schemes, see the
‘URLs’ section of the help for url.)

header a logical value indicating whether the file contains the names of the variables as
its first line. If missing, the value is determined from the file format: header is
set to TRUE if and only if the first row contains one fewer field than the number
of columns.

sep the field separator character. Values on each line of the file are separated by
this character. If sep = "" (the default for read.table) the separator is ‘white
space’, that is one or more spaces, tabs, newlines or carriage returns.

quote the set of quoting characters. To disable quoting altogether, use quote = "".
See scan for the behaviour on quotes embedded in quotes. Quoting is only con-
sidered for columns read as character, which is all of them unless colClasses
is specified.

dec the character used in the file for decimal points.

row.names a vector of row names. This can be a vector giving the actual row names, or a
single number giving the column of the table which contains the row names, or
character string giving the name of the table column containing the row names.
If there is a header and the first row contains one fewer field than the number of
columns, the first column in the input is used for the row names. Otherwise if
row.names is missing, the rows are numbered.
Using row.names = NULL forces row numbering. Missing or NULL row.names
generate row names that are considered to be ‘automatic’ (and not preserved by
as.matrix).

col.names a vector of optional names for the variables. The default is to use "V" followed
by the column number.

as.is the default behavior of read.table is to convert character variables (which are
not converted to logical, numeric or complex) to factors. The variable as.is
controls the conversion of columns not otherwise specified by colClasses. Its
value is either a vector of logicals (values are recycled if necessary), or a vector
of numeric or character indices which specify which columns should not be
converted to factors.
Note: to suppress all conversions including those of numeric columns, set
colClasses = "character".
Note that as.is is specified per column (not per variable) and so includes the
column of row names (if any) and any columns to be skipped.

na.strings a character vector of strings which are to be interpreted as NA values. Blank
fields are also considered to be missing values in logical, integer, numeric and
complex fields.

colClasses character. A vector of classes to be assumed for the columns. Recycled as
necessary, or if the character vector is named, unspecified values are taken to be
NA.
Possible values are NA (the default, when type.convert is used), "NULL" (when
the column is skipped), one of the atomic vector classes (logical, integer, nu-
meric, complex, character, raw), or "factor", "Date" or "POSIXct". Other-
wise there needs to be an as method (from package methods) for conversion
from "character" to the specified formal class.
Note that colClasses is specified per column (not per variable) and so includes
the column of row names (if any).

read.table 1763

nrows integer: the maximum number of rows to read in. Negative and other invalid
values are ignored.

skip integer: the number of lines of the data file to skip before beginning to read data.

check.names logical. If TRUE then the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names. If necessary they are
adjusted (by make.names) so that they are, and also to ensure that there are no
duplicates.

fill logical. If TRUE then in case the rows have unequal length, blank fields are
implicitly added. See ‘Details’.

strip.white logical. Used only when sep has been specified, and allows the stripping of lead-
ing and trailing white space from unquoted character fields (numeric fields are
always stripped). See scan for further details (including the exact meaning of
‘white space’), remembering that the columns may include the row names.

blank.lines.skip

logical: if TRUE blank lines in the input are ignored.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

allowEscapes logical. Should C-style escapes such as ‘\n’ be processed or read verbatim (the
default)? Note that if not within quotes these could be interpreted as a delimiter
(but not as a comment character). For more details see scan.

flush logical: if TRUE, scan will flush to the end of the line after reading the last of the
fields requested. This allows putting comments after the last field.

stringsAsFactors

logical: should character vectors be converted to factors? Note that this is over-
ridden by as.is and colClasses, both of which allow finer control.

fileEncoding character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ‘Encoding’ section of
the help for file, the ‘R Data Import/Export Manual’ and ‘Note’.

encoding encoding to be assumed for input strings. It is used to mark character strings as
known to be in Latin-1 or UTF-8 (see Encoding): it is not used to re-encode the
input, but allows R to handle encoded strings in their native encoding (if one of
those two). See ‘Value’.

text character string: if file is not supplied and this is, then data are read from the
value of text via a text connection. Notice that a literal string can be used to
include (small) data sets within R code.

... Further arguments to be passed to read.table.

Details

This function is the principal means of reading tabular data into R.

Unless colClasses is specified, all columns are read as character columns and then converted using
type.convert to logical, integer, numeric, complex or (depending on as.is) factor as appropriate.
Quotes are (by default) interpreted in all fields, so a column of values like "42" will result in an
integer column.

A field or line is ‘blank’ if it contains nothing (except whitespace if no separator is specified) before
a comment character or the end of the field or line.

If row.names is not specified and the header line has one less entry than the number of columns, the
first column is taken to be the row names. This allows data frames to be read in from the format in

1764 read.table

which they are printed. If row.names is specified and does not refer to the first column, that column
is discarded from such files.

The number of data columns is determined by looking at the first five lines of input (or the whole
file if it has less than five lines), or from the length of col.names if it is specified and is longer.
This could conceivably be wrong if fill or blank.lines.skip are true, so specify col.names if
necessary (as in the ‘Examples’).

read.csv and read.csv2 are identical to read.table except for the defaults. They are intended
for reading ‘comma separated value’ files (‘.csv’) or (read.csv2) the variant used in countries
that use a comma as decimal point and a semicolon as field separator. Similarly, read.delim
and read.delim2 are for reading delimited files, defaulting to the TAB character for the delimiter.
Notice that header = TRUE and fill = TRUE in these variants, and that the comment character is
disabled.

The rest of the line after a comment character is skipped; quotes are not processed in comments.
Complete comment lines are allowed provided blank.lines.skip = TRUE; however, comment
lines prior to the header must have the comment character in the first non-blank column.

Quoted fields with embedded newlines are supported except after a comment character.

Value

A data frame (data.frame) containing a representation of the data in the file.

Empty input is an error unless col.names is specified, when a 0-row data frame is returned: simi-
larly giving just a header line if header = TRUE results in a 0-row data frame. Note that in either
case the columns will be logical unless colClasses was supplied.

Character strings in the result (including factor levels) will have a declared encoding if encoding is
"latin1" or "UTF-8".

Memory usage

These functions can use a surprising amount of memory when reading large files. There is extensive
discussion in the ‘R Data Import/Export’ manual, supplementing the notes here.

Less memory will be used if colClasses is specified as one of the six atomic vector classes. This
can be particularly so when reading a column that takes many distinct numeric values, as storing
each distinct value as a character string can take up to 14 times as much memory as storing it as an
integer.

Using nrows, even as a mild over-estimate, will help memory usage.

Using comment.char = "" will be appreciably faster than the read.table default.

read.table is not the right tool for reading large matrices, especially those with many columns: it
is designed to read data frames which may have columns of very different classes. Use scan instead
for matrices.

Note

The columns referred to in as.is and colClasses include the column of row names (if any).

Because this function uses pushBack it can only handle character strings which can be represented
in the current locale. So although fileEncoding can be used to specify the encoding of the input
file (or a connection can be specified which re-encodes), the implied re-encoding must be possible.
This is not a problem in UTF-8 locales, but it can be on Windows — readLines or scan can be
used to avoid this limitation since they have special provisions to convert input to UTF-8.

readRegistry 1765

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

The ‘R Data Import/Export’ manual.

scan, type.convert, read.fwf for reading f ixed width f ormatted input; write.table;
data.frame.

count.fields can be useful to determine problems with reading files which result in reports of
incorrect record lengths (see the ‘Examples’ below).

http://tools.ietf.org/html/rfc4180 for the IANA definition of CSV files (which requires
comma as separator and CRLF line endings).

Examples

using count.fields to handle unknown maximum number of fields
when fill=TRUE
test1 <- c(1:5, "6,7", "8,9,10")
tf <- tempfile()
writeLines(test1, tf)

read.csv(tf, fill = TRUE) # 1 column
ncol <- max(count.fields(tf, sep = ","))
read.csv(tf, fill = TRUE, header = FALSE,

col.names = paste("V", seq_len(ncol), sep = ""))
unlink(tf)

"Inline" data set, using text=
Notice that leading and trailing empty lines are auto-trimmed

read.table(header=TRUE, text="
a b
1 2
3 4
")

readRegistry Read a Windows Registy Hive

Description

Read values of keys in the Windows Registry, and optionally whole hives.

Usage

readRegistry(key, hive = c("HLM", "HCR", "HCU", "HU", "HCC", "HPD"),
maxdepth = 1, view = c("default", "32-bit", "64-bit"))

http://tools.ietf.org/html/rfc4180

1766 recover

Arguments

key character string, the path to the key in the Windows Registry.

hive The ‘hive’ containing the key. The abbreviations are for
HKEY_LOCAL_MACHINE, HKEY_CLASSES_ROOT. HKEY_CURRENT_USER,
HKEY_USERS, HKEY_CURRENT_CONFIG and HKEY_PERFORMANCE_DATA

maxdepth How far to recurse into the subkeys of the key. By default only the values of the
key and the names of subkeys are returned.

view On 64-bit Windows, the view of the Registry to be used: see ‘Details’.

Details

Registry access is done using the security settings of the current R session: this means that some
Registry keys may not be accessible even if they exist. This may result in NULL values in the object
returned, and, possibly, empty element names.

On 64-bit Windows, this will by default read the 32-bit view of the Registry when run from 32-bit R,
and the 64-bit view when run from 64-bit R: see http://msdn.microsoft.com/en-us/library/
aa384232(VS.85).aspx.

Value

A named list of values and subkeys (which may themselves be named lists). The default value (if
any) precedes named values which precede subkeys, and both the latter sets are sorted alphabeti-
cally.

Examples

only in HLM if set in an admin-mode install.
readRegistry("SOFTWARE\\R-core", maxdepth = 3)

gmt <- file.path("SOFTWARE", "Microsoft", "Windows NT",
"CurrentVersion", "Time Zones",
"GMT Standard Time", fsep="\\")

readRegistry(gmt, "HLM")

on a 64-bit R need this to find 32-bit JAGS
readRegistry("SOFTWARE\\JAGS-1.0.3", maxdepth = 3, view="32")

See if there is a 64-bit user install
readRegistry("SOFTWARE\\R-core\\R64", "HCU", maxdepth = 2)

recover Browsing after an Error

Description

This function allows the user to browse directly on any of the currently active function calls, and
is suitable as an error option. The expression options(error=recover) will make this the error
option.

http://msdn.microsoft.com/en-us/library/aa384232(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa384232(VS.85).aspx

recover 1767

Usage

recover()

Details

When called, recover prints the list of current calls, and prompts the user to select one of them.
The standard R browser is then invoked from the corresponding environment; the user can type
ordinary R language expressions to be evaluated in that environment.

When finished browsing in this call, type c to return to recover from the browser. Type another
frame number to browse some more, or type 0 to exit recover.

The use of recover largely supersedes dump.frames as an error option, unless you really want to
wait to look at the error. If recover is called in non-interactive mode, it behaves like dump.frames.
For computations involving large amounts of data, recover has the advantage that it does not need
to copy out all the environments in order to browse in them. If you do decide to quit interactive
debugging, call dump.frames directly while browsing in any frame (see the examples).

Value

Nothing useful is returned. However, you can invoke recover directly from a function, rather than
through the error option shown in the examples. In this case, execution continues after you type 0
to exit recover.

Compatibility Note

The R recover function can be used in the same way as the S function of the same name; therefore,
the error option shown is a compatible way to specify the error action. However, the actual functions
are essentially unrelated and interact quite differently with the user. The navigating commands up
and down do not exist in the R version; instead, exit the browser and select another frame.

References

John M. Chambers (1998). Programming with Data; Springer.
See the compatibility note above, however.

See Also

browser for details about the interactive computations; options for setting the error option;
dump.frames to save the current environments for later debugging.

Examples

Not run:

options(error = recover) # setting the error option

Example of interaction

> myFit <- lm(y ~ x, data = xy, weights = w)
Error in lm.wfit(x, y, w, offset = offset, ...) :

missing or negative weights not allowed

Enter a frame number, or 0 to exit
1:lm(y ~ x, data = xy, weights = w)
2:lm.wfit(x, y, w, offset = offset, ...)

1768 relist

Selection: 2
Called from: eval(expr, envir, enclos)
Browse[1]> objects() # all the objects in this frame
[1] "method" "n" "ny" "offset" "tol" "w"
[7] "x" "y"
Browse[1]> w
[1] -0.5013844 1.3112515 0.2939348 -0.8983705 -0.1538642
[6] -0.9772989 0.7888790 -0.1919154 -0.3026882
Browse[1]> dump.frames() # save for offline debugging
Browse[1]> c # exit the browser

Enter a frame number, or 0 to exit
1:lm(y ~ x, data = xy, weights = w)
2:lm.wfit(x, y, w, offset = offset, ...)
Selection: 0 # exit recover
>

End(Not run)

relist Allow Re-Listing an unlist()ed Object

Description

relist() is an S3 generic function with a few methods in order to allow easy inversion of
unlist(obj) when that is used with an object obj of (S3) class "relistable".

Usage

relist(flesh, skeleton)
Default S3 method:
relist(flesh, skeleton = attr(flesh, "skeleton"))
S3 method for class ’factor’
relist(flesh, skeleton = attr(flesh, "skeleton"))
S3 method for class ’list’
relist(flesh, skeleton = attr(flesh, "skeleton"))
S3 method for class ’matrix’
relist(flesh, skeleton = attr(flesh, "skeleton"))

as.relistable(x)
is.relistable(x)

S3 method for class ’relistable’
unlist(x, recursive = TRUE, use.names = TRUE)

Arguments

flesh a vector to be relisted
skeleton a list, the structure of which determines the structure of the result
x an R object, typically a list (or vector).
recursive logical. Should unlisting be applied to list components of x?
use.names logical. Should names be preserved?

relist 1769

Details

Some functions need many parameters, which are most easily represented in complex structures,
e.g., nested lists. Unfortunately, many mathematical functions in R, including optim and nlm can
only operate on functions whose domain is a vector. R has unlist() to convert nested list objects
into a vector representation. relist(), its methods and the functionality mentioned here provide
the inverse operation to convert vectors back to the convenient structural representation. This allows
structured functions (such as optim()) to have simple mathematical interfaces.

For example, a likelihood function for a multivariate normal model needs a variance-covariance
matrix and a mean vector. It would be most convenient to represent it as a list containing a vector
and a matrix. A typical parameter might look like

list(mean=c(0, 1), vcov=cbind(c(1, 1), c(1, 0))).

However, optim cannot operate on functions that take lists as input; it only likes numeric vec-
tors. The solution is conversion. Given a function mvdnorm(x, mean, vcov, log=FALSE) which
computes the required probability density, then

ipar <- list(mean=c(0, 1), vcov=cbind(c(1, 1), c(1, 0)))
initial.param <- as.relistable(ipar)

ll <- function(param.vector)
{

param <- relist(param.vector, skeleton=ipar))
-sum(mvdnorm(x, mean = param$mean, vcov = param$vcov,

log = TRUE))
}

optim(unlist(initial.param), ll)

relist takes two parameters: skeleton and flesh. Skeleton is a sample object that has the right
shape but the wrong content. flesh is a vector with the right content but the wrong shape. Invoking

relist(flesh, skeleton)

will put the content of flesh on the skeleton. You don’t need to specify skeleton explicitly if the
skeleton is stored as an attribute inside flesh. In particular, if flesh was created from some object
obj with unlist(as.relistable(obj)) then the skeleton attribute is automatically set. (Note that
this does not apply to the example here, as optim is creating a new vector to pass to ll and not its
par argument.)

As long as skeleton has the right shape, it should be a precise inverse of unlist. These equalities
hold:

relist(unlist(x), x) == x
unlist(relist(y, skeleton)) == y

x <- as.relistable(x)
relist(unlist(x)) == x

Value

an object of (S3) class "relistable" (and "list").

1770 REMOVE

Author(s)

R Core, based on a code proposal by Andrew Clausen.

See Also

unlist

Examples

ipar <- list(mean=c(0, 1), vcov=cbind(c(1, 1), c(1, 0)))
initial.param <- as.relistable(ipar)
ul <- unlist(initial.param)
relist(ul)
stopifnot(identical(relist(ul), initial.param))

REMOVE Remove Add-on Packages

Description

Utility for removing add-on packages.

Usage

R CMD REMOVE [options] [-l lib] pkgs

Arguments

pkgs a space-separated list with the names of the packages to be removed.

lib the path name of the R library tree to remove from. May be absolute or relative.
Also accepted in the form ‘--library=lib’.

options further options for help or version.

Details

If used as R CMD REMOVE pkgs without explicitly specifying lib, packages are removed from the
library tree rooted at the first directory in the library path which would be used by R run in the
current environment.

To remove from the library tree lib instead of the default one, use R CMD REMOVE -l lib pkgs .

Use R CMD REMOVE --help for more usage information.

See Also

INSTALL, remove.packages

remove.packages 1771

remove.packages Remove Installed Packages

Description

Removes installed packages/bundles and updates index information as necessary.

Usage

remove.packages(pkgs, lib)

Arguments

pkgs a character vector with the names of the packages to be removed.

lib a character vector giving the library directories to remove the packages from. If
missing, defaults to the first element in .libPaths().

See Also

install.packages for installing packages.

removeSource Remove Stored Source from a Function.

Description

When options("keep.source") is TRUE, a copy of the original source code to a function is stored
with it. This function removes that copy.

Usage

removeSource(fn)

Arguments

fn A single function from which to remove the source.

Details

This removes both the "source" attribute (from R version 2.13.x or earlier) and the "srcref" and
related attributes.

Value

A copy of the function with the source removed.

See Also

srcref for a description of source reference records, deparse for a description of how functions
are deparsed.

1772 roman

Examples

fn <- function(x) {
x + 1 # A comment, kept as part of the source

}
fn
fn <- removeSource(fn)
fn

roman Roman Numerals

Description

Manipulate integers as roman numerals.

Usage

as.roman(x)

Arguments

x a numeric vector, or a character vector of arabic or roman numerals.

Details

as.roman creates objects of class "roman" which are internally represented as integers, and have
suitable methods for printing, formatting, subsetting, and coercion to character.

Only numbers between 1 and 3899 have a unique representation as roman numbers.

References

Wikipedia contributors (2006). Roman numerals. Wikipedia, The Free Encyclopedia. http://en.
wikipedia.org/w/index.php?title=Roman_numerals&oldid=78252134. Accessed September
29, 2006.

Examples

First five roman ’numbers’.
(y <- as.roman(1 : 5))
Middle one.
y[3]
Current year as a roman number.
(y <- as.roman(format(Sys.Date(), "%Y")))
10 years ago ...
y - 10

http://en.wikipedia.org/w/index.php?title=Roman_numerals&oldid=78252134
http://en.wikipedia.org/w/index.php?title=Roman_numerals&oldid=78252134

Rprof 1773

Rprof Enable Profiling of R’s Execution

Description

Enable or disable profiling of the execution of R expressions.

Usage

Rprof(filename = "Rprof.out", append = FALSE, interval = 0.02,
memory.profiling=FALSE)

Arguments

filename The file to be used for recording the profiling results. Set to NULL or "" to disable
profiling.

append logical: should the file be over-written or appended to?

interval real: time interval between samples.
memory.profiling

logical: write memory use information to the file?

Details

Enabling profiling automatically disables any existing profiling to another or the same file.

Profiling works by writing out the call stack every interval seconds, to the file specified. Either
the summaryRprof function or the wrapper script R CMD Rprof can be used to process the output
file to produce a summary of the usage; use R CMD Rprof --help for usage information.

Exactly what the time interval measures is subtle: it is time that the R process is running and
executing an R command. It is not however just CPU time, for if readline() is waiting for input,
that counts (on Windows, but not on a Unix-alike).

Note that the timing interval cannot be too small, for the time spent in each profiling step is added
to the interval. What is feasible is machine-dependent, but 10ms seemed as small as advisable on a
1GHz machine.

Functions will only be recorded in the profile log if they put a context on the call stack (see
sys.calls). Some primitive functions do not do so: specifically those which are of type "special"
(see the ‘R Internals’ manual for more details).

Note

filename can be a UTF-8-encoded filepath that cannot be translated to the current locale.

See Also

The chapter on “Tidying and profiling R code” in “Writing R Extensions” (see the ‘doc/manual’
subdirectory of the R source tree).

summaryRprof

tracemem, Rprofmem for other ways to track memory use.

1774 Rprofmem

Examples

Not run: Rprof()
some code to be profiled
Rprof(NULL)
some code NOT to be profiled
Rprof(append=TRUE)
some code to be profiled
Rprof(NULL)
...
Now post-process the output as described in Details

End(Not run)

Rprofmem Enable Profiling of R’s Memory Use

Description

Enable or disable reporting of memory allocation in R.

Usage

Rprofmem(filename = "Rprofmem.out", append = FALSE, threshold = 0)

Arguments

filename The file to be used for recording the memory allocations. Set to NULL or "" to
disable reporting.

append logical: should the file be over-written or appended to?

threshold numeric: allocations on R’s "large vector" heap larger than this number of bytes
will be reported.

Details

Enabling profiling automatically disables any existing profiling to another or the same file.

Profiling writes the call stack to the specified file every time malloc is called to allocate a large
vector object or to allocate a page of memory for small objects. The size of a page of memory and
the size above which malloc is used for vectors are compile-time constants, by default 2000 and
128 bytes respectively.

The profiler tracks allocations, some of which will be to previously used memory and will not
increase the total memory use of R.

Value

None

Note

The memory profiler slows down R even when not in use, and so is a compile-time option. The
memory profiler can be used at the same time as other R and C profilers.

Rscript 1775

See Also

The R sampling profiler, Rprof also collects memory information.

tracemem traces duplications of specific objects.

The "Writing R Extensions" manual section on "Tidying and profiling R code"

Examples

Not run:
not supported unless R is compiled to support it.
Rprofmem("Rprofmem.out", threshold=1000)
example(glm)
Rprofmem(NULL)
noquote(readLines("Rprofmem.out", n=5))

End(Not run)

Rscript Scripting Front-End for R

Description

This is an alternative front end for use in ‘#!’ scripts and other scripting applications.

Usage

Rscript [options] [-e expression] file [args]

Arguments

options A list of options beginning with ‘--’. These can be any of the options of the
standard R front-end, and also those described in the details.

expression a R expression.

file The name of a file containing R commands. ‘-’ indicates ‘stdin’.

args Arguments to be passed to the script in file.

Details

Rscript --help gives details of usage, and Rscript --version gives the version of Rscript.

Other invocations invoke the R front-end with selected options. This front-end is convenient for
writing ‘#!’ scripts since it is an executable and takes file directly as an argument. Options
‘--slave --no-restore’ are always supplied: these imply ‘--no-save’. (The standard Windows
command line has no concept of ‘#!’ scripts, but Cygwin shells do.)

Either one or more ‘-e’ options or file should be supplied. When using ‘-e’ options be aware of
the quoting rules in the shell used: see the examples.

Additional options accepted (before file or args) are

‘--verbose’ gives details of what Rscript is doing. Also passed on to R.

‘--default-packages=list’ where list is a comma-separated list of package names or NULL.
Sets the environment variable R_DEFAULT_PACKAGES which determines the packages loaded
on startup. The default for Rscript omits methods as it takes about 60% of the startup time.

1776 RShowDoc

Spaces are allowed in expression and file (but will need to be protected from the shell in use, if
any, for example by enclosing the argument in quotes).

The R files are found from the location of the ‘Rscript.exe’ executable. If this is copied elsewhere,
the environment variable RHOME should be set to the top directory of the R installation.

Unlike Unix-alikes, this links directly to ‘R.dll’ rather than running a separate process.

stdin() refers to the input file, and file("stdin") to the stdin file stream of the process.

Examples

Not run:
Note that Rscript is not by default in the PATH on Windows, so
either put it there or use an explicit path to Rscript.

at the standard Windows command line
Rscript -e "date()" -e "format(Sys.time(), \"%a %b %d %X %Y\")"
in other shells, e.g. bash or tcsh, prefer
Rscript -e ’date()’ -e ’format(Sys.time(), "%a %b %d %X %Y")’

example #! script for a Unix-alike

#! /path/to/Rscript --vanilla --default-packages=utils
args <- commandArgs(TRUE)
res <- try(install.packages(args))
if(inherits(res, "try-error")) q(status=1) else q()

End(Not run)

RShowDoc Show R Manuals and Other Documentation

Description

Utility function to find and display R documentation.

Usage

RShowDoc(what, type = c("pdf", "html", "txt"), package)

Arguments

what a character string: see ‘Details’.

type an optional character string giving the preferred format.

package an optional character string specifying the name of a package within which to
look for documentation.

RSiteSearch 1777

Details

what can specify one of several different sources of documentation, including the R manuals
(R-admin, R-data, R-exts, R-intro, R-ints, R-lang), NEWS, COPYING (the GPL licence), any of
the licenses in ‘share/licenses’, FAQ (also available as R-FAQ), and the files in ‘R_HOME/doc’.
The R for Windows FAQ is specified by rw-FAQ.

If package is supplied, documentation is looked for in the ‘doc’ and top-level directories of an
installed package of that name.

If what is missing a brief usage message is printed.

The documentation types are tried in turn starting with the first specified in type (or "pdf" if none
is specified).

Value

A invisible character string given the path to the file found.

Examples

Not run:
RShowDoc("R-lang")
RShowDoc("FAQ", type="html")
RShowDoc("frame", package="grid")
RShowDoc("changes.txt", package="grid")
RShowDoc("NEWS", package="MASS")

End(Not run)

RSiteSearch Search for Key Words or Phrases in Documentation

Description

Search for key words or phrases in help pages, vignettes or task views, using the search engine at
http://search.r-project.org and view them in a web browser.

Usage

RSiteSearch(string,
restrict = c("functions", "vignettes", "views"),
format = c("normal", "short"),
sortby = c("score", "date:late", "date:early",

"subject", "subject:descending",
"from", "from:descending",
"size", "size:descending"),

matchesPerPage = 20)

http://search.r-project.org

1778 RSiteSearch

Arguments

string A character string specifying word(s) or a phrase to search. If the words are to
be searched as one entity, enclose all words in braces (see the first example).

restrict a character vector, typically of length greater than one. Possible areas to search
in: functions for help pages, views for task views and vignettes for package
vignettes.

format normal or short (no excerpts); can be abbreviated.

sortby character string (can be abbreviated) indicating how to sort the search results:
(score, date:late for sorting by date with latest results first, date:early for
earliest first, subject for subject in alphabetical order, subject:descending
for reverse alphabetical order, from or from:descending for sender (when ap-
plicable), size or size:descending for size.)

matchesPerPage How many items to show per page.

Details

This function is designed to work with the search site at http://search.r-project.org, and
depends on that site continuing to be made available (thanks to Jonathan Baron and the School of
Arts and Sciences of the University of Pennsylvania).

Unique partial matches will work for all arguments. Each new browser window will stay open
unless you close it.

Value

(Invisibly) the complete URL passed to the browser, including the query string.

Author(s)

Andy Liaw and Jonathan Baron

See Also

help.search, help.start for local searches.

browseURL for how the help file is displayed.

Examples

need Internet connection
RSiteSearch("{logistic regression}") # matches exact phrase
Sys.sleep(5) # allow browser to open, take a quick look
Search in vignettes and store the query-string:
fullquery <- RSiteSearch("lattice", restrict = "vignettes")
fullquery # a string of ~ 110 characters

http://search.r-project.org

rtags 1779

rtags An Etags-like Tagging Utility for R

Description

rtags provides etags-like indexing capabilities for R code, using R’s own parser.

Usage

rtags(path = ".", pattern = "\\.[RrSs]$",
recursive = FALSE,
src = list.files(path = path, pattern = pattern,

full.names = TRUE,
recursive = recursive),

keep.re = NULL,
ofile = "", append = FALSE,
verbose = getOption("verbose"))

Arguments

path, pattern, recursive

Arguments passed on to list.files to determine the files to be tagged. By de-
fault, these are all files with extension .R, .r, .S, and .s in the current directory.
These arguments are ignored if src is specified.

src A vector of file names to be indexed.

keep.re A regular expression further restricting src (the files to be indexed). For exam-
ple, specifying keep.re="/R/[^/]*\\.R$" will only retain files with extension
.R inside a directory named R.

ofile Passed on to cat as the file argument; typically the output file where the tags
will be written ("TAGS" by convention). By default, the output is written to the
R console (unless redirected).

append Logical, indicating whether the output should overwrite an existing file, or ap-
pend to it.

verbose Logical. If TRUE, file names are echoed to the R console as they are processed.

Details

Many text editors allow definitions of functions and other language objects to be quickly and easily
located in source files through a tagging utility. This functionality requires the relevant source files
to be preprocessed, producing an index (or tag) file containing the names and their corresponding
locations. There are multiple tag file formats, the most popular being the vi-style ctags format and
the and emacs-style etags format. Tag files in these formats are usually generated by the ctags and
etags utilities respectively. Unfortunately, these programs do not recognize R code syntax. They
do allow tagging of arbitrary language files through regular expressions, but this too is insufficient.

The rtags function is intended to be a tagging utility for R code. It parses R code files (using R’s
parser) and produces tags in Emacs’ etags format. Support for vi-style tags is currently absent, but
should not be difficult to add.

1780 Rtangle

Author(s)

Deepayan Sarkar

References

http://en.wikipedia.org/wiki/Ctags, http://www.gnu.org/software/emacs/
emacs-lisp-intro/html_node/emacs.html#Tags

See Also

list.files, cat

Examples

Not run:
rtags("/path/to/src/repository",

pattern = "[.]*\\.[RrSs]$",
keep.re = "/R/",
verbose = TRUE,
ofile = "TAGS",
append = FALSE,
recursive = TRUE)

End(Not run)

Rtangle R Driver for Stangle

Description

A driver for Stangle that extracts R code chunks.

Usage

Rtangle()
RtangleSetup(file, syntax, output = NULL, annotate = TRUE,

split = FALSE, quiet = FALSE, ...)

Arguments

file Name of Sweave source file. See the description of the corresponding argument
of Sweave.

syntax An object of class SweaveSyntax.

output Name of output file used unless split = TRUE: see ‘Details’.

annotate By default, code chunks are separated by comment lines specifying the names
and numbers of the code chunks. If FALSE the decorating comments are omitted.

split Split output into a file for each code chunk?

quiet If TRUE all progress messages are suppressed.

... Additional named arguments setting defaults for further options.

http://en.wikipedia.org/wiki/Ctags
http://www.gnu.org/software/emacs/emacs-lisp-intro/html_node/emacs.html#Tags
http://www.gnu.org/software/emacs/emacs-lisp-intro/html_node/emacs.html#Tags

Rtangle 1781

Details

Unless split = TRUE, the default name of the output file is basename(file) with an extension
corresponding to the Sweave syntax (e.g. ‘Rnw’, ‘Stex’) replaced by ‘R’. File names "stdout" and
"stderr" are interpreted as the output and message connection respectively.

If splitting is selected (including by the options in the file), each chunk is written to a separate file
with extension the name of the ‘engine’ (default ‘.R’).

The annotation is of one of the forms

###
code chunk number 3: viewport
###

###
code chunk number 18: grid.Rnw:647-648
###

###
code chunk number 19: trellisdata (eval = FALSE)
###

using either the chunk label or the file name and line numbers.

Note that this driver does not simple extract the code chunks verbatim because code chunks can
re-use earlier chunks.

Supported Options

Rtangle supports the following options for code chunks (the values in parentheses show the default
values):

engine: character string ("R"). Only chunks with engine equal to "R" or "S" are processed.

keep.source: logical (TRUE). If keep.source == TRUE the original source is copied to the
file. Otherwise, deparsed source is output.

eval: logical (TRUE). If FALSE, the code chunk is copied across but commented out.

prefix Used if split = TRUE. See prefix.string.

prefix.string: a character string, default is the name of the source file (without extension). Used if
split = TRUE as the prefix for the filename if the chunk has no label, or if it has a label and
prefix = TRUE. Note that this is used as part of filenames, so needs to be portable.

show.line.nos logical (FALSE). Should the output be annotated with comments showing the line
number of the first code line of the chunk?

Author(s)

Friedrich Leisch and R-core.

See Also

‘Sweave User Manual’, a vignette in the utils package.

Sweave, RweaveLatex

1782 RweaveLatex

RweaveLatex R/LaTeX Driver for Sweave

Description

A driver for Sweave that translates R code chunks in LaTeX files.

Usage

RweaveLatex()

RweaveLatexSetup(file, syntax, output = NULL, quiet = FALSE,
debug = FALSE, stylepath, ...)

Arguments

file Name of Sweave source file. See the description of the corresponding argument
of Sweave.

syntax An object of class SweaveSyntax.

output Name of output file. The default is to remove extension ‘.nw’, ‘.Rnw’ or ‘.Snw’
and to add extension ‘.tex’. Any directory paths in file are also removed such
that the output is created in the current working directory.

quiet If TRUE all progress messages are suppressed.

debug If TRUE, input and output of all code chunks is copied to the console.

stylepath See ‘Details’.

... named values for the options listed in ‘Supported Options’.

Details

The LaTeX file generated needs to contain the line ‘\usepackage{Sweave}’, and if this is not
present in the Sweave source file (possibly in a comment), it is inserted by the RweaveLatex driver.
If stylepath = TRUE, a hard-coded path to the file ‘Sweave.sty’ in the R installation is set in
place of Sweave. The hard-coded path makes the LaTeX file less portable, but avoids the problem
of installing the current version of ‘Sweave.sty’ to some place in your TeX input path. However,
TeX may not be able to process the hard-coded path if it contains spaces (as it often will under
Windows) or TeX special characters.

The default for stylepath is now taken from the environment variable
SWEAVE_STYLEPATH_DEFAULT, or is FALSE it that is unset or empty. If set, it should be ex-
actly TRUE or FALSE: any other values are taken as FALSE.

As from R 2.12.0, the simplest way for frequent Sweave users to ensure that ‘Sweave.sty’ is in
the TeX input path is to add ‘R_HOME/share/texmf’ as a ‘texmf tree’ (‘root directory’ in the
parlance of the ‘MiKTeX settings’ utility).

By default, ‘Sweave.sty’ sets the width of all included graphics to:
‘\setkeys{Gin}{width=0.8\textwidth}’.

This setting affects the width size option passed to the ‘\includegraphics{}’ directive for each
plot file and in turn impacts the scaling of your plot files as they will appear in your final document.

Thus, for example, you may set width=3 in your figure chunk and the generated graphics files will
be set to 3 inches in width. However, the width of your graphic in your final document will be set

RweaveLatex 1783

to ‘0.8\textwidth’ and the height dimension will be scaled accordingly. Fonts and symbols will
be similarly scaled in the final document.

You can adjust the default value by including the ‘\setkeys{Gin}{width=...}’ directive in your
‘.Rnw’ file after the ‘\begin{document}’ directive and changing the width option value as you
prefer, using standard LaTeX measurement values.

If you wish to override this default behavior entirely, you can add a
‘\usepackage[nogin]{Sweave}’ directive in your preamble. In this case, no size/scaling
options will be passed to the ‘\includegraphics{}’ directive and the height and width options
will determine both the runtime generated graphic file sizes and the size of the graphics in your
final document.

‘Sweave.sty’ also supports the ‘[noae]’ option, which suppresses the use of the ‘ae’ package, the
use of which may interfere with certain encoding and typeface selections. If you have problems in
the rendering of certain character sets, try this option.

The use of fancy quotes (see sQuote) can cause problems when setting R output. Either set
options(useFancyQuotes = FALSE) or arrange that LaTeX is aware of the encoding used (by
a ‘\usepackage[utf8]{inputenc}’ declaration: Windows users of Sweave from Rgui.exe will
need to replace ‘utf8’ by ‘cp1252’ or similar) and ensure that typewriter fonts containing direc-
tional quotes are used.

Some LaTeX graphics drivers do not include ‘.png’ or ‘.jpg’ in the list of known extensions. To en-
able them, add something like ‘\DeclareGraphicsExtensions{.png,.pdf,.jpg}’ to the pream-
ble of your document or check the behavior of your graphics driver. When both pdf and png are
TRUE both files will be produced by Sweave, and their order in the ‘DeclareGraphicsExtensions’
list determines which will be used by pdflatex.

Supported Options

RweaveLatex supports the following options for code chunks (the values in parentheses show the
default values). Character string values should be quoted when passed from Sweave through ...
but not when use in the header of a code chunk.

engine: character string ("R"). Only chunks with engine equal to "R" or "S" are processed.

echo: logical (TRUE). Include R code in the output file?

keep.source: logical (TRUE). When echoing, if keep.source == TRUE the original source is
copied to the file. Otherwise, deparsed source is echoed.

eval: logical (TRUE). If FALSE, the code chunk is not evaluated, and hence no text nor graphical
output produced.

results: character string ("verbatim"). If "verbatim", the output of R commands is included in
the verbatim-like ‘Soutput’ environment. If "tex", the output is taken to be already proper
LaTeX markup and included as is. If "hide" then all output is completely suppressed (but the
code executed during the weave).

print: logical (FALSE). If TRUE, this forces auto-printing of all expressions.

term: logical (TRUE). If TRUE, visibility of values emulates an interactive R session: values of
assignments are not printed, values of single objects are printed. If FALSE, output comes only
from explicit print or similar statements.

split: logical (FALSE). If TRUE, text output is written to separate files for each code chunk.

strip.white: character string ("true"). If "true", blank lines at the beginning and end of output
are removed. If "all", then all blank lines are removed from the output. If "false" then
blank lines are retained.
A ‘blank line’ is one that is empty or includes only whitespace (spaces and tabs).

1784 RweaveLatex

Note that blank lines in a code chunk will usually produce a prompt string rather than a blank
line on output.

prefix: logical (TRUE). If TRUE generated filenames of figures and output all have the common
prefix given by the prefix.string option: otherwise only unlabelled chunks use the prefix.

prefix.string: a character string, default is the name of the source file (without extension). Note
that this is used as part of filenames, so needs to be portable.

include: logical (TRUE), indicating whether input statements for text output (if split = TRUE) and
‘\includegraphics’ statements for figures should be auto-generated. Use include = FALSE
if the output should appear in a different place than the code chunk (by placing the input line
manually).

fig: logical (FALSE), indicating whether the code chunk produces graphical output. Note that only
one figure per code chunk can be processed this way. The labels for figure chunks are used as
part of the file names, so should preferably be alphanumeric.

eps: logical (FALSE), indicating whether EPS figures should be generated. Ignored if fig = FALSE.

pdf: logical (TRUE), indicating whether PDF figures should be generated. Ignored if fig = FALSE.

pdf.version, pdf.encoding, pdf.compress: passed to pdf to set the version, encoding and com-
pression (or not). Defaults taken from pdf.options().

png: logical (FALSE), indicating whether PNG figures should be generated. Ignored if
fig = FALSE. Only available in R >= 2.13.0.

jpeg: logical (FALSE), indicating whether JPEG figures should be generated. Ignored if
fig = FALSE. Only available in R >= 2.13.0.

grdevice: character (NULL): see section ‘Custom Graphics Devices’. Ignored if fig = FALSE. Only
available in R >= 2.13.0.

width: numeric (6), width of figures in inches. See ‘Details’.

height: numeric (6), height of figures in inches. See ‘Details’.

resolution: numeric (300), resolution in pixels per inch: used for PNG and JPEG graphics. Note
that the default is a fairly high value, appropriate for high-quality plots. Something like 100 is
a better choice for package vignettes.

concordance: logical (FALSE). Write a concordance file to link the input line numbers to the output
line numbers. This is an experimental feature; see the source code for the output format, which
is subject to change in future releases.

figs.only: logical (FALSE). By default each figure chunk is run once, then re-run for each selected
type of graphics. That will open a default graphics device for the first figure chunk and use that
device for the first evaluation of all subsequent chunks. If this option is true, the figure chunk
is run only for each selected type of graphics, for which a new graphics device is opened and
then closed.

In addition, users can specify further options, either in the header of an individual code section or in
a ‘\SweaveOpts{}’ line in the document. Prior to R 2.14.0 unknown options were taken as logical:
now their type is set at first use.

Custom Graphics Devices

If option grdevice is supplied for a code chunk with both fig and eval true, the following call is
made

get(options$grdevice, envir = .GlobalEnv)(name=, width=,
height=, options)

Rwin configuration 1785

which should open a graphics device. The chunk’s code is then evaluated and dev.off is called.
Normally a function of the name given will have been defined earlier in the Sweave document, e.g.

<<results=hide>>=
my.Swd <- function(name, width, height, ...)
grDevices::png(filename = paste(name, "png", sep = "."),

width = width, height = height, res = 100,
units = "in", type = "quartz", bg = "transparent")

@

Currently only one custom device can be used for each chunk, but different devices can be used for
different chunks.

A replacement for dev.off can be provided as a function with suffix .off, e.g. my.Swd.off().

Hook Functions

Before each code chunk is evaluated, zero or more hook functions can be executed. If
getOption("SweaveHooks") is set, it is taken to be a named list of hook functions. For each
logical option of a code chunk (echo, print, . . .) a hook can be specified, which is exe-
cuted if and only if the respective option is TRUE. Hooks must be named elements of the list
returned by getOption("SweaveHooks") and be functions taking no arguments. E.g., if option
"SweaveHooks" is defined as list(fig = foo), and foo is a function, then it would be exe-
cuted before the code in each figure chunk. This is especially useful to set defaults for the graphical
parameters in a series of figure chunks.

Note that the user is free to define new Sweave logical options and associate arbitrary hooks with
them. E.g., one could define a hook function for a new option called clean that removes all objects
in the workspace. Then all code chunks specified with clean = TRUE would start operating
on an empty workspace.

Author(s)

Friedrich Leisch and R-core

See Also

‘Sweave User Manual’, a vignette in the utils package.

Sweave, Rtangle

Rwin configuration R for Windows Configuration

Description

The file ‘Rconsole’ configures the R GUI console in this Windows port. The loadRconsole func-
tion loads a new configuration.

The file ‘Rdevga’ configures the graphics devices windows, win.graph, win.metafile and
win.print, as well as the bitmap devices bmp, jpeg, png and tiff (which use for type =
"windows" use windows internally).

1786 Rwin configuration

Usage

loadRconsole(file)

Arguments

file The file from which to load a new ‘Rconsole’ configuration. By default a file
dialog is used to select a file.

Details

There are system copies of these files in ‘R_HOME\etc’. Users can have personal copies of the
files: these are looked for in the location given by the environment variable R_USER. The system
files are read only if a corresponding personal file is not found.

If the environment variable R_USER is not set, the R system sets it to HOME if that is set
(stripping any trailing slash), otherwise to the Windows ‘personal’ directory, otherwise to
{HOMEDRIVE}{HOMEPATH} if HOMEDRIVE and HOMEDRIVE are both set otherwise to the working di-
rectory. This is as described in the file ‘rw-FAQ’.

Value

Each of the files contains details in its comments of how to set the values.

At the time of writing ‘Rdevga’ configured the mapping of font numbers to fonts, and ‘Rconsole’
configured the appearance (single or multiple document interface, toolbar, statusbar on MDI), size,
font and colours of the GUI console, and whether resizing the console sets options("width").

The file ‘Rconsole’ also configures the internal pager. This shares the font and colours of the
console, but can be sized separately.

‘Rconsole’ can also set the initial positions of the console and the graphics device, as well as the
size and position of the MDI workspace in MDI mode.

loadRconsole is called for its side effect of loading new defaults. It returns no useful value.

Chinese/Japanese/Korean

Users of these languages will need to select a suitable font for the console (perhaps MS Mincho) and
for the graphics device (although the default Arial has many CJK characters). It is essential that
the font selected for the console has double-width CJK characters – many monospaced fonts do not.

Note

The GUI preferences item on the Edit menu brings up an dialog box which can be used to edit
the console settings, and to save them to a file.

Author(s)

Guido Masarotto and R-core members

See Also

windows

savehistory 1787

Examples

ruser <- Sys.getenv("R_USER")
cat("\n\nLocation for personal configuration files is\n R_USER = ",

ruser, "\n\n", sep="")
see if there are personal configuration files
file.exists(file.path(ruser, c("Rconsole", "Rdevga")))

show the configuration files used
showConfig <- function(file)
{

ruser <- Sys.getenv("R_USER")
path <- file.path(ruser, file)
if(!file.exists(path)) path <- file.path(R.home(), "etc", file)
file.show(path, header=path)

}
showConfig("Rconsole")

savehistory Load or Save or Display the Commands History

Description

Load or save or display the commands history.

Usage

loadhistory(file = ".Rhistory")
savehistory(file = ".Rhistory")

history(max.show = 25, reverse = FALSE, pattern, ...)

timestamp(stamp = date(),
prefix = "##------ ", suffix = " ------##",
quiet = FALSE)

Arguments

file The name of the file in which to save the history, or from which to load it. The
path is relative to the current working directory.

max.show The maximum number of lines to show. Inf will give all of the currently avail-
able history.

reverse logical. If true, the lines are shown in reverse order. Note: this is not useful
when there are continuation lines.

pattern A character string to be matched against the lines of the history

... Arguments to be passed to grep when doing the matching.

stamp A value or vector of values to be written into the history.

prefix A prefix to apply to each line.

suffix A suffix to apply to each line.

quiet If TRUE, suppress printing timestamp to the console.

1788 select.list

Details

There are several history mechanisms available for the different R consoles, which work in sim-
ilar but not identical ways. Other uses of R, in particular embedded uses, may have no history.
This works in Rgui and interactive Rterm but not in batch use of Rterm nor in embedded/DCOM
versions.

The history mechanism is controlled by two environment variables: R_HISTSIZE controls the num-
ber of lines that are saved (default 512), and R_HISTFILE sets the filename used for the load-
ing/saving of history if requested at the beginning/end of a session (but not the default for these
functions). There is no limit on the number of lines of history retained during a session, so setting
R_HISTSIZE to a large value has no penalty unless a large file is actually generated.

These variables are read at the time of saving, so can be altered within a session by the use of
Sys.setenv.

history shows only unique matching lines if pattern is supplied.

The timestamp function writes a timestamp (or other message) into the history and echos it to the
console. On platforms that do not support a history mechanism (where the mechanism does not
support timestamps) only the console message is printed.

Note

If you want to save the history at the end of (almost) every interactive session (even those in which
you do not save the workspace), you can put a call to savehistory() in .Last. See the examples.

Examples

Not run:
save the history in the home directory: note that it is not
(by default) read from there.
.Last <- function()

if(interactive()) try(savehistory("~/.Rhistory"))

End(Not run)

select.list Select Items from a List

Description

Select item(s) from a character vector.

Usage

select.list(choices, preselect = NULL, multiple = FALSE, title = NULL,
graphics = getOption("menu.graphics"))

Arguments

choices a character vector of items.

preselect a character vector, or NULL. If non-null and if the string(s) appear in the list, the
item(s) are selected initially.

multiple logical: can more than one item be selected?

sessionInfo 1789

title optional character string for window title, or NULL for no title.

graphics logical: should a graphical widget be used?

Details

The normal default is graphics = TRUE. This brings up a modal dialog box with a (scrollable) list
of items, which can be selected by the mouse. If multiple is true, further items can be selected or
deselected by holding the control key down whilst selecting, and shift-clicking can be used to select
ranges.

Normal termination is via the ‘OK’ button or by hitting Enter or double-clicking an item. Selection
can be aborted via the ‘Cancel’ button or pressing Escape.

If graphics is FALSE or no graphical widget is available it displays a text list from which the user
can choose by number(s). The multiple = FALSE case uses menu. Preselection is only supported
for multiple = TRUE, where it is indicated by a "+" preceding the item.

It is an error to use select.list in a non-interactive session.

Value

A character vector of selected items. If multiple is false and no item was selected (or Cancel was
used), "" is returned. If multiple is true and no item was selected (or Cancel was used) then a
character vector of length 0 is returned.

See Also

menu, tk_select.list for a graphical version using Tcl/Tk.

Examples

Not run:
select.list(sort(.packages(all.available = TRUE)))

End(Not run)

sessionInfo Collect Information About the Current R Session

Description

Print version information about R and attached or loaded packages.

Usage

sessionInfo(package = NULL)
S3 method for class ’sessionInfo’
print(x, locale = TRUE, ...)
S3 method for class ’sessionInfo’
toLatex(object, locale = TRUE, ...)

1790 setInternet2

Arguments

package a character vector naming installed packages, or NULL (the default) meaning all
attached packages.

x an object of class "sessionInfo".

object an object of class "sessionInfo".

locale show locale information?

... currently not used.

Value

An object of class "sessionInfo", which has a print method. This is a list with components

R.version a list, the result of calling R.Version().

platform a character string describing the platform. For recent versions where sub-
architectures are in use this is of the form ‘platform/sub-arch (nn-bit)’.

locale a character string, the result of calling Sys.getlocale().

basePkgs a character vector of base packages which are attached.

otherPkgs (not always present): a character vector of other attached packages.

loadedOnly (not always present): a named list of the results of calling packageDescription
on packages whose namespaces are loaded but are not attached.

Note

The information on ‘loaded’ packages and namespaces is the current version installed at the location
the package was loaded from: it can be wrong if another process has been changing packages during
the session.

See Also

R.version

Examples

sessionInfo()
toLatex(sessionInfo(), locale=FALSE)

setInternet2 Set or disable the use of Internet Explorer for Internet access.

Description

With the ‘--internet2’ startup option, or via environment variable R_WIN_INTERNET2 or by calling
this function, R will make use of the ‘internet2.dll’ library for Internet access, which makes use
of Internet Explorer functions. This allows specification of proxies, etc., in the “Internet Options”
applet in “Control Panel”.

Usage

setInternet2(use = TRUE)

setRepositories 1791

Arguments

use Whether to use ‘internet2.dll’. If NA, just return the current setting.

Details

R does not load either ‘internet.dll’ or ‘internet2.dll’ until needed, so it is certainly safe to
call this function before making any calls that access the Internet (e.g. download.file). If one of
the DLLs has already been loaded, this function will switch to the other one without unloading the
first one, so there is a potential resource leak.

Value

The previous setting is returned, invisibly if use is not NA.

Author(s)

Duncan Murdoch

See Also

download.file, url

Examples

setInternet2(NA)

setRepositories Select Package Repositories

Description

Interact with the user to choose the package repositories to be used.

Usage

setRepositories(graphics = getOption("menu.graphics"),
ind = NULL, addURLs = character())

Arguments

graphics Logical. If true, use a graphical list: on Windows or Mac OS X GUI use a list
box, and on a Unix-alike if tcltk and an X server are available, use Tk widget.
Otherwise use a text menu.

ind NULL or a vector of integer indices, which have the same effect as if they were
entered at the prompt for graphics = FALSE.

addURLs A character vector of additional URLs: it is often helpful to use a named vector.

1792 setWindowTitle

Details

The default list of known repositories is stored in the file ‘R_HOME/etc/repositories’. That
file can be edited for a site, or a user can have a personal copy in ‘HOME/.R/repositories’
which will take precedence.

A Bioconductor mirror can be selected by setting options("BioC_mirror"): the default value is
‘"http://www.bioconductor.org"’.

The items that are preselected are those that are currently in options("repos") plus those marked
as default in the list of known repositories.

The list of repositories offered depends on the setting of option "pkgType" as some repositories only
offer a subset of types (e.g. only source packages or not Mac OS X binary packages). Further, for
binary packages some repositories (notably R-Forge) only offer packages for the current or recent
versions of R.

Repository ‘CRAN’ is treated specially: the value is taken from the current setting of
getOption("repos") if this has an element "CRAN": this ensures mirror selection is sticky.

This function requires the R session to be interactive unless ind is supplied.

Value

This function is invoked mainly for its side effect of updating options("repos"). It returns (invis-
ibly) the previous repos options setting (as a list with component repos) or NULL if no changes
were applied.

Note

This does not set the list of repositories at startup: to do so set options(repos=) in a start up file
(see help topic Startup).

See Also

chooseCRANmirror, install.packages.

Examples

Not run:
setRepositories(addURLs =

c(CRANxtras = "http://www.stats.ox.ac.uk/pub/RWin"))

End(Not run)

setWindowTitle Set or get the Window Title, or Set the Statusbar

Description

Set the title of the R window which will appear in the task bar, or of the statusbar (if in use).

setWindowTitle 1793

Usage

setWindowTitle(suffix, title = paste(getIdentification(), suffix))

getWindowTitle()

getIdentification()

setStatusBar(text)

Arguments

suffix a character string to form part of the title

title a character string forming the complete new title

text a character string of up to 255 characters, to be displayed in the status bar.

Details

setWindowTitle appends suffix to the normal window identification (RGui, R Console or
Rterm). Use suffix = "" to reset the title.

getWindowTitle gets the current title.

This sets the title of the frame in MDI mode, the title of the console for RGui --sdi, and the title
of the window from which it was launched for Rterm. It has no effect in embedded uses of R.

getIdentification returns the normal window identification.

setStatusBar sets the text in the statusbar of an MDI frame: if this is not currently shown it is
selected and shown.

Value

The first three functions return a length 1 character vector.

setWindowTitle returns the previous window title (invisibly).

getWindowTitle and getIdentification return the current window title and the normal window
identification, respectively.

Examples

show the current working directory in the title, saving the old one
oldtitle <- setWindowTitle(getwd())
Sys.sleep(0.5)
reset the title
setWindowTitle("")
Sys.sleep(0.5)
restore the original title
setWindowTitle(title = oldtitle)

1794 SHLIB

SHLIB Build Shared Object/DLL for Dynamic Loading

Description

Compile the given source files and then link all specified object files into a shared object aka DLL
which can be loaded into R using dyn.load or library.dynam.

Usage

R CMD SHLIB [options] [-o dllname] files

Arguments

files a list specifying the object files to be included in the shared object/DLL. You can
also include the name of source files (for which the object files are automagically
made from their sources) and library linking commands.

dllname the full name of the shared object/DLL to be built, including the extension (typ-
ically ‘.so’ on Unix systems, and ‘.dll’ on Windows). If not given, the base-
name of the object is taken from the basename of the first file.

options Further options to control the processing. Use R CMD SHLIB --help for a cur-
rent list. The most useful one is -d to build a debug DLL.

Details

R CMD SHLIB is the mechanism used by INSTALL to compile source code in packages. It will
generate suitable compilation commands for C, C++, ObjC(++) and Fortran sources: Fortran 90/95
sources can also be used but it may not be possible to mix these with other languages (on most
platforms it is possible to mix with C, but mixing with C++ rarely works).

Please consult section ‘Creating shared objects’ in the manual ‘Writing R Extensions’ for how to
customize it (for example to add cpp flags and to add libraries to the link step) and for details of
some of its quirks.

Items in files with extensions ‘.c’, ‘.cpp’, ‘.cc’, ‘.C’, ‘.f’, ‘.f90’, ‘.f95’, ‘.m’ (ObjC), ‘.M’
and ‘.mm’ (ObjC++) are regarded as source files, and those with extension ‘.o’ as object files. All
other items are passed to the linker.

Option ‘-n’ (also known as ‘--dry-run’) will show the commands that would be run without
actually executing them.

If there is an exports file ‘dllname-win.def’ in the current directory it will be used, otherwise all
entry points in objects (but not libraries) will be exported from the DLL.

See Also

dyn.load, library.dynam.

The section on “Customizing compilation” in the “R Administration and Installation” manual (see
the ‘doc/manual’ subdirectory of the R source tree).

The ‘R Installation and Administration’ and ‘Writing R Extensions’ manuals.

shortPathName 1795

Examples

Not run:
rcmd SHLIB -o my.dll a.f b.f -L/AMD/acml3.5.0/gnu32/lib -lacml

End(Not run)

shortPathName Express File Paths in Short Form

Description

Convert file paths to the short (DOS) form, with 8+3 path components and no spaces. This is an
interface to the Windows API call GetShortPathName.

Usage

shortPathName(path)

Arguments

path character vector of file paths.

Value

A character vector. The path separator will be \. If the file does not exist, the supplied path will be
returned with slashes replaced by backslashes.

See Also

normalizePath.

Examples

cat(shortPathName(c(R.home(), tempdir())), sep = "\n")

sourceutils Source Reference Utilities

Description

These functions extract information from source references.

Usage

getSrcFilename(x, full.names = FALSE, unique = TRUE)
getSrcDirectory(x, unique=TRUE)
getSrcref(x)
getSrcLocation(x, which = c("line", "column", "byte", "parse"),

first = TRUE)

1796 sourceutils

Arguments

x An object (typically a function) containing source references.

full.names Whether to include the full path in the filename result.

unique Whether to list only unique filenames/directories.

which Which part of a source reference to extract.

first Whether to show the first (or last) location of the object.

Details

Each statement of a function will have its own source reference if options(keep.source=TRUE).
These functions retrieve all of them.

The components are as follows:

line The line number where the object starts or ends.

column The column number where the object starts or ends.

byte As for "column", but counting bytes, which may differ in case of multibyte characters.

parse As for "line", but this ignores #line directives.

Value

getSrcFilename and getSrcDirectory return character vectors holding the filename/directory.

getSrcref returns a list of "srcref" objects or NULL if there are none.

getSrcLocation returns an integer vector of the requested type of locations.

See Also

srcref

Examples

fn <- function(x) {
x + 1 # A comment, kept as part of the source

}

Show the temporary file directory
where the example was saved

getSrcDirectory(fn)
getSrcLocation(fn, "line")

stack 1797

stack Stack or Unstack Vectors from a Data Frame or List

Description

Stacking vectors concatenates multiple vectors into a single vector along with a factor indicating
where each observation originated. Unstacking reverses this operation.

Usage

stack(x, ...)
Default S3 method:
stack(x, ...)
S3 method for class ’data.frame’
stack(x, select, ...)

unstack(x, ...)
Default S3 method:
unstack(x, form, ...)
S3 method for class ’data.frame’
unstack(x, form, ...)

Arguments

x a list or data frame to be stacked or unstacked.

select an expression, indicating which variable(s) to select from a data frame.

form a two-sided formula whose left side evaluates to the vector to be unstacked and
whose right side evaluates to the indicator of the groups to create. Defaults to
formula(x) in the data frame method for unstack.

... further arguments passed to or from other methods.

Details

The stack function is used to transform data available as separate columns in a data frame or list
into a single column that can be used in an analysis of variance model or other linear model. The
unstack function reverses this operation.

Note that stack applies to vectors (as determined by is.vector): non-vector columns (e.g., fac-
tors) will be ignored (with a warning as from R 2.15.0). Where vectors of different types are selected
they are concatenated by unlist whose help page explains how the type of the result is chosen.

These functions are generic: the supplied methods handle data frames and objects coercible to lists
by as.list.

Value

unstack produces a list of columns according to the formula form. If all the columns have the same
length, the resulting list is coerced to a data frame.

stack produces a data frame with two columns:

values the result of concatenating the selected vectors in x.

ind a factor indicating from which vector in x the observation originated.

1798 str

Author(s)

Douglas Bates

See Also

lm, reshape

Examples

require(stats)
formula(PlantGrowth) # check the default formula
pg <- unstack(PlantGrowth) # unstack according to this formula
pg
stack(pg) # now put it back together
stack(pg, select = -ctrl) # omitting one vector

str Compactly Display the Structure of an Arbitrary R Object

Description

Compactly display the internal structure of an R object, a diagnostic function and an alternative to
summary (and to some extent, dput). Ideally, only one line for each ‘basic’ structure is displayed. It
is especially well suited to compactly display the (abbreviated) contents of (possibly nested) lists.
The idea is to give reasonable output for any R object. It calls args for (non-primitive) function
objects.

strOptions() is a convenience function for setting options(str = .), see the examples.

Usage

str(object, ...)

S3 method for class ’data.frame’
str(object, ...)

Default S3 method:
str(object, max.level = NA,

vec.len = strO$vec.len, digits.d = strO$digits.d,
nchar.max = 128, give.attr = TRUE,
give.head = TRUE, give.length = give.head,
width = getOption("width"), nest.lev = 0,
indent.str = paste(rep.int(" ", max(0, nest.lev + 1)),

collapse = ".."),
comp.str="$ ", no.list = FALSE, envir = baseenv(),
strict.width = strO$strict.width,
formatNum = strO$formatNum, list.len = 99, ...)

strOptions(strict.width = "no", digits.d = 3, vec.len = 4,
formatNum = function(x, ...)

format(x, trim=TRUE, drop0trailing=TRUE, ...))

str 1799

Arguments

object any R object about which you want to have some information.

max.level maximal level of nesting which is applied for displaying nested structures, e.g.,
a list containing sub lists. Default NA: Display all nesting levels.

vec.len numeric (>= 0) indicating how many ‘first few’ elements are displayed of each
vector. The number is multiplied by different factors (from .5 to 3) depending
on the kind of vector. Defaults to the vec.len component of option "str" (see
options) which defaults to 4.

digits.d number of digits for numerical components (as for print). Defaults to the
digits.d component of option "str" which defaults to 3.

nchar.max maximal number of characters to show for character strings. Longer strings
are truncated, see longch example below.

give.attr logical; if TRUE (default), show attributes as sub structures.

give.length logical; if TRUE (default), indicate length (as [1:...]).

give.head logical; if TRUE (default), give (possibly abbreviated) mode/class and length (as
<type>[1:...]).

width the page width to be used. The default is the currently active
options("width"); note that this has only a weak effect, unless strict.width
is not "no".

nest.lev current nesting level in the recursive calls to str.

indent.str the indentation string to use.

comp.str string to be used for separating list components.

no.list logical; if true, no ‘list of . . . ’ nor the class are printed.

envir the environment to be used for promise (see delayedAssign) objects only.

strict.width string indicating if the width argument’s specification should be followed
strictly, one of the values c("no", "cut", "wrap"). Defaults to the
strict.width component of option "str" (see options) which defaults to
"no" for back compatibility reasons; "wrap" uses strwrap(*, width=width)
whereas "cut" cuts directly to width. Note that a small vec.length may be
better than setting strict.width = "wrap".

formatNum a function such as format for formatting numeric vectors. It defaults to the
formatNum component of option "str", see “Usage” of strOptions() above,
which is almost back compatible to R <= 2.7.x, however, using formatC may
be slightly better.

list.len numeric; maximum number of list elements to display within a level.

... potential further arguments (required for Method/Generic reasons).

Value

str does not return anything, for efficiency reasons. The obvious side effect is output to the termi-
nal.

Author(s)

Martin Maechler <maechler@stat.math.ethz.ch> since 1990.

1800 str

See Also

ls.str for listing objects with their structure; summary, args.

Examples

require(stats); require(grDevices); require(graphics)
The following examples show some of ’str’ capabilities
str(1:12)
str(ls)
str(args) #- more useful than args(args) !
str(freeny)
str(str)
str(.Machine, digits.d = 20)# extra digits for identification of binary numbers
str(lsfit(1:9,1:9))
str(lsfit(1:9,1:9), max.level = 1)
str(lsfit(1:9,1:9), width = 60, strict.width = "cut")
str(lsfit(1:9,1:9), width = 60, strict.width = "wrap")
op <- options(); str(op) # save first;

otherwise internal options() is used.
need.dev <-

!exists(".Device") || is.null(.Device) || .Device == "null device"
{ if(need.dev) postscript()

str(par())
if(need.dev) graphics.off()

}
ch <- letters[1:12]; is.na(ch) <- 3:5
str(ch) # character NA’s

str(list(a="A", L = as.list(1:100)), list.len = 9)
nchar(longch <- paste(rep(letters,100), collapse=""))
str(longch)
str(longch, nchar.max = 52)

str(longch, strict.width = "wrap")

Settings for narrow transcript :
op <- options(width = 60,

str = strOptions(strict.width = "wrap"))
str(lsfit(1:9,1:9))
str(options())
reset to previous:
options(op)

str(quote({ A+B; list(C,D) }))

S4 classes :
require(stats4)
x <- 0:10; y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
ll <- function(ymax=15, xh=6)

-sum(dpois(y, lambda=ymax/(1+x/xh), log=TRUE))
fit <- mle(ll)
str(fit)

summaryRprof 1801

summaryRprof Summarise Output of R Sampling Profiler

Description

Summarise the output of the Rprof function to show the amount of time used by different R func-
tions.

Usage

summaryRprof(filename = "Rprof.out", chunksize = 5000,
memory=c("none","both","tseries","stats"),
index=2, diff=TRUE, exclude=NULL)

Arguments

filename Name of a file produced by Rprof()

chunksize Number of lines to read at a time

memory Summaries for memory information. See ‘Details’ below

index How to summarize the stack trace for memory information. See ‘Details’ below.

diff If TRUE memory summaries use change in memory rather than current memory

exclude Functions to exclude when summarizing the stack trace for memory summaries

Details

This function provides the analysis code for Rprof files used by R CMD Rprof.

As the profiling output file could be larger than available memory, it is read in blocks of chunksize
lines. Increasing chunksize will make the function run faster if sufficient memory is available.

When called with memory.profiling = TRUE, the profiler writes information on three aspects of
memory use: vector memory in small blocks on the R heap, vector memory in large blocks (from
malloc), memory in nodes on the R heap. It also records the number of calls to the internal function
duplicate in the time interval. duplicate is called by C code when arguments need to be copied.
Note that the profiler does not track which function actually allocated the memory.

With memory = "both" the change in total memory (truncated at zero) is reported in addition to
timing data.

With memory = "tseries" or memory = "stats" the index argument specifies how to summarize
the stack trace. A positive number specifies that many calls from the bottom of the stack; a neg-
ative number specifies the number of calls from the top of the stack. With memory = "tseries"
the index is used to construct labels and may be a vector to give multiple sets of labels. With
memory = "stats" the index must be a single number and specifies how to aggregate the data
to the maximum and average of the memory statistics. With both memory = "tseries" and
memory = "stats" the argument diff = TRUE asks for summaries of the increase in memory use
over the sampling interval and diff = FALSE asks for the memory use at the end of the interval.

1802 Sweave

Value

If memory = "none", a list with components

by.self Timings sorted by ‘self’ time

by.total Timings sorted by ‘total’ time
sample.interval

The sampling interval

sampling.time Total length of profiling run

If memory = "both" the same list but with memory consumption in Mb in addition to the timings.

If memory = "tseries" a data frame giving memory statistics over time

If memory = "stats" a by object giving memory statistics by function.

See Also

The chapter on “Tidying and profiling R code” in “Writing R Extensions” (see the ‘doc/manual’
subdirectory of the R source tree).

Rprof

tracemem traces copying of an object via the C function duplicate.

Rprofmem is a non-sampling memory-use profiler.

http://developer.r-project.org/memory-profiling.html

Examples

Not run:
Rprof() is not available on all platforms
Rprof(tmp <- tempfile())
example(glm)
Rprof()
summaryRprof(tmp)
unlink(tmp)

End(Not run)

Sweave Automatic Generation of Reports

Description

Sweave provides a flexible framework for mixing text and R/S code for automatic report generation.
The basic idea is to replace the code with its output, such that the final document only contains the
text and the output of the statistical analysis: however, the source code can also be included.

Usage

Sweave(file, driver = RweaveLatex(),
syntax = getOption("SweaveSyntax"), encoding = "", ...)

Stangle(file, driver = Rtangle(),
syntax = getOption("SweaveSyntax"), encoding = "", ...)

http://developer.r-project.org/memory-profiling.html

Sweave 1803

Arguments

file Path to Sweave source file. Note that this can be supplied without the extension,
but the function will only proceed if there is exactly one Sweave file in the
directory whose basename matches file.

driver The actual workhorse, see ‘Details’.

syntax NULL or an object of class SweaveSyntax or a character string with its name.
See the section ‘Syntax Definition’.

encoding The default encoding to assume for file.

... Further arguments passed to the driver’s setup function: see section ‘Drivers’,
RweaveLatex and Rtangle.

Details

Automatic generation of reports by mixing word processing markup (like latex) and S code. The S
code gets replaced by its output (text or graphs) in the final markup file. This allows a report to be
re-generated if the input data change and documents the code to reproduce the analysis in the same
file that also produces the report.

Sweave combines the documentation and code chunks together (or their output) into a single docu-
ment. Stangle extracts only the code from the Sweave file creating an S source file that can be run
using source. (Code inside \Sexpr{} statements is ignored by Stangle.)

Stangle is just a wrapper to Sweave specifying a different default driver. Alternative drivers can
be used: the CRAN package cacheSweave and the Bioconductor package weaver both provide
drivers based on the default driver RweaveLatex which incorporate ideas of caching the results of
computations on code chunks.

Environment variable SWEAVE_OPTIONS can be used to override the initial options set by the driver:
it should be a comma-separated set of key=value items, as would be used in a ‘\SweaveOpts’
statement in a document.

Non-ASCII source files must contain a line of the form

\usepackage[foo]{inputenc}

(where ‘foo’ is typically ‘latin1’, ‘latin2’, ‘utf8’ or ‘cp1252’ or ‘cp1250’) or they will give an
error. Re-encoding can be turned off completely with argument encoding = "bytes".

Syntax Definition

Sweave allows a flexible syntax framework for marking documentation and text chunks. The default
is a noweb-style syntax, as alternative a latex-style syntax can be used. (See the user manual for
further details.)

If syntax = NULL (the default) then the available syntax objects are consulted in turn,
and selected if their extension component matches (as a regexp) the file name. Ob-
jects SweaveSyntaxNoweb (with extension = "\\.[rsRS]nw$") and SweaveSyntaxLatex (with
extension = "\\.[rsRS]tex$") are supplied, but users or packages can supply others with names
matching the pattern SweaveSyntax.*.

Author(s)

Friedrich Leisch and R-core.

http://CRAN.R-project.org/package=cacheSweave

1804 SweaveSyntConv

References

Friedrich Leisch (2002) Dynamic generation of statistical reports using literate data analysis. In
W. Härdle and B. Rönz, editors, Compstat 2002 - Proceedings in Computational Statistics, pages
575–580. Physika Verlag, Heidelberg, Germany, ISBN 3-7908-1517-9.

See Also

‘Sweave User Manual’, a vignette in the utils package.

RweaveLatex, Rtangle.

Packages cacheSweave, weaver (Bioconductor) and SweaveListingUtils.

Further Sweave drivers are in, for example, packages R2HTML, ascii, odfWeave and pgfSweave.

Examples

testfile <- system.file("Sweave", "Sweave-test-1.Rnw", package = "utils")

enforce par(ask=FALSE)
options(device.ask.default=FALSE)

create a LaTeX file
Sweave(testfile)

This can be compiled to PDF by
tools::texi2pdf("Sweave-test-1.tex")
or outside R by
Rcmd texify --pdf Sweave-test-1.tex
if MiKTeX is available.

create an R source file from the code chunks
Stangle(testfile)
which can be sourced, e.g.
source("Sweave-test-1.R")

SweaveSyntConv Convert Sweave Syntax

Description

This function converts the syntax of files in Sweave format to another Sweave syntax definition.

Usage

SweaveSyntConv(file, syntax, output = NULL)

http://CRAN.R-project.org/package=cacheSweave
http://CRAN.R-project.org/package=SweaveListingUtils
http://CRAN.R-project.org/package=R2HTML
http://CRAN.R-project.org/package=ascii
http://CRAN.R-project.org/package=odfWeave
http://CRAN.R-project.org/package=pgfSweave

tar 1805

Arguments

file Name of Sweave source file.

syntax An object of class SweaveSyntax or a character string with its name giving the
target syntax to which the file is converted.

output Name of output file, default is to remove the extension from the input file and to
add the default extension of the target syntax. Any directory names in file are
also removed such that the output is created in the current working directory.

Author(s)

Friedrich Leisch

See Also

‘Sweave User Manual’, a vignette in the utils package.

RweaveLatex, Rtangle

Examples

testfile <- system.file("Sweave", "Sweave-test-1.Rnw", package = "utils")

convert the file to latex syntax
SweaveSyntConv(testfile, SweaveSyntaxLatex)

and run it through Sweave
Sweave("Sweave-test-1.Stex")

tar Create a Tar Archive

Description

Create a tar archive.

Usage

tar(tarfile, files = NULL,
compression = c("none", "gzip", "bzip2", "xz"),
compression_level = 6, tar = Sys.getenv("tar"),
extra_flags = "")

Arguments

tarfile The pathname of the tar file: tilde expansion (see path.expand) will be per-
formed. Alternatively, a connection that can be used for binary writes.

files A character vector of filepaths to be archived: the default is to archive all files
under the current directory.

compression character string giving the type of compression to be used (default none). Can
be abbreviated.

1806 tar

compression_level

integer: the level of compression. Only used for the internal method.

tar character string: the path to the command to be used. If the command itself
contains spaces it needs to be quoted – but tar can also contain flags separated
from the command by spaces.

extra_flags any extra flags for an external tar.

Details

This is either a wrapper for a tar command or uses an internal implementation in R. The latter is
used if tarfile is a connection or if the argument tar is "internal" or "". Note that whereas
Unix-alike versions of R set the environment variable TAR, its value is not the default for this func-
tion.

Argument extra_flags is passed to an external tar and so is platform-dependent. Possi-
bly useful values include ‘-h’ (follow symbolic links, also ‘-L’ on some platforms), ‘--acls’,
‘--exclude-backups’, ‘--exclude-vcs’ (and similar) and on Windows ‘--force-local’ (so
drives can be included in filepaths: this is the default for the Rtools tar.

Value

The return code from system or 0 for the internal version, invisibly.

Portability

The ‘tar’ format no longer has an agreed standard! ‘Unix Standard Tar’ was part of POSIX
1003.1:1998 but has been removed in favour of pax, and in any case many common implemen-
tations diverged from the former standard. Most R platforms use a version of GNU tar (including
Rtools on Windows, but the behaviour seems to be changed with each version), Mac OS 10.6 and
FreeBSD use bsdttar from the ‘libarchive project’, and commercial Unixes will have their
own versions.

Known problems arise from

• The handling of file names of more than 100 bytes. These were unsupported in early versions
of tar, and supported in one way by POSIX tar and in another by GNU tar. The internal
implementation uses the POSIX way which supports up to 255 bytes (depending on the path),
and warns on paths of more than 100 bytes.

• (File) links. tar was developed on an OS that used hard links, and physical files that were
referred to more than one in the list of files to be included were included only once, the
remaining instance being added as links. Later a means to include symbolic links was added.
The internal implementation supports symbolic links (on OSes that support them), only. Of
course, the question arises as to how links should be unpacked on OSes that do not support
them: for files at least file copies can be used.

• Header fields, in particular the padding to be used when fields are not full or not used. POSIX
did define the correct behaviour but commonly used implementations did (and still do) not
comply.

For portability, avoid file paths of more than 100 bytes, and links (or at least, hard links and symbolic
links to directories).

The internal implementation writes only the blocks of 512 bytes required, unlike GNU tar which
by default pads with ‘nul’ to a multiple of 20 blocks (10KB). Implementations differ on whether
the block padding should occur before or after compression (or both).

toLatex 1807

See Also

http://en.wikipedia.org/wiki/Tar_(file_format), http://pubs.opengroup.org/
onlinepubs/9699919799/utilities/pax.html#tag_20_92_13_06 for the way the POSIX
utility pax handles tar formats.

http://code.google.com/p/libarchive/wiki/ManPageTar5.

untar.

toLatex Converting R Objects to BibTeX or LaTeX

Description

These methods convert R objects to character vectors with BibTeX or LaTeX markup.

Usage

toBibtex(object, ...)
toLatex(object, ...)
S3 method for class ’Bibtex’
print(x, prefix="", ...)
S3 method for class ’Latex’
print(x, prefix="", ...)

Arguments

object object of a class for which a toBibtex or toLatex method exists.

x object of class "Bibtex" or "Latex".

prefix a character string which is printed at the beginning of each line, mostly used to
insert whitespace for indentation.

... currently not used in the print methods.

Details

Objects of class "Bibtex" or "Latex" are simply character vectors where each element holds one
line of the corresponding BibTeX or LaTeX file.

See Also

citEntry and sessionInfo for examples

http://en.wikipedia.org/wiki/Tar_(file_format)
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html#tag_20_92_13_06
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html#tag_20_92_13_06
http://code.google.com/p/libarchive/wiki/ManPageTar5

1808 txtProgressBar

txtProgressBar Text Progress Bar

Description

Text progress bar in the R console.

Usage

txtProgressBar(min = 0, max = 1, initial = 0, char = "=",
width = NA, title, label, style = 1, file = "")

getTxtProgressBar(pb)
setTxtProgressBar(pb, value, title = NULL, label = NULL)
S3 method for class ’txtProgressBar’
close(con, ...)

Arguments

min, max (finite) numeric values for the extremes of the progress bar. Must have
min < max.

initial, value initial or new value for the progress bar. See ‘Details’ for what happens with
invalid values.

char the character (or character string) to form the progress bar.

width the width of the progress bar, as a multiple of the width of char. If NA, the
default, the number of characters is that which fits into getOption("width").

style the ‘style’ of the bar – see ‘Details’.

file an open connection object or "" which indicates the console: stderr() might
be useful here.

pb, con an object of class "txtProgressBar".

title, label ignored, for compatibility with other progress bars.

... for consistency with the generic.

Details

txtProgressBar will display a progress bar on the R console (or a connection) via a text represen-
tation.

setTxtProgessBar will update the value. Missing (NA) and out-of-range values of value will be
(silently) ignored. (Such values of initial cause the progress bar not to be displayed until a valid
value is set.)

The progress bar should be closed when finished with: this outputs the final newline character.

style = 1 and style = 2 just shows a line of char. They differ in that style = 2 redraws the
line each time, which is useful if other code might be writing to the R console. style = 3 marks
the end of the range by | and gives a percentage to the right of the bar.

type.convert 1809

Value

For txtProgressBar an object of class "txtProgressBar".

For getTxtProgressBar and setTxtProgressBar, a length-one numeric vector giving the previ-
ous value (invisibly for setTxtProgressBar).

Note

Using style 2 or 3 or reducing the value with style = 1 uses ‘\r’ to return to the left margin –
the interpretation of carriage return is up to the terminal or console in which R is running, and this
is liable to produce ugly output on a connection other than a terminal, including when stdout() is
redirected to a file.

See Also

winProgressBar, tkProgressBar.

Examples

slow
testit <- function(x = sort(runif(20)), ...)
{

pb <- txtProgressBar(...)
for(i in c(0, x, 1)) {Sys.sleep(0.5); setTxtProgressBar(pb, i)}
Sys.sleep(1)
close(pb)

}
testit()
testit(runif(10))
testit(style=3)

type.convert Type Conversion on Character Variables

Description

Convert a character vector to logical, integer, numeric, complex or factor as appropriate.

Usage

type.convert(x, na.strings = "NA", as.is = FALSE, dec = ".")

Arguments

x a character vector.

na.strings a vector of strings which are to be interpreted as NA values. Blank fields are also
considered to be missing values in logical, integer, numeric or complex vectors.

as.is logical. See ‘Details’.

dec the character to be assumed for decimal points.

1810 untar

Details

This is principally a helper function for read.table. Given a character vector, it attempts to convert
it to logical, integer, numeric or complex, and failing that converts it to factor unless as.is = TRUE.
The first type that can accept all the non-missing values is chosen.

Vectors which are entirely missing values are converted to logical, since NA is primarily logical.

Vectors containing F, T, FALSE, TRUE or values from na.strings are converted to logical. Vectors
containing optional whitespace followed by decimal constants representable as R integers or values
from na.strings are converted to integer. Other vectors containing optional whitespace followed
by other decimal or hexadecimal constants (see NumericConstants), or NaN, Inf or infinity (ig-
noring case) or values from na.strings are converted to numeric.

Since this is a helper function, the caller should always pass an appropriate value of as.is.

Value

A vector of the selected class, or a factor.

See Also

read.table

untar Extract or List Tar Archives

Description

Extract files from or list a tar archive.

Usage

untar(tarfile, files = NULL, list = FALSE, exdir = ".",
compressed = NA, extras = NULL, verbose = FALSE,
tar = Sys.getenv("TAR"))

Arguments

tarfile The pathname of the tar file: tilde expansion (see path.expand) will be per-
formed. Alternatively, a connection that can be used for binary reads.

files A character vector of recorded filepaths to be extracted: the default is to extract
all files.

list If TRUE, just list the files. The equivalent of tar -tf. Otherwise extract the files
(the equivalent of tar -xf).

exdir The directory to extract files to (the equivalent of tar -C). It will be created if
necessary.

compressed logical or character. Values "gzip", "bzip2" and "xz" select that form of com-
pression (and may be abbreviated to the first letter). TRUE indicates gzip com-
pression, FALSE no known compression (but the tar command may detect com-
pression automagically), and NA (the default) that the type is inferred from the
file header.

untar 1811

extras NULL or a character string: further command-line flags such as ‘-p’ to be passed
to the tar program.

verbose logical: if true echo the command used.

tar character string: the path to the command to be used. If the command itself
contains spaces it needs to be quoted – but tar can also contain flags separated
from the command by spaces.

Details

This is either a wrapper for a tar command or for an internal implementation written in R. The
latter is used if tarfile is a connection or if the argument tar is "internal" or "" (except on
Windows, when tar.exe is tried first).

What options are supported will depend on the tar used. Modern GNU flavours of tar will sup-
port compressed archives, and since 1.15 are able to detect the type of compression automatically:
version 1.20 added support for lzma and version 1.22 for xz compression using LZMA2. For
other flavours of tar, environment variable R_GZIPCMD gives the command to decompress gzip and
compress files, and R_BZIPCMD for its files. (There is a bsdtar command from the ‘libarchive’
project used by Mac OS 10.6 (‘Snow Leopard’) which can also detect gzip and bzip2 compression
automatically, as can the tar from the ‘Heirloom Toolchest’ project.)

Arguments compressed, extras and verbose are only used when an external tar is used.

The internal implementation restores symbolic links as links on a Unix-alike, and as file copies on
Windows (which works only for existing files, not for directories), and hard links as links. If the
linking operation fails (as it may on a FAT file system), a file copy is tried. Since it uses gzfile
to read a file it can handle files compressed by any of the methods that function can handle: at
least compress, gzip, bzip2 and xz compression, and some types of lzma compression. It does
not guard against restoring absolute file paths, as some tar implementations do. It will create the
parent directories for directories or files in the archive if necessary. It handles both the standard
(USTAR/POSIX) and GNU ways of handling file paths of more than 100 bytes.

You may see warnings from the internal implementation such as

unsupported entry type ’x’

This often indicates an invalid archive: entry types "A-Z" are allowed as extensions, but other types
are reserved (this example is from Mac OS 10.6.3). The only thing you can do with such an archive
is to find a tar program that handles it, and look carefully at the resulting files.

The standards only support ASCII filenames (indeed, only alphanumeric plus period, underscore
and hyphen). untar makes no attempt to map filenames to those acceptable on the current system,
and treats the filenames in the archive as applicable without any re-encoding in the current locale.

Value

If list = TRUE, a character vector of (relative or absolute) paths of files contained in the tar archive.

Otherwise the return code from system, invisibly.

See Also

tar, unzip.

1812 unzip

unzip Extract or List Zip Archives

Description

Extract files from or list a zip archive.

Usage

unzip(zipfile, files = NULL, list = FALSE, overwrite = TRUE,
junkpaths = FALSE, exdir = ".", unzip = "internal", setTimes = FALSE)

Arguments

zipfile The pathname of the zip file: tilde expansion (see path.expand) will be per-
formed.

files A character vector of recorded filepaths to be extracted: the default is to extract
all files.

list If TRUE, list the files and extract none. The equivalent of unzip -l.

overwrite If TRUE, overwrite existing files, otherwise ignore such files. The equivalent of
unzip -o.

junkpaths If TRUE, use only the basename of the stored filepath when extracting. The
equivalent of unzip -j.

exdir The directory to extract files to (the equivalent of unzip -d). It will be created
if necessary.

unzip The method to be used. An alternative is to use getOption("unzip"), which
on a Unix-alike may be set to the path to a unzip program.

setTimes logical. For the internal method only, should the file time be set based on the
times in the zip file? (NB: this applies to files, not to directories.

Value

If list = TRUE, a data frame with columns Name (character) Length (the size of the uncompressed
file, numeric) and Date (of class "POSIXct").

Otherwise for the "internal" method, a character vector of the filepaths extracted to, invisibly.

Note

The default internal method is a minimal implementation, principally designed for Windows’ users
to be able to unpack Windows binary packages without external software. It does not (for ex-
ample) support Unicode filenames as introduced in zip 3.0: for that use unzip = "unzip" with
unzip 6.00 or later. (As from R 2.14.0 it does have support for files of more than 4GB and bzip2
compression.)

If unzip specifies a program, the format of the dates listed with list = TRUE is unknown (on
Windows it can even depend on the current locale) and the return values could be NA or expressed
in the wrong timezone or misinterpreted (the latter being far less likely as from unzip 6.00).

File times in zip files are stored in the style of MS-DOS, as local times to an accuracy of 2 seconds.
This is not very useful when transferring zip files between machines (even across continents), so we
chose not to restore them by default.

update.packages 1813

Source

The internal C code uses zlib and is in particular based on the contributed ‘minizip’ application
in the zlib sources (from http://zlib.net) by Gilles Vollant.

See Also

unz to read a single component from a zip file.

zip.

update.packages Compare Installed Packages with CRAN-like Repositories

Description

old.packages indicates packages which have a (suitable) later version on the repositories whereas
update.packages offers to download and install such packages.

new.packages looks for (suitable) packages on the repositories that are not already installed, and
optionally offers them for installation.

Usage

update.packages(lib.loc = NULL, repos = getOption("repos"),
contriburl = contrib.url(repos, type),
method, instlib = NULL,
ask = TRUE, available = NULL,
oldPkgs = NULL, ..., checkBuilt = FALSE,
type = getOption("pkgType"))

old.packages(lib.loc = NULL, repos = getOption("repos"),
contriburl = contrib.url(repos, type),
instPkgs = installed.packages(lib.loc = lib.loc),
method, available = NULL, checkBuilt = FALSE,
type = getOption("pkgType"))

new.packages(lib.loc = NULL, repos = getOption("repos"),
contriburl = contrib.url(repos, type),
instPkgs = installed.packages(lib.loc = lib.loc),
method, available = NULL, ask = FALSE, ...,
type = getOption("pkgType"))

Arguments

lib.loc character vector describing the location of R library trees to search through (and
update packages therein), or NULL for all known trees (see .libPaths).

repos character vector, the base URL(s) of the repositories to use, i.e., the URL of the
CRAN master such as "http://cran.r-project.org" or its Statlib mirror,
"http://lib.stat.cmu.edu/R/CRAN". Can be NULL to install from local files
(‘.tar.gz’ for source packages).

http://zlib.net

1814 update.packages

contriburl URL(s) of the contrib sections of the repositories. Use this argument only if your
repository mirror is incomplete, e.g., because you burned only the ‘contrib’
section on a CD. Overrides argument repos. As with repos, can also be NULL
to install from local files.

method Download method, see download.file.

instlib character string giving the library directory where to install the packages.

ask logical indicating whether to ask user before packages are actually downloaded
and installed, or the character string "graphics", which brings up a widget
to allow the user to (de-)select from the list of packages which could be up-
dated or added. The latter value only works on systems with a GUI version of
select.list, and is otherwise equivalent to ask = TRUE.

available an object as returned by available.packages listing packages available at the
repositories, or NULL which makes an internal call to available.packages.

checkBuilt If TRUE, a package built under an earlier minor version of R is considered to be
‘old’.

oldPkgs if specified as non-NULL, update.packages() only considers these packages
for updating. This may be a character vector of package names or a matrix as
returned by old.packages().

instPkgs by default all installed packages, installed.packages(lib.loc=lib.loc).
A subset can be specified; currently this must be in the same (character matrix)
format as returned by installed.packages().

... Arguments such as destdir and dependencies to be passed to
install.packages.

type character, indicating the type of package to download and install. See
install.packages.

Details

old.packages compares the information from available.packages with that from instPkgs
(computed by installed.packages by default) and reports installed packages that have newer
versions on the repositories or, if checkBuilt = TRUE, that were built under an earlier minor ver-
sion of R (for example built under 2.14.x when running R 2.15.0). (For binary package types here
is no check that the version on the repository was built under the current minor version of R, but it
is advertised as being suitable for this version.)

new.packages does the same comparison but reports uninstalled packages that are available at the
repositories. If ask != FALSE it asks which packages should be installed in the first element of
lib.loc.

The main function of the set is update.packages. First a list of all packages found in lib.loc is
created and compared with those available at the repositories. If ask = TRUE (the default) packages
with a newer version are reported and for each one the user can specify if it should be updated. If
so the packages are downloaded from the repositories and installed in the respective library path (or
instlib if specified).

For how the list of suitable available packages is determined
see available.packages. available = NULL make a call to
available.packages(contriburl = contriburl, method = method) and hence by de-
fault filters on R version, OS type and removes duplicates.

url.show 1815

Value

update.packages returns NULL invisibly.

For old.packages, NULL or a matrix with one row per package, row names the package names
and column names "Package", "LibPath", "Installed" (the version), "Built" (the version built
under), "ReposVer" and "Repository".

For new.packages a character vector of package names, after any selected via ask have been
installed.

Warning

Take care when using dependencies (passed to install.packages) with update.packages, for
it is unclear where new dependencies should be installed. The current implementation will only
allow it if all the packages to be updated are in a single library, when that library will be used.

See Also

install.packages, available.packages, download.packages, installed.packages,
contrib.url.

See download.file for how to handle proxies and other options to monitor file transfers.

INSTALL, REMOVE, remove.packages, library, .packages, read.dcf

The ‘R Installation and Administration’ manual for how to set up a repository.

Examples

Not run:
install.packages(

c("XML_0.99-5.tar.gz",
"../../Interfaces/Perl/RSPerl_0.8-0.tar.gz"),

repos = NULL,
configure.args = c(XML = ’--with-xml-config=xml-config’,

RSPerl = "--with-modules=’IO Fcntl’"))

End(Not run)

url.show Display a text URL

Description

Extension of file.show to display text files from a remote server.

Usage

url.show(url, title = url, file = tempfile(),
delete.file = TRUE, method, ...)

1816 URLencode

Arguments

url The URL to read from.

title Title for the browser.

file File to copy to.

delete.file Delete the file afterwards?

method File transfer method: see download.file

... Arguments to pass to file.show.

Note

Since this is for text files, it will convert to CRLF line endings on Windows.

See Also

url, file.show, download.file

Examples

Not run: url.show("http://lib.stat.cmu.edu/datasets/csb/ch3a.txt")

URLencode Encode or Decode a (partial) URL

Description

Functions to encode or decode characters in URLs.

Usage

URLencode(URL, reserved = FALSE)
URLdecode(URL)

Arguments

URL A character string.

reserved should reserved characters be encoded? See ‘Details’.

Details

Characters in a URL other than the English alphanumeric characters and
‘$ - _ . + ! * ’ () ,’ should be encoded as % plus a two-digit hexadecimal representa-
tion, and any single-byte character can be so encoded. (Multi-byte characters are encoded as
byte-by-byte.)

In addition, ‘; / ? : @ = &’ are reserved characters, and should be encoded unless used in their
reserved sense, which is scheme specific. The default in URLencode is to leave them alone, which
is appropriate for ‘file://’ URLs, but probably not for ‘http://’ ones.

Value

A character string.

utils-deprecated 1817

References

RFC1738, http://www.rfc-editor.org/rfc/rfc1738.txt

Examples

(y <- URLencode("a url with spaces and / and @"))
URLdecode(y)
(y <- URLencode("a url with spaces and / and @", reserved=TRUE))
URLdecode(y)
URLdecode("ab%20cd")

utils-deprecated Deprecated Functions in Package utils

Description

These functions are provided for compatibility with older versions of R only, and may be defunct
as soon as of the next release.

Usage

CRAN.packages(CRAN = getOption("repos"), method,
contriburl = contrib.url(CRAN))

Arguments

CRAN character, an earlier way to specify a repository.

method Download method, see download.file.

contriburl URL(s) of the contrib section of the repositories. Use this argument only if
your CRAN mirror is incomplete, e.g., because you burned only the ‘contrib’
section on a CD. Overrides argument repos.

See Also

Deprecated, Defunct

View Invoke a Data Viewer

Description

Invoke a spreadsheet-style data viewer on a matrix-like R object.

Usage

View(x, title)

http://www.rfc-editor.org/rfc/rfc1738.txt

1818 vignette

Arguments

x an R object which can be coerced to a data frame with non-zero numbers of
rows and columns.

title title for viewer window. Defaults to name of x prefixed by Data:.

Details

Object x is coerced (if possible) to a data frame, and all non-numeric columns are then coerced
to character. The object is then viewed in a spreadsheet-like data viewer, a read-only version of
data.entry.

If there are row names on the data frame that are not 1:nrow, they are displayed in a separate first
column called row.names.

Objects with zero columns or zero rows are not accepted.

The array of cells can be navigated via the scrollbars and by the cursor keys, Home, End, Page Up
and Page Down.

The initial size of the data viewer window is taken from the default dimensions of a pager (see
Rconsole), but adjusted downwards to show a whole number of rows and columns.

Value

Invisible NULL. The functions puts up a window and returns immediately: the window can be closed
via its controls or menus.

See Also

edit.data.frame, data.entry.

vignette View or List Vignettes

Description

View a specified vignette, or list the available ones.

Usage

vignette(topic, package = NULL, lib.loc = NULL, all = TRUE)

S3 method for class ’vignette’
print(x, ...)
S3 method for class ’vignette’
edit(name, ...)

vignette 1819

Arguments

topic a character string giving the (base) name of the vignette to view. If omitted, all
vignettes from all installed packages are listed.

package a character vector with the names of packages to search through, or NULL in
which "all" packages (as defined by argument all) are searched.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known.

all logical; if TRUE search all available packages in the library trees specified by
lib.loc, and if FALSE, search only attached packages.

x, name Object of class vignette.

... Ignored by the print method, passed on to file.edit by the edit method.

Details

Function vignette returns an object of the same class, the print method opens a viewer for it.
Currently, only PDF versions of vignettes can be viewed. If several vignettes have PDF versions
with base name identical to topic, the first one found is used.

If no topics are given, all available vignettes are listed. The corresponding information is returned
in an object of class "packageIQR".

The edit method extracts the R code from the vignette to a temporary file and opens the file in an
editor (see edit). This makes it very easy to execute the commands line by line, modify them in
any way you want to help you test variants, etc.. An alternative way of extracting the R code from
the vignette is to run Stangle on the source code of the vignette, see the examples below.

See Also

browseVignettes for an HTML-based vignette browser.

Examples

List vignettes from all *attached* packages
vignette(all = FALSE)

List vignettes from all *installed* packages (can take a long time!):
vignette(all = TRUE)

Not run:
Open the grid intro vignette
vignette("grid")

The same
v1 <- vignette("grid")
print(v1)

Now let us have a closer look at the code
edit(v1)

An alternative way of extracting the code,
R file is written to current working directory
Stangle(v1$file)

A package can have more than one vignette (package grid has several):

1820 winDialog

vignette(package="grid")
vignette("rotated")
The same, but without searching for it:
vignette("rotated", package="grid")

End(Not run)

winDialog Dialog Boxes under Windows

Description

Put up a Windows dialog box to communicate with the user. There are various types, either for the
user to select from a set of buttons or to edit a string.

Usage

winDialog(type = c("ok", "okcancel", "yesno", "yesnocancel"),
message)

winDialogString(message, default)

Arguments

type character. The type of dialog box. It will have the buttons implied by its name.

message character. The information field of the dialog box. Limited to 255 chars (by
Windows, checked by R).

default character. The default string.

Value

For winDialog a character string giving the name of the button pressed (in capitals) or NULL (invis-
ibly) if the user had no choice.

For winDialogString a string giving the contents of the text box when Ok was pressed, or NULL if
Cancel was pressed.

Note

The standard keyboard accelerators work with these dialog boxes: where appropriate Return ac-
cepts the default action, Esc cancels and the underlined initial letter (Y or N) can be used.

See Also

winMenuAdd
file.choose to select a file
package windlgs in the package source distribution for ways to program dialogs in C in the
GraphApp toolkit.

Examples

Not run: winDialog("yesno", "Is it OK to delete file blah")

winextras 1821

winextras Auxiliary Functions for the Windows Port

Description

Auxiliary functions for the Windows port

Usage

win.version()

Details

win.version is an auxiliary function for bug.report which returns a character string describing
the version of Windows in use.

winMenus User Menus under Windows

Description

Enables users to add, delete and program menus under Windows.

Usage

winMenuAdd(menuname)
winMenuAddItem(menuname, itemname, action)
winMenuDel(menuname)
winMenuDelItem(menuname, itemname)
winMenuNames()
winMenuItems(menuname)

Arguments

menuname a character string naming a menu.

itemname a character string naming a menu item on an existing menu.

action a character string describing the action when that menu is selected, or "enable"
or "disable".

Details

User menus are added to the right of existing menus, and items are added at the bottom of the menu.

By default the action character string is treated as R input, being echoed on the command line and
parsed and executed as usual.

If the menuname parameter of winMenuAddItem does not already exist, it will be created automati-
cally.

Normally new submenus and menu items are added to the main console menu. They may be added
elsewhere using the following special names:

1822 winMenus

$ConsoleMain The console menu (the default)

$ConsolePopup The console popup menu

$Graph<n>Main The menu for graphics window <n>

$Graph<n>Popup The popup menu for graphics window <n>

Specifying an existing item in winMenuAddItem enables the action to be changed.

Submenus can be specified by separating the elements in menuname by slashes: as a consequence
menu names may not contain slashes.

If the action is specified as "none" no action is taken: this can be useful to reserve items for future
expansion.

The function winMenuNames can be used to find out what menus have been created by the user and
returns a vector of the existing menu names.

The winMenuItems function will take the name of a menu and return the items that exist in that
menu. The return value is a named vector where the names correspond to the names of the items
and the values of the vector are the corresponding actions.

The winMenuDel function will delete a menu and all of its items and submenus. winMenuDelItem
just deletes one menu item.

The total path to an item (menu string plus item string) cannot exceed 1000 bytes, and the menu
string cannot exceed 500 bytes.

Value

NULL, invisibly. If an error occurs, an informative error message will be given.

See Also

winDialog

Examples

Not run:
winMenuAdd("Testit")
winMenuAddItem("Testit", "one", "aaaa")
winMenuAddItem("Testit", "two", "bbbb")
winMenuAdd("Testit/extras")
winMenuAddItem("Testit", "-", "")
winMenuAddItem("Testit", "two", "disable")
winMenuAddItem("Testit", "three", "cccc")
winMenuAddItem("Testit/extras", "one more", "ddd")
winMenuAddItem("Testit/extras", "and another", "eee")
winMenuAdd("$ConsolePopup/Testit")
winMenuAddItem("$ConsolePopup/Testit", "six", "fff")
winMenuNames()
winMenuItems("Testit")

End(Not run)

winProgressBar 1823

winProgressBar Progress Bars under Windows

Description

Put up a Windows progress bar widget.

Usage

winProgressBar(title = "R progress bar", label = "",
min = 0, max = 1, initial = 0, width = 300)

getWinProgressBar(pb)
setWinProgressBar(pb, value, title = NULL, label = NULL)
S3 method for class ’winProgressBar’
close(con, ...)

Arguments

title, label character strings, giving the window title and the label on the dialog box respec-
tively.

min, max (finite) numeric values for the extremes of the progress bar.

initial, value initial or new value for the progress bar.

width the width of the progress bar in pixels: the dialog box will be 40 pixels wider
(plus frame).

pb, con an object of class "winProgressBar".

... for consistency with the generic.

Details

winProgressBar will display a progress bar centred on the screen. Space will be allocated for the
label only if it is non-empty.

setWinProgessBar will update the value and for non-NULL values, the title and label (provided
there was one when the widget was created). Missing (NA) and out-of-range values of value will
be (silently) ignored.

The progress bar should be closed when finished with, but it will be garbage-collected once no R
object refers to it.

Value

For winProgressBar an object of class "winProgressBar".

For getWinProgressBar and setWinProgressBar, a length-one numeric vector giving the previ-
ous value (invisibly for setWinProgressBar).

See Also

txtProgressBar, tkProgressBar

1824 write.table

Examples

pb <- winProgressBar("test progress bar", "Some information in %",
0, 100, 50)

Sys.sleep(0.5)
u <- c(0, sort(runif(20, 0 ,100)), 100)
for(i in u) {

Sys.sleep(0.1)
info <- sprintf("%d%% done", round(i))
setWinProgressBar(pb, i, sprintf("test (%s)", info), info)

}
Sys.sleep(5)
close(pb)

write.table Data Output

Description

write.table prints its required argument x (after converting it to a data frame if it is not one nor a
matrix) to a file or connection.

Usage

write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ",
eol = "\n", na = "NA", dec = ".", row.names = TRUE,
col.names = TRUE, qmethod = c("escape", "double"),
fileEncoding = "")

write.csv(...)
write.csv2(...)

Arguments

x the object to be written, preferably a matrix or data frame. If not, it is attempted
to coerce x to a data frame.

file either a character string naming a file or a connection open for writing. ""
indicates output to the console.

append logical. Only relevant if file is a character string. If TRUE, the output is ap-
pended to the file. If FALSE, any existing file of the name is destroyed.

quote a logical value (TRUE or FALSE) or a numeric vector. If TRUE, any character or
factor columns will be surrounded by double quotes. If a numeric vector, its
elements are taken as the indices of columns to quote. In both cases, row and
column names are quoted if they are written. If FALSE, nothing is quoted.

sep the field separator string. Values within each row of x are separated by this
string.

eol the character(s) to print at the end of each line (row). For example, eol="\r\n"
will produce Windows’ line endings on a Unix-alike OS, and eol="\r" will
produce files as expected by Excel:mac 2004.

na the string to use for missing values in the data.

write.table 1825

dec the string to use for decimal points in numeric or complex columns: must be a
single character.

row.names either a logical value indicating whether the row names of x are to be written
along with x, or a character vector of row names to be written.

col.names either a logical value indicating whether the column names of x are to be written
along with x, or a character vector of column names to be written. See the
section on ‘CSV files’ for the meaning of col.names = NA.

qmethod a character string specifying how to deal with embedded double quote characters
when quoting strings. Must be one of "escape" (default for write.table), in
which case the quote character is escaped in C style by a backslash, or "double"
(default for write.csv and write.csv2), in which case it is doubled. You can
specify just the initial letter.

fileEncoding character string: if non-empty declares the encoding to be used on a file (not
a connection) so the character data can be re-encoded as they are written. See
file.

... arguments to write.table: append, col.names, sep, dec and qmethod cannot
be altered.

Details

If the table has no columns the rownames will be written only if row.names=TRUE, and vice versa.

Real and complex numbers are written to the maximal possible precision.

If a data frame has matrix-like columns these will be converted to multiple columns in the result
(via as.matrix) and so a character col.names or a numeric quote should refer to the columns in
the result, not the input. Such matrix-like columns are unquoted by default.

Any columns in a data frame which are lists or have a class (e.g. dates) will be converted by the
appropriate as.character method: such columns are unquoted by default. On the other hand,
any class information for a matrix is discarded and non-atomic (e.g. list) matrices are coerced to
character.

Only columns which have been converted to character will be quoted if specified by quote.

The dec argument only applies to columns that are not subject to conversion to character because
they have a class or are part of a matrix-like column (or matrix), in particular to columns protected
by I(). Use options("OutDec") to control such conversions.

In almost all cases the conversion of numeric quantities is governed by the option "scipen" (see
options), but with the internal equivalent of digits=15. For finer control, use format to make a
character matrix/data frame, and call write.table on that.

These functions check for a user interrupt every 1000 lines of output.

If file is a non-open connection, an attempt is made to open it and then close it after use.

To write a Unix-style file on Windows, use a binary connection e.g.
file = file("filename", "wb").

CSV files

By default there is no column name for a column of row names. If col.names = NA and
row.names = TRUE a blank column name is added, which is the convention used for CSV files
to be read by spreadsheets. Note that such CSV files can be read in R by

read.csv(file = "<filename>", row.names = 1)

1826 write.table

write.csv and write.csv2 provide convenience wrappers for writing CSV files. They set sep and
dec (see below), qmethod = "double", and col.names to NA if row.names = TRUE (the default)
and to TRUE otherwise.

write.csv uses "." for the decimal point and a comma for the separator.

write.csv2 uses a comma for the decimal point and a semicolon for the separator, the Excel
convention for CSV files in some Western European locales.

These wrappers are deliberately inflexible: they are designed to ensure that the correct conventions
are used to write a valid file. Attempts to change append, col.names, sep, dec or qmethod are
ignored, with a warning.

CSV files do not record an encoding, and this causes problems if they are not ASCII for many
other applications. Windows Excel 2007/10 will open files (e.g. by the file association mechanism)
correctly if they are ASCII or UTF-16 (use fileEncoding = "UTF-16LE") or perhaps in the current
Windows codepage (e.g. "CP1252"), but the ‘Text Import Wizard’ (from the ‘Data’ tab) allows far
more choice of encodings. Excel:mac 2004/8 can import only Macintosh (which seems to mean
MacRoman), Windows (perhaps Latin-1) and ‘PC-8’ files. OpenOffice 3.x asks for the character
set when opening the file.

There is an IETF RFC4180 (http://tools.ietf.org/html/rfc4180) for CSV files, which man-
dates comma as the separator and CRLF line endings. write.csv writes compliant files on Win-
dows: use eol="\r\n" on other platforms.

Note

write.table can be slow for data frames with large numbers (hundreds or more) of columns: this
is inevitable as each column could be of a different class and so must be handled separately. If they
are all of the same class, consider using a matrix instead.

See Also

The ‘R Data Import/Export’ manual.

read.table, write.

write.matrix in package MASS.

Examples

Not run:
To write a CSV file for input to Excel one might use
x <- data.frame(a = I("a \" quote"), b = pi)
write.table(x, file = "foo.csv", sep = ",", col.names = NA,

qmethod = "double")
and to read this file back into R one needs
read.table("foo.csv", header = TRUE, sep = ",", row.names = 1)
NB: you do need to specify a separator if qmethod = "double".

Alternatively
write.csv(x, file = "foo.csv")
read.csv("foo.csv", row.names = 1)
or without row names
write.csv(x, file = "foo.csv", row.names = FALSE)
read.csv("foo.csv")

To write a file in MacRoman for simple use in Mac Excel 2004/8
write.csv(x, file = "foo.csv", fileEncoding = "macroman")

http://tools.ietf.org/html/rfc4180
http://CRAN.R-project.org/package=MASS

zip 1827

or for Windows Excel 2007/10
write.csv(x, file = "foo.csv", fileEncoding = "UTF-16LE")

End(Not run)

zip Create Zip archives

Description

A wrapper for an external zip command to create zip archives.

Usage

zip(zipfile, files, flags = "-r9X", extras = "",
zip = Sys.getenv("R_ZIPCMD", "zip"))

Arguments

zipfile The pathname of the zip file: tilde expansion (see path.expand) will be per-
formed.

files A character vector of recorded filepaths to be included.

flags A character string of flags to be passed to the command: see ‘Details’.

extras An optional character vector: see ‘Details’.

zip A character string specifying the external command to be used.

Details

On a Unix-alike, the default for zip will by default use the value of R_ZIPCMD, which is set in
‘etc/Renviron’ if an unzip command was found during configuration. On Windows, the default
relies on a zip program (for example that from Rtools) being in the path.

The default for flags is that appropriate for zipping up a directory tree in a portable way: see the
system-specific help for the zip command for other possibilities.

Argument extras can be used to specify -x or -i followed by a list of filepaths to exclude or
include.

Value

The status value returned by the external command, invisibly.

See Also

unzip, unz.

1828 zip

Index

! (Logic), 273
!.hexmode (hexmode), 222
!.octmode (octmode), 325
!= (Comparison), 76
∗Topic IO

rcompgen, 1750
∗Topic NA

complete.cases, 1175
droplevels, 134
factor, 168
NA, 304
na.action, 1342
na.fail, 1344
naprint, 1345
naresid, 1345

∗Topic algebra
backsolve, 39
chol, 66
chol2inv, 68
colSums, 72
crossprod, 96
eigen, 142
matrix, 290
qr, 358
QR.Auxiliaries, 360
solve, 440
svd, 481

∗Topic aplot
abline, 733
arrows, 735
Axis, 738
axis, 739
box, 748
bxp, 753
contour, 759
coplot, 762
filled.contour, 768
frame, 772
grid, 773
Hershey, 676
image, 781
Japanese, 680
legend, 785

lines, 790
matplot, 792
mtext, 797
persp, 811
plot.formula, 823
plot.window, 827
plot.xy, 828
plotmath, 694
points, 829
polygon, 833
polypath, 835
rasterImage, 837
rect, 838
rect.hclust, 1445
rug, 839
screen, 840
segments, 842
symbols, 857
text, 859
title, 861
xspline, 864

∗Topic arith
all.equal, 11
approxfun, 1130
Arithmetic, 18
colSums, 72
cumsum, 97
diff, 123
Extremes, 166
findInterval, 182
gl, 212
matmult, 289
ppoints, 1406
prod, 355
range, 371
roman, 1772
Round, 403
sign, 435
sort, 441
sum, 479
tabulate, 510
zapsmall, 559

∗Topic array

1829

1830 INDEX

addmargins, 1113
aggregate, 1115
aperm, 14
apply, 16
array, 20
backsolve, 39
cbind, 58
cbind2, 976
chol, 66
chol2inv, 68
col, 70
colSums, 72
contrast, 1179
cor, 1184
crossprod, 96
data.matrix, 105
det, 119
diag, 122
dim, 126
dimnames, 127
drop, 133
eigen, 142
expand.grid, 155
Extract, 157
Extract.data.frame, 162
isSymmetric, 244
kronecker, 248
lm.fit, 1300
lower.tri, 276
margin.table, 281
mat.or.vec, 282
matmult, 289
matplot, 792
matrix, 290
maxCol, 291
merge, 298
nrow, 315
outer, 338
prop.table, 356
qr, 358
QR.Auxiliaries, 360
row, 406
row+colnames, 407
scale, 414
slice.index, 437
svd, 481
sweep, 483
t, 507

∗Topic attribute
attr, 36
attributes, 37
call, 52

comment, 75
length, 254
mode, 302
name, 305
names, 306
NULL, 320
numeric, 321
structure, 472
typeof, 534
which, 552

∗Topic category
.bincode, 1
aggregate, 1115
by, 50
cut, 98
droplevels, 134
Extract.factor, 165
factor, 168
ftable, 1246
ftable.formula, 1248
gl, 212
interaction, 233
levels, 256
loglin, 1312
nlevels, 310
plot.table, 826
read.ftable, 1443
split, 449
table, 508
tapply, 511
xtabs, 1557

∗Topic character
abbreviate, 6
adist, 1643
agrep, 8
aregexec, 1647
char.expand, 61
character, 62
charmatch, 63
chartr, 64
delimMatch, 1606
Encoding, 146
format, 188
format.info, 190
formatC, 192
gettext, 209
glob2rx, 1705
grep, 212
iconv, 224
make.names, 278
make.unique, 279
nchar, 309

INDEX 1831

paste, 341
pmatch, 343
regex, 391
regmatches, 395
sprintf, 451
sQuote, 454
strsplit, 468
strtoi, 470
strtrim, 471
strwidth, 853
strwrap, 473
substr, 477
symnum, 1516
utf8Conversion, 544

∗Topic chron
as.Date, 23
as.POSIX*, 28
axis.POSIXct, 741
cut.POSIXt, 100
Dates, 107
DateTimeClasses, 108
difftime, 125
hist.POSIXt, 777
ISOdatetime, 243
Ops.Date, 327
rep, 398
round.POSIXt, 405
seq.Date, 424
seq.POSIXt, 425
strptime, 464
Sys.time, 499
timezones, 521
weekdays, 550

∗Topic classes
as, 966
as.data.frame, 22
BasicClasses, 970
callGeneric, 972
callNextMethod, 973
canCoerce, 975
character, 62
class, 69
Classes, 977
classesToAM, 980
className, 982
classRepresentation-class, 984
data.class, 102
data.frame, 103
Documentation, 985
dotsMethods, 986
double, 130
environment-class, 989

envRefClass-class, 990
findClass, 994
findMethods, 995
fixPre1.8, 998
genericFunction-class, 999
GenericFunctions, 1000
getClass, 1003
getMethod, 1005
inheritedSlotNames, 1011
integer, 231
is, 1013
is.object, 239
is.recursive, 241
is.single, 242
isSealedMethod, 1018
language-class, 1020
LinearMethodsList-class, 1021
logical, 275
makeClassRepresentation, 1021
MethodDefinition-class, 1023
Methods, 1024
MethodsList-class, 1032
MethodWithNext-class, 1033
mle-class, 1564
new, 1034
nonStructure-class, 1036
numeric, 321
ObjectsWithPackage-class, 1037
profile.mle-class, 1567
promptClass, 1037
raw, 375
rawConversion, 377
real, 389
ReferenceClasses, 1040
representation, 1049
row.names, 408
S3Part, 1050
SClassExtension-class, 1056
selectSuperClasses, 1057
setClass, 1058
setClassUnion, 1062
setMethod, 1071
signature-class, 1082
slot, 1082
strtoi, 470
StructureClasses, 1084
summary.mle-class, 1568
testInheritedMethods, 1086
TraceClasses, 1088
validObject, 1089
vector, 545

∗Topic cluster

1832 INDEX

as.hclust, 1147
cophenetic, 1183
cutree, 1192
dist, 1209
hclust, 1260
identify.hclust, 1270
kmeans, 1286
rect.hclust, 1445

∗Topic color
col2rgb, 649
colorRamp, 650
colors, 652
convertColor, 654
gray, 673
gray.colors, 673
hcl, 674
hsv, 679
make.rgb, 681
palette, 685
Palettes, 686
rgb, 715
rgb2hsv, 716

∗Topic complex
complex, 78

∗Topic connection
cat, 57
connections, 83
dput, 132
dump, 135
gzcon, 221
memCompress, 294
parse, 340
pushBack, 357
rawConnection, 376
read.00Index, 1629
read.DIF, 1755
read.fortran, 1757
read.fwf, 1758
read.table, 1761
readBin, 379
readChar, 382
readLines, 385
readRDS, 386
scan, 416
seek, 420
serialize, 427
showConnections, 432
sink, 436
socketSelect, 439
source, 444
textConnection, 518
write, 557

writeLines, 558
∗Topic datagen

simulate, 1466
∗Topic datasets

ability.cov, 563
airmiles, 564
AirPassengers, 565
airquality, 566
anscombe, 567
attenu, 568
attitude, 569
austres, 570
beavers, 570
BJsales, 571
BOD, 572
cars, 573
charsets, 1594
ChickWeight, 574
chickwts, 575
CO2, 576
co2, 577
crimtab, 578
data, 1677
discoveries, 580
DNase, 580
esoph, 581
euro, 583
eurodist, 584
EuStockMarkets, 584
faithful, 585
Formaldehyde, 586
freeny, 587
HairEyeColor, 588
Harman23.cor, 589
Harman74.cor, 589
Indometh, 590
infert, 591
InsectSprays, 592
iris, 592
islands, 594
JohnsonJohnson, 594
LakeHuron, 595
lh, 595
LifeCycleSavings, 596
Loblolly, 597
longley, 598
lynx, 599
morley, 599
mtcars, 600
nhtemp, 601
Nile, 602
nottem, 603

INDEX 1833

occupationalStatus, 604
Orange, 604
OrchardSprays, 605
PlantGrowth, 606
precip, 607
presidents, 608
pressure, 608
Puromycin, 609
quakes, 610
randu, 611
rivers, 612
rock, 612
sleep, 613
stackloss, 614
state, 615
sunspot.month, 616
sunspot.year, 617
sunspots, 617
swiss, 618
Theoph, 619
Titanic, 620
ToothGrowth, 622
treering, 622
trees, 623
UCBAdmissions, 624
UKDriverDeaths, 625
UKgas, 626
UKLungDeaths, 627
USAccDeaths, 627
USArrests, 628
USJudgeRatings, 628
USPersonalExpenditure, 629
uspop, 630
VADeaths, 630
volcano, 631
warpbreaks, 632
women, 633
WorldPhones, 633
WWWusage, 634

∗Topic data
apropos, 1646
as.environment, 26
assign, 31
assignOps, 33
attach, 34
autoload, 38
bquote, 46
delayedAssign, 115
deparse, 116
detach, 120
environment, 147
eval, 151

exists, 154
force, 183
get, 203
getAnywhere, 1699
getFromNamespace, 1700
getS3method, 1702
libPaths, 257
library, 258
library.dynam, 261
list2env, 267
ns-load, 318
search, 420
substitute, 476
sys.parent, 492
with, 554
zpackages, 560

∗Topic debugging
browserText, 48
findLineNum, 1695
recover, 1766
srcfile, 456
trace, 524

∗Topic design
contrast, 1179
contrasts, 1180
TukeyHSD, 1537

∗Topic device
.Device, 2
bringToTop, 644
cairo, 644
dev, 657
dev.interactive, 661
dev2, 663
Devices, 667
embedFonts, 668
grDevices-package, 637
msgWindow, 682
pdf, 687
pdf.options, 692
pictex, 693
png, 699
postscript, 702
postscriptFonts, 708
ps.options, 712
recordGraphics, 713
screen, 840
Type1Font, 720
windows, 721
windows.options, 725
windowsFonts, 726
xfig, 727

∗Topic distribution

1834 INDEX

bandwidth, 1150
Beta, 1153
Binomial, 1156
birthday, 1160
Cauchy, 1166
chisq.test, 1167
Chisquare, 1170
density, 1201
Distributions, 1212
Exponential, 1221
FDist, 1231
fivenum, 1239
GammaDist, 1249
Geometric, 1251
hist, 774
Hypergeometric, 1269
IQR, 1279
Logistic, 1309
Lognormal, 1314
Multinom, 1341
NegBinomial, 1346
Normal, 1364
Poisson, 1396
ppoints, 1406
qqnorm, 1437
r2dtable, 1442
Random, 366
Random.user, 370
sample, 410
SignRank, 1465
stem, 851
TDist, 1521
Tukey, 1536
Uniform, 1539
Weibull, 1547
Wilcoxon, 1554

∗Topic documentation
apropos, 1646
args, 17
bibentry, 1655
bibstyle, 1592
browseVignettes, 1661
buildVignettes, 1593
checkRd, 1598
checkTnF, 1601
checkVignettes, 1602
codoc, 1603
data, 1677
Defunct, 114
demo, 1683
Deprecated, 119
Documentation, 985

example, 1692
help, 1709
help.search, 1712
help.start, 1715
HTMLheader, 1612
HTMLlinks, 1613
NotYet, 314
NumericConstants, 323
parse_Rd, 1617
parseLatex, 1616
prompt, 1744
promptData, 1746
promptPackage, 1747
QC, 1621
Question, 1748
Quotes, 363
Rd2HTML, 1622
Rd2txt_options, 1624
Rdindex, 1627
RdTextFilter, 1627
Rdutils, 1628
readNEWS, 1630
Reserved, 400
RShowDoc, 1776
RSiteSearch, 1777
startDynamicHelp, 1632
str, 1798
SweaveTeXFilter, 1633
Syntax, 486
toHTML, 1636
tools-package, 1591
toRd, 1637
undoc, 1638
vignette, 1818

∗Topic dplot
absolute.size, 868
approxfun, 1130
arrow, 869
as.raster, 639
axisTicks, 641
axTicks, 743
boxplot.stats, 642
calcStringMetric, 869
clip, 758
cm, 648
col2rgb, 649
colors, 652
contourLines, 653
convertNative, 871
convertXY, 761
convolve, 1181
dataViewport, 872

INDEX 1835

densCols, 656
dev.capabilities, 659
dev.capture, 660
dev.flush, 660
dev.size, 662
devAskNewPage, 667
drawDetails, 873
ecdf, 1214
editDetails, 874
expression, 156
extendrange, 669
fft, 1233
gEdit, 875
getNames, 876
gpar, 876
gPath, 878
Grid, 879
Grid Viewports, 880
grid.add, 883
grid.arrows, 884
grid.bezier, 886
grid.cap, 888
grid.circle, 889
grid.clip, 890
grid.collection, 891
grid.convert, 892
grid.copy, 894
grid.curve, 895
grid.display.list, 897
grid.DLapply, 898
grid.draw, 899
grid.edit, 900
grid.frame, 901
grid.function, 902
grid.get, 904
grid.grab, 905
grid.grill, 906
grid.grob, 907
grid.layout, 908
grid.lines, 910
grid.locator, 912
grid.ls, 913
grid.move.to, 915
grid.newpage, 916
grid.null, 917
grid.pack, 918
grid.path, 919
grid.place, 921
grid.plot.and.legend, 922
grid.points, 923
grid.polygon, 924
grid.pretty, 925

grid.prompt, 926
grid.raster, 926
grid.record, 928
grid.rect, 929
grid.refresh, 931
grid.remove, 931
grid.segments, 932
grid.set, 933
grid.show.layout, 934
grid.show.viewport, 935
grid.text, 936
grid.xaxis, 938
grid.xspline, 939
grid.yaxis, 941
grobName, 943
grobWidth, 943
grobX, 944
hcl, 674
hist, 774
hist.POSIXt, 777
hsv, 679
jitter, 245
layout, 783
n2mfrow, 683
Palettes, 686
panel.smooth, 801
par, 802
plot.density, 1383
plotViewport, 945
pop.viewport, 945
ppoints, 1406
pretty, 346
pretty.Date, 711
push.viewport, 946
Querying the Viewport Tree, 947
rgb2hsv, 716
roundrect, 948
screen, 840
showGrob, 949
showViewport, 950
splinefun, 1481
stepfun, 1499
stringWidth, 951
strwidth, 853
trans3d, 719
unit, 952
unit.c, 954
unit.length, 955
unit.pmin, 955
unit.rep, 956
units, 863
valid.just, 957

1836 INDEX

validDetails, 957
vpPath, 958
widthDetails, 959
Working with Viewports, 960
xDetails, 962
xsplinePoints, 963
xy.coords, 729
xyTable, 730
xyz.coords, 731

∗Topic environment
apropos, 1646
as.environment, 26
browser, 47
commandArgs, 74
debug, 113
eapply, 141
gc, 200
gctorture, 202
interactive, 234
is.R, 240
layout, 783
ls, 277
Memory, 295
Memory-limits, 296
options, 328
par, 802
quit, 362
R.Version, 364
reg.finalizer, 390
remove, 396
Startup, 458
stop, 461
stopifnot, 463
Sys.getenv, 487
Sys.setenv, 495
taskCallback, 513
taskCallbackManager, 515
taskCallbackNames, 516

∗Topic error
bug.report, 1662
conditions, 79
debugger, 1681
help.request, 1711
options, 328
stop, 461
stopifnot, 463
warning, 548
warnings, 549

∗Topic files
find.package, 181

∗Topic file
.Platform, 5

basename, 40
browseURL, 1660
cat, 57
choose.dir, 1665
choose.files, 1666
connections, 83
count.fields, 1675
dataentry, 1679
dcf, 111
dput, 132
dump, 135
file.access, 171
file.choose, 172
file.info, 173
file.path, 174
file.show, 175
file_test, 1695
files, 176
files2, 179
fileutils, 1609
glob2rx, 1705
gzcon, 221
list.files, 266
load, 268
memCompress, 294
package.skeleton, 1735
parse, 340
path.expand, 343
rawConnection, 376
read.00Index, 1629
read.DIF, 1755
read.fortran, 1757
read.fwf, 1758
read.table, 1761
readBin, 379
readChar, 382
readLines, 385
readNEWS, 1630
readRDS, 386
readRenviron, 388
save, 412
scan, 416
seek, 420
serialize, 427
sink, 436
source, 444
Sys.glob, 488
Sys.readlink, 494
Sys.setFileTime, 496
sys.source, 498
system, 501
system.file, 503

INDEX 1837

system2, 505
tar, 1805
tempfile, 517
textConnection, 518
tk_choose.dir, 1587
tk_choose.files, 1587
unlink, 536
untar, 1810
unzip, 1812
url.show, 1815
write, 557
write.table, 1824
write_PACKAGES, 1640
writeLines, 558
zip, 1827

∗Topic graphs
chull, 647

∗Topic hplot
assocplot, 736
barplot, 744
biplot, 1158
biplot.princomp, 1159
boxplot, 749
boxplot.matrix, 752
cdplot, 755
contour, 759
coplot, 762
cpgram, 1191
curve, 765
dendrogram, 1197
dotchart, 767
ecdf, 1214
filled.contour, 768
fourfoldplot, 771
heatmap, 1263
hist, 774
hist.POSIXt, 777
image, 781
interaction.plot, 1277
lag.plot, 1295
matplot, 792
monthplot, 1338
mosaicplot, 794
pairs, 799
panel.smooth, 801
persp, 811
pie, 814
plot, 816
plot.acf, 1382
plot.data.frame, 817
plot.default, 818
plot.design, 820

plot.factor, 822
plot.formula, 823
plot.histogram, 825
plot.isoreg, 1385
plot.lm, 1387
plot.ppr, 1389
plot.spec, 1391
plot.stepfun, 1393
plot.table, 826
plot.ts, 1394
qqnorm, 1437
smoothScatter, 843
spineplot, 845
stars, 847
stripchart, 851
sunflowerplot, 855
symbols, 857
termplot, 1523

∗Topic htest
ansari.test, 1126
bartlett.test, 1151
binom.test, 1155
chisq.test, 1167
cor.test, 1187
fisher.test, 1235
fligner.test, 1240
friedman.test, 1244
kruskal.test, 1289
ks.test, 1290
mantelhaen.test, 1324
mauchly.test, 1327
mcnemar.test, 1328
mood.test, 1340
oneway.test, 1367
p.adjust, 1377
pairwise.prop.test, 1379
pairwise.t.test, 1380
pairwise.table, 1381
pairwise.wilcox.test, 1381
poisson.test, 1398
power.anova.test, 1401
power.prop.test, 1402
power.t.test, 1404
print.power.htest, 1427
prop.test, 1434
prop.trend.test, 1436
quade.test, 1438
shapiro.test, 1464
t.test, 1519
var.test, 1544
wilcox.test, 1551

∗Topic interface

1838 INDEX

browseEnv, 1659
converters, 94
dyn.load, 139
getDLLRegisteredRoutines, 205
getLoadedDLLs, 206
getNativeSymbolInfo, 207
Internal, 235
Primitive, 348
system, 501
system2, 505

∗Topic iplot
dev, 657
frame, 772
getGraphicsEvent, 670
identify, 778
identify.hclust, 1270
layout, 783
locator, 791
par, 802
plot.histogram, 825
recordPlot, 714

∗Topic iteration
apply, 16
by, 50
combn, 1673
Control, 92
dendrapply, 1195
eapply, 141
identical, 228
lapply, 251
rapply, 374
sweep, 483
tapply, 511

∗Topic list
eapply, 141
Extract, 157
lapply, 251
list, 264
NULL, 320
rapply, 374
relist, 1768
setNames, 1463
unlist, 537

∗Topic loess
loess, 1306
loess.control, 1308

∗Topic logic
all, 9
all.equal, 11
any, 13
Comparison, 76
complete.cases, 1175

Control, 92
duplicated, 137
identical, 228
ifelse, 230
Logic, 273
logical, 275
match, 283
NA, 304
unique, 535
which, 552

∗Topic manip
addmargins, 1113
append, 15
c, 51
cbind, 58
cbind2, 976
Colon, 71
cut.POSIXt, 100
deparse, 116
dimnames, 127
duplicated, 137
expand.model.frame, 1220
getInitial, 1252
head, 1707
list, 264
mapply, 280
match, 283
merge, 298
model.extract, 1332
NA, 304
NLSstAsymptotic, 1360
NLSstClosestX, 1361
NLSstLfAsymptote, 1362
NLSstRtAsymptote, 1362
NULL, 320
order, 335
order.dendrogram, 1376
relist, 1768
reorder.dendrogram, 1448
rep, 398
replace, 400
reshape, 1450
rev, 401
rle, 402
row+colnames, 407
rowsum, 409
seq, 422
seq.Date, 424
seq.POSIXt, 425
sequence, 426
slotOp, 438
sort, 441

INDEX 1839

sortedXyData, 1475
stack, 1797
structure, 472
subset, 474
transform, 530
type.convert, 1809
unique, 535
unlist, 537
Vectorize, 547
xtfrm, 558

∗Topic math
.Machine, 2
Bessel, 41
convolve, 1181
deriv, 1204
fft, 1233
Hyperbolic, 223
integrate, 1275
is.finite, 236
kappa, 246
log, 272
MathFun, 288
nextn, 1348
norm, 312
poly, 1399
polyroot, 345
Special, 446
splinefun, 1481
Trig, 531

∗Topic methods
.BasicFunsList, 966
as, 966
as.data.frame, 22
callGeneric, 972
callNextMethod, 973
canCoerce, 975
class, 69
Classes, 977
coef-methods, 1561
confint-methods, 1562
data.class, 102
data.frame, 103
Documentation, 985
dotsMethods, 986
evalSource, 991
findClass, 994
findMethods, 995
GenericFunctions, 1000
getMethod, 1005
groupGeneric, 219
implicitGeneric, 1009
inheritedSlotNames, 1011

initialize-methods, 1012
InternalMethods, 235
is, 1013
is.object, 239
isSealedMethod, 1018
logLik-methods, 1562
method.skeleton, 1022
Methods, 1024
methods, 1730
methods-package, 965
MethodsList-class, 1032
na.action, 1342
noquote, 311
plot-methods, 1565
plot.data.frame, 817
predict, 1412
profile-methods, 1566
promptMethods, 1039
row.names, 408
S4groupGeneric, 1054
setClass, 1058
setGeneric, 1063
setMethod, 1071
setOldClass, 1074
show-methods, 1567
showMethods, 1080
summary, 480
summary-methods, 1568
testInheritedMethods, 1086
update-methods, 1569
UseMethod, 539
vcov-methods, 1569

∗Topic misc
citation, 1668
citEntry, 1670
close.socket, 1672
contributors, 92
copyright, 95
license, 263
make.socket, 1726
mirrorAdmin, 1731
person, 1740
read.socket, 1760
savePlot, 718
sessionInfo, 1789
sets, 428
stats-deprecated, 1497
TclInterface, 1571
tclServiceMode, 1575
TkCommands, 1576
tkpager, 1580
tkStartGUI, 1582

1840 INDEX

TkWidgetcmds, 1582
TkWidgets, 1585
toLatex, 1807
tools-deprecated, 1637
url.show, 1815
utils-deprecated, 1817

∗Topic models
add1, 1111
AIC, 1118
alias, 1119
anova, 1121
anova.glm, 1121
anova.lm, 1123
anova.mlm, 1124
aov, 1129
AsIs, 30
asOneSidedFormula, 1148
asVector, 1093
backSpline, 1094
C, 1163
case+variable.names, 1165
coef, 1174
confint, 1176
deviance, 1207
df.residual, 1208
dummy.coef, 1213
eff.aovlist, 1217
effects, 1218
expand.grid, 155
extractAIC, 1222
factor.scope, 1227
family, 1228
fitted, 1238
formula, 1241
formula.nls, 1243
getInitial, 1252
glm, 1253
glm.control, 1258
glm.summaries, 1259
interpSpline, 1096
is.empty.model, 1280
labels, 250
lm.summaries, 1303
logLik, 1310
loglin, 1312
make.link, 1321
makepredictcall, 1322
manova, 1323
mauchly.test, 1327
mle, 1562
model.extract, 1332
model.frame, 1333

model.matrix, 1335
model.tables, 1336
naprint, 1345
naresid, 1345
nls, 1354
nls.control, 1359
nobs, 1363
numericDeriv, 1366
offset, 1367
periodicSpline, 1098
plot.profile.nls, 1390
polySpline, 1099
power, 1400
predict.bSpline, 1101
predict.glm, 1415
predict.nls, 1421
preplot, 1424
profile, 1430
profile.nls, 1431
proj, 1432
relevel, 1446
replications, 1449
residuals, 1453
se.contrast, 1460
selfStart, 1462
simulate, 1466
splineDesign, 1102
splineKnots, 1103
splineOrder, 1104
splines-package, 1093
SSasymp, 1484
SSasympOff, 1485
SSasympOrig, 1486
SSbiexp, 1487
SSD, 1488
SSfol, 1489
SSfpl, 1490
SSgompertz, 1491
SSlogis, 1492
SSmicmen, 1493
SSweibull, 1494
stat.anova, 1496
stats4-package, 1561
step, 1497
summary.aov, 1506
summary.glm, 1508
summary.lm, 1510
summary.manova, 1511
summary.nls, 1513
terms, 1525
terms.formula, 1525
terms.object, 1526

INDEX 1841

tilde, 521
TukeyHSD, 1537
update, 1542
update.formula, 1543
vcov, 1546
weights, 1550
xyVector, 1105

∗Topic multivariate
anova.mlm, 1124
as.hclust, 1147
biplot, 1158
biplot.princomp, 1159
cancor, 1164
cmdscale, 1172
cophenetic, 1183
cor, 1184
cov.wt, 1189
cutree, 1192
dendrogram, 1197
dist, 1209
factanal, 1224
hclust, 1260
kmeans, 1286
loadings, 1305
mahalanobis, 1320
mauchly.test, 1327
prcomp, 1410
princomp, 1424
rWishart, 1456
screeplot, 1458
SSD, 1488
stars, 847
summary.princomp, 1514
symbols, 857
varimax, 1545

∗Topic nonlinear
deriv, 1204
getInitial, 1252
nlm, 1349
nls, 1354
nls.control, 1359
optim, 1369
plot.profile.nls, 1390
predict.nls, 1421
profile.nls, 1431
vcov, 1546

∗Topic nonparametric
sunflowerplot, 855

∗Topic optimize
constrOptim, 1177
glm.control, 1258
nlm, 1349

nlminb, 1351
optim, 1369
optimize, 1374
uniroot, 1540

∗Topic packages
globalVariables, 1706

∗Topic package
base-package, 1
datasets-package, 563
graphics-package, 733
grDevices-package, 637
grid-package, 867
methods-package, 965
setLoadActions, 1068
splines-package, 1093
stats-package, 1107
stats4-package, 1561
tcltk-package, 1571
tools-package, 1591
utils-package, 1643

∗Topic print
cat, 57
dcf, 111
format, 188, 1698
format.info, 190
format.pval, 191
formatC, 192
formatDL, 195
hexmode, 222
labels, 250
loadings, 1305
ls.str, 1723
noquote, 311
octmode, 325
options, 328
plot.isoreg, 1385
print, 349
print.data.frame, 350
print.default, 351
printCoefmat, 1428
prmatrix, 353
sprintf, 451
str, 1798
write.table, 1824

∗Topic programming
.BasicFunsList, 966
.Machine, 2
all.equal, 11
all.names, 12
as, 966
as.function, 27
autoload, 38

1842 INDEX

body, 45
bquote, 46
browser, 47
call, 52
callCC, 54
CallExternal, 54
callGeneric, 972
callNextMethod, 973
check.options, 646
checkFF, 1595
Classes, 977
classesToAM, 980
className, 982
commandArgs, 74
conditions, 79
Control, 92
converters, 94
debug, 113
delayedAssign, 115
delete.response, 1194
deparse, 116
deparseOpts, 117
do.call, 129
Documentation, 985
dotsMethods, 986
dput, 132
environment, 147
eval, 151
evalSource, 991
expression, 156
findClass, 994
findMethods, 995
fixPre1.8, 998
force, 183
Foreign, 184
formals, 187
format.info, 190
function, 197
funprog, 198
GenericFunctions, 1000
getClass, 1003
getMethod, 1005
getPackageName, 1007
hasArg, 1008
identical, 228
identity, 230
ifelse, 230
implicitGeneric, 1009
initialize-methods, 1012
interactive, 234
invisible, 236
is, 1013

is.finite, 236
is.function, 238
is.language, 239
is.recursive, 241
isS4, 243
isSealedMethod, 1018
Last.value, 253
makeClassRepresentation, 1021
match.arg, 284
match.call, 285
match.fun, 286
menu, 1729
message, 300
method.skeleton, 1022
Methods, 1024
missing, 301
model.extract, 1332
name, 305
nargs, 308
new, 1034
ns-dblcolon, 316
ns-topenv, 320
on.exit, 326
Paren, 339
parse, 340
promptClass, 1037
promptMethods, 1039
R.Version, 364
Recall, 389
recover, 1766
ReferenceClasses, 1040
reg.finalizer, 390
representation, 1049
Reserved, 400
rtags, 1779
S3Part, 1050
selectSuperClasses, 1057
setClass, 1058
setClassUnion, 1062
setGeneric, 1063
setMethod, 1071
setOldClass, 1074
show, 1078
slot, 1082
source, 444
stop, 461
stopifnot, 463
substitute, 476
switch, 484
Syntax, 486
sys.parent, 492
testInheritedMethods, 1086

INDEX 1843

tools-package, 1591
trace, 524
traceback, 528
try, 533
utils-package, 1643
validObject, 1089
warning, 548
warnings, 549
with, 554
withVisible, 556

∗Topic regression
anova, 1121
anova.glm, 1121
anova.lm, 1123
anova.mlm, 1124
aov, 1129
case+variable.names, 1165
coef, 1174
contrast, 1179
contrasts, 1180
df.residual, 1208
effects, 1218
expand.model.frame, 1220
fitted, 1238
glm, 1253
glm.summaries, 1259
influence.measures, 1272
isoreg, 1280
line, 1296
lm, 1297
lm.fit, 1300
lm.influence, 1302
lm.summaries, 1303
ls.diag, 1316
ls.print, 1317
lsfit, 1318
nls, 1354
nls.control, 1359
plot.lm, 1387
plot.profile.nls, 1390
ppr, 1407
predict.glm, 1415
predict.lm, 1417
predict.nls, 1421
profile.nls, 1431
residuals, 1453
stat.anova, 1496
summary.aov, 1506
summary.glm, 1508
summary.lm, 1510
summary.nls, 1513
termplot, 1523

weighted.residuals, 1549
∗Topic robust

fivenum, 1239
IQR, 1279
line, 1296
mad, 1319
median, 1329
medpolish, 1330
runmed, 1454
smooth, 1468
smoothEnds, 1474

∗Topic smooth
bandwidth, 1150
bs, 1095
density, 1201
isoreg, 1280
ksmooth, 1293
loess, 1306
loess.control, 1308
lowess, 1315
ns, 1097
predict.bs, 1100
predict.loess, 1420
predict.smooth.spline, 1423
runmed, 1454
scatter.smooth, 1457
smooth, 1468
smooth.spline, 1470
smoothEnds, 1474
sunflowerplot, 855
supsmu, 1515

∗Topic sysdata
.Machine, 2
colors, 652
commandArgs, 74
Constants, 91
NULL, 320
palette, 685
R.Version, 364
Random, 366
Random.user, 370

∗Topic tree
dendrogram, 1197

∗Topic ts
acf, 1108
acf2AR, 1110
ar, 1132
ar.ols, 1135
arima, 1137
arima.sim, 1141
arima0, 1142
ARMAacf, 1145

1844 INDEX

ARMAtoMA, 1147
Box.test, 1162
cpgram, 1191
decompose, 1193
diffinv, 1208
embed, 1219
filter, 1234
HoltWinters, 1266
KalmanLike, 1282
kernapply, 1283
kernel, 1285
lag, 1294
lag.plot, 1295
monthplot, 1338
na.contiguous, 1343
plot.acf, 1382
plot.HoltWinters, 1384
plot.spec, 1391
plot.ts, 1394
PP.test, 1405
predict.Arima, 1413
predict.HoltWinters, 1416
print.ts, 1428
spec.ar, 1476
spec.pgram, 1477
spec.taper, 1479
spectrum, 1480
start, 1495
stl, 1501
stlmethods, 1503
StructTS, 1504
time, 1528
toeplitz, 1529
ts, 1529
ts-methods, 1531
ts.plot, 1532
ts.union, 1533
tsdiag, 1534
tsp, 1535
tsSmooth, 1535
window, 1556

∗Topic univar
ave, 1149
cor, 1184
Extremes, 166
fivenum, 1239
IQR, 1279
is.unsorted, 242
mad, 1319
mean, 293
median, 1329
nclass, 684

order, 335
quantile, 1440
range, 371
rank, 372
sd, 1459
sort, 441
stem, 851
weighted.mean, 1548
xtfrm, 558

∗Topic utilities
.Platform, 5
.checkMFClasses, 1107
add_datalist, 1591
alarm, 1645
all.equal, 11
arrangeWindows, 1649
as.Date, 23
as.graphicsAnnot, 639
as.POSIX*, 28
aspell, 1650
aspell-utils, 1651
available.packages, 1653
axis.POSIXct, 741
BATCH, 1654
bibentry, 1655
bindenv, 43
bug.report, 1662
buildVignettes, 1593
builtins, 49
capabilities, 56
capture.output, 1664
check.options, 646
checkFF, 1595
checkMD5sums, 1596
checkPoFiles, 1597
checkRdaFiles, 1600
checkTnF, 1601
checkVignettes, 1602
chooseBioCmirror, 1667
chooseCRANmirror, 1668
clipboard, 1671
combn, 1673
compactPDF, 1604
compareVersion, 1674
conflicts, 83
contrib.url, 1675
create.post, 1676
Cstack_info, 97
dataentry, 1679
date, 106
Dates, 107
DateTimeClasses, 108

INDEX 1845

debugger, 1681
Defunct, 114
demo, 1683
dependsOnPkgs, 1607
Deprecated, 119
dev2bitmap, 665
difftime, 125
DLL.version, 1684
download.file, 1685
download.packages, 1687
edit, 1688
edit.data.frame, 1690
encoded_text_to_latex, 1608
encodeString, 144
Encoding, 146
EnvVar, 149
example, 1692
file.edit, 1694
findInterval, 182
fix, 1697
flush.console, 1698
gc.time, 202
getDepList, 1610
gettext, 209
getwd, 211
getWindowsHandle, 1703
getWindowsHandles, 1704
glob2rx, 1705
grep, 212
grepRaw, 217
help.request, 1711
hexmode, 222
HTMLheader, 1612
iconv, 224
icuSetCollate, 226
INSTALL, 1716
install.packages, 1717
installed.packages, 1721
installFoundDepends, 1613
integrate, 1275
is.R, 240
ISOdatetime, 243
isSymmetric, 244
jitter, 245
l10n_info, 249
locales, 270
localeToCharset, 1722
ls.str, 1723
maintainer, 1724
make.packages.html, 1725
mapply, 280
maxCol, 291

md5sum, 1614
memory.profile, 297
memory.size, 1728
menu, 1729
modifyList, 1732
n2mfrow, 683
noquote, 311
normalizePath, 313
NotYet, 314
ns-hooks, 317
ns-load, 318
numeric_version, 324
object.size, 1734
octmode, 325
Ops.Date, 327
package.dependencies, 1615
package.skeleton, 1735
package_dependencies, 1615
packageDescription, 1737
packageStatus, 1738
page, 1740
parse_Rd, 1617
parseLatex, 1616
PkgUtils, 1743
pos.to.env, 346
proc.time, 354
pskill, 1619
QC, 1621
rcompgen, 1750
Rdiff, 1626
Rdindex, 1627
RdTextFilter, 1627
RdUtils, 379
Rdutils, 1628
readline, 384
readRegistry, 1765
regmatches, 395
relevel, 1446
REMOVE, 1770
remove.packages, 1771
reorder.default, 1447
Rhome, 401
Rprof, 1773
Rprofmem, 1774
Rscript, 1775
RSiteSearch, 1777
rtags, 1779
Rtangle, 1780
RweaveLatex, 1782
Rwin configuration, 1785
savehistory, 1787
select.list, 1788

1846 INDEX

setInternet2, 1790
setRepositories, 1791
setTimeLimit, 429
setWindowTitle, 1792
shell, 430
shell.exec, 431
SHLIB, 1794
shortPathName, 1795
showNonASCII, 1631
shQuote, 434
sourceutils, 1795
srcfile, 456
str, 1798
strptime, 464
strtoi, 470
strtrim, 471
summaryRprof, 1801
Sweave, 1802
SweaveSyntConv, 1804
SweaveTeXFilter, 1633
symnum, 1516
Sys.getenv, 487
Sys.getpid, 488
Sys.glob, 488
Sys.info, 489
Sys.localeconv, 491
Sys.setenv, 495
Sys.sleep, 497
sys.source, 498
Sys.time, 499
Sys.which, 500
system, 501
system.file, 503
system.time, 504
system2, 505
tar, 1805
testInstalledPackage, 1634
texi2dvi, 1635
timezones, 521
tk_messageBox, 1588
tk_select.list, 1589
tkProgressBar, 1580
toHTML, 1636
toRd, 1637
toString, 523
tracemem, 529
txtProgressBar, 1808
unname, 539
untar, 1810
unzip, 1812
update.packages, 1813
URLencode, 1816

userhooks, 542
utf8Conversion, 544
Vectorize, 547
View, 1817
vignetteDepends, 1639
which.min, 553
winDialog, 1820
winextras, 1821
winMenus, 1821
winProgressBar, 1823
write_PACKAGES, 1640
xgettext, 1641
zip, 1827
zutils, 561

∗Topic utility
psnice, 1620
removeSource, 1771

∗Topic utilties
bibstyle, 1592

’ (Quotes), 363
* (Arithmetic), 18
** (Arithmetic), 18
*.difftime (difftime), 125
+ (Arithmetic), 18
+.Date (Ops.Date), 327
+.POSIXt (DateTimeClasses), 108
- (Arithmetic), 18
-.Date (Ops.Date), 327
-.POSIXt (DateTimeClasses), 108
-> (assignOps), 33
->> (assignOps), 33
.AutoloadEnv (autoload), 38
.Autoloaded (autoload), 38
.BaseNamespaceEnv (environment), 147
.BasicFunsList, 966
.C, 55, 94, 95, 131, 139, 141, 205, 207–209,

1596
.C (Foreign), 184
.Call, 94, 139, 141, 184–186, 205, 207–209,

528
.Call (CallExternal), 54
.Class (UseMethod), 539
.Defunct (Defunct), 114
.Deprecated (Deprecated), 119
.Device, 2, 661
.Devices (.Device), 2
.DollarNames (rcompgen), 1750
.External, 139, 141, 184, 186, 205, 207–209,

235
.External (CallExternal), 54
.First, 234, 363
.First (Startup), 458

INDEX 1847

.Fortran, 55, 131, 139–141, 205, 207–209,
1596

.Fortran (Foreign), 184

.Generic (UseMethod), 539

.GlobalEnv, 420, 476, 492

.GlobalEnv (environment), 147

.Group (groupGeneric), 219

.InitTraceFunctions (TraceClasses), 1088

.Internal, 49, 348, 541

.Internal (Internal), 235

.Last, 459, 460, 1788

.Last (quit), 362

.Last.lib, 317, 543

.Last.lib (ns-hooks), 317

.Last.value (Last.value), 253

.Library (libPaths), 257

.MFclass, 1527

.MFclass (.checkMFClasses), 1107

.Machine, 2, 6, 20, 131, 323, 381, 411, 1375

.Method (UseMethod), 539

.NULL-class (Classes), 977

.NotYetImplemented (NotYet), 314

.NotYetUsed (NotYet), 314

.OldClassesList (setOldClass), 1074

.OptRequireMethods (Startup), 458

.Options (options), 328

.Other-class (testInheritedMethods),
1086

.Pars (par), 802

.Platform, 4, 5, 56, 365, 490, 503, 1610

.Primitive, 235, 339

.Primitive (Primitive), 348

.Random.seed, 1467, 1540

.Random.seed (Random), 366

.Renviron (Startup), 458

.Rprofile, 329

.Rprofile (Startup), 458

.S3PrimitiveGenerics (InternalMethods),
235

.Tcl (TclInterface), 1571

.Tcl.args, 1586

.Tk.ID (TclInterface), 1571

.Tk.newwin (TclInterface), 1571

.Tk.subwin (TclInterface), 1571

.TkRoot (TclInterface), 1571

.Traceback (traceback), 528

.__H__.cbind (cbind), 58

.__H__.rbind (cbind), 58

.amatch_bounds (agrep), 8

.amatch_costs (agrep), 8

.axisPars (axisTicks), 641

.bincode, 1, 100

.checkMFClasses, 1107

.colMeans (colSums), 72

.colSums (colSums), 72

.conflicts.OK (attach), 34

.decode_numeric_version
(numeric_version), 324

.deparseOpts, 116, 132, 135, 1689

.deparseOpts (deparseOpts), 117

.doTrace (trace), 524

.doTracePrint (TraceClasses), 1088

.dynLibs (library.dynam), 261

.encode_numeric_version
(numeric_version), 324

.environment-class (Classes), 977

.expand_R_libs_env_var (libPaths), 257

.externalptr-class (Classes), 977

.filled.contour (filled.contour), 768

.find.package (find.package), 181

.getXlevels (.checkMFClasses), 1107

.handleSimpleError (conditions), 79

.hasSlot (slot), 1082

.isOpen (srcfile), 456

.kappa_tri (kappa), 246

.kronecker (kronecker), 248

.leap.seconds (DateTimeClasses), 108

.libPaths, 150, 181, 259, 261, 263, 504, 560,
1607, 1613, 1678, 1693, 1715, 1718,
1721, 1771, 1813

.libPaths (libPaths), 257

.makeMessage (message), 300

.makeTracedFunction (TraceClasses), 1088

.make_numeric_version
(numeric_version), 324

.name-class (Classes), 977

.noGenerics (library), 258

.onAttach, 319, 543

.onAttach (ns-hooks), 317

.onLoad, 141, 260, 262, 263, 319, 542

.onLoad (ns-hooks), 317

.onUnload, 262, 319, 543

.onUnload (ns-hooks), 317

.packageStartupMessage (message), 300

.packages, 261, 263, 420, 1721, 1815

.packages (zpackages), 560

.path.package (find.package), 181

.ps.prolog (postscript), 702

.rowMeans (colSums), 72

.rowSums (colSums), 72

.selectSuperClasses
(selectSuperClasses), 1057

.setOldIs (setOldClass), 1074

.signalSimpleWarning (conditions), 79

1848 INDEX

.slotNames (slot), 1082

.standard_regexps (zutils), 561

.untracedFunction (TraceClasses), 1088

.userHooksEnv (userhooks), 542
/ (Arithmetic), 18
/.difftime (difftime), 125
:, 233, 424
: (Colon), 71
::, 543
:: (ns-dblcolon), 316
:::, 1701
::: (ns-dblcolon), 316
< (Comparison), 76
<- (assignOps), 33
<--class (language-class), 1020
<<- (assignOps), 33
<= (Comparison), 76
= (assignOps), 33
==, 12, 228
== (Comparison), 76
> (Comparison), 76
>= (Comparison), 76
?, 333, 1711, 1714
? (Question), 1748
??, 333, 1711, 1749
?? (help.search), 1712
[, 134, 162, 235, 326, 475, 1285
[(Extract), 157
[.AsIs (AsIs), 30
[.Date (Dates), 107
[.POSIXct (DateTimeClasses), 108
[.POSIXlt (DateTimeClasses), 108
[.SavedPlots (windows), 721
[.acf (acf), 1108
[.data.frame, 104, 158, 160, 161, 1333
[.data.frame (Extract.data.frame), 162
[.difftime (difftime), 125
[.factor, 135, 158, 161, 169, 170
[.factor (Extract.factor), 165
[.formula (formula), 1241
[.getAnywhere (getAnywhere), 1699
[.hexmode (hexmode), 222
[.noquote (noquote), 311
[.numeric_version (numeric_version), 324
[.octmode (octmode), 325
[.person (person), 1740
[.terms (delete.response), 1194
[.ts (ts), 1529
[<- (Extract), 157
[<-.Date (Dates), 107
[<-.POSIXct (DateTimeClasses), 108
[<-.POSIXlt (DateTimeClasses), 108

[<-.data.frame (Extract.data.frame), 162
[<-.factor (Extract.factor), 165
[[, 235, 1199
[[(Extract), 157
[[.Date (Dates), 107
[[.POSIXct (DateTimeClasses), 108
[[.data.frame (Extract.data.frame), 162
[[.dendrogram (dendrogram), 1197
[[.factor (Extract.factor), 165
[[.numeric_version (numeric_version),

324
[[.tclArray (TclInterface), 1571
[[<- (Extract), 157
[[<-.data.frame (Extract.data.frame),

162
[[<-.factor (Extract.factor), 165
[[<-.numeric_version (numeric_version),

324
[[<-.tclArray (TclInterface), 1571
$, 235
$ (Extract), 157
$,envRefClass-method

(envRefClass-class), 990
$.DLLInfo (getLoadedDLLs), 206
$.package_version (numeric_version), 324
$.person (person), 1740
$.tclArray (TclInterface), 1571
$<- (Extract), 157
$<-,envRefClass-method

(envRefClass-class), 990
$<-.data.frame (Extract.data.frame), 162
$<-.tclArray (TclInterface), 1571
%*% (matmult), 289
%/% (Arithmetic), 18
%% (Arithmetic), 18
%in% (match), 283
%o% (outer), 338
%x% (kronecker), 248
&, 223, 326
& (Logic), 273
&.hexmode (hexmode), 222
&.octmode (octmode), 325
&& (Logic), 273
%*%, 20, 96, 249, 338
%in%, 429
%o%, 96
__ClassMetaData (Classes), 977
^ (Arithmetic), 18
~ (tilde), 521
‘ (Quotes), 363
0x1 (NumericConstants), 323
1L (NumericConstants), 323

INDEX 1849

1i (NumericConstants), 323

abbreviate, 6, 1517
ability.cov, 563, 1226
abline, 733, 774, 791, 803, 834
abs, 126, 435
abs (MathFun), 288
absolute.size, 868, 959
acf, 1108, 1383
acf2AR, 1110, 1135, 1146
acos, 224
acos (Trig), 531
acosh (Hyperbolic), 223
active binding, 1046
activeBindingFunction-class

(ReferenceClasses), 1040
add.scope (factor.scope), 1227
add1, 1111, 1121, 1223, 1228, 1363, 1498,

1499
add_datalist, 1591
addGrob, 879, 884, 901, 905
addGrob (grid.add), 883
addmargins, 282, 509, 1113
addNA, 509
addNA (factor), 168
addTaskCallback, 513, 515–517
addTaskCallback (taskCallback), 513
addTclPath (TclInterface), 1571
adist, 9, 1643, 1648
adjustcolor, 637, 686
Adobe_glyphs (charsets), 1594
aggregate, 17, 410, 512, 1115
agnes, 1148, 1183, 1263
agrep, 8, 215, 1644, 1645, 1648, 1713
AIC, 1118, 1222, 1223, 1363, 1364, 1561
airmiles, 564
AirPassengers, 565, 1505, 1536
airquality, 566
alarm, 1645
alias, 1119, 1130, 1174
alist, 28, 46, 187
alist (list), 264
all, 9, 12, 14, 275, 463
all.equal, 11, 77, 229, 245
all.equal.numeric, 245
all.equal.POSIXct (DateTimeClasses), 108
all.names, 12, 477, 1166
all.vars, 766, 1166, 1243
all.vars (all.names), 12
anova, 481, 1113, 1121, 1122, 1124, 1255,

1257, 1290, 1298, 1317, 1355, 1402,
1496

anova-class (setOldClass), 1074

anova.glm, 1112, 1121, 1255, 1257, 1260,
1496

anova.glm-class (setOldClass), 1074
anova.glm.null-class (setOldClass), 1074
anova.glmlist (anova.glm), 1121
anova.lm, 1123, 1300, 1304, 1496
anova.lmlist (anova.lm), 1123
anova.mlm, 1124, 1328, 1489
anova.mlmlist (anova.mlm), 1124
ansari.test, 1126, 1152, 1241, 1341, 1545
ansari_test, 1128
anscombe, 567, 1300
any, 10, 13, 275
ANY-class (BasicClasses), 970
anyDuplicated, 169
anyDuplicated (duplicated), 137
aov, 332, 820, 1112, 1113, 1129, 1180, 1181,

1214, 1217, 1218, 1222, 1228, 1297,
1298, 1300, 1304, 1323, 1331, 1337,
1388, 1432, 1433, 1460, 1497, 1507,
1512, 1527, 1538

aov-class (setOldClass), 1074
aperm, 14, 22, 483, 507, 1452
append, 15
apply, 16, 73, 137, 253, 287, 292, 484, 512,

1117
applyEdit (gEdit), 875
applyEdits (gEdit), 875
approx, 182, 1202, 1483
approx (approxfun), 1130
approxfun, 651, 1130, 1215, 1394, 1483, 1500
apropos, 215, 278, 394, 1646, 1714
ar, 1132, 1137, 1140, 1145, 1476
ar.ols, 1134, 1135, 1135
ar.yw, 1110
arcCurvature (grid.curve), 895
aregexec, 1647
Arg (complex), 78
args, 17, 46, 187, 197, 308, 1025, 1700, 1724,

1751, 1798, 1800
argsAnywhere (getAnywhere), 1699
arima, 1135, 1137, 1141, 1142, 1144–1147,

1283, 1413, 1414, 1505, 1534
arima.sim, 1135, 1140, 1141, 1235
arima0, 1139, 1140, 1142
Arith, 19
Arith (S4groupGeneric), 1054
Arithmetic, 18, 237, 238, 273, 288, 289, 447,

487, 1401
ARMAacf, 1110, 1145, 1147
ARMAtoMA, 1146, 1147
arrangeWindows, 1649, 1704

1850 INDEX

array, 20, 128, 134, 161, 251, 252, 291, 316,
512, 552, 979, 980, 1085, 1456, 1673

array-class (StructureClasses), 1084
arrayInd, 553
arrayInd (which), 552
arrow, 869, 887, 896, 911, 916, 933, 940
arrows, 735, 803, 843
arrowsGrob (grid.arrows), 884
as, 70, 105, 546, 966, 975, 980, 1012, 1015,

1016, 1052, 1056
as.array (array), 20
as.call (call), 52
as.character, 6, 8, 58, 63, 64, 116, 128, 145,

168, 169, 189, 190, 213, 224, 235,
264, 309, 342, 343, 407, 452, 464,
470, 471, 473, 478, 639, 759, 779,
860, 1518, 1648

as.character (character), 62
as.character.condition (conditions), 79
as.character.Date (as.Date), 23
as.character.error (conditions), 79
as.character.hexmode (hexmode), 222
as.character.numeric_version

(numeric_version), 324
as.character.octmode (octmode), 325
as.character.person (person), 1740
as.character.POSIXt (strptime), 464
as.character.Rd (parse_Rd), 1617
as.character.srcref (srcfile), 456
as.character.tclObj (TclInterface), 1571
as.character.tclVar (TclInterface), 1571
as.complex, 235
as.complex (complex), 78
as.data.frame, 22, 31, 103, 163, 1247, 1254,

1297, 1306, 1333
as.data.frame.Date (Dates), 107
as.data.frame.numeric_version

(numeric_version), 324
as.data.frame.POSIXct

(DateTimeClasses), 108
as.data.frame.POSIXlt

(DateTimeClasses), 108
as.data.frame.table, 23, 1558
as.data.frame.table (table), 508
as.Date, 23, 328
as.dendrogram, 1196, 1264, 1376
as.dendrogram (dendrogram), 1197
as.difftime (difftime), 125
as.dist (dist), 1209
as.double, 235, 322, 323, 389, 452
as.double (double), 130
as.double.difftime (difftime), 125

as.double.POSIXlt (as.POSIX*), 28
as.double.tclObj (TclInterface), 1571
as.environment, 26, 35, 265, 268, 989
as.expression, 546
as.expression (expression), 156
as.factor, 449, 511
as.factor (factor), 168
as.formula, 1543
as.formula (formula), 1241
as.function, 27
as.graphicsAnnot, 639, 739, 785, 786, 798,

814, 853, 862, 936, 1387
as.hclust, 1147, 1183, 1199
as.hclust.dendrogram (dendrogram), 1197
as.hexmode (hexmode), 222
as.integer, 8, 158, 162, 235, 404, 471
as.integer (integer), 231
as.integer.tclObj (TclInterface), 1571
as.list, 251, 538, 1797
as.list (list), 264
as.list.Date (Dates), 107
as.list.environment, 268
as.list.numeric_version

(numeric_version), 324
as.list.POSIXct (DateTimeClasses), 108
as.logical, 235
as.logical (logical), 275
as.logical.tclObj (TclInterface), 1571
as.matrix, 104–106, 289, 409, 507, 979,

1210, 1211, 1762, 1825
as.matrix (matrix), 290
as.matrix.dist (dist), 1209
as.matrix.noquote (noquote), 311
as.matrix.POSIXlt (DateTimeClasses), 108
as.name, 241, 546
as.name (name), 305
as.null (NULL), 320
as.numeric, 105, 347, 767, 1377, 1549
as.numeric (numeric), 321
as.numeric_version (numeric_version),

324
as.octmode, 179
as.octmode (octmode), 325
as.ordered (factor), 168
as.package_version (numeric_version),

324
as.pairlist, 546
as.pairlist (list), 264
as.person (person), 1740
as.personList (person), 1740
as.polySpline (polySpline), 1099
as.POSIX*, 28

INDEX 1851

as.POSIXct, 108, 110, 467
as.POSIXct (as.POSIX*), 28
as.POSIXlt, 110, 270, 464, 523, 551
as.POSIXlt (as.POSIX*), 28
as.qr (qr), 358
as.raster, 639, 837, 928
as.raw, 235
as.raw (raw), 375
as.raw.tclObj (TclInterface), 1571
as.real (real), 389
as.relistable (relist), 1768
as.roman (roman), 1772
as.single, 185
as.single (double), 130
as.stepfun, 1281
as.stepfun (stepfun), 1499
as.symbol, 157
as.symbol (name), 305
as.table, 1247
as.table (table), 508
as.tclObj (TclInterface), 1571
as.ts (ts), 1529
as.vector, 16, 21, 52, 62, 78, 131, 157, 232,

235, 264, 265, 276, 290, 305, 429
as.vector (vector), 545
as<- (as), 966
ascentDetails (widthDetails), 959
asin, 224
asin (Trig), 531
asinh (Hyperbolic), 223
AsIs, 30, 189
asOneSidedFormula, 1148
asp (plot.window), 827
aspell, 1628, 1633, 1650, 1652, 1653
aspell-utils, 1651, 1651
aspell_package_Rd_files (aspell-utils),

1651
aspell_package_vignettes

(aspell-utils), 1651
aspell_write_personal_dictionary_file

(aspell-utils), 1651
asS3, 1026
asS3 (isS4), 243
asS4, 979, 1052
asS4 (isS4), 243
assign, 31, 34, 35, 204, 205, 268, 554, 646
assignInMyNamespace (getFromNamespace),

1700
assignInNamespace (getFromNamespace),

1700
assignOps, 33
assoc, 737

assocplot, 736, 797
asVector, 1093
atan, 224
atan (Trig), 531
atan2 (Trig), 531
atanh (Hyperbolic), 223
atomic, 57, 1764
atomic (vector), 545
atop (plotmath), 694
attach, 32, 34, 120, 121, 261, 420, 554, 1664,

1737
attachNamespace, 317
attachNamespace (ns-load), 318
attenu, 568
attitude, 569, 1300
attr, 36, 37, 38, 75, 331, 409, 472, 1455
attr.all.equal (all.equal), 11
attr<- (attr), 36
attributes, 11, 21, 37, 37, 75, 128, 159, 166,

228, 303, 307, 472, 646, 1196
attributes<- (attributes), 37
austres, 570
autoload, 38, 261
autoloader (autoload), 38
Autoloads (autoload), 38
available.packages, 260, 1615, 1640, 1653,

1675, 1686–1688, 1718, 1721, 1739,
1814, 1815

ave, 50, 1149
Axis, 738, 741, 742, 760
axis, 642, 695, 698, 738, 739, 741, 743, 746,

754, 775, 803, 807–809, 819, 840
axis.Date, 107
axis.Date (axis.POSIXct), 741
axis.POSIXct, 738, 741, 778
axisTicks, 641, 743
axTicks, 347, 642, 740, 741, 743, 773, 808

backquote, 197
backquote (Quotes), 363
backsolve, 39, 67, 441
backSpline, 1094
backtick, 34, 158, 162, 400, 1710, 1748
backtick (Quotes), 363
bandwidth, 1150
bandwidth.kernel (kernel), 1285
bandwidth.nrd, 1151
bar (plotmath), 694
barplot, 744, 776, 788, 822, 838
barplot.default, 674
bartlett.test, 1128, 1151, 1241, 1341,

1545
base, 637

1852 INDEX

base (base-package), 1
base-package, 1
baseenv, 151
baseenv (environment), 147
basename, 40, 178, 180, 343
BasicClasses, 970
BATCH, 150, 1654
bcv, 1151
beaver1 (beavers), 570
beaver2 (beavers), 570
beavers, 570
Bessel, 41, 447
bessel (Bessel), 41
besselI (Bessel), 41
besselJ (Bessel), 41
besselK (Bessel), 41
besselY (Bessel), 41
Beta, 1153
beta, 42, 1153, 1154
beta (Special), 446
bezierGrob, 963
bezierGrob (grid.bezier), 886
bezierPoints (xsplinePoints), 963
bgroup (plotmath), 694
bibentry, 1592, 1593, 1637, 1655, 1669, 1670
bibstyle, 1592, 1637, 1656
BIC, 1562, 1563
BIC (AIC), 1118
bindenv, 43
bindingIsActive (bindenv), 43
bindingIsLocked (bindenv), 43
bindtextdomain (gettext), 209
binom.test, 1155, 1398, 1399, 1435
Binomial, 1156, 1230
binomial, 1257
binomial (family), 1228
biplot, 1158, 1160, 1426
biplot.default, 1159
biplot.prcomp, 1412
biplot.prcomp (biplot.princomp), 1159
biplot.princomp, 1159, 1159, 1426
birthday, 1160
bitmap, 150, 667, 702
bitmap (dev2bitmap), 665
BJsales, 571
bkde2D, 656, 657, 844
blues9, 844
blues9 (densCols), 656
bmp, 56, 668, 1785
bmp (png), 699
BOD, 572
body, 45, 187, 197

body<- (body), 45
body<-,MethodDefinition-method

(MethodsList-class), 1032
bold (plotmath), 694
bolditalic (plotmath), 694
box, 748, 753, 758, 760, 769, 803, 804, 819,

826, 834, 836, 839, 849
Box.test, 1162, 1534
boxplot, 643, 738, 749, 752, 753, 822, 824,

851
boxplot.default, 752
boxplot.formula, 752
boxplot.matrix, 752
boxplot.stats, 642, 749, 751, 1239, 1442
bquote, 46, 477, 698
break, 400
break (Control), 92
bringToTop, 644, 683, 724
browseEnv, 394, 1659
browser, 47, 49, 114, 329, 524, 525, 527,

1682, 1696, 1767
browserCondition, 47
browserCondition (browserText), 48
browserSetDebug (browserText), 48
browserText, 47, 48, 48
browseURL, 333, 1660, 1661, 1662, 1709,

1715, 1778
browseVignettes, 1661, 1819
bs, 1093, 1095, 1098, 1100, 1101, 1322
bug.report, 333, 1662, 1676, 1677, 1712,

1725, 1821
build, 151
build (PkgUtils), 1743
buildVignettes, 1593
builtin-class (BasicClasses), 970
builtins, 49
bw.bcv (bandwidth), 1150
bw.nrd, 1201, 1203
bw.nrd (bandwidth), 1150
bw.nrd0 (bandwidth), 1150
bw.SJ (bandwidth), 1150
bw.ucv (bandwidth), 1150
bxp, 643, 749–751, 753
by, 50, 299, 512, 1802
bzfile (connections), 83

C, 170, 1163, 1180, 1181, 1335
c, 51, 60, 109, 235, 265, 311, 538, 546
c.Date (Dates), 107
c.noquote (noquote), 311
c.numeric_version (numeric_version), 324
c.person (person), 1740
c.POSIXct (DateTimeClasses), 108

INDEX 1853

c.POSIXlt (DateTimeClasses), 108
cairo, 644
cairo_pdf, 56, 663, 668, 691
cairo_pdf (cairo), 644
cairo_ps, 56, 707
cairo_ps (cairo), 644
calcStringMetric, 869
call, 12, 27, 52, 129, 152, 156, 157, 159, 239,

285, 286, 303, 306, 389, 476, 765,
766, 1205, 1211, 1281

call-class (language-class), 1020
callCC, 54
CallExternal, 54
callGeneric, 972, 974, 1055
callNextMethod, 973, 1013, 1024,

1033–1035
canCoerce, 969, 975
cancor, 1164
capabilities, 56, 89, 530, 646, 1575
capture.output, 437, 520, 1664
cars, 573, 1322, 1400
case+variable.names, 1165
case.names, 408
case.names (case+variable.names), 1165
casefold (chartr), 64
cat, 57, 89, 189, 331, 342, 350, 549, 557, 558,

1258, 1779, 1780
Cauchy, 1166
cBind, 976
cbind, 58, 235, 299, 976, 1533
cbind.ts (ts), 1529
cbind2, 976
cbind2,ANY,ANY-method (cbind2), 976
cbind2,ANY,missing-method (cbind2), 976
cbind2-methods (cbind2), 976
ccf (acf), 1108
cdplot, 755, 847
ceiling, 126
ceiling (Round), 403
char.expand, 61
character, 62, 169, 193, 279, 311, 351, 365,

549, 860, 862, 1034, 1057, 1387,
1523, 1693, 1747, 1799

character-class (BasicClasses), 970
charmatch, 61, 63, 147, 215, 284, 344
charset_to_Unicode (charsets), 1594
charsets, 1594
charToRaw, 218, 376
charToRaw (rawConversion), 377
chartr, 63, 64, 146, 215
check, 1692
check (PkgUtils), 1743

check.options, 646, 707, 712
check_tzones (DateTimeClasses), 108
checkCRAN (mirrorAdmin), 1731
checkDocFiles (QC), 1621
checkDocStyle (QC), 1621
checkFF, 1595
checkMD5sums, 1596, 1615
checkNEWS (readNEWS), 1630
checkPoFile (checkPoFiles), 1597
checkPoFiles, 1597
checkRd, 1598, 1624
checkRdaFiles, 1600
checkReplaceFuns (QC), 1621
checkS3methods (QC), 1621
checkTnF, 1601
checkVignettes, 1602
ChickWeight, 574
chickwts, 575
childNames (grid.grob), 907
chisq.test, 509, 588, 737, 1167, 1237, 1558
Chisquare, 1170, 1232, 1521
chol, 40, 66, 68, 144
chol2inv, 67, 68, 441
choose, 1157, 1230, 1673
choose (Special), 446
choose.dir, 1665, 1667
choose.files, 172, 267, 1665, 1666
chooseBioCmirror, 333, 1667, 1668
chooseCRANmirror, 333, 1667, 1668, 1792
chron, 24, 29
chull, 647
CIDFont, 705, 709, 710
CIDFont (Type1Font), 720
circleGrob (grid.circle), 889
CITATION (citation), 1668
citation, 1668, 1670, 1742
citEntry, 1669, 1670, 1807
citFooter (citEntry), 1670
citHeader (citEntry), 1670
class, 26, 36, 37, 69, 102, 131, 220, 240, 278,

311, 322, 349, 374, 476, 480, 542,
774, 824, 1052, 1120, 1298, 1412,
1731

class<- (class), 69
Classes, 70, 965, 977, 985, 1005, 1024, 1027,

1035, 1061, 1076, 1084, 1085
classesToAM, 980
classGeneratorFunction-class

(setClass), 1058
className, 982
className-class (className), 982

1854 INDEX

classRepresentation, 977, 982, 1004, 1011,
1021, 1056, 1057, 1063, 1090

classRepresentation-class, 984
ClassUnionRepresentation-class

(setClassUnion), 1062
clip, 758, 809, 810
clipboard, 1671
clipboard (connections), 83
clipGrob (grid.clip), 890
close, 1761
close (connections), 83
close.screen (screen), 840
close.socket, 1672, 1727, 1760
close.srcfile (srcfile), 456
close.srcfilealias (srcfile), 456
close.tkProgressBar (tkProgressBar),

1580
close.txtProgressBar (txtProgressBar),

1808
close.winProgressBar (winProgressBar),

1823
closeAllConnections (showConnections),

432
closure, 228
closure (function), 197
clusterMap, 199
cm, 648
cm.colors (Palettes), 686
cmdscale, 1172
cmpfun, 229
co.intervals (coplot), 762
CO2, 576
co2, 577
codoc, 1603, 1638
codocClasses (codoc), 1603
codocData (codoc), 1603
coef, 734, 1139, 1174, 1176, 1219, 1260,

1300, 1304, 1355, 1511, 1514, 1547,
1561

coef,ANY-method (coef-methods), 1561
coef,mle-method (coef-methods), 1561
coef,summary.mle-method (coef-methods),

1561
coef-methods, 1561
coefficients, 1121, 1239, 1255, 1453
coefficients (coef), 1174
coerce (as), 966
coerce,ANY,array-method (as), 966
coerce,ANY,call-method (as), 966
coerce,ANY,character-method (as), 966
coerce,ANY,complex-method (as), 966
coerce,ANY,environment-method (as), 966

coerce,ANY,expression-method (as), 966
coerce,ANY,function-method (as), 966
coerce,ANY,integer-method (as), 966
coerce,ANY,list-method (as), 966
coerce,ANY,logical-method (as), 966
coerce,ANY,matrix-method (as), 966
coerce,ANY,name-method (as), 966
coerce,ANY,NULL-method (as), 966
coerce,ANY,numeric-method (as), 966
coerce,ANY,S3-method (S3Part), 1050
coerce,ANY,S4-method (S3Part), 1050
coerce,ANY,single-method (as), 966
coerce,ANY,ts-method (as), 966
coerce,ANY,vector-method (as), 966
coerce,oldClass,S3-method (S3Part), 1050
coerce-methods (as), 966
coerce<- (as), 966
col, 70, 406, 424, 438
col2rgb, 638, 649, 650, 652, 655, 686, 687,

715, 716
collation (Comparison), 76
colMeans, 293
colMeans (colSums), 72
colnames, 128, 578
colnames (row+colnames), 407
colnames<- (row+colnames), 407
Colon, 71
colon (Colon), 71
colorConverter, 655
colorConverter (make.rgb), 681
colorRamp, 650, 686
colorRampPalette (colorRamp), 650
colors, 649, 652, 655, 686, 687, 809, 810,

828, 877, 1215
colorspaces (convertColor), 654
colours (colors), 652
colSums, 72, 410, 480
combn, 156, 447, 1673
commandArgs, 74, 460
comment, 36, 37, 75
comment<- (comment), 75
compactPDF, 1604
Compare, 77
Compare (S4groupGeneric), 1054
compareVersion, 324, 1674
Comparison, 76, 167, 170, 227, 229, 336, 375,

442, 443, 487
complete.cases, 73, 305, 1175
completion (rcompgen), 1750
Complex, 79
Complex (S4groupGeneric), 1054
Complex (groupGeneric), 219

INDEX 1855

complex, 78, 193, 228, 274, 288, 323, 345
complex-class (BasicClasses), 970
computeRestarts (conditions), 79
condition (conditions), 79
conditionCall (conditions), 79
conditionMessage (conditions), 79
conditions, 79, 301
confint, 1176, 1300, 1355, 1562
confint,ANY-method (confint-methods),

1562
confint,mle-method (confint-methods),

1562
confint,profile.mle-method

(confint-methods), 1562
confint-methods, 1562
confint.glm, 1176
confint.nls, 1176
conflicts, 34, 83, 259
Conj, 507
Conj (complex), 78
connection, 5, 57, 111, 132, 135, 268, 300,

340, 357, 380, 382, 385, 386, 412,
416, 418, 421, 427, 436, 444, 519,
558, 1630, 1664, 1675, 1731, 1744,
1746, 1747, 1755, 1757, 1758, 1761,
1805, 1810, 1824

connection (connections), 83
connections, 56, 83, 294, 329, 330, 357, 377,

381, 383, 386, 422, 432, 433, 520,
558

Constants, 91
constrOptim, 1177, 1351, 1353, 1372
contour, 332, 654, 676, 679, 738, 759, 770,

782, 803, 813, 817
contourLines, 332, 653, 760
contourplot, 760, 770
contr.helmert, 1181
contr.helmert (contrast), 1179
contr.poly, 1181, 1400
contr.poly (contrast), 1179
contr.SAS (contrast), 1179
contr.sum, 1163, 1181
contr.sum (contrast), 1179
contr.treatment, 1181, 1446
contr.treatment (contrast), 1179
contrast, 1179
contrasts, 165, 332, 1163, 1180, 1180, 1335,

1460
contrasts<- (contrasts), 1180
contrib.url, 1654, 1668, 1675, 1688, 1721,

1815
contributors, 92, 95

Control, 92, 487
convertColor, 638, 654, 681, 682
converters, 94
convertHeight (grid.convert), 892
convertNative, 871
convertUnit (grid.convert), 892
convertWidth (grid.convert), 892
convertX (grid.convert), 892
convertXY, 761
convertY (grid.convert), 892
convolve, 1181, 1234, 1235, 1284, 1348
cooks.distance, 1303, 1388
cooks.distance (influence.measures),

1272
cophenetic, 1183, 1448
coplot, 738, 762, 801, 802, 842, 1243
copyright, 95
copyrights (copyright), 95
cor, 1184, 1412, 1425, 1426
cor.fk, 1186
cor.test, 1186, 1187, 1213
cos, 224
cos (Trig), 531
cosh (Hyperbolic), 223
count.fields, 1675, 1765
cov, 1190, 1321, 1412, 1426, 1456
cov (cor), 1184
cov.mcd, 1425
cov.mve, 1425
cov.wt, 1186, 1189, 1224, 1425
cov2cor (cor), 1184
covratio, 1303
covratio (influence.measures), 1272
coxph, 1524, 1527
cpgram, 1191, 1479
CRAN.packages (utils-deprecated), 1817
create.post, 333, 1662, 1664, 1676, 1711,

1712
crimtab, 578
crossprod, 96
Cstack_info, 97
cummax (cumsum), 97
cummin (cumsum), 97
cumprod, 356
cumprod (cumsum), 97
cumsum, 97, 356
current.transform (Querying the

Viewport Tree), 947
current.viewport (Querying the

Viewport Tree), 947
current.vpPath (Querying the Viewport

Tree), 947

1856 INDEX

current.vpTree (Querying the Viewport
Tree), 947

curve, 765
curveGrob (grid.curve), 895
cut, 2, 98, 101, 450, 782
cut.Date, 107
cut.Date (cut.POSIXt), 100
cut.dendrogram (dendrogram), 1197
cut.POSIXt, 100, 110
cutree, 1192, 1263
cycle (time), 1528

D (deriv), 1204
daisy, 1211
data, 92, 261, 414, 1591, 1592, 1677, 1711,

1751, 1752
data.class, 102
data.entry, 1690, 1691, 1818
data.entry (dataentry), 1679
data.frame, 23, 31, 59, 60, 75, 103, 106, 120,

127, 128, 163, 164, 219, 279, 290,
299, 330, 351, 409, 420, 507, 531,
539, 729, 731, 816, 818, 1333, 1334,
1459, 1756–1759, 1764, 1765

data.frame-class (setOldClass), 1074
data.frameRowLabels-class

(setOldClass), 1074
data.matrix, 105, 291, 409, 800, 817
dataentry, 333, 1679
datasets (datasets-package), 563
datasets-package, 563
dataViewport, 872, 945
Date, 24, 25, 106, 124, 219, 243, 322, 327,

405, 424, 425, 499, 512, 551, 1330,
1440, 1733

Date (Dates), 107
date, 24, 29, 106, 125, 270, 293, 499, 1528
Date-class (setOldClass), 1074
date-time, 125, 293
date-time (DateTimeClasses), 108
Dates, 107, 110, 328, 742
DateTimeClasses, 30, 92, 106, 107, 108, 126,

174, 243, 405, 426, 467, 499, 551,
742

dbeta, 1212, 1232, 1251
dbeta (Beta), 1153
dbinom, 1154, 1212, 1232, 1250, 1252, 1270,

1342, 1347, 1397, 1522
dbinom (Binomial), 1156
dcauchy, 1212
dcauchy (Cauchy), 1166
dcf, 111
dchisq, 1212, 1232, 1251

dchisq (Chisquare), 1170
de (dataentry), 1679
debug, 47, 48, 113, 197, 993, 1047
debugger, 234, 1681
debugonce (debug), 113
decompose, 1193, 1267
default.stringsAsFactors (data.frame),

103
defaultBindingFunction-class

(ReferenceClasses), 1040
Defunct, 114, 119, 315, 1637, 1817
defunct (Defunct), 114
delayedAssign, 39, 115, 136, 476, 1799
delete.response, 1194
delimMatch, 1606
deltat, 1294
deltat (time), 1528
demo, 333, 445, 679, 680, 1683, 1693
dendrapply, 375, 1195, 1200
dendrogram, 299, 401, 1183, 1192, 1195,

1196, 1197, 1263, 1264, 1376
densCols, 656, 844
density, 756, 757, 776, 816, 826, 857, 1150,

1151, 1201, 1384
density-class (setOldClass), 1074
deparse, 63, 116, 118, 133, 136, 309, 341,

364, 476, 519, 714, 858, 1771
deparseLatex (parseLatex), 1616
deparseOpts, 117
dependsOnPkgs, 1607, 1616
Deprecated, 114, 119, 315, 1497, 1637, 1817
deprecated (Deprecated), 119
deriv, 1204, 1349, 1351
deriv3 (deriv), 1204
derivedDefaultMethodWithTrace-class

(TraceClasses), 1088
descentDetails (widthDetails), 959
det, 119, 144, 359, 360
detach, 35, 120, 259, 261, 319, 420, 543
determinant (det), 119
dev, 657
dev.capabilities, 659, 780, 782, 792, 837,

888, 928
dev.capture, 660
dev.control, 667
dev.control (dev2), 663
dev.copy (dev2), 663
dev.copy2eps (dev2), 663
dev.copy2pdf (dev2), 663
dev.cur, 2, 664, 668
dev.flush, 660
dev.hold (dev.flush), 660

INDEX 1857

dev.interactive, 661, 668
dev.new, 234, 662
dev.off, 1785
dev.print, 646, 668, 702, 719
dev.print (dev2), 663
dev.size, 662, 805
dev2, 663
dev2bitmap, 150, 665, 668
devAskNewPage, 332, 667, 804, 926, 1684,

1692
deviance, 1207, 1208, 1223, 1260, 1304, 1355
device (Devices), 667
deviceIsInteractive (dev.interactive),

661
Devices, 646, 658, 662, 667, 669, 691, 694,

702, 707, 724, 729, 842
dexp, 1212
dexp (Exponential), 1221
df, 1212, 1522
df (FDist), 1231
df.kernel (kernel), 1285
df.residual, 1207, 1208, 1260, 1304, 1355
dfbeta (influence.measures), 1272
dfbetas, 1303
dfbetas (influence.measures), 1272
dffits, 1303
dffits (influence.measures), 1272
dgamma, 1171, 1212, 1222
dgamma (GammaDist), 1249
dgCMatrix, 1179, 1180
dgeom, 1213, 1347
dgeom (Geometric), 1251
dget, 136
dget (dput), 132
dgTMatrix, 1558
dhyper, 1213
dhyper (Hypergeometric), 1269
diag, 122, 276, 289
diag<- (diag), 122
diana, 1148
diff, 123, 1208, 1209, 1294, 1532
diff.ts, 124
diff.ts (ts-methods), 1531
diffinv, 124, 1208
difftime, 109, 110, 125, 219, 322, 328, 424,

425
digamma (Special), 446
dim, 16, 21, 22, 36, 37, 126, 166, 235, 252,

290, 316, 512, 552
dim<- (dim), 126
dimnames, 21, 22, 36, 37, 96, 127, 127, 158,

235, 290, 307, 353, 407, 408, 512,

535, 539, 552, 826
dimnames<- (dimnames), 127
dir (list.files), 266
dir.create, 178
dir.create (files2), 179
dirname (basename), 40
disassemble, 229
discoveries, 580
displaystyle (plotmath), 694
dist, 1174, 1184, 1209, 1211, 1264
distribution (Distributions), 1212
Distributions, 369, 1154, 1157, 1167, 1171,

1212, 1222, 1232, 1251, 1252, 1270,
1310, 1315, 1342, 1347, 1365, 1397,
1466, 1522, 1537, 1540, 1548, 1555

distributions (Distributions), 1212
DLL.version, 1684
DLLInfo, 262
DLLInfo (getLoadedDLLs), 206
DLLInfoList, 262
DLLInfoList (getLoadedDLLs), 206
DLLpath (dyn.load), 139
dlnorm, 1213, 1365
dlnorm (Lognormal), 1314
dlogis (Logistic), 1309
dMatrix, 1180
dmultinom, 1213
dmultinom (Multinom), 1341
DNase, 580
dnbinom, 1157, 1213, 1252, 1397
dnbinom (NegBinomial), 1346
dnorm, 1213, 1315
dnorm (Normal), 1364
do.call, 53, 129, 389, 1042
Documentation, 985
Documentation-class (Documentation), 985
Documentation-methods (Documentation),

985
dot (plotmath), 694
dotchart, 746, 767, 815
dotsMethods, 986, 1030, 1064, 1067, 1073
double, 19, 79, 130, 131, 166, 228, 232, 238,

255, 274, 322, 389, 732
double-class (BasicClasses), 970
download.file, 56, 85, 151, 269, 329, 330,

1653, 1685, 1688, 1718, 1719, 1721,
1738, 1791, 1814–1817

download.packages, 1641, 1654, 1675, 1687,
1687, 1721, 1815

downViewport, 882, 959
downViewport (Working with Viewports),

960

1858 INDEX

dpih, 685
dpois, 1157, 1213, 1347
dpois (Poisson), 1396
dput, 89, 118, 132, 136, 414, 1689, 1740, 1798
dQuote, 477
dQuote (sQuote), 454
draw.details (drawDetails), 873
drawDetails, 873
drop, 133, 135, 158, 289
drop.scope (factor.scope), 1227
drop.terms (delete.response), 1194
drop1, 134, 135, 1121, 1122, 1124, 1223,

1228, 1363, 1498, 1499
drop1 (add1), 1111
droplevels, 134, 475
dsignrank, 1213, 1555
dsignrank (SignRank), 1465
dt, 1167, 1213, 1232
dt (TDist), 1521
dummy.coef, 1213
dump, 89, 118, 132, 133, 135, 414
dump.frames, 329, 1767
dump.frames (debugger), 1681
dump.frames-class (setOldClass), 1074
dumpMethod (GenericFunctions), 1000
dumpMethods (GenericFunctions), 1000
dunif, 1213
dunif (Uniform), 1539
duplicated, 137, 147, 536
duplicated.numeric_version

(numeric_version), 324
duplicated.POSIXlt (DateTimeClasses),

108
dweibull, 1213, 1222
dweibull (Weibull), 1547
dwilcox, 1213, 1466
dwilcox (Wilcoxon), 1554
dyn.load, 5, 55, 139, 186, 205, 206, 209, 262,

263, 334, 1794
dyn.unload, 263
dyn.unload (dyn.load), 139

eapply, 141, 253
ecdf, 182, 1214, 1394, 1442, 1500
edit, 118, 333, 525, 526, 1681, 1688, 1691,

1694, 1697, 1698, 1701, 1740, 1819
edit.data.frame, 1689, 1690, 1690, 1697,

1698, 1818
edit.matrix (edit.data.frame), 1690
edit.vignette (vignette), 1818
editDetails, 874
editGrob, 875, 879
editGrob (grid.edit), 900

eff.aovlist, 1217
effects, 1121, 1218, 1257, 1260, 1299, 1300,

1304
eigen, 142, 245, 359, 360, 482, 1412, 1425,

1426
else, 400
else (Control), 92
emacs (edit), 1688
embed, 1219
embedFonts, 150, 668, 689, 691, 705, 709
emptyenv, 1696
emptyenv (environment), 147
enc2native, 214
enc2native (Encoding), 146
enc2utf8 (Encoding), 146
enclosure (environment), 147
encoded_text_to_latex, 1608
encodeString, 58, 144, 190, 310, 353
Encoding, 65, 76, 146, 184, 225, 357, 378,

393, 445, 469, 471, 478, 544, 1763
Encoding<- (Encoding), 146
end, 1531
end (start), 1495
engine.display.list

(grid.display.list), 897
enquote (substitute), 476
env.profile (environment), 147
environment, 26, 27, 32, 34, 35, 118, 141,

142, 147, 151, 152, 154, 197, 204,
253, 265, 267, 268, 277, 397, 492,
646, 713, 979, 990, 994, 1500, 1659,
1678, 1682

environment variables, 487, 496, 1710
environment variables (EnvVar), 149
environment-class, 989
environment<- (environment), 147
environmentIsLocked (bindenv), 43
environmentName (environment), 147
envRefClass-class, 990
EnvVar, 149
erase.screen (screen), 840
Error (aov), 1129
esoph, 581, 1257
estVar (SSD), 1488
euro, 583
eurodist, 584
EuStockMarkets, 584
eval, 149, 151, 157, 254, 341, 445, 476, 493,

556, 714
evalOnLoad (setLoadActions), 1068
evalq, 554
evalq (eval), 151

INDEX 1859

evalqOnLoad (setLoadActions), 1068
evalSource, 991
example, 333, 1623, 1692
exists, 32, 148, 149, 154, 177, 205, 1724
existsMethod (getMethod), 1005
exp, 1222
exp (log), 272
expand.grid, 155, 1420, 1673
expand.model.frame, 1220, 1335
expm1 (log), 272
Exponential, 1221, 1548
expression, 12, 21, 45, 53, 93, 116, 117, 152,

156, 159, 239, 251, 290, 341, 476,
545, 713, 750, 765, 766, 785, 798,
853, 860, 862, 928, 936, 1205, 1206

expression-class (BasicClasses), 970
extendrange, 372, 669
extends, 978, 982, 1026, 1062
extends (is), 1013
externalptr-class (BasicClasses), 970
Extract, 157, 164–166, 321, 439, 487
Extract.data.frame, 162
Extract.factor, 165
extractAIC, 1113, 1118, 1119, 1207, 1222,

1497, 1498
Extremes, 166

F (logical), 275
factanal, 1224, 1305, 1346, 1546
factor, 71, 77, 99, 100, 131, 135, 159, 166,

168, 212, 219, 233, 256, 276, 311,
480, 481, 509, 511, 559, 750, 763,
820, 822, 1255, 1335, 1446

factor-class (setOldClass), 1074
factor.scope, 1227
factorial (Special), 446
faithful, 585
FALSE, 400
FALSE (logical), 275
family, 1228, 1254, 1256, 1311, 1321, 1322,

1401, 1467
family.glm (glm.summaries), 1259
family.lm (lm.summaries), 1303
fdeaths (UKLungDeaths), 627
FDist, 1231
fft, 1182, 1202, 1233, 1284, 1348, 1478
fifo (connections), 83
file, 225, 340, 377, 380, 383, 385, 416, 418,

433, 436, 444, 457, 520, 558, 1672,
1694, 1761, 1763, 1776, 1825

file (connections), 83
file.access, 171, 173, 174, 177, 178, 267,

1695

file.append (files), 176
file.choose, 172, 267, 1588, 1666, 1667,

1820
file.copy (files), 176
file.create (files), 176
file.edit, 176, 1677, 1694, 1819
file.exists, 155, 173, 180, 504, 1695
file.exists (files), 176
file.info, 172, 173, 178, 180, 267, 326, 495,

1610, 1695
file.link (files), 176
file.path, 41, 174, 178, 180, 1610, 1695
file.remove, 537
file.remove (files), 176
file.rename (files), 176
file.show, 175, 178, 330, 1580, 1694, 1740,

1815, 1816
file.symlink, 495
file.symlink (files), 176
file_ext (fileutils), 1609
file_path_as_absolute (fileutils), 1609
file_path_sans_ext (fileutils), 1609
file_test, 172, 178, 1695
files, 174, 176, 176, 267, 1694
files2, 179
fileutils, 1609
filled.contour, 631, 738, 760, 768, 782, 803
Filter (funprog), 198
filter, 1146, 1182, 1234, 1284
Filters (choose.files), 1666
Find (funprog), 198
find, 278, 1001
find (apropos), 1646
find.package, 181, 504, 560, 1722
findClass, 994
findFunction (GenericFunctions), 1000
findHTMLlinks, 1623, 1624
findHTMLlinks (HTMLlinks), 1613
findInterval, 99, 100, 182, 284
findLineNum, 1695
findMethod (getMethod), 1005
findMethods, 995
findMethodSignatures, 1087
findMethodSignatures (findMethods), 995
findRestart (conditions), 79
finite, 818
finite (is.finite), 236
fisher.test, 1235
fitted, 1238, 1260, 1300, 1304, 1346, 1355
fitted.kmeans (kmeans), 1286
fitted.values, 1121, 1175, 1257, 1453,

1467

1860 INDEX

fivenum, 643, 1239, 1279, 1442
fix, 1689, 1690, 1694, 1697, 1702, 1740
fixInNamespace (getFromNamespace), 1700
fixPre1.8, 998
fligner.test, 1128, 1152, 1240, 1341
floor, 126
floor (Round), 403
flush (connections), 83
flush.console, 89, 1645, 1698
for, 400, 1745
for (Control), 92
for-class (language-class), 1020
force, 152, 183
Foreign, 184, 1596
Formaldehyde, 586
formals, 18, 187, 197, 264, 265, 308, 547
formals<- (formals), 187
format, 29, 58, 62, 188, 190–194, 291,

349–351, 480, 523, 524, 1210, 1429,
1656, 1698, 1799, 1825

format.compactPDF (compactPDF), 1604
format.Date, 107, 189
format.Date (as.Date), 23
format.difftime (difftime), 125
format.dist (dist), 1209
format.ftable (read.ftable), 1443
format.hexmode (hexmode), 222
format.info, 190, 190
format.libraryIQR (library), 258
format.numeric_version

(numeric_version), 324
format.octmode (octmode), 325
format.packageInfo (library), 258
format.person (person), 1740
format.POSIXct, 189, 499
format.POSIXct (strptime), 464
format.POSIXlt (strptime), 464
format.pval, 191, 1429
format.summaryDefault (summary), 480
formatC, 190, 191, 192, 453, 1799
formatDL, 195, 1630, 1699
formatOL (format), 1698
formatUL (format), 1698
formula, 31, 72, 148, 364, 521, 760, 821, 823,

856, 1116, 1149, 1205, 1241, 1244,
1254, 1297, 1298, 1306, 1333–1335,
1354, 1355, 1525–1527, 1557, 1797

formula-class (setOldClass), 1074
formula.lm (lm.summaries), 1303
formula.nls, 1243
forwardsolve (backsolve), 39
fourfoldplot, 771

frac (plotmath), 694
frame, 772, 1740
frameGrob (grid.frame), 901
freeny, 587, 1300
frequency, 1480, 1531
frequency (time), 1528
friedman.test, 1244, 1439
ftable, 509, 1114, 1246, 1248, 1249, 1444,

1708
ftable.default, 1248, 1249
ftable.formula, 1247, 1248
function, 28, 46, 53, 148, 157, 187, 197, 236,

400, 651, 763, 816, 1177
function-class (BasicClasses), 970
functionGrob (grid.function), 902
functionWithTrace-class (TraceClasses),

1088
funprog, 198
fuzzy matching, 1712
fuzzy matching (agrep), 8

Gamma, 1311
Gamma (family), 1228
gamma, 42, 1249, 1251
gamma (Special), 446
gamma.shape, 1467
GammaDist, 1249
gaussian, 1311
gaussian (family), 1228
gc, 200, 202, 295–297, 390, 505
gc.time, 202, 355
gcinfo, 295
gcinfo (gc), 200
gctorture, 201, 202
gctorture2 (gctorture), 202
gEdit, 875
gEditList (gEdit), 875
genericFunction, 1028
genericFunction-class, 999
GenericFunctions, 965, 1000, 1007, 1022,

1081
genericFunctionWithTrace-class

(TraceClasses), 1088
Geometric, 1251
get, 32, 148, 149, 155, 203, 287, 316, 346,

348, 646, 995, 1700–1702, 1724
get.gpar (gpar), 876
get_all_vars (model.frame), 1333
getAllConnections (showConnections), 432
getAnywhere, 1699, 1702, 1730
getBioCmirrors (chooseBioCmirror), 1667
getCall (update), 1542

INDEX 1861

getCConverterDescriptions (converters),
94

getCConverterStatus (converters), 94
getClass, 977, 979, 984, 1003, 1011, 1051,

1057, 1084
getClassDef, 984, 1057, 1089
getClassDef (getClass), 1003
getClasses (findClass), 994
getClipboardFormats (clipboard), 1671
getConnection (showConnections), 432
getCRANmirrors (chooseCRANmirror), 1668
getDataPart, 980
getDepList, 1610
getDLLRegisteredRoutines, 205, 207, 209
getElement (Extract), 157
geterrmessage, 533, 1682
geterrmessage (stop), 461
getFromNamespace, 1700, 1700
getGeneric, 1001, 1029, 1067
getGenerics, 1037, 1038
getGenerics (GenericFunctions), 1000
getGraphicsEvent, 660, 670
getGraphicsEventEnv (getGraphicsEvent),

670
getGrob, 879, 884, 901, 905, 932
getGrob (grid.get), 904
getGroupMembers, 1055
getHook (userhooks), 542
getIdentification, 1703
getIdentification (setWindowTitle), 1792
getInitial, 1252
getLoadActions (setLoadActions), 1068
getLoadedDLLs, 140, 205, 206, 206, 263
getMethod, 1002, 1005, 1749
getMethods (findMethods), 995
getMethodsForDispatch, 996
getNames, 876
getNativeSymbolInfo, 206, 207, 207
getNumCConverters (converters), 94
getOption, 104, 188, 190, 260, 351, 352, 466,

548, 658, 661, 782, 1653, 1710,
1719, 1720, 1753

getOption (options), 328
getPackageName, 1007, 1022
getRefClass (ReferenceClasses), 1040
getRversion, 365
getRversion (numeric_version), 324
getS3method, 542, 1700, 1702, 1702, 1730,

1731
getSlots (slot), 1082
getSrcDirectory (sourceutils), 1795
getSrcFilename, 458

getSrcFilename (sourceutils), 1795
getSrcLines (srcfile), 456
getSrcLocation (sourceutils), 1795
getSrcref (sourceutils), 1795
getTaskCallbackNames, 513, 514, 516
getTaskCallbackNames

(taskCallbackNames), 516
gettext, 209, 300, 301, 451, 453, 461, 462,

548, 549, 1641
gettextf, 1641
gettextf (sprintf), 451
getTkProgressBar (tkProgressBar), 1580
getTxtProgressBar (txtProgressBar), 1808
getValidity (validObject), 1089
getwd, 211, 266, 416, 487, 1761
getWindowsHandle, 1703
getWindowsHandles, 1649, 1650, 1703, 1704
getWindowTitle (setWindowTitle), 1792
getWinProgressBar (winProgressBar), 1823
gl, 170, 212, 427
glht, 1538
gList (grid.grob), 907
glm, 480, 1112, 1122, 1175, 1180, 1181, 1207,

1208, 1228–1230, 1239, 1242, 1243,
1253, 1258–1260, 1273, 1280, 1300,
1302, 1304, 1313, 1321, 1322, 1332,
1344, 1363, 1367, 1387, 1416, 1453,
1467, 1497, 1498, 1508, 1509, 1524,
1525, 1546, 1549

glm-class (setOldClass), 1074
glm.control, 1254, 1258
glm.fit, 1258, 1259
glm.null-class (setOldClass), 1074
glm.summaries, 1259
glob2rx, 215, 267, 277, 278, 394, 1646, 1705
globalenv, 28
globalenv (environment), 147
globalVariables, 1706
gpar, 697, 704, 708, 723, 726, 876, 916
gPath, 878, 919, 922
graphical parameter, 787, 800, 819, 827
graphical parameter (par), 802
graphical parameters, 734–736, 740, 741,

746, 748, 749, 753, 760, 765, 768,
769, 775, 778, 782, 800, 812, 815,
816, 819, 821, 822, 825, 827–830,
835, 837, 838, 843, 860, 862, 864

graphical parameters (par), 802
graphics (graphics-package), 733
graphics-package, 733
graphics.off, 668
graphics.off (dev), 657

1862 INDEX

gray, 652, 673, 674, 680, 686, 687, 715, 809
gray.colors, 673, 756, 846
grconvertX (convertXY), 761
grconvertY (convertXY), 761
grDevices (grDevices-package), 637
grDevices-package, 637
gregexpr, 395
gregexpr (grep), 212
grep, 9, 63, 64, 212, 218, 278, 344, 391, 394,

469, 1646, 1648, 1704, 1713, 1787
grepl (grep), 212
grepRaw, 215, 217
grey, 650
grey (gray), 673
grey.colors (gray.colors), 673
Grid, 879, 882, 885, 887, 890, 891, 896, 898,

903, 907, 909, 911, 916, 917, 920,
924, 925, 930, 933, 935–937, 939,
940, 942

grid, 637, 733, 773, 1386
Grid Viewports, 880
grid-package, 867
grid.abline (grid.function), 902
grid.add, 883
grid.arrows, 884
grid.bezier, 886
grid.cap, 659, 888
grid.circle, 889
grid.clip, 890
grid.collection, 891
grid.convert, 872, 892
grid.convertHeight (grid.convert), 892
grid.convertWidth (grid.convert), 892
grid.convertX (grid.convert), 892
grid.convertY (grid.convert), 892
grid.copy, 894
grid.curve, 895
grid.display.list, 897
grid.DLapply, 898
grid.draw, 874, 899, 908
grid.edit, 875, 900, 908, 919, 922, 958
grid.frame, 901, 919, 922
grid.function, 902
grid.gedit (grid.edit), 900
grid.get, 904, 908
grid.gget (grid.get), 904
grid.grab, 905
grid.grabExpr (grid.grab), 905
grid.gremove (grid.remove), 931
grid.grill, 906
grid.grob, 892, 894, 907, 934
grid.layout, 879, 882, 908, 935, 953

grid.line.to, 885
grid.line.to (grid.move.to), 915
grid.lines, 885, 910
grid.locator, 912
grid.ls, 913
grid.move.to, 915
grid.newpage, 667, 916, 926
grid.null, 917
grid.pack, 902, 918, 922
grid.path, 919
grid.place, 919, 921
grid.plot.and.legend, 922
grid.points, 923
grid.polygon, 924
grid.polyline (grid.lines), 910
grid.pretty, 925
grid.prompt, 926
grid.raster, 659, 888, 926
grid.record, 928
grid.rect, 929
grid.refresh, 931
grid.remove, 931
grid.roundrect (roundrect), 948
grid.segments, 885, 932
grid.set, 933
grid.show.layout, 882, 909, 934
grid.show.viewport, 935, 951
grid.text, 936
grid.xaxis, 938, 942
grid.xspline, 887, 896, 939
grid.yaxis, 939, 941
grob, 875, 879, 884, 899, 901, 905, 914, 932,

949
grob (grid.grob), 907
grobAscent, 870
grobAscent (grobWidth), 943
grobDescent, 870
grobDescent (grobWidth), 943
grobHeight (grobWidth), 943
grobName, 943
grobPathListing (grid.ls), 913
grobTree (grid.grob), 907
grobWidth, 943, 944, 952
grobX, 944, 963
grobY, 963
grobY (grobX), 944
group (plotmath), 694
group generic, 70, 170, 235, 540
group generic (groupGeneric), 219
groupGeneric, 219
groupGenericFunction-class

(genericFunction-class), 999

INDEX 1863

GroupGenericFunctions, 972, 1025
GroupGenericFunctions (S4groupGeneric),

1054
groupGenericFunctionWithTrace-class

(TraceClasses), 1088
GSC (EnvVar), 149
gsub, 65, 146, 194
gsub (grep), 212
gTree, 906, 949
gTree (grid.grob), 907
gzcon, 89, 221, 269, 387, 433
gzfile, 111, 222, 269, 294, 1811
gzfile (connections), 83

HairEyeColor, 588
Harman23.cor, 589, 1226
Harman74.cor, 589, 1226, 1546
hasArg, 1008
hasLoadAction (setLoadActions), 1068
hasMethod (getMethod), 1005
hasMethods (findMethods), 995
hasTsp (tsp), 1535
hat, 1303, 1317, 1388
hat (influence.measures), 1272
hat (plotmath), 694
hatvalues, 1388
hatvalues (influence.measures), 1272
hcl, 652, 673, 674, 680, 687, 715, 809
hclust, 1148, 1183, 1184, 1192, 1211, 1260,

1264, 1265, 1271, 1445
head, 1707
heat.colors, 651, 652, 781, 782
heat.colors (Palettes), 686
heatmap, 782, 1263, 1448
heightDetails, 868
heightDetails (widthDetails), 959
help, 18, 176, 234, 333, 985, 1633, 1679,

1692, 1709, 1714, 1715, 1745, 1748,
1749

help.ports (startDynamicHelp), 1632
help.request, 333, 1664, 1676, 1677, 1711
help.search, 333, 387, 394, 1646, 1711,

1712, 1778
help.start, 333, 1632, 1633, 1711, 1714,

1715, 1726, 1778
Hershey, 676, 680, 760, 805, 861, 878
hexmode, 222, 326, 1594
hist, 685, 746, 774, 777, 778, 825, 826, 828,

838, 846, 847, 1203
hist.Date, 107
hist.Date (hist.POSIXt), 777
hist.default, 778
hist.POSIXt, 777

history (savehistory), 1787
HoltWinters, 1266, 1385, 1417
HOME (EnvVar), 149
hsearch-class (setOldClass), 1074
hsv, 652, 673, 675, 679, 686, 687, 715, 716,

782, 809
HTMLheader, 1612, 1636
HTMLlinks, 1613
Hyperbolic, 223
Hypergeometric, 1269

I, 23, 103, 104, 1242, 1243, 1825
I (AsIs), 30
iconv, 56, 88, 146, 184, 224, 558, 727, 1608,

1623, 1631, 1723, 1737
iconvlist, 457
iconvlist (iconv), 224
icuSetCollate, 77, 226
identical, 11, 12, 77, 228, 237
identify, 659, 778, 792, 1271
identify.hclust, 1262, 1263, 1270, 1445
identity, 230
if, 231, 274, 339, 400
if (Control), 92
if-class (language-class), 1020
ifelse, 93, 230
Im (complex), 78
image, 645, 666, 668, 760, 770, 781, 803, 813,

817, 828, 844, 1263–1265, 1518
implicit generic, 260
implicit generic (implicitGeneric), 1009
implicitGeneric, 1009, 1026, 1029, 1067
in (Control), 92
Indometh, 590
Inf, 19, 182, 184, 323, 400, 1239
Inf (is.finite), 236
inf (plotmath), 694
infert, 591, 1257
influence, 1273, 1274, 1304, 1388, 1550
influence (lm.influence), 1302
influence.measures, 1260, 1272,

1302–1304, 1453
inheritedSlotNames, 1011
inherits, 1017, 1060
inherits (class), 69
initFieldArgs (ReferenceClasses), 1040
initialize, 978, 985, 990, 1013, 1017, 1065,

1085, 1088
initialize (new), 1034
initialize,.environment-method

(initialize-methods), 1012
initialize,ANY-method

(initialize-methods), 1012

1864 INDEX

initialize,array-method
(StructureClasses), 1084

initialize,data.frame-method
(setOldClass), 1074

initialize,environment-method
(initialize-methods), 1012

initialize,envRefClass-method
(envRefClass-class), 990

initialize,factor-method (setOldClass),
1074

initialize,matrix-method
(StructureClasses), 1084

initialize,mts-method
(StructureClasses), 1084

initialize,ordered-method
(setOldClass), 1074

initialize,signature-method
(initialize-methods), 1012

initialize,summary.table-method
(setOldClass), 1074

initialize,table-method (setOldClass),
1074

initialize,traceable-method
(initialize-methods), 1012

initialize,ts-method
(StructureClasses), 1084

initialize-methods, 1012
initRefFields (ReferenceClasses), 1040
InsectSprays, 592
insertSource (evalSource), 991
INSTALL, 261, 333, 1008, 1716, 1721, 1722,

1736, 1770, 1794, 1815
install.packages, 234, 261, 333, 1614,

1653, 1654, 1675, 1688, 1716, 1717,
1722, 1736, 1738, 1771, 1792, 1814,
1815

installed.packages, 259, 261, 318, 560,
1607, 1611, 1721, 1721, 1739, 1752,
1753, 1814, 1815

installFoundDepends, 1612, 1613
Insurance, 1367
integer, 19, 72, 102, 127, 132, 166, 191, 231,

255, 274, 288, 315, 322, 323, 368,
553, 578, 1564

integer-class (BasicClasses), 970
integral (plotmath), 694
integrate, 1275
integrate-class (setOldClass), 1074
interaction, 72, 233
interaction.plot, 821, 1277
interactive, 234, 330, 384, 1684
Internal, 235

internal generic, 70, 79, 127, 220, 224,
288, 322, 423, 435, 447, 532, 540,
541, 559, 1067

internal generic (InternalMethods), 235
InternalGenerics, 540
InternalGenerics (InternalMethods), 235
InternalMethods, 22, 62, 158, 169, 235, 237,

255, 290, 304, 322, 538, 1530, 1621
interpSpline, 1095, 1096, 1099, 1100, 1102,

1104, 1483
intersect (sets), 428
intersection (sets), 428
intToBits (rawConversion), 377
intToUtf8, 146
intToUtf8 (utf8Conversion), 544
inverse.gaussian, 1311
inverse.gaussian (family), 1228
inverse.rle (rle), 402
invisible, 121, 197, 236, 349, 485, 556, 685,

1081, 1271
invokeRestart (conditions), 79
invokeRestartInteractively

(conditions), 79
IQR, 684, 1239, 1279, 1320
iris, 592
iris3 (iris), 592
is, 70, 546, 977, 980, 1013, 1056, 1057
is.array, 235
is.array (array), 20
is.atomic, 418
is.atomic (is.recursive), 241
is.call (call), 52
is.character (character), 62
is.complex (complex), 78
is.data.frame (as.data.frame), 22
is.double, 322
is.double (double), 130
is.element, 284
is.element (sets), 428
is.empty.model, 1280
is.environment (environment), 147
is.expression (expression), 156
is.factor (factor), 168
is.finite, 236
is.function, 238
is.grob (grid.grob), 907
is.infinite (is.finite), 236
is.integer (integer), 231
is.language, 53, 239, 241, 306
is.leaf (dendrogram), 1197
is.list, 241, 546
is.list (list), 264

INDEX 1865

is.loaded, 209
is.loaded (dyn.load), 139
is.logical (logical), 275
is.matrix, 235
is.matrix (matrix), 290
is.mts (ts), 1529
is.na, 169, 235, 640, 1175
is.na (NA), 304
is.na.numeric_version

(numeric_version), 324
is.na.POSIXlt (DateTimeClasses), 108
is.na<- (NA), 304
is.na<-.factor (factor), 168
is.name (name), 305
is.nan, 235, 305
is.nan (is.finite), 236
is.null (NULL), 320
is.numeric, 105, 235, 336, 411, 442, 546,

559, 767, 1185
is.numeric (numeric), 321
is.numeric.difftime (difftime), 125
is.numeric_version (numeric_version),

324
is.object, 26, 70, 235, 239, 244, 540, 542,

639, 1085
is.ordered (factor), 168
is.package_version (numeric_version),

324
is.pairlist (list), 264
is.primitive (is.function), 238
is.qr (qr), 358
is.R, 240
is.raster (as.raster), 639
is.raw (raw), 375
is.real (real), 389
is.recursive, 158, 241
is.relistable (relist), 1768
is.single, 242
is.stepfun (stepfun), 1499
is.symbol, 59
is.symbol (name), 305
is.table (table), 508
is.tclObj (TclInterface), 1571
is.tkwin (TclInterface), 1571
is.ts (ts), 1529
is.tskernel (kernel), 1285
is.unsorted, 242, 443
is.vector, 1797
is.vector (vector), 545
isatty (showConnections), 432
isClass, 975, 1005, 1011
isClass (findClass), 994

isClassUnion (setClassUnion), 1062
isdebugged (debug), 113
isGeneric, 1029, 1067
isGeneric (GenericFunctions), 1000
isGroup (GenericFunctions), 1000
isIncomplete, 519
isIncomplete (connections), 83
islands, 594
ISOdate (ISOdatetime), 243
ISOdatetime, 243
isoMDS, 1174, 1281
isOpen (connections), 83
isoreg, 1280, 1385, 1386
isRestart (conditions), 79
isS4, 240, 243, 438, 534, 971, 1052, 1085
isSealedClass (isSealedMethod), 1018
isSealedMethod, 1018
isSeekable (seek), 420
isSymmetric, 244
isTRUE, 12, 229
isTRUE (Logic), 273
isXS3Class (S3Part), 1050
italic (plotmath), 694

Japanese, 679, 680
jitter, 245, 840, 856
JohnsonJohnson, 594, 1536
jpeg, 56, 666, 668
jpeg (png), 699
julian (weekdays), 550

KalmanForecast, 1414
KalmanForecast (KalmanLike), 1282
KalmanLike, 1139, 1282, 1505, 1506
KalmanRun (KalmanLike), 1282
KalmanSmooth, 1536
KalmanSmooth (KalmanLike), 1282
kappa, 246
Kendall, 1189
kernapply, 1283, 1286
kernel, 1284, 1285
kmeans, 1263, 1286
knots, 1215, 1393, 1500
knots (stepfun), 1499
kronecker, 248, 338
kruskal.test, 1289, 1368, 1553
ks.test, 1169, 1290
ksmooth, 1293

l10n_info, 249, 271
La.svd (svd), 481
labels, 250, 1200, 1304, 1525

1866 INDEX

labels.dendrogram (order.dendrogram),
1376

labels.dist (dist), 1209
labels.lm (lm.summaries), 1303
labels.terms (terms), 1525
lag, 1294
lag.plot, 1295
LakeHuron, 595
LANGUAGE (EnvVar), 149
language-class, 1020
lapply, 17, 142, 251, 287, 374, 375, 512,

1117, 1196
Last.value, 253
last.warning (warnings), 549
latexToUtf8 (parseLatex), 1616
layout, 658, 683, 770, 783, 807, 810, 841,

842, 909, 1265
lbeta (Special), 446
LC_ALL (locales), 270
LC_COLLATE (locales), 270
LC_CTYPE (locales), 270
LC_MONETARY (locales), 270
LC_NUMERIC (locales), 270
LC_TIME (locales), 270
lchoose (Special), 446
lcm (layout), 783
ldeaths (UKLungDeaths), 627
legend, 157, 695, 746, 785, 838, 1277
length, 109, 235, 254
length.POSIXlt (DateTimeClasses), 108
length.tclArray (TclInterface), 1571
length<- (length), 254
length<-.tclArray (TclInterface), 1571
LETTERS (Constants), 91
letters (Constants), 91
levelplot, 760, 770, 782
levels, 36, 37, 170, 256, 276, 310, 311, 1446,

1447
levels<- (levels), 256
lfactorial (Special), 446
lgamma (Special), 446
lh, 595
libPaths, 257
library, 35, 38, 39, 120, 121, 258, 258, 263,

317, 319, 329, 420, 498, 542, 543,
560, 1001, 1008, 1634, 1674, 1711,
1717, 1721, 1751, 1752, 1815

library.dynam, 140, 141, 205, 261, 261, 1794
library.dynam.unload, 121, 141
libraryIQR-class (setOldClass), 1074
licence (license), 263
license, 95, 263

LifeCycleSavings, 596, 1300
limitedLabels (recover), 1766
line, 1296
linearizeMlist, 1021
LinearMethodsList-class, 1021
lines, 730, 734, 758, 766, 774, 790, 793,

802–804, 806, 813, 817, 824, 825,
828, 829, 831, 833, 834, 836, 843,
865, 1385, 1386, 1395, 1523

lines.formula, 791
lines.formula (plot.formula), 823
lines.histogram (plot.histogram), 825
lines.isoreg (plot.isoreg), 1385
lines.stepfun (plot.stepfun), 1393
lines.table (plot.table), 826
lines.ts (plot.ts), 1394
linesGrob (grid.lines), 910
lineToGrob (grid.move.to), 915
list, 161, 204, 264, 267, 304, 329, 359, 364,

416, 512, 531, 545, 641, 997, 1057,
1386, 1387, 1472, 1564, 1631, 1673,
1732, 1769, 1792

list-class (BasicClasses), 970
list.dirs (list.files), 266
list.files, 172, 174, 176, 178, 180, 211,

266, 394, 504, 1610, 1667, 1779,
1780

list2env, 26, 27, 267
list_files_with_exts (fileutils), 1609
list_files_with_type (fileutils), 1609
listOfMethods, 1032
listOfMethods-class (findMethods), 995
lm, 332, 480, 538, 1112, 1113, 1123, 1124,

1130, 1166, 1175, 1176, 1180, 1181,
1207, 1208, 1218, 1222, 1228, 1239,
1242, 1243, 1257, 1273, 1280, 1290,
1297, 1297, 1300–1304, 1318, 1319,
1344, 1363, 1387, 1402, 1419, 1433,
1453, 1467, 1497, 1510, 1511, 1524,
1525, 1549, 1550, 1798

lm-class (setOldClass), 1074
lm.fit, 360, 1298, 1300, 1300
lm.influence, 1273, 1274, 1300, 1302, 1317,

1318, 1388, 1550
lm.summaries, 1303
lm.wfit, 1300
lm.wfit (lm.fit), 1300
lme, 1130
load, 35, 87, 89, 268, 387, 414, 428, 1678
loadedNamespaces, 420
loadedNamespaces (ns-load), 318
loadhistory (savehistory), 1787

INDEX 1867

loadings, 1225, 1226, 1305, 1426
loadNamespace, 317, 543
loadNamespace (ns-load), 318
loadRconsole (Rwin configuration), 1785
Loblolly, 597
local, 389, 459
local (eval), 151
localeconv, 250
localeconv (Sys.localeconv), 491
locales, 25, 30, 76, 270, 392, 467
localeToCharset, 225, 445, 1722
locator, 659, 780, 785, 791
lockBinding, 32, 519
lockBinding (bindenv), 43
lockEnvironment, 397
lockEnvironment (bindenv), 43
loess, 844, 1306, 1308, 1316, 1421, 1458,

1469, 1503
loess.control, 1306, 1307, 1308, 1457
loess.smooth (scatter.smooth), 1457
log, 272, 288, 1055
log10 (log), 272
log1p (log), 272
log2 (log), 272
logb (log), 272
Logic, 273, 274, 375, 487, 552
Logic (S4groupGeneric), 1054
logical, 275, 275, 288, 463, 552
logical-class (BasicClasses), 970
Logistic, 1309
logLik, 1118, 1119, 1222, 1223, 1229, 1310,

1355, 1363, 1561, 1562
logLik,ANY-method (logLik-methods), 1562
logLik,mle-method (logLik-methods), 1562
logLik-class (setOldClass), 1074
logLik-methods, 1562
logLik.gls, 1311
logLik.lme, 1311
loglin, 588, 795, 797, 1257, 1312
loglm, 1257, 1313
Lognormal, 1314
longley, 598, 1300
lower.tri, 123, 276
lowess, 730, 802, 1307, 1315, 1469
lqs, 1334
ls, 149, 277, 346, 394, 397, 1659, 1723, 1724
ls.diag, 1316, 1318, 1319
ls.print, 1317, 1317, 1319
ls.str, 149, 278, 1723, 1800
lsf.str (ls.str), 1723
lsfit, 360, 1316–1318, 1318
lynx, 599

mad, 684, 1279, 1319, 1459
mahalanobis, 1320
maintainer, 1724
make.link, 1228–1230, 1321, 1401
make.names, 23, 32, 103, 104, 278, 280, 400,

1756, 1763
make.packages.html, 1715, 1725
make.rgb, 655, 681
make.socket, 56, 1672, 1726, 1760
make.unique, 162, 278, 279, 279, 1736
makeActiveBinding (bindenv), 43
makeARIMA (KalmanLike), 1282
makeClassRepresentation, 995, 1021, 1061
MAKEINDEX (EnvVar), 149
makepredictcall, 1322
makepredictcall.poly (poly), 1399
manova, 1323, 1512
mantelhaen.test, 1324
maov-class (setOldClass), 1074
Map (funprog), 198
mapply, 199, 251, 253, 280, 512, 547
margin.table, 281, 356, 509, 1114
mat.or.vec, 282
match, 64, 147, 163, 215, 283, 298, 344, 552
match.arg, 284, 284, 286, 287, 344, 1211
match.call, 252, 285, 285, 344, 1006
match.fun, 16, 142, 252, 281, 285, 286, 286,

338, 344, 483, 512, 547, 1116
Math, 98, 125, 170, 224, 272, 273, 288, 404,

435, 447, 532, 1036, 1621
Math (S4groupGeneric), 1054
Math (groupGeneric), 219
Math,nonStructure-method

(nonStructure-class), 1036
Math,structure-method

(StructureClasses), 1084
Math.data.frame, 104
Math.Date (Dates), 107
Math.difftime (difftime), 125
Math.factor (factor), 168
Math.POSIXlt (DateTimeClasses), 108
Math.POSIXt (DateTimeClasses), 108
Math2, 404, 1036
Math2 (S4groupGeneric), 1054
Math2,nonStructure-method

(nonStructure-class), 1036
MathFun, 288
matlines (matplot), 792
matmult, 289
matplot, 593, 792
matpoints (matplot), 792

1868 INDEX

matrix, 21, 22, 106, 123, 128, 161, 245, 276,
289, 290, 316, 764, 793, 979, 980,
1085, 1673

matrix-class (StructureClasses), 1084
mauchly.test, 1327, 1489
max, 170, 372, 553, 1131
max (Extremes), 166
max.col, 553
max.col (maxCol), 291
maxCol, 291
mclapply, 518
mcmapply, 199
mcnemar.test, 1328
md5sum, 1597, 1614
mdeaths (UKLungDeaths), 627
mean, 73, 126, 293, 1131, 1149, 1521, 1549
mean.Date (Dates), 107
mean.difftime (difftime), 125
mean.POSIXct, 293
mean.POSIXct (DateTimeClasses), 108
mean.POSIXlt (DateTimeClasses), 108
median, 1149, 1239, 1320, 1329, 1331, 1469
medpolish, 1330
memCompress, 89, 294
memDecompress (memCompress), 294
Memory, 201, 295, 296, 329, 390, 460
Memory-limits, 296, 1728
memory.limit, 295–297
memory.limit (memory.size), 1728
memory.profile, 296, 297
memory.size, 296, 297, 1728
menu, 6, 1589, 1667, 1668, 1729, 1789, 1791
merge, 298, 1199
merge.dendrogram (dendrogram), 1197
message, 300, 436, 549, 1641
method.skeleton, 1022, 1071, 1073
MethodDefinition, 1006, 1007, 1029, 1034,

1082
MethodDefinition-class, 1023
MethodDefinitionWithTrace-class

(TraceClasses), 1088
Methods, 70, 114, 244, 965, 972, 974, 980,

987, 988, 995, 998, 1006, 1007,
1013, 1024, 1033, 1055, 1059, 1061,
1064, 1067, 1072, 1073, 1075, 1084,
1731

methods, 11, 221, 235, 240, 278, 311, 349,
480, 540, 542, 1259, 1303, 1508,
1702, 1711, 1730

methods-package, 965
MethodSelectionReport-class

(testInheritedMethods), 1086

MethodsList, 1021, 1024
MethodsList-class, 1032
MethodWithNext, 1024
MethodWithNext-class, 1033
MethodWithNextWithTrace-class

(TraceClasses), 1088
mget (get), 203
min, 170, 372, 553, 1131
min (Extremes), 166
mirror2html (mirrorAdmin), 1731
mirrorAdmin, 1731
missing, 155, 301, 477, 1009, 1744
missing-class (BasicClasses), 970
mle, 1370, 1561, 1562, 1564, 1567, 1568
mle-class, 1564
mlm-class (setOldClass), 1074
Mod, 11, 288
Mod (complex), 78
mode, 12, 69, 72, 131, 154, 204, 302, 322, 429,

476, 534, 540, 1646, 1724
mode<- (mode), 302
model.extract, 1332, 1336
model.frame, 1077, 1127, 1152, 1188, 1220,

1224, 1240, 1243, 1244, 1248, 1256,
1289, 1299, 1322, 1332, 1333, 1335,
1336, 1340, 1343, 1367, 1368, 1407,
1410, 1425, 1439, 1519, 1525, 1544,
1552, 1557

model.frame.default, 1322
model.matrix, 23, 103, 1298, 1335, 1335,

1525, 1543
model.matrix.default, 1298
model.offset, 1254, 1298, 1367
model.offset (model.extract), 1332
model.response (model.extract), 1332
model.tables, 1129, 1130, 1214, 1336, 1433,

1450, 1460, 1507, 1538
model.tables.aovlist, 1217
model.weights (model.extract), 1332
modifyList, 1732
month.abb (Constants), 91
month.name (Constants), 91
monthplot, 1338
months (weekdays), 550
mood.test, 1128, 1152, 1241, 1340, 1545
morley, 599
mosaic, 796
mosaicplot, 588, 737, 772, 794, 826, 847
mostattributes<- (attributes), 37
moveToGrob (grid.move.to), 915
msgWindow, 644, 682
mtable-class (setOldClass), 1074

INDEX 1869

mtcars, 600
mtext, 695, 698, 758, 764, 797, 803–805, 809,

861, 862
mts-class (setOldClass), 1074
Multinom, 1341
Multinomial (Multinom), 1341
multipleClasses (className), 982
mvfft (fft), 1233

n2mfrow, 683, 1295
NA, 40, 76, 124, 169, 182, 184, 228, 237, 238,

255, 274, 276, 302, 304, 332, 349,
351, 372, 373, 400, 417, 552, 642,
649, 729, 731, 749, 773, 1185, 1239,
1264, 1265, 1343, 1344, 1377, 1407,
1429, 1437, 1440, 1517, 1581, 1756,
1762, 1808, 1809, 1823

na.action, 305, 1302, 1342, 1344, 1346
na.contiguous, 1343, 1344, 1532
na.exclude, 1254, 1297, 1302, 1303, 1346,

1355
na.exclude (na.fail), 1344
na.fail, 305, 1175, 1220, 1254, 1297, 1333,

1343, 1344, 1355, 1410, 1425, 1532
na.omit, 73, 305, 1175, 1220, 1254, 1297,

1333, 1343, 1346, 1355, 1410, 1420,
1425, 1532

na.omit (na.fail), 1344
na.omit.ts, 1343
na.omit.ts (ts-methods), 1531
na.pass, 1334
na.pass (na.fail), 1344
NA_character_, 341, 342, 400
NA_character_ (NA), 304
NA_complex_, 400
NA_complex_ (NA), 304
NA_integer_, 19, 323, 400, 471
NA_integer_ (NA), 304
NA_real_, 228, 323, 400
NA_real_ (NA), 304
name, 57, 152, 158, 162, 239, 259, 305, 766,

1683, 1709, 1748
name-class (language-class), 1020
namedList, 997
namedList-class (BasicClasses), 970
names, 11, 21, 36, 37, 96, 104, 123, 128, 142,

158, 159, 161, 166, 235, 251, 267,
279, 306, 407, 409, 535, 539, 658,
1084, 1440

names.POSIXlt (DateTimeClasses), 108
names.tclArray (TclInterface), 1571
names<- (names), 306
names<-.POSIXlt (DateTimeClasses), 108

names<-.tclArray (TclInterface), 1571
NaN, 19, 76, 79, 131, 184, 228, 304, 305, 323,

400, 642, 1239, 1440
NaN (is.finite), 236
napredict, 1225, 1238, 1344, 1411, 1415,

1418, 1426, 1550
napredict (naresid), 1345
naprint, 1345
naresid, 1260, 1302, 1304, 1344, 1345, 1453
nargs, 308
NativeSymbol, 55, 184
NativeSymbol (getNativeSymbolInfo), 207
NativeSymbolInfo, 55, 184, 1595
NativeSymbolInfo (getNativeSymbolInfo),

207
nchar, 189, 309, 342, 469, 478, 523, 854
nclass, 684
nclass.FD, 776
nclass.scott, 776
nclass.Sturges, 776
NCOL, 407
NCOL (nrow), 315
ncol, 127
ncol (nrow), 315
Negate (funprog), 198
NegBinomial, 1230, 1346
nestedListing (grid.ls), 913
new, 978, 980, 984, 1012, 1034, 1044, 1051,

1053, 1059, 1075, 1085, 1090
new.env, 267, 268, 990
new.env (environment), 147
new.packages (update.packages), 1813
news, 1732
next, 400
next (Control), 92
NextMethod, 70
NextMethod (UseMethod), 539
nextn, 1182, 1234, 1348
ngettext, 1641
ngettext (gettext), 209
nhtemp, 601
Nile, 602, 1536
nlevels, 170, 256, 310
nlm, 1206, 1349, 1353, 1372, 1375, 1541, 1769
nlminb, 1351, 1351, 1372
nls, 209, 332, 1238, 1244, 1253, 1351, 1354,

1359, 1360, 1363, 1391, 1422, 1431,
1453, 1462, 1485–1488, 1490–1495,
1514

nls.control, 1354, 1356, 1359
NLSstAsymptotic, 1360
NLSstClosestX, 1361, 1362, 1363, 1475

1870 INDEX

NLSstLfAsymptote, 1361, 1362, 1475
NLSstRtAsymptote, 1361, 1362, 1362, 1363,

1475
nobs, 1112, 1118, 1119, 1363, 1498
nobs,mle-method (mle-class), 1564
non-local assignment, 1046
nonstandardGenericWithTrace-class

(TraceClasses), 1088
nonStructure, 1086
nonStructure-class, 1036
noquote, 311, 350, 353, 1517, 1594
norm, 247, 248, 312
Normal, 1364
normalizePath, 211, 258, 313, 343, 1610,

1795
nottem, 603
NotYet, 314
NotYetImplemented (NotYet), 314
NotYetUsed (NotYet), 314
NROW, 407
NROW (nrow), 315
nrow, 127, 315
ns, 1093, 1096, 1097, 1100, 1101, 1322
ns-dblcolon, 316
ns-hooks, 317
ns-load, 318
ns-topenv, 320
NULL, 161, 265, 315, 320, 400, 463, 716, 1011,

1264, 1792
NULL-class (BasicClasses), 970
nullGrob (grid.null), 917
numeric, 19, 72, 131, 132, 232, 274, 321, 322,

372
numeric-class (BasicClasses), 970
numeric_version, 324, 1733
NumericConstants, 92, 323, 418, 487, 1810
numericDeriv, 1366
nzchar (nchar), 309

object.size, 296, 297, 1734
objects, 35, 121, 261, 397, 420, 1646
objects (ls), 277
ObjectsWithPackage-class, 1037
occupationalStatus, 604
octmode, 180, 223, 325
offset, 1242, 1243, 1254, 1298, 1332, 1367,

1527
old.packages (update.packages), 1813
oldClass, 220, 231, 979, 1075
oldClass (class), 69
oldClass-class (setOldClass), 1074
oldClass<- (class), 69
on.exit, 197, 326, 493, 1726

oneway.test, 1367
open (connections), 83
open.srcfile (srcfile), 456
open.srcfilealias (srcfile), 456
open.srcfilecopy (srcfile), 456
Ops, 19, 76, 126, 170, 274, 327, 541, 1036
Ops (S4groupGeneric), 1054
Ops (groupGeneric), 219
Ops,array,array-method

(StructureClasses), 1084
Ops,array,structure-method

(StructureClasses), 1084
Ops,nonStructure,nonStructure-method

(nonStructure-class), 1036
Ops,nonStructure,vector-method

(nonStructure-class), 1036
Ops,structure,array-method

(StructureClasses), 1084
Ops,structure,structure-method

(StructureClasses), 1084
Ops,structure,vector-method

(StructureClasses), 1084
Ops,vector,nonStructure-method

(nonStructure-class), 1036
Ops,vector,structure-method

(StructureClasses), 1084
Ops.Date, 107, 327
Ops.difftime (difftime), 125
Ops.factor (factor), 168
Ops.numeric_version (numeric_version),

324
Ops.ordered (factor), 168
Ops.POSIXt (DateTimeClasses), 108
Ops.ts (ts), 1529
optim, 1138, 1139, 1143, 1144, 1177, 1178,

1206, 1224, 1268, 1351, 1353, 1369,
1504, 1505, 1563, 1564, 1769

optimHess (optim), 1369
optimise (optimize), 1374
optimize, 1351, 1353, 1370, 1372, 1374, 1541
option, 48, 113
option (options), 328
options, 5, 36, 48, 58, 103, 107, 110, 114,

140, 150, 151, 160, 189, 234, 261,
262, 271, 328, 340, 349, 350, 353,
385, 445, 455, 459, 462, 464, 498,
533, 548, 549, 654, 664, 667, 668,
760, 779, 791, 803, 810, 926, 1181,
1199, 1254, 1258, 1297, 1333, 1343,
1344, 1355, 1410, 1425, 1429, 1668,
1682, 1685, 1687, 1710, 1751, 1753,
1767, 1783, 1786, 1792, 1798, 1799,

INDEX 1871

1825
Orange, 604
OrchardSprays, 605
order, 242, 335, 373, 441–443, 559, 1281
order.dendrogram, 1200, 1265, 1376
ordered, 219, 349
ordered (factor), 168
ordered-class (setOldClass), 1074
outer, 249, 281, 287, 338
over (plotmath), 694

p.adjust, 1377, 1379–1382
pacf (acf), 1108
package.dependencies, 1615, 1616
package.skeleton, 1008, 1023, 1735, 1745
package_dependencies, 1615
package_version, 219, 1674, 1737
package_version (numeric_version), 324
packageDescription, 1669, 1722, 1725,

1737, 1790
packageEvent (userhooks), 542
packageInfo-class (setOldClass), 1074
packageIQR-class (setOldClass), 1074
packageSlot, 994, 1061
packageSlot (getPackageName), 1007
packageSlot<- (getPackageName), 1007
packageStartupMessage, 318
packageStartupMessage (message), 300
packageStatus, 1674, 1738
packageVersion (packageDescription),

1737
packBits (rawConversion), 377
packGrob (grid.pack), 918
page, 175, 1740
pairlist, 2, 93, 186, 187, 321
pairlist (list), 264
pairs, 738, 764, 799, 801, 802, 817, 819, 844
pairwise.prop.test, 1379
pairwise.t.test, 1378, 1380, 1381
pairwise.table, 1381
pairwise.wilcox.test, 1381
palette, 649, 652, 674, 685, 687, 770, 809,

828, 877, 1158, 1391
Palettes, 686
panel.identify, 912
panel.smooth, 764, 801, 1387, 1524
par, 415, 641, 642, 649, 662, 673, 676, 679,

683, 697, 704, 708, 715, 723, 726,
734, 735, 739–741, 743, 746, 748,
754, 758, 764, 767, 773, 779, 781,
782, 784, 787, 790–793, 795, 798,
799, 802, 802, 812, 816, 817, 819,
821–823, 827, 828, 830, 831,

833–836, 839, 841–844, 848, 849,
853, 854, 856, 860, 862, 863, 865,
877, 1264, 1265, 1277, 1295, 1383,
1386, 1387, 1390, 1395, 1504, 1524

Paren, 93, 339, 487
parent.env (environment), 147
parent.env<- (environment), 147
parent.frame, 148, 152
parent.frame (sys.parent), 492
parse, 89, 116, 117, 146, 156, 340, 444, 445,

457
parse_Rd, 1598–1600, 1617, 1622–1624,

1628, 1629
parseLatex, 1616
paste, 58, 63, 146, 174, 190, 310, 341, 453,

469, 478, 1669
paste0 (paste), 341
path.expand, 41, 171, 173, 177–180, 257,

266, 314, 343, 489, 495, 537, 688,
700, 703, 718, 722, 1694, 1805,
1810, 1812, 1827

path.package (find.package), 181
pathGrob (grid.path), 919
pathListing (grid.ls), 913
pbeta, 1157, 1232, 1347, 1522
pbeta (Beta), 1153
pbinom (Binomial), 1156
pbirthday, 1213
pbirthday (birthday), 1160
pcauchy (Cauchy), 1166
pch (points), 829
pchisq, 1232, 1536
pchisq (Chisquare), 1170
pdf, 150, 645, 646, 658, 663, 665–668, 687,

692, 694, 697, 708, 710, 715, 720,
721, 762, 829, 830, 834, 861, 1605,
1784

pdf.options, 647, 668, 689, 691, 692, 713
pdfFonts, 689, 691, 721
pdfFonts (postscriptFonts), 708
periodicSpline, 1097, 1098, 1100, 1102,

1104, 1483
person, 1657, 1669, 1740
personList (person), 1740
persp, 543, 719, 811, 817
pexp (Exponential), 1221
pf (FDist), 1231
pgamma, 447, 1347
pgamma (GammaDist), 1249
pgeom (Geometric), 1251
phantom (plotmath), 694
phyper (Hypergeometric), 1269

1872 INDEX

pi (Constants), 91
pico (edit), 1688
pictex, 668, 693
pie, 814
pipe, 503
pipe (connections), 83
pKendall, 1189
pkgDepends, 1614, 1639
pkgDepends (getDepList), 1610
PkgUtils, 1743
pkgVignettes (buildVignettes), 1593
placeGrob (grid.place), 921
plain (plotmath), 694
PlantGrowth, 606
plclust (hclust), 1260
plnorm (Lognormal), 1314
plogis, 224
plogis (Logistic), 1309
plot, 729, 746, 774, 776, 782, 788, 791–793,

799, 816, 817–820, 822, 827–829,
831, 856, 1215, 1262, 1285, 1331,
1385, 1393, 1395, 1426, 1565

plot,ANY,ANY-method (plot-methods), 1565
plot,profile.mle,missing-method

(plot-methods), 1565
plot-methods, 1565
plot.acf, 1110, 1382
plot.data.frame, 104, 817, 824
plot.decomposed.ts (decompose), 1193
plot.default, 730, 738, 746, 753, 760, 765,

769, 773, 790, 793, 803, 804, 809,
810, 816, 817, 818, 821, 822, 824,
826–829, 849, 852, 853, 855, 1198,
1261, 1277, 1285, 1295, 1390, 1395

plot.dendrogram, 758
plot.dendrogram (dendrogram), 1197
plot.density, 1203, 1383
plot.design, 820
plot.ecdf (ecdf), 1214
plot.factor, 752, 816, 822, 824, 827
plot.formula, 817, 822, 823
plot.function (curve), 765
plot.hclust, 1198
plot.hclust (hclust), 1260
plot.histogram, 774, 775, 825
plot.HoltWinters, 1384
plot.isoreg, 1281, 1385
plot.lm, 329, 1387, 1524
plot.mlm (plot.lm), 1387
plot.new, 543, 667, 758, 807, 819, 827, 854
plot.new (frame), 772
plot.ppr, 1389, 1409

plot.prcomp (prcomp), 1410
plot.princomp (princomp), 1424
plot.profile.nls, 1390, 1431
plot.spec, 332, 1391, 1476, 1478, 1481
plot.stepfun, 1215, 1393, 1500
plot.stl, 1502, 1503
plot.stl (stlmethods), 1503
plot.table, 826
plot.ts, 1295, 1296, 1394, 1504, 1531, 1532
plot.tskernel (kernel), 1285
plot.TukeyHSD (TukeyHSD), 1537
plot.window, 740, 746, 754, 760, 765, 768,

769, 773, 782, 803, 808, 816, 819,
827, 852, 858, 1393

plot.xy, 791, 793, 819, 828, 828, 831
plotmath, 167, 265, 288, 306, 342, 356, 429,

479, 639, 677, 693, 694, 720, 750,
786, 799, 854, 861, 862, 936, 952,
1274

plotViewport, 873, 945
pmatch, 61, 64, 147, 160, 161, 215, 284–286,

343
pmax (Extremes), 166
pmin (Extremes), 166
pnbinom (NegBinomial), 1346
png, 56, 663, 666, 668, 699, 719
pnorm, 1537
pnorm (Normal), 1364
points, 697, 730, 764, 774, 780, 786, 791,

793, 802–804, 808, 813, 817, 819,
824, 828, 829, 829, 844, 923, 1198,
1199, 1386, 1387, 1524

points.default, 828
points.formula, 831
points.formula (plot.formula), 823
points.table (plot.table), 826
pointsGrob (grid.points), 923
Poisson, 1396
poisson (family), 1228
poisson.test, 1397, 1398
poly, 1096, 1101, 1322, 1399
polygon, 648, 689, 703, 722, 795, 803, 815,

833, 835–837, 839, 843, 865, 1198
polygonGrob (grid.polygon), 924
polylineGrob (grid.lines), 910
polym (poly), 1399
polypath, 835
polyroot, 345, 1541
polySpline, 1099
pop.viewport, 945, 946
popViewport, 882, 959

INDEX 1873

popViewport (Working with Viewports),
960

pos.to.env, 346
Position (funprog), 198
POSIXct, 23, 24, 243, 496, 1812
POSIXct (DateTimeClasses), 108
POSIXct-class (setOldClass), 1074
POSIXlt, 23, 24, 466
POSIXlt (DateTimeClasses), 108
POSIXlt-class (setOldClass), 1074
POSIXt, 124, 219, 322, 1440
POSIXt (DateTimeClasses), 108
POSIXt-class (setOldClass), 1074
possibleExtends, 967
postDrawDetails (drawDetails), 873
postscript, 150, 330, 645, 646, 658,

663–667, 688–691, 694, 697, 700,
702, 708–710, 712, 713, 720–722,
724, 727–729, 762, 810, 829, 834,
861

postscriptFonts, 669, 704, 707, 708, 720,
721

power, 1228, 1230, 1322, 1400
power.anova.test, 1401
power.prop.test, 1402, 1427
power.t.test, 1401, 1404, 1427
PP.test, 1405
ppoints, 1406, 1438
ppois (Poisson), 1396
ppr, 1390, 1407, 1516
prcomp, 1159, 1173, 1346, 1410, 1426, 1458
precip, 607
predict, 155, 1100, 1220, 1300, 1346, 1355,

1412, 1419, 1422, 1523
predict.ar, 1413
predict.ar (ar), 1132
predict.Arima, 1140, 1413, 1413
predict.arima0, 1413
predict.arima0 (arima0), 1142
predict.bs, 1096, 1100
predict.bSpline, 1101
predict.glm, 1257, 1413, 1415, 1524
predict.HoltWinters, 1268, 1385, 1413,

1416
predict.lm, 1299, 1300, 1413, 1417
predict.loess, 1307, 1413, 1420
predict.mlm (predict.lm), 1417
predict.nbSpline (predict.bSpline), 1101
predict.nls, 1356, 1413, 1421
predict.npolySpline (predict.bSpline),

1101
predict.ns, 1098

predict.ns (predict.bs), 1100
predict.pbSpline (predict.bSpline), 1101
predict.poly, 1413
predict.poly (poly), 1399
predict.ppolySpline (predict.bSpline),

1101
predict.prcomp (prcomp), 1410
predict.princomp, 1413
predict.princomp (princomp), 1424
predict.smooth.spline, 1413, 1423, 1472,

1473
predict.StructTS, 1413
predict.StructTS (StructTS), 1504
preDrawDetails (drawDetails), 873
preplot, 1424
presidents, 608
pressure, 608
pretty, 346, 670, 711, 741, 743
pretty.Date, 711
pretty.POSIXt (pretty.Date), 711
prettyNum, 189, 190
prettyNum (formatC), 192
Primitive, 348
primitive, 10, 13, 21, 22, 27, 36, 37, 51, 53,

55, 69, 79, 127, 128, 141, 146, 148,
156, 184, 197, 202, 224, 234, 236,
238–241, 252, 255, 256, 265, 272,
288, 291, 302, 303, 305, 307, 308,
321, 327, 346, 354, 375, 423, 435,
447, 476, 485, 530, 532, 541, 556,
559, 1773

primitive (Primitive), 348
princomp, 1159, 1160, 1226, 1305, 1346,

1411, 1412, 1424, 1458, 1515
print, 57, 58, 75, 109, 190, 311, 330, 349,

351, 353, 354, 458, 1079, 1120,
1129, 1199, 1215, 1262, 1285, 1331,
1355, 1426, 1428, 1429, 1500, 1525,
1656, 1740, 1783, 1799

print.anova, 1428
print.anova (anova), 1121
print.aov (aov), 1129
print.aovlist (aov), 1129
print.ar (ar), 1132
print.arima0 (arima0), 1142
print.AsIs (AsIs), 30
print.bibentry (bibentry), 1655
print.Bibtex (toLatex), 1807
print.browseVignettes

(browseVignettes), 1661
print.by (by), 50
print.checkDocFiles (QC), 1621

1874 INDEX

print.checkDocStyle (QC), 1621
print.checkFF (checkFF), 1595
print.checkReplaceFuns (QC), 1621
print.checkS3methods (QC), 1621
print.checkTnF (checkTnF), 1601
print.checkVignettes (checkVignettes),

1602
print.codoc (codoc), 1603
print.codocClasses (codoc), 1603
print.codocData (codoc), 1603
print.condition (conditions), 79
print.connection (connections), 83
print.data.frame, 104, 350
print.Date (Dates), 107
print.default, 57, 75, 145, 189, 329, 349,

350, 351, 354, 364, 402, 458, 740,
1198

print.dendrogram (dendrogram), 1197
print.density (density), 1201
print.difftime (difftime), 125
print.dist (dist), 1209
print.DLLInfo (getLoadedDLLs), 206
print.DLLInfoList (getLoadedDLLs), 206
print.DLLRegisteredRoutines

(getDLLRegisteredRoutines), 205
print.ecdf (ecdf), 1214
print.factanal (loadings), 1305
print.family (family), 1228
print.formula (formula), 1241
print.ftable (ftable), 1246
print.getAnywhere (getAnywhere), 1699
print.glm (glm), 1253
print.hclust (hclust), 1260
print.hexmode (hexmode), 222
print.HoltWinters (HoltWinters), 1266
print.hsearch (help.search), 1712
print.infl (influence.measures), 1272
print.integrate (integrate), 1275
print.kmeans (kmeans), 1286
print.Latex (toLatex), 1807
print.libraryIQR (library), 258
print.lm (lm), 1297
print.loadings (loadings), 1305
print.logLik (logLik), 1310
print.ls_str (ls.str), 1723
print.MethodsFunction (methods), 1730
print.NativeRoutineList

(getDLLRegisteredRoutines), 205
print.noquote (noquote), 311
print.numeric_version

(numeric_version), 324
print.object_size (object.size), 1734

print.octmode (octmode), 325
print.packageDescription

(packageDescription), 1737
print.packageInfo (library), 258
print.packageIQR (data), 1677
print.packageStatus (packageStatus),

1738
print.person (person), 1740
print.POSIXct (DateTimeClasses), 108
print.POSIXlt (DateTimeClasses), 108
print.power.htest, 1427
print.prcomp (prcomp), 1410
print.princomp (princomp), 1424
print.proc_time (proc.time), 354
print.Rd (parse_Rd), 1617
print.recordedplot (recordPlot), 714
print.restart (conditions), 79
print.rle (rle), 402
print.SavedPlots (windows), 721
print.sessionInfo (sessionInfo), 1789
print.socket (make.socket), 1726
print.srcfile (srcfile), 456
print.srcref (srcfile), 456
print.stepfun (stepfun), 1499
print.StructTS (StructTS), 1504
print.summary.aov (summary.aov), 1506
print.summary.aovlist (summary.aov),

1506
print.summary.glm, 1428
print.summary.glm (summary.glm), 1508
print.summary.lm, 192, 1428, 1429
print.summary.lm (summary.lm), 1510
print.summary.manova (summary.manova),

1511
print.summary.nls (summary.nls), 1513
print.summary.prcomp (prcomp), 1410
print.summary.princomp

(summary.princomp), 1514
print.summary.table (table), 508
print.summaryDefault (summary), 480
print.tclObj (TclInterface), 1571
print.terms (terms), 1525
print.ts, 1428, 1531
print.TukeyHSD (TukeyHSD), 1537
print.undoc (undoc), 1638
print.vignette (vignette), 1818
print.warnings (warnings), 549
print.xtabs (xtabs), 1557
printCoefmat, 332, 1428
prmatrix, 353
proc.time, 202, 354, 505
prod, 355

INDEX 1875

profile, 1355, 1391, 1430, 1431, 1566
profile,ANY-method (profile-methods),

1566
profile,mle-method (profile-methods),

1566
profile-methods, 1566
profile.glm, 1430
profile.mle-class, 1567
profile.nls, 1356, 1391, 1430, 1431
prohibitGeneric, 1067
prohibitGeneric (implicitGeneric), 1009
proj, 1130, 1337, 1432
promax (varimax), 1545
promise, 152
promise (delayedAssign), 115
promises, 183, 413
promises (delayedAssign), 115
prompt, 1038–1040, 1604, 1711, 1736, 1744,

1746, 1748
promptClass, 1037, 1040, 1604, 1736
promptData, 1745, 1746
promptMethods, 1038, 1039, 1736
promptPackage, 1747
prop.table, 282, 356, 509
prop.test, 1156, 1379, 1403, 1434, 1436,

1520
prop.trend.test, 1436
prototype, 1022, 1058
prototype (representation), 1049
ps.options, 647, 668, 692, 704, 707, 712,

725, 729
psigamma (Special), 446
psignrank, 1553
psignrank (SignRank), 1465
pskill, 1619, 1620
psnice, 1619, 1620
pSpearman, 1189
pt (TDist), 1521
ptukey, 1213
ptukey (Tukey), 1536
punif (Uniform), 1539
Puromycin, 609
push.viewport, 946, 946
pushBack, 87, 89, 357, 520, 1764
pushBackLength (pushBack), 357
pushViewport, 882, 959
pushViewport (Working with Viewports),

960
pweibull (Weibull), 1547
pwilcox, 1553
pwilcox (Wilcoxon), 1554

q, 412, 462, 1655

q (quit), 362
qbeta, 1232
qbeta (Beta), 1153
qbinom (Binomial), 1156
qbirthday (birthday), 1160
QC, 1604, 1621, 1638
qcauchy (Cauchy), 1166
qchisq, 1232
qchisq (Chisquare), 1170
qexp (Exponential), 1221
qf (FDist), 1231
qgamma (GammaDist), 1249
qgeom (Geometric), 1251
qhyper (Hypergeometric), 1269
qlnorm (Lognormal), 1314
qlogis (Logistic), 1309
qnbinom (NegBinomial), 1346
qnorm, 367, 1537
qnorm (Normal), 1364
qpois (Poisson), 1396
qqline, 1387
qqline (qqnorm), 1437
qqnorm, 1406, 1437, 1465
qqplot, 1406
qqplot (qqnorm), 1437
qr, 40, 67, 144, 247, 248, 358, 360, 361, 482,

1125, 1165, 1301, 1512
QR.Auxiliaries, 360
qr.Q, 360
qr.Q (QR.Auxiliaries), 360
qr.qy, 361
qr.R, 360
qr.R (QR.Auxiliaries), 360
qr.solve, 440, 441
qr.X, 360
qr.X (QR.Auxiliaries), 360
qsignrank (SignRank), 1465
qt (TDist), 1521
qtukey, 1538
qtukey (Tukey), 1536
quade.test, 1245, 1438
quakes, 610
quantile, 100, 643, 1215, 1239, 1279, 1330,

1406, 1437, 1440
quantile.ecdf (ecdf), 1214
quarters (weekdays), 550
quasi, 1255
quasi (family), 1228
quasibinomial (family), 1228
quasipoisson (family), 1228
Querying the Viewport Tree, 947
Question, 1748

1876 INDEX

quit, 362
qunif (Uniform), 1539
quote, 46, 129, 152, 525, 527, 698, 824, 1020
quote (substitute), 476
Quotes, 92, 323, 352, 363, 417, 456, 487, 489
quotes, 400
qweibull (Weibull), 1547
qwilcox (Wilcoxon), 1554

R.home, 150, 504
R.home (Rhome), 401
R.Version, 150, 364, 1790
R.version, 6, 240, 258, 324, 490, 1790
R.version (R.Version), 364
r2dtable, 1442
R_BATCH (EnvVar), 149
R_BROWSER (EnvVar), 149
R_COMPLETION (EnvVar), 149
R_DEFAULT_PACKAGES (Startup), 458
R_DOC_DIR (EnvVar), 149
R_ENVIRON (Startup), 458
R_ENVIRON_USER (Startup), 458
R_GSCMD (EnvVar), 149
R_HISTFILE (EnvVar), 149
R_HISTSIZE (EnvVar), 149
R_HOME, 95, 263, 458–460, 522, 653, 720,

1571, 1594, 1635, 1642, 1668, 1715,
1726, 1777, 1786, 1792

R_HOME (Rhome), 401
R_INCLUDE_DIR (EnvVar), 149
R_LIBS (libPaths), 257
R_LIBS_SITE (libPaths), 257
R_LIBS_USER (libPaths), 257
R_PAPERSIZE (EnvVar), 149
R_PDFVIEWER (EnvVar), 149
R_PLATFORM (EnvVar), 149
R_PROFILE (Startup), 458
R_PROFILE_USER (Startup), 458
R_RD4PDF (EnvVar), 149
R_SHARE_DIR (EnvVar), 149
R_system_version (numeric_version), 324
R_TEXI2DVICMD (EnvVar), 149
R_UNZIPCMD (EnvVar), 149
R_USER (EnvVar), 149
R_ZIPCMD (EnvVar), 149
rainbow, 652, 673, 674, 680, 686, 715, 781,

782, 809
rainbow (Palettes), 686
Random, 366
Random.user, 367, 370
randu, 611
range, 167, 170, 371, 670, 764, 1239, 1279
rank, 336, 372, 443, 559

rapply, 253, 374, 1196
rasterGrob (grid.raster), 926
rasterImage, 659, 837
raw, 274, 375
raw-class (BasicClasses), 970
rawConnection, 221, 376
rawConnectionValue (rawConnection), 376
rawConversion, 377
rawShift, 376
rawShift (rawConversion), 377
rawToBits (rawConversion), 377
rawToChar, 375
rawToChar (rawConversion), 377
rbeta (Beta), 1153
rBind, 976
rbind, 235, 976
rbind (cbind), 58
rbind2 (cbind2), 976
rbind2,ANY,ANY-method (cbind2), 976
rbind2,ANY,missing-method (cbind2), 976
rbind2-methods (cbind2), 976
rbinom (Binomial), 1156
rc.getOption (rcompgen), 1750
rc.options (rcompgen), 1750
rc.settings (rcompgen), 1750
rc.status (rcompgen), 1750
rcauchy (Cauchy), 1166
rchisq, 1456
rchisq (Chisquare), 1170
rcompgen, 1750
rcond, 313
rcond (kappa), 246
Rconsole, 150, 459, 518, 722, 1681, 1818
Rconsole (Rwin configuration), 1785
Rd2ex (Rd2HTML), 1622
Rd2HTML, 1600, 1618, 1622, 1633
Rd2latex (Rd2HTML), 1622
Rd2pdf (RdUtils), 379
Rd2txt, 331, 1625
Rd2txt (Rd2HTML), 1622
Rd2txt_options, 1623, 1624, 1624
Rd_db (Rdutils), 1628
Rdconv, 1038, 1622
Rdconv (RdUtils), 379
Rdevga, 724
Rdevga (Rwin configuration), 1785
Rdiff, 1626
Rdindex, 1627
RdTextFilter, 1627, 1651, 1652
RdUtils, 379
Rdutils, 1628
Re (complex), 78

INDEX 1877

read.00Index, 1629
read.csv, 1758
read.csv (read.table), 1761
read.csv2 (read.table), 1761
read.dcf, 89, 1641, 1721, 1737, 1815
read.dcf (dcf), 111
read.delim (read.table), 1761
read.delim2 (read.table), 1761
read.DIF, 1755
read.fortran, 1757
read.ftable, 1247, 1443
read.fwf, 1757, 1758, 1758, 1765
read.socket, 1672, 1727, 1760
read.table, 104, 146, 330, 364, 419, 1630,

1676, 1678, 1755, 1757–1759, 1761,
1810, 1826

readBin, 4, 5, 87, 89, 379, 383, 386, 419
readChar, 88, 89, 380, 382, 419
readCitationFile (citation), 1668
readClipboard (clipboard), 1671
readline, 384, 1745
readLines, 87–89, 146, 357, 381, 383, 384,

385, 418, 419, 558, 1633, 1764
readNEWS, 1630
readRDS, 269, 386, 428
readRegistry, 1765
readRenviron, 388, 460
real, 131, 322, 389
Recall, 53, 389
recordedplot-class (setOldClass), 1074
recordGraphics, 713, 929
recordGrob (grid.record), 928
recordPlot, 117, 714, 723
recover, 114, 329, 524, 525, 527, 1682, 1766
rect, 748, 803, 825, 834, 836, 837, 838, 846
rect.hclust, 1262, 1263, 1271, 1445
rectGrob (grid.rect), 929
Reduce (funprog), 198
refClass-class (ReferenceClasses), 1040
refClassRepresentation-class

(ReferenceClasses), 1040
ReferenceClasses, 1040
refMethodDef-class (ReferenceClasses),

1040
refMethodDefWithTrace-class

(ReferenceClasses), 1040
refObject-class (ReferenceClasses), 1040
refObjectGenerator-class

(ReferenceClasses), 1040
reformulate (delete.response), 1194
reg.finalizer, 201, 362, 390
regex, 391

regexec, 395, 1648
regexec (grep), 212
regexp, 215, 218, 1705
regexp (regex), 391
regexpr, 64, 395, 1606
regexpr (grep), 212
registered, 1041
RegisteredNativeSymbol, 55, 184
RegisteredNativeSymbol

(getNativeSymbolInfo), 207
registerImplicitGenerics

(implicitGeneric), 1009
regmatches, 215, 395, 1648
regmatches<- (regmatches), 395
regular expression, 213–215, 218, 266,

277, 468, 469, 703, 1646, 1659,
1712, 1713, 1723

regular expression (regex), 391
relevel, 256, 1446, 1447
relist, 538, 1452, 1768
REMOVE, 261, 1717, 1721, 1722, 1770, 1815
remove, 396
remove.packages, 1721, 1770, 1771, 1815
removeCConverter (converters), 94
removeClass (findClass), 994
removeGeneric (GenericFunctions), 1000
removeGrob, 879, 884, 901, 905, 932
removeGrob (grid.remove), 931
removeMethod (setMethod), 1071
removeMethods (GenericFunctions), 1000
removeSource, 1771
removeTaskCallback, 516, 517
removeTaskCallback (taskCallback), 513
Renviron (Startup), 458
reorder, 256, 1265, 1376, 1446, 1448
reorder (reorder.default), 1447
reorder.default, 1447
reorder.dendrogram, 1199, 1200, 1264,

1447, 1448
rep, 163, 235, 338, 398, 424, 427, 729, 731,

956
rep.numeric_version (numeric_version),

324
repeat, 400
repeat (Control), 92
repeat-class (language-class), 1020
replace, 400
replayPlot (recordPlot), 714
replicate, 399
replicate (lapply), 251
replications, 1130, 1337, 1449
representation, 1049, 1058

1878 INDEX

require, 181, 244, 319, 459, 1722, 1751, 1752
require (library), 258
requireNamespace (ns-load), 318
resaveRdaFiles, 413, 1606
resaveRdaFiles (checkRdaFiles), 1600
Reserved, 364, 400, 487
reserved, 92, 236, 275, 278, 304, 320, 1709,

1710, 1748
reserved (Reserved), 400
resetClass (findClass), 994
resetGeneric, 1028
reshape, 1450, 1798
resid (residuals), 1453
residuals, 1121, 1175, 1218, 1239, 1257,

1260, 1300, 1304, 1346, 1355, 1453,
1467, 1524, 1550

residuals.glm, 1304, 1388, 1509
residuals.glm (glm.summaries), 1259
residuals.HoltWinters (HoltWinters),

1266
residuals.lm (lm.summaries), 1303
residuals.tukeyline (line), 1296
restartDescription (conditions), 79
restartFormals (conditions), 79
retracemem (tracemem), 529
return, 236, 339
return (function), 197
rev, 401, 1264
rev.dendrogram, 1448
rev.dendrogram (dendrogram), 1197
rexp (Exponential), 1221
rf (FDist), 1231
rgamma (GammaDist), 1249
rgb, 638, 640, 649, 652, 673, 675, 679, 680,

687, 715, 716, 809, 877
rgb2hsv, 680, 716
rgeom (Geometric), 1251
Rhome, 401
rhyper (Hypergeometric), 1269
ring (plotmath), 694
rinvGauss, 1467
rivers, 612
rle, 402, 535, 536
rle-class (setOldClass), 1074
rlnorm (Lognormal), 1314
rlogis (Logistic), 1309
rm (remove), 396
rmultinom (Multinom), 1341
rnbinom (NegBinomial), 1346
RNG, 411, 1213, 1365, 1467, 1540
RNG (Random), 366
RNGkind, 370, 1467

RNGkind (Random), 366
RNGversion (Random), 366
rnorm, 1456
rnorm (Normal), 1364
rock, 612
roman, 1772
Round, 403
round, 125, 232, 405
round (Round), 403
round.Date, 107
round.Date (round.POSIXt), 405
round.POSIXt, 110, 405
roundrect, 948
roundrectGrob (roundrect), 948
row, 71, 406, 424, 438
row+colnames, 407
row.names, 36, 37, 104, 128, 407, 408
row.names<- (row.names), 408
rowMeans (colSums), 72
rownames, 105, 128, 290, 409, 578
rownames (row+colnames), 407
rownames<- (row+colnames), 407
rowsum, 73, 409
rowSums, 410
rowSums (colSums), 72
rpart, 1108
rpois (Poisson), 1396
Rprof, 460, 1430, 1773, 1775, 1801, 1802
Rprofile (Startup), 458
Rprofmem, 297, 530, 1773, 1774, 1802
Rscript, 1775
RShowDoc, 1717, 1776
rsignrank (SignRank), 1465
RSiteSearch, 1714, 1715, 1777
rstandard, 1260, 1304, 1453
rstandard (influence.measures), 1272
rstudent, 1260, 1304, 1453
rstudent (influence.measures), 1272
rt (TDist), 1521
rtags, 1779
Rtangle, 1780, 1785, 1803–1805
RtangleSetup (Rtangle), 1780
rug, 246, 738, 839, 1523
runif (Uniform), 1539
runmed, 1454, 1469, 1474
RweaveLatex, 1781, 1782, 1803–1805
RweaveLatexSetup (RweaveLatex), 1782
rweibull (Weibull), 1547
rwilcox (Wilcoxon), 1554
Rwin configuration, 1785
rWishart, 1456

S version 4, 1561

INDEX 1879

S3 (S3Part), 1050
S3-class (S3Part), 1050
S3Class (S3Part), 1050
S3Class<- (S3Part), 1050
S3groupGeneric, 1055
S3groupGeneric (groupGeneric), 219
S3Methods, 1025, 1731
S3Methods (UseMethod), 539
S3Part, 244, 1026, 1050
S3Part<- (S3Part), 1050
S4 (S3Part), 1050
S4 (isS4), 243
S4-class (BasicClasses), 970
S4groupGeneric, 221, 1054, 1086
SafePrediction, 1096, 1098, 1413, 1416,

1419
SafePrediction (makepredictcall), 1322
sammon, 1174
sample, 369, 410
sapply, 280, 281, 512, 547, 1042, 1459
sapply (lapply), 251
save, 34, 87–89, 136, 269, 271, 330, 386, 387,

412, 427, 428, 557, 1600, 1679, 1682
savehistory, 362, 1787
savePlot, 666, 718, 724
saveRDS, 414, 428
saveRDS (readRDS), 386
scale, 414, 484, 1322, 1411
scan, 87, 89, 146, 323, 341, 357, 364, 386,

416, 445, 557, 1676, 1757, 1759,
1762–1765

scatter.smooth, 844, 1457
SClassExtension, 978, 984, 1015, 1027
SClassExtension-class, 1056
screen, 840
screeplot, 1412, 1426, 1458
scriptscriptstyle (plotmath), 694
scriptstyle (plotmath), 694
sd, 1186, 1459, 1521
se.contrast, 1337, 1460
se.contrast.aovlist, 1217
sealClass (findClass), 994
SealedMethodDefinition-class

(MethodDefinition-class), 1023
search, 27, 32, 34, 35, 83, 120, 121, 154, 204,

259, 261, 277, 397, 420, 646, 1008,
1646, 1692, 1723, 1752

searchpaths (search), 420
Seatbelts (UKDriverDeaths), 625
seek, 89, 420
seekViewport, 882, 959

seekViewport (Working with Viewports),
960

segments, 734, 736, 803, 806, 834, 836, 837,
839, 842, 1198, 1199, 1393

segmentsGrob (grid.segments), 932
select.list, 6, 333, 1589, 1729, 1788, 1814
selectMethod, 968, 973, 975, 986, 998, 1028,

1080, 1081, 1087
selectMethod (getMethod), 1005
selectSuperClasses, 1017, 1057
selfStart, 1253, 1361–1363, 1462, 1475,

1485–1488, 1490–1495
selfStart.default, 1253
selfStart.formula, 1253
seq, 72, 399, 401, 422, 424, 425, 427
seq.Date, 101, 107, 424, 424
seq.int, 235
seq.POSIXt, 101, 110, 424, 425, 778
seq_along (seq), 422
seq_len, 426, 1673
seq_len (seq), 422
sequence, 399, 424, 426
serialize, 387, 414, 427
sessionInfo, 365, 490, 1664, 1712, 1789,

1807
set.seed (Random), 366
setAs, 967, 975, 1015–1017
setAs (as), 966
setBreakpoint, 114, 526, 993
setBreakpoint (findLineNum), 1695
setCConverterStatus (converters), 94
setChildren (grid.add), 883
setClass, 965, 968, 975, 978–980, 984, 985,

1002, 1004, 1005, 1011, 1013–1016,
1019, 1021, 1022, 1027, 1030, 1041,
1049–1051, 1056, 1058, 1064,
1075–1077, 1079, 1089, 1090

setClassUnion, 978, 986, 987, 995, 1015,
1027, 1056, 1062

setDataPart, 980
setdiff (sets), 428
setEPS, 704
setEPS (ps.options), 712
setequal (sets), 428
setGeneric, 999, 1002, 1010, 1017, 1030,

1035, 1063, 1071, 1073, 1079, 1085
setGenericImplicit (implicitGeneric),

1009
setGraphicsEventEnv (getGraphicsEvent),

670
setGraphicsEventHandlers

(getGraphicsEvent), 670

1880 INDEX

setGrob, 879
setGrob (grid.set), 933
setGroupGeneric, 999, 1054
setGroupGeneric (setGeneric), 1063
setHook, 318, 773, 812, 916, 1070
setHook (userhooks), 542
setInternet2, 86, 1686, 1790
setIs, 968, 978, 984, 1004, 1015, 1027, 1035,

1056, 1076, 1079
setIs (is), 1013
setLoadAction (setLoadActions), 1068
setLoadActions, 1068
setMethod, 526, 965, 966, 982, 987, 992, 999,

1000, 1013, 1019, 1022–1026, 1030,
1054, 1064, 1067, 1071, 1075, 1077,
1081

setNames, 1463
setOldClass, 979, 980, 983, 1026, 1035,

1050–1053, 1059, 1060, 1072, 1074,
1085

setPackageName (getPackageName), 1007
setPS (ps.options), 712
setRefClass, 990, 1706
setRefClass (ReferenceClasses), 1040
setReplaceMethod (GenericFunctions),

1000
setRepositories, 333, 1667, 1668, 1791
sets, 428
setSessionTimeLimit (setTimeLimit), 429
setStatusBar (setWindowTitle), 1792
setTimeLimit, 429
setTkProgressBar (tkProgressBar), 1580
setTxtProgressBar (txtProgressBar), 1808
setValidity (validObject), 1089
setwd, 496
setwd (getwd), 211
setWindowTitle, 1792
setWinProgressBar (winProgressBar), 1823
shapiro.test, 1292, 1464
shell, 430, 432, 434, 501, 503, 507
shell.exec, 431, 431, 503, 507
SHLIB, 141, 263, 1794
shortPathName, 314, 666, 1795
show, 330, 352, 1044, 1065, 1078
show,ANY-method (show), 1078
show,classRepresentation-method (show),

1078
show,envRefClass-method

(ReferenceClasses), 1040
show,genericFunction-method (show), 1078
show,genericFunctionWithTrace-method

(TraceClasses), 1088

show,MethodDefinition-method (show),
1078

show,MethodDefinitionWithTrace-method
(TraceClasses), 1088

show,MethodWithNext-method (show), 1078
show,MethodWithNextWithTrace-method

(TraceClasses), 1088
show,mle-method (show-methods), 1567
show,ObjectsWithPackage-method (show),

1078
show,refClassRepresentation-method

(ReferenceClasses), 1040
show,refMethodDef-method

(ReferenceClasses), 1040
show,signature-method

(signature-class), 1082
show,sourceEnvironment-method

(TraceClasses), 1088
show,summary.mle-method (show-methods),

1567
show,traceable-method (show), 1078
show,ts-method (StructureClasses), 1084
show-methods, 1567
show-methods (show), 1078
showConnections, 89, 377, 432, 520
showDefault, 1078
showGrob, 949
showMethods, 988, 998, 1002, 1030, 1079,

1080, 1730, 1731
showNonASCII, 1631
showNonASCIIfile (showNonASCII), 1631
showViewport, 950
shQuote, 364, 434, 456, 501, 503, 506
SIGCHLD (pskill), 1619
SIGCONT (pskill), 1619
SIGHUP (pskill), 1619
SIGINT (pskill), 1619
SIGKILL (pskill), 1619
sign, 126, 435
signalCondition, 462
signalCondition (conditions), 79
signature (GenericFunctions), 1000
signature-class, 1082
signif, 125, 188, 193, 351, 480, 730, 731
signif (Round), 403
SignRank, 1465
SIGQUIT (pskill), 1619
SIGSTOP (pskill), 1619
SIGTERM (pskill), 1619
SIGTSTP (pskill), 1619
SIGUSR1 (pskill), 1619
SIGUSR2 (pskill), 1619

INDEX 1881

simpleCondition (conditions), 79
simpleError (conditions), 79
simpleMessage (conditions), 79
simpleWarning (conditions), 79
simplify2array, 17, 50
simplify2array (lapply), 251
simulate, 1229, 1466
sin, 224, 288
sin (Trig), 531
single, 185
single (double), 130
single-class (BasicClasses), 970
sinh (Hyperbolic), 223
sink, 57, 89, 432, 433, 436, 1664
sleep, 613
slice.index, 437
slot, 159, 228, 438, 439, 977, 980, 1011, 1082
slot<- (slot), 1082
slotNames, 307, 1011
slotNames (slot), 1082
slotOp, 438
slotsFromS3 (S3Part), 1050
smooth, 1455, 1468
smooth.spline, 1096, 1409, 1423, 1453,

1469, 1470, 1483
smoothEnds, 1454, 1455, 1474
smoothScatter, 657, 843, 1458
socket-class (setOldClass), 1074
socketConnection (connections), 83
socketSelect, 439
solve, 40, 68, 359, 440, 1320
solve.qr, 441
solve.qr (qr), 358
sort, 227, 242, 270, 336, 373, 401, 441, 559
sort.list, 169
sort.list (order), 335
sortedXyData, 1361–1363, 1475
source, 87, 135, 136, 146, 234, 340, 341, 444,

498, 967, 1071, 1602, 1678, 1684,
1717, 1803

sourceEnvironment-class (evalSource),
991

sourceutils, 1795
sparseMatrix, 1103, 1558
spearman.test, 1189
spec (spectrum), 1480
spec.ar, 1476, 1480, 1481
spec.pgram, 1477, 1479–1481
spec.taper, 1478, 1479
Special, 20, 288, 446
special-class (BasicClasses), 970
spectrum, 1284, 1392, 1476, 1478, 1480

spineplot, 757, 822, 845
spline, 1132
spline (splinefun), 1481
spline.des, 1095, 1098
spline.des (splineDesign), 1102
splineDesign, 1102
splinefun, 651, 766, 1132, 1215, 1394, 1481,

1500
splinefunH (splinefun), 1481
splineKnots, 1097, 1099, 1100, 1103, 1104
splineOrder, 1097, 1099, 1100, 1104
splines (splines-package), 1093
splines-package, 1093
split, 100, 449
split.Date (Dates), 107
split.POSIXct (DateTimeClasses), 108
split.screen, 784, 807, 810
split.screen (screen), 840
split<- (split), 449
sprintf, 146, 190, 194, 210, 223, 326, 342,

451, 689, 704, 728, 1597, 1598
sqrt, 20, 273, 447
sqrt (MathFun), 288
sQuote, 331, 364, 434, 454, 477, 1623, 1626,

1783
srcfile, 340, 456, 1696
srcfile-class (srcfile), 456
srcfilealias (srcfile), 456
srcfilealias-class (srcfile), 456
srcfilecopy, 340
srcfilecopy (srcfile), 456
srcfilecopy-class (srcfile), 456
srcref, 341, 1771, 1796
srcref (srcfile), 456
srcref-class (srcfile), 456
SSasymp, 1361, 1462, 1484, 1494, 1495
SSasympOff, 1462, 1485
SSasympOrig, 1462, 1486
SSbiexp, 590, 1462, 1487
SSD, 1327, 1328, 1488
SSfol, 620, 1462, 1489
SSfpl, 1462, 1490
SSgompertz, 1462, 1491
SSlogis, 574, 1462, 1492
SSmicmen, 610, 1462, 1493
SSweibull, 1462, 1494
stack, 1452, 1797
stack.loss (stackloss), 614
stack.x (stackloss), 614
stackloss, 614, 1300
standardGeneric, 999, 1001, 1064
Stangle, 1602, 1603, 1780, 1819

1882 INDEX

Stangle (Sweave), 1802
stars, 847, 859
start, 1495, 1528, 1531, 1535
startDynamicHelp, 333, 1632, 1709, 1715
Startup, 75, 150, 261, 329, 331, 388, 458,

496, 1792
stat.anova, 1122, 1496
state, 615, 628
stats (stats-package), 1107
stats-deprecated, 1497
stats-package, 1107
stats4 (stats4-package), 1561
stats4-package, 1561
stayOnTop (bringToTop), 644
stderr, 86, 300, 436, 533, 1808
stderr (showConnections), 432
stdin, 85, 357, 385, 416, 432, 444, 1761, 1776
stdin (showConnections), 432
stdout, 86, 436
stdout (showConnections), 432
stem, 776, 826, 851
step, 1113, 1222, 1223, 1363, 1497
stepAIC, 1498, 1499
stepfun, 1215, 1281, 1393, 1499
stl, 1193, 1194, 1339, 1501, 1503, 1504, 1506
stlmethods, 1503
stop, 82, 210, 234, 301, 329, 436, 461, 463,

549, 1641
stopifnot, 10, 462, 463
storage.mode, 131, 132, 232, 322, 534
storage.mode (mode), 302
storage.mode<- (mode), 302
str, 21, 109, 278, 714, 1199, 1659, 1723,

1724, 1798
str.default, 1198
str.dendrogram (dendrogram), 1197
str.logLik (logLik), 1310
str.POSIXt (DateTimeClasses), 108
strftime, 29, 110, 329, 551
strftime (strptime), 464
strheight, 724, 805, 806
strheight (strwidth), 853
stringAscent, 870
stringAscent (stringWidth), 951
stringDescent, 870
stringDescent (stringWidth), 951
stringHeight (stringWidth), 951
stringWidth, 944, 951
stripchart, 738, 751, 817, 851
strOptions (str), 1798
strptime, 28–30, 110, 125, 243, 270, 271,

464, 741, 778, 1733

strsplit, 63, 146, 310, 342, 391, 394, 395,
450, 468, 478

strtoi, 223, 326, 470
strtrim, 471, 478
StructTS, 1283, 1339, 1503, 1504, 1534, 1536
structure, 472, 1036, 1076
structure-class (StructureClasses), 1084
StructureClasses, 1084
strwidth, 310, 724, 786, 805, 853
strwrap, 111, 473, 1799
sub, 63, 65, 146, 393, 469, 1705
sub (grep), 212
Subscript (Extract), 157
subset, 135, 164, 474, 531
substitute, 13, 46, 115, 117, 129, 302, 327,

476, 525, 527, 698, 1025
substr, 7, 63, 146, 310, 342, 469, 471, 477
substr<- (substr), 477
substring (substr), 477
substring<- (substr), 477
sum, 4, 73, 126, 356, 479, 1549
Summary, 10, 13, 126, 167, 170, 355, 372, 479
Summary (S4groupGeneric), 1054
Summary (groupGeneric), 219
summary, 480, 1121, 1129, 1203, 1255, 1257,

1303, 1355, 1507, 1509, 1511, 1514,
1546, 1568, 1724, 1798, 1800

summary,ANY-method (summary-methods),
1568

summary,mle-method (summary-methods),
1568

summary-methods, 1568
summary.aov, 1130, 1506
summary.aovlist (summary.aov), 1506
summary.connection (connections), 83
Summary.Date (Dates), 107
summary.Date (Dates), 107
Summary.difftime (difftime), 125
summary.ecdf (ecdf), 1214
Summary.factor (factor), 168
summary.glm, 481, 1122, 1255, 1257, 1260,

1508
summary.infl (influence.measures), 1272
summary.lm, 481, 1300, 1303, 1304, 1317,

1509, 1510
summary.manova, 1125, 1126, 1323, 1511
summary.mle-class, 1568
summary.mlm (summary.lm), 1510
summary.nls, 1356, 1513
Summary.numeric_version

(numeric_version), 324
Summary.ordered (factor), 168

INDEX 1883

summary.packageStatus (packageStatus),
1738

Summary.POSIXct (DateTimeClasses), 108
summary.POSIXct (DateTimeClasses), 108
Summary.POSIXlt (DateTimeClasses), 108
summary.POSIXlt (DateTimeClasses), 108
summary.prcomp (prcomp), 1410
summary.princomp, 1426, 1514
summary.srcfile (srcfile), 456
summary.srcref (srcfile), 456
summary.stepfun (stepfun), 1499
summary.table (table), 508
summary.table-class (setOldClass), 1074
summaryDefault-class (setOldClass), 1074
summaryRprof, 1773, 1801
sunflowerplot, 731, 855, 859
sunspot.month, 616, 618
sunspot.year, 617
sunspots, 616, 617
sup (plotmath), 694
SuperClassMethod-class

(ReferenceClasses), 1040
suppressMessages (message), 300
suppressPackageStartupMessages, 259
suppressPackageStartupMessages

(message), 300
suppressWarnings (warning), 548
supsmu, 1409, 1469, 1515
Surv, 559
survreg, 1524
svd, 67, 144, 247, 248, 312, 360, 481, 1165,

1412, 1425
svg, 56, 668, 700
svg (cairo), 644
Sweave, 334, 1593, 1594, 1602, 1603,

1780–1783, 1785, 1802, 1804
SweaveSyntaxLatex (Sweave), 1802
SweaveSyntaxNoweb (Sweave), 1802
SweaveSyntConv, 1804
SweaveTeXFilter, 1633, 1651
sweep, 17, 287, 415, 483, 1186
swiss, 618, 1300
switch, 93, 348, 484
symbol (plotmath), 694
symbols, 803, 850, 857
symnum, 1508, 1510, 1513, 1516
Syntax, 20, 77, 93, 161, 274, 275, 323, 339,

364, 486
sys.call, 151, 252, 286, 308
sys.call (sys.parent), 492
sys.calls, 1773
sys.calls (sys.parent), 492

Sys.chmod, 172, 174
Sys.chmod (files2), 179
Sys.Date, 106, 107
Sys.Date (Sys.time), 499
sys.frame, 32, 49, 152, 154, 204, 277, 397
sys.frame (sys.parent), 492
sys.frames (sys.parent), 492
sys.function (sys.parent), 492
Sys.getenv, 150, 151, 487, 495, 496
Sys.getlocale, 88, 150, 250, 277, 487, 1723,

1790
Sys.getlocale (locales), 270
Sys.getpid, 488, 1619, 1703
Sys.glob, 178, 257, 267, 488, 504, 537, 1667
Sys.info, 6, 489
Sys.junction (files), 176
Sys.localeconv, 270, 271, 491
sys.nframe (sys.parent), 492
sys.on.exit, 327
sys.on.exit (sys.parent), 492
sys.parent, 492, 1682
sys.parents (sys.parent), 492
Sys.readlink, 174, 178, 494
Sys.setenv, 151, 487, 495, 1687, 1788
Sys.setFileTime, 496
Sys.setlocale, 29, 491, 742
Sys.setlocale (locales), 270
Sys.sleep, 430, 497
sys.source, 35, 149, 320, 330, 445, 498
sys.status (sys.parent), 492
Sys.time, 106, 110, 499, 523, 993
Sys.timezone, 30, 110, 151, 499
Sys.timezone (timezones), 521
Sys.umask, 87
Sys.umask (files2), 179
Sys.unsetenv (Sys.setenv), 495
Sys.which, 171, 500, 502
system, 6, 150, 171, 240, 430–432, 434, 500,

501, 506, 507, 1806, 1811
system.file, 503, 1722
system.time, 355, 504, 1528
system2, 503, 505

T (logical), 275
t, 15, 507, 1530
t.test, 1290, 1291, 1368, 1380, 1405, 1519,

1553
t.ts (ts), 1529
table, 100, 350, 481, 508, 511, 578, 604, 826,

1114, 1247, 1249, 1313, 1558
table-class (setOldClass), 1074
tabulate, 2, 100, 509, 510
tail (head), 1707

1884 INDEX

tan, 224
tan (Trig), 531
tanh, 1309
tanh (Hyperbolic), 223
tapply, 17, 50, 253, 410, 511, 1117
tar, 1805, 1811
taskCallback, 513
taskCallbackManager, 513, 514, 515, 516,

517
taskCallbackNames, 516
tcl (TkCommands), 1576
tclArray (TclInterface), 1571
tclclose (TkCommands), 1576
tclfile.dir (TkCommands), 1576
tclfile.tail (TkCommands), 1576
TclInterface, 1571, 1579, 1584, 1586
tclObj (TclInterface), 1571
tclObj<- (TclInterface), 1571
tclopen (TkCommands), 1576
tclputs (TkCommands), 1576
tclread (TkCommands), 1576
tclRequire (TclInterface), 1571
tclServiceMode, 1575
tcltk (tcltk-package), 1571
tcltk-package, 1571
tclvalue (TclInterface), 1571
tclvalue<- (TclInterface), 1571
tclVar (TclInterface), 1571
tclvar (TclInterface), 1571
tcrossprod (crossprod), 96
TDist, 1521
tempdir, 151, 1653
tempdir (tempfile), 517
tempfile, 517
termplot, 1388, 1523
terms, 821, 1195, 1243, 1256, 1299,

1333–1336, 1525, 1526, 1527, 1543
terms.formula, 1242, 1525, 1525, 1527,

1543
terms.object, 1525, 1526, 1526
terrain.colors, 651, 686, 781, 782
terrain.colors (Palettes), 686
testInheritedMethods, 1028, 1086
testInstalledBasic

(testInstalledPackage), 1634
testInstalledPackage, 1634
testInstalledPackages

(testInstalledPackage), 1634
texi2dvi, 150, 330, 1593, 1635
texi2pdf, 150, 330, 1594, 1603
texi2pdf (texi2dvi), 1635

text, 157, 676, 679, 680, 695, 698, 705,
758–760, 780, 786, 788, 798, 799,
803–806, 808, 809, 854, 859, 862,
1395

text.formula, 861
text.formula (plot.formula), 823
textConnection, 89, 146, 221, 518, 1664
textConnectionValue (textConnection),

518
textGrob (grid.text), 936
textstyle (plotmath), 694
Theoph, 619
tiff, 56, 666, 668
tiff (png), 699
tilde, 521
tilde expansion, 40, 175, 211, 268, 412, 459
tilde expansion (path.expand), 343
time, 505, 729, 1496, 1528, 1531, 1535, 1557
time interval, 293
time interval (difftime), 125
time zone (timezones), 521
time zones, 28
time zones (timezones), 521
timestamp (savehistory), 1787
timezone, 125, 243, 405, 426, 499
timezone (timezones), 521
timezones, 521
Titanic, 620
title, 698, 746, 754, 758, 760, 764, 768, 769,

775, 793, 799, 803, 804, 807, 811,
816, 818, 819, 821, 822, 852, 861,
861, 1261, 1386, 1387

tk_choose.dir, 1587, 1588
tk_choose.files, 1587, 1587
tk_messageBox, 1588
tk_select.list, 1589, 1789
tkactivate (TkWidgetcmds), 1582
tkadd (TkWidgetcmds), 1582
tkaddtag (TkWidgetcmds), 1582
tkbbox (TkWidgetcmds), 1582
tkbell (TkCommands), 1576
tkbind (TkCommands), 1576
tkbindtags (TkCommands), 1576
tkbutton (TkWidgets), 1585
tkcanvas (TkWidgets), 1585
tkcanvasx (TkWidgetcmds), 1582
tkcanvasy (TkWidgetcmds), 1582
tkcget (TkWidgetcmds), 1582
tkcheckbutton (TkWidgets), 1585
tkchooseDirectory (TkCommands), 1576
tkclipboard.append (TkCommands), 1576
tkclipboard.clear (TkCommands), 1576

INDEX 1885

TkCommands, 1575, 1576, 1584, 1586
tkcompare (TkWidgetcmds), 1582
tkconfigure (TkWidgetcmds), 1582
tkcoords (TkWidgetcmds), 1582
tkcreate (TkWidgetcmds), 1582
tkcurselection (TkWidgetcmds), 1582
tkdchars (TkWidgetcmds), 1582
tkdebug (TkWidgetcmds), 1582
tkdelete (TkWidgetcmds), 1582
tkdelta (TkWidgetcmds), 1582
tkdeselect (TkWidgetcmds), 1582
tkdestroy (TclInterface), 1571
tkdialog (TkCommands), 1576
tkdlineinfo (TkWidgetcmds), 1582
tkdtag (TkWidgetcmds), 1582
tkdump (TkWidgetcmds), 1582
tkentry (TkWidgets), 1585
tkentrycget (TkWidgetcmds), 1582
tkentryconfigure (TkWidgetcmds), 1582
tkevent.add (TkCommands), 1576
tkevent.delete (TkCommands), 1576
tkevent.generate (TkCommands), 1576
tkevent.info (TkCommands), 1576
tkfind (TkWidgetcmds), 1582
tkflash (TkWidgetcmds), 1582
tkfocus (TkCommands), 1576
tkfont.actual (TkCommands), 1576
tkfont.configure (TkCommands), 1576
tkfont.create (TkCommands), 1576
tkfont.delete (TkCommands), 1576
tkfont.families (TkCommands), 1576
tkfont.measure (TkCommands), 1576
tkfont.metrics (TkCommands), 1576
tkfont.names (TkCommands), 1576
tkfraction (TkWidgetcmds), 1582
tkframe (TkWidgets), 1585
tkget (TkWidgetcmds), 1582
tkgetOpenFile (TkCommands), 1576
tkgetSaveFile (TkCommands), 1576
tkgettags (TkWidgetcmds), 1582
tkgrab (TkCommands), 1576
tkgrid (TkCommands), 1576
tkicursor (TkWidgetcmds), 1582
tkidentify (TkWidgetcmds), 1582
tkimage.cget (TkCommands), 1576
tkimage.configure (TkCommands), 1576
tkimage.create (TkCommands), 1576
tkimage.names (TkCommands), 1576
tkindex (TkWidgetcmds), 1582
tkinsert (TkWidgetcmds), 1582
tkinvoke (TkWidgetcmds), 1582
tkitembind (TkWidgetcmds), 1582

tkitemcget (TkWidgetcmds), 1582
tkitemconfigure (TkWidgetcmds), 1582
tkitemfocus (TkWidgetcmds), 1582
tkitemlower (TkWidgetcmds), 1582
tkitemraise (TkWidgetcmds), 1582
tkitemscale (TkWidgetcmds), 1582
tklabel (TkWidgets), 1585
tklistbox (TkWidgets), 1585
tklower (TkCommands), 1576
tkmark.gravity (TkWidgetcmds), 1582
tkmark.names (TkWidgetcmds), 1582
tkmark.next (TkWidgetcmds), 1582
tkmark.previous (TkWidgetcmds), 1582
tkmark.set (TkWidgetcmds), 1582
tkmark.unset (TkWidgetcmds), 1582
tkmenu (TkWidgets), 1585
tkmenubutton (TkWidgets), 1585
tkmessage (TkWidgets), 1585
tkmessageBox, 1589
tkmessageBox (TkCommands), 1576
tkmove (TkWidgetcmds), 1582
tknearest (TkWidgetcmds), 1582
tkpack (TkCommands), 1576
tkpager, 1580
tkplace (TkCommands), 1576
tkpopup (TkCommands), 1576
tkpost (TkWidgetcmds), 1582
tkpostcascade (TkWidgetcmds), 1582
tkpostscript (TkWidgetcmds), 1582
tkProgressBar, 1580, 1809, 1823
tkradiobutton (TkWidgets), 1585
tkraise (TkCommands), 1576
tkscale (TkWidgets), 1585
tkscan.dragto (TkWidgetcmds), 1582
tkscan.mark (TkWidgetcmds), 1582
tkscrollbar (TkWidgets), 1585
tksearch (TkWidgetcmds), 1582
tksee (TkWidgetcmds), 1582
tkselect (TkWidgetcmds), 1582
tkselection.adjust (TkWidgetcmds), 1582
tkselection.anchor (TkWidgetcmds), 1582
tkselection.clear (TkWidgetcmds), 1582
tkselection.from (TkWidgetcmds), 1582
tkselection.includes (TkWidgetcmds),

1582
tkselection.present (TkWidgetcmds), 1582
tkselection.range (TkWidgetcmds), 1582
tkselection.set (TkWidgetcmds), 1582
tkselection.to (TkWidgetcmds), 1582
tkset (TkWidgetcmds), 1582
tksize (TkWidgetcmds), 1582
tkStartGUI, 1582

1886 INDEX

tktag.add (TkWidgetcmds), 1582
tktag.bind (TkWidgetcmds), 1582
tktag.cget (TkWidgetcmds), 1582
tktag.configure (TkWidgetcmds), 1582
tktag.delete (TkWidgetcmds), 1582
tktag.lower (TkWidgetcmds), 1582
tktag.names (TkWidgetcmds), 1582
tktag.nextrange (TkWidgetcmds), 1582
tktag.prevrange (TkWidgetcmds), 1582
tktag.raise (TkWidgetcmds), 1582
tktag.ranges (TkWidgetcmds), 1582
tktag.remove (TkWidgetcmds), 1582
tktext (TkWidgets), 1585
tktitle (TkCommands), 1576
tktitle<- (TkCommands), 1576
tktoggle (TkWidgetcmds), 1582
tktoplevel (TkWidgets), 1585
tktype (TkWidgetcmds), 1582
tkunpost (TkWidgetcmds), 1582
tkwait.variable (TkCommands), 1576
tkwait.visibility (TkCommands), 1576
tkwait.window (TkCommands), 1576
tkwidget (TkWidgets), 1585
TkWidgetcmds, 1571, 1575, 1579, 1582, 1586
TkWidgets, 1571, 1575, 1579, 1584, 1585
tkwindow.cget (TkWidgetcmds), 1582
tkwindow.configure (TkWidgetcmds), 1582
tkwindow.create (TkWidgetcmds), 1582
tkwindow.names (TkWidgetcmds), 1582
tkwinfo (TkCommands), 1576
tkwm.aspect (TkCommands), 1576
tkwm.client (TkCommands), 1576
tkwm.colormapwindows (TkCommands), 1576
tkwm.command (TkCommands), 1576
tkwm.deiconify (TkCommands), 1576
tkwm.focusmodel (TkCommands), 1576
tkwm.frame (TkCommands), 1576
tkwm.geometry (TkCommands), 1576
tkwm.grid (TkCommands), 1576
tkwm.group (TkCommands), 1576
tkwm.iconbitmap (TkCommands), 1576
tkwm.iconify (TkCommands), 1576
tkwm.iconmask (TkCommands), 1576
tkwm.iconname (TkCommands), 1576
tkwm.iconposition (TkCommands), 1576
tkwm.iconwindow (TkCommands), 1576
tkwm.maxsize (TkCommands), 1576
tkwm.minsize (TkCommands), 1576
tkwm.overrideredirect (TkCommands), 1576
tkwm.positionfrom (TkCommands), 1576
tkwm.protocol (TkCommands), 1576
tkwm.resizable (TkCommands), 1576

tkwm.sizefrom (TkCommands), 1576
tkwm.state (TkCommands), 1576
tkwm.title (TkCommands), 1576
tkwm.transient (TkCommands), 1576
tkwm.withdraw (TkCommands), 1576
tkXselection.clear (TkCommands), 1576
tkXselection.get (TkCommands), 1576
tkXselection.handle (TkCommands), 1576
tkXselection.own (TkCommands), 1576
tkxview (TkWidgetcmds), 1582
tkyposition (TkWidgetcmds), 1582
tkyview (TkWidgetcmds), 1582
TMPDIR (EnvVar), 149
toBibtex, 1656
toBibtex (toLatex), 1807
toBibtex.person (person), 1740
toeplitz, 1529
toHTML, 1636
toLatex, 1807
toLatex.sessionInfo (sessionInfo), 1789
tolower, 146, 215
tolower (chartr), 64
tools (tools-package), 1591
tools-deprecated, 1637
tools-package, 1591
ToothGrowth, 622
topenv, 330, 498
topenv (ns-topenv), 320
topo.colors, 650, 652, 781, 782
topo.colors (Palettes), 686
toRd, 1637
toString, 189, 190, 523
toupper, 146, 215
toupper (chartr), 64
trace, 114, 524, 530, 991–993, 1012, 1044,

1047, 1088, 1089, 1696, 1697
traceable, 978, 1012
traceable-class (TraceClasses), 1088
traceback, 48, 114, 329, 445, 462, 528
TraceClasses, 1088
tracemem, 56, 297, 529, 1773, 1775, 1802
tracingState, 530
tracingState (trace), 524
trans3d, 719, 813
transform, 475, 530, 554
treering, 622
trees, 623
trellis.focus, 912
Trig, 273, 531
trigamma (Special), 446
TRUE, 275, 298, 400, 463, 1395
TRUE (logical), 275

INDEX 1887

truehist, 685, 776
trunc, 126, 232, 1055
trunc (Round), 403
trunc.Date (round.POSIXt), 405
trunc.POSIXt, 110
trunc.POSIXt (round.POSIXt), 405
truncate (seek), 420
try, 82, 171, 172, 317, 330, 462, 528, 533, 542
tryCatch, 528, 533
tryCatch (conditions), 79
ts, 124, 219, 332, 1085, 1339, 1395, 1428,

1496, 1528, 1529, 1531, 1535, 1556,
1557

ts-class (StructureClasses), 1084
ts-methods, 1531
ts.intersect, 1299
ts.intersect (ts.union), 1533
ts.plot, 1532
ts.union, 1533
tsdiag, 1140, 1145, 1534
tsp, 19, 36, 37, 274, 1495, 1496, 1528, 1530,

1531, 1535, 1557
tsp<- (tsp), 1535
tsSmooth, 1283, 1506, 1535
ttkbutton (TkWidgets), 1585
ttkcheckbutton (TkWidgets), 1585
ttkcombobox (TkWidgets), 1585
ttkentry (TkWidgets), 1585
ttkframe (TkWidgets), 1585
ttkimage (TkWidgets), 1585
ttklabel (TkWidgets), 1585
ttklabelframe (TkWidgets), 1585
ttkmenubutton (TkWidgets), 1585
ttknotebook (TkWidgets), 1585
ttkpanedwindow (TkWidgets), 1585
ttkprogressbar (TkWidgets), 1585
ttkradiobutton (TkWidgets), 1585
ttkscrollbar (TkWidgets), 1585
ttkseparator (TkWidgets), 1585
ttksizegrip (TkWidgets), 1585
ttktreeview (TkWidgets), 1585
Tukey, 1536
TukeyHSD, 1130, 1337, 1507, 1537
txtProgressBar, 1581, 1808, 1823
type, 131, 223, 232, 322, 326, 1773
type (typeof), 534
type.convert, 1755–1757, 1762, 1763, 1765,

1809
Type1Font, 705, 709, 710, 720
typeof, 19, 204, 238, 297, 302, 303, 306, 323,

451, 534, 971, 980, 1034
TZ (timezones), 521

TZDIR (timezones), 521

UCBAdmissions, 624
ucv, 1151
UKDriverDeaths, 625
UKgas, 626
UKLungDeaths, 627
umask, 177
umask (files2), 179
unclass, 170, 1592
unclass (class), 69
undebug (debug), 113
underline (plotmath), 694
undoc, 1604, 1638
Uniform, 1539
uninitializedField-class

(ReferenceClasses), 1040
union (sets), 428
unique, 138, 147, 535
unique.numeric_version

(numeric_version), 324
unique.POSIXlt (DateTimeClasses), 108
uniroot, 345, 1150, 1351, 1375, 1402, 1403,

1405, 1540
unit, 872, 879, 882, 892, 893, 912, 944, 952,

952, 954, 955
unit.c, 954, 954
unit.length, 955
unit.pmax (unit.pmin), 955
unit.pmin, 955
unit.rep, 956
units, 863
units (difftime), 125
units<- (difftime), 125
unix.time (system.time), 504
unlink, 87, 178, 180, 518, 536
unlist, 52, 189, 235, 265, 537, 1452,

1768–1770, 1797
unlist.relistable (relist), 1768
unloadNamespace, 121, 259, 317
unloadNamespace (ns-load), 318
unlockBinding (bindenv), 43
unname, 292, 539, 1464
unserialize, 269, 387
unserialize (serialize), 427
unsplit (split), 449
unstack (stack), 1797
untar, 1716, 1744, 1807, 1810
untrace, 992, 1088, 1696, 1697
untrace (trace), 524
untracemem (tracemem), 529
unz, 1641, 1813, 1827
unz (connections), 83

1888 INDEX

unzip, 1811, 1812, 1827
update, 1542, 1569
update,ANY-method (update-methods), 1569
update,mle-method (update-methods), 1569
update-methods, 1569
update.formula, 1242, 1498, 1542, 1543
update.packages, 333, 1615, 1717, 1721,

1722, 1739, 1813
update.packageStatus (packageStatus),

1738
upgrade (packageStatus), 1738
upper.tri, 123
upper.tri (lower.tri), 276
upViewport, 882, 959
upViewport (Working with Viewports), 960
url, 56, 269, 387, 416, 1686–1688, 1762,

1791, 1816
url (connections), 83
url.show, 1687, 1815
URLdecode, 86
URLdecode (URLencode), 1816
URLencode, 1660, 1816
USAccDeaths, 627
USArrests, 628
UseMethod, 60, 70, 220, 539, 979, 1025
userhooks, 542
USJudgeRatings, 628
USPersonalExpenditure, 629
uspop, 630
utf8Conversion, 544
utf8ToInt (utf8Conversion), 544
utils (utils-package), 1643
utils-deprecated, 1817
utils-package, 1643

VADeaths, 630
valid.just, 957
validDetails, 957
validObject, 984, 1022, 1058, 1077, 1089
vapply (lapply), 251
var, 1190, 1320, 1321, 1459
var (cor), 1184
var.test, 1128, 1152, 1241, 1341, 1544
variable.names, 408
variable.names (case+variable.names),

1165
varimax, 1226, 1545
vcov, 1139, 1176, 1300, 1355, 1546, 1569
vcov,ANY-method (vcov-methods), 1569
vcov,mle-method (vcov-methods), 1569
vcov-methods, 1569
vector, 59, 138, 191, 265, 536, 545, 997
vector-class (BasicClasses), 970

Vectorize, 338, 547, 1276
version, 258
version (R.Version), 364
vi, 1681
vi (edit), 1688
View, 1817
viewport, 873, 879, 885, 887, 890, 891, 896,

903, 907, 909, 911, 912, 914, 916,
917, 920, 924, 925, 930, 933,
935–937, 939, 940, 942, 945, 947,
951, 959, 961

viewport (Grid Viewports), 880
vignette, 1661, 1818
vignetteDepends, 1639
vignettes, 867
vignettes (vignette), 1818
VIRTUAL-class (BasicClasses), 970
volcano, 631
vpList (Grid Viewports), 880
vpPath, 958, 961
vpStack (Grid Viewports), 880
vpTree (Grid Viewports), 880

warning, 19, 59, 82, 210, 274, 301, 329, 334,
436, 462, 463, 548, 550, 1641

warnings, 331, 548, 549, 549
warpbreaks, 632
weekdays, 107, 110, 550
Weibull, 1547
weighted.mean, 293, 1548
weighted.residuals, 1304, 1549
weights, 1304, 1346, 1355, 1549, 1550
weights.glm, 1551
weights.glm (glm), 1253
which, 552, 553
which.is.max, 553
which.max, 292
which.max (which.min), 553
which.min, 167, 552, 553
while, 400
while (Control), 92
while-class (language-class), 1020
widehat (plotmath), 694
widetilde (plotmath), 694
width.SJ, 1151
widthDetails, 868, 959
wilcox.test, 1290, 1291, 1381, 1382, 1466,

1551, 1555
wilcox_test, 1290, 1553
Wilcoxon, 1554
win.graph (windows), 721
win.metafile (windows), 721
win.print (windows), 721

INDEX 1889

win.version (winextras), 1821
winDialog, 1820, 1822
winDialogString (winDialog), 1820
window, 1528, 1530, 1531, 1556
window<- (window), 1556
windows, 332, 644, 667, 683, 697, 700, 718,

721, 725, 726, 861, 1785, 1786
windows.options, 460, 668, 723, 725
windowsFont (windowsFonts), 726
windowsFonts, 724, 726
winextras, 1821
winMenuAdd, 1820
winMenuAdd (winMenus), 1821
winMenuAddItem (winMenus), 1821
winMenuDel (winMenus), 1821
winMenuDelItem (winMenus), 1821
winMenuItems (winMenus), 1821
winMenuNames (winMenus), 1821
winMenus, 1821
winProgressBar, 1581, 1809, 1823
with, 32, 35, 554, 1029, 1664
withCallingHandlers (conditions), 79
within, 531
within (with), 554
withRestarts (conditions), 79
withVisible, 236, 445, 556
women, 633
Working with Viewports, 960
WorldPhones, 633
write, 133, 136, 350, 419, 557, 1826
write.csv (write.table), 1824
write.csv2 (write.table), 1824
write.dcf, 1641
write.dcf (dcf), 111
write.ftable (read.ftable), 1443
write.matrix, 1826
write.socket (read.socket), 1760
write.table, 112, 557, 1765, 1824
write_PACKAGES, 1640
writeBin, 89, 383, 558
writeBin (readBin), 379
writeChar, 89, 380, 558
writeChar (readChar), 382
writeClipboard (clipboard), 1671
writeLines, 89, 380–383, 386, 436, 558
wsbrowser (browseEnv), 1659
WWWusage, 634

X11 (windows), 721
x11, 810
x11 (windows), 721
xaxisGrob (grid.xaxis), 938
xDetails, 962

xedit (edit), 1688
xemacs (edit), 1688
xfig, 667, 727, 829
xgettext, 210, 1598, 1641
xgettext2pot (xgettext), 1641
xinch (units), 863
xlim (plot.window), 827
xngettext (xgettext), 1641
xor, 223, 326
xor (Logic), 273
xor.hexmode (hexmode), 222
xor.octmode (octmode), 325
xspline, 864, 940
xsplineGrob, 963
xsplineGrob (grid.xspline), 939
xsplinePoints, 963
xtabs, 509, 632, 1247, 1444, 1557
xtfrm, 235, 336, 373, 442, 558, 1185
xtfrm.numeric_version

(numeric_version), 324
xy.coords, 647, 648, 656, 729, 730, 732, 779,

785, 787, 790, 818, 819, 828, 829,
833, 835, 844, 855, 857, 859, 864,
1131, 1280, 1315, 1457, 1482

xyinch (units), 863
xyTable, 730, 855–857
xyVector, 1094, 1102, 1105
xyz.coords, 731
xzfile (connections), 83

yaxisGrob (grid.yaxis), 941
yDetails (xDetails), 962
yinch (units), 863
ylim (plot.window), 827

zapsmall, 559, 1429
zip, 151, 1813, 1827
zpackages, 560
zutils, 561

	Contents
	The base package
	base-package
	.bincode
	.Device
	.Machine
	.Platform
	abbreviate
	agrep
	all
	all.equal
	all.names
	any
	aperm
	append
	apply
	args
	Arithmetic
	array
	as.data.frame
	as.Date
	as.environment
	as.function
	as.POSIX*
	AsIs
	assign
	assignOps
	attach
	attr
	attributes
	autoload
	backsolve
	basename
	Bessel
	bindenv
	body
	bquote
	browser
	browserText
	builtins
	by
	c
	call
	callCC
	CallExternal
	capabilities
	cat
	cbind
	char.expand
	character
	charmatch
	chartr
	chol
	chol2inv
	class
	col
	Colon
	colSums
	commandArgs
	comment
	Comparison
	complex
	conditions
	conflicts
	connections
	Constants
	contributors
	Control
	converters
	copyright
	crossprod
	Cstack_info
	cumsum
	cut
	cut.POSIXt
	data.class
	data.frame
	data.matrix
	date
	Dates
	DateTimeClasses
	dcf
	debug
	Defunct
	delayedAssign
	deparse
	deparseOpts
	Deprecated
	det
	detach
	diag
	diff
	difftime
	dim
	dimnames
	do.call
	double
	dput
	drop
	droplevels
	dump
	duplicated
	dyn.load
	eapply
	eigen
	encodeString
	Encoding
	environment
	EnvVar
	eval
	exists
	expand.grid
	expression
	Extract
	Extract.data.frame
	Extract.factor
	Extremes
	factor
	file.access
	file.choose
	file.info
	file.path
	file.show
	files
	files2
	find.package
	findInterval
	force
	Foreign
	formals
	format
	format.info
	format.pval
	formatC
	formatDL
	function
	funprog
	gc
	gc.time
	gctorture
	get
	getDLLRegisteredRoutines
	getLoadedDLLs
	getNativeSymbolInfo
	gettext
	getwd
	gl
	grep
	grepRaw
	groupGeneric
	gzcon
	hexmode
	Hyperbolic
	iconv
	icuSetCollate
	identical
	identity
	ifelse
	integer
	interaction
	interactive
	Internal
	InternalMethods
	invisible
	is.finite
	is.function
	is.language
	is.object
	is.R
	is.recursive
	is.single
	is.unsorted
	ISOdatetime
	isS4
	isSymmetric
	jitter
	kappa
	kronecker
	l10n_info
	labels
	lapply
	Last.value
	length
	levels
	libPaths
	library
	library.dynam
	license
	list
	list.files
	list2env
	load
	locales
	log
	Logic
	logical
	lower.tri
	ls
	make.names
	make.unique
	mapply
	margin.table
	mat.or.vec
	match
	match.arg
	match.call
	match.fun
	MathFun
	matmult
	matrix
	maxCol
	mean
	memCompress
	Memory
	Memory-limits
	memory.profile
	merge
	message
	missing
	mode
	NA
	name
	names
	nargs
	nchar
	nlevels
	noquote
	norm
	normalizePath
	NotYet
	nrow
	ns-dblcolon
	ns-hooks
	ns-load
	ns-topenv
	NULL
	numeric
	NumericConstants
	numeric_version
	octmode
	on.exit
	Ops.Date
	options
	order
	outer
	Paren
	parse
	paste
	path.expand
	pmatch
	polyroot
	pos.to.env
	pretty
	Primitive
	print
	print.data.frame
	print.default
	prmatrix
	proc.time
	prod
	prop.table
	pushBack
	qr
	QR.Auxiliaries
	quit
	Quotes
	R.Version
	Random
	Random.user
	range
	rank
	rapply
	raw
	rawConnection
	rawConversion
	RdUtils
	readBin
	readChar
	readline
	readLines
	readRDS
	readRenviron
	real
	Recall
	reg.finalizer
	regex
	regmatches
	remove
	rep
	replace
	Reserved
	rev
	Rhome
	rle
	Round
	round.POSIXt
	row
	row+colnames
	row.names
	rowsum
	sample
	save
	scale
	scan
	search
	seek
	seq
	seq.Date
	seq.POSIXt
	sequence
	serialize
	sets
	setTimeLimit
	shell
	shell.exec
	showConnections
	shQuote
	sign
	sink
	slice.index
	slotOp
	socketSelect
	solve
	sort
	source
	Special
	split
	sprintf
	sQuote
	srcfile
	Startup
	stop
	stopifnot
	strptime
	strsplit
	strtoi
	strtrim
	structure
	strwrap
	subset
	substitute
	substr
	sum
	summary
	svd
	sweep
	switch
	Syntax
	Sys.getenv
	Sys.getpid
	Sys.glob
	Sys.info
	Sys.localeconv
	sys.parent
	Sys.readlink
	Sys.setenv
	Sys.setFileTime
	Sys.sleep
	sys.source
	Sys.time
	Sys.which
	system
	system.file
	system.time
	system2
	t
	table
	tabulate
	tapply
	taskCallback
	taskCallbackManager
	taskCallbackNames
	tempfile
	textConnection
	tilde
	timezones
	toString
	trace
	traceback
	tracemem
	transform
	Trig
	try
	typeof
	unique
	unlink
	unlist
	unname
	UseMethod
	userhooks
	utf8Conversion
	vector
	Vectorize
	warning
	warnings
	weekdays
	which
	which.min
	with
	withVisible
	write
	writeLines
	xtfrm
	zapsmall
	zpackages
	zutils

	The datasets package
	datasets-package
	ability.cov
	airmiles
	AirPassengers
	airquality
	anscombe
	attenu
	attitude
	austres
	beavers
	BJsales
	BOD
	cars
	ChickWeight
	chickwts
	CO2
	co2
	crimtab
	discoveries
	DNase
	esoph
	euro
	eurodist
	EuStockMarkets
	faithful
	Formaldehyde
	freeny
	HairEyeColor
	Harman23.cor
	Harman74.cor
	Indometh
	infert
	InsectSprays
	iris
	islands
	JohnsonJohnson
	LakeHuron
	lh
	LifeCycleSavings
	Loblolly
	longley
	lynx
	morley
	mtcars
	nhtemp
	Nile
	nottem
	occupationalStatus
	Orange
	OrchardSprays
	PlantGrowth
	precip
	presidents
	pressure
	Puromycin
	quakes
	randu
	rivers
	rock
	sleep
	stackloss
	state
	sunspot.month
	sunspot.year
	sunspots
	swiss
	Theoph
	Titanic
	ToothGrowth
	treering
	trees
	UCBAdmissions
	UKDriverDeaths
	UKgas
	UKLungDeaths
	USAccDeaths
	USArrests
	USJudgeRatings
	USPersonalExpenditure
	uspop
	VADeaths
	volcano
	warpbreaks
	women
	WorldPhones
	WWWusage

	The grDevices package
	grDevices-package
	adjustcolor
	as.graphicsAnnot
	as.raster
	axisTicks
	boxplot.stats
	bringToTop
	cairo
	check.options
	chull
	cm
	col2rgb
	colorRamp
	colors
	contourLines
	convertColor
	densCols
	dev
	dev.capabilities
	dev.capture
	dev.flush
	dev.interactive
	dev.size
	dev2
	dev2bitmap
	devAskNewPage
	Devices
	embedFonts
	extendrange
	getGraphicsEvent
	gray
	gray.colors
	hcl
	Hershey
	hsv
	Japanese
	make.rgb
	msgWindow
	n2mfrow
	nclass
	palette
	Palettes
	pdf
	pdf.options
	pictex
	plotmath
	png
	postscript
	postscriptFonts
	pretty.Date
	ps.options
	recordGraphics
	recordPlot
	rgb
	rgb2hsv
	savePlot
	trans3d
	Type1Font
	windows
	windows.options
	windowsFonts
	xfig
	xy.coords
	xyTable
	xyz.coords

	The graphics package
	graphics-package
	abline
	arrows
	assocplot
	Axis
	axis
	axis.POSIXct
	axTicks
	barplot
	box
	boxplot
	boxplot.matrix
	bxp
	cdplot
	clip
	contour
	convertXY
	coplot
	curve
	dotchart
	filled.contour
	fourfoldplot
	frame
	grid
	hist
	hist.POSIXt
	identify
	image
	layout
	legend
	lines
	locator
	matplot
	mosaicplot
	mtext
	pairs
	panel.smooth
	par
	persp
	pie
	plot
	plot.data.frame
	plot.default
	plot.design
	plot.factor
	plot.formula
	plot.histogram
	plot.table
	plot.window
	plot.xy
	points
	polygon
	polypath
	rasterImage
	rect
	rug
	screen
	segments
	smoothScatter
	spineplot
	stars
	stem
	stripchart
	strwidth
	sunflowerplot
	symbols
	text
	title
	units
	xspline

	The grid package
	grid-package
	absolute.size
	arrow
	calcStringMetric
	convertNative
	dataViewport
	drawDetails
	editDetails
	gEdit
	getNames
	gpar
	gPath
	Grid
	Grid Viewports
	grid.add
	grid.arrows
	grid.bezier
	grid.cap
	grid.circle
	grid.clip
	grid.collection
	grid.convert
	grid.copy
	grid.curve
	grid.display.list
	grid.DLapply
	grid.draw
	grid.edit
	grid.frame
	grid.function
	grid.get
	grid.grab
	grid.grill
	grid.grob
	grid.layout
	grid.lines
	grid.locator
	grid.ls
	grid.move.to
	grid.newpage
	grid.null
	grid.pack
	grid.path
	grid.place
	grid.plot.and.legend
	grid.points
	grid.polygon
	grid.pretty
	grid.prompt
	grid.raster
	grid.record
	grid.rect
	grid.refresh
	grid.remove
	grid.segments
	grid.set
	grid.show.layout
	grid.show.viewport
	grid.text
	grid.xaxis
	grid.xspline
	grid.yaxis
	grobName
	grobWidth
	grobX
	plotViewport
	pop.viewport
	push.viewport
	Querying the Viewport Tree
	roundrect
	showGrob
	showViewport
	stringWidth
	unit
	unit.c
	unit.length
	unit.pmin
	unit.rep
	valid.just
	validDetails
	vpPath
	widthDetails
	Working with Viewports
	xDetails
	xsplinePoints

	The methods package
	methods-package
	.BasicFunsList
	as
	BasicClasses
	callGeneric
	callNextMethod
	canCoerce
	cbind2
	Classes
	classesToAM
	className
	classRepresentation-class
	Documentation
	dotsMethods
	environment-class
	envRefClass-class
	evalSource
	findClass
	findMethods
	fixPre1.8
	genericFunction-class
	GenericFunctions
	getClass
	getMethod
	getPackageName
	hasArg
	implicitGeneric
	inheritedSlotNames
	initialize-methods
	is
	isSealedMethod
	language-class
	LinearMethodsList-class
	makeClassRepresentation
	method.skeleton
	MethodDefinition-class
	Methods
	MethodsList-class
	MethodWithNext-class
	new
	nonStructure-class
	ObjectsWithPackage-class
	promptClass
	promptMethods
	ReferenceClasses
	representation
	S3Part
	S4groupGeneric
	SClassExtension-class
	selectSuperClasses
	setClass
	setClassUnion
	setGeneric
	setLoadActions
	setMethod
	setOldClass
	show
	showMethods
	signature-class
	slot
	StructureClasses
	testInheritedMethods
	TraceClasses
	validObject

	The splines package
	splines-package
	asVector
	backSpline
	bs
	interpSpline
	ns
	periodicSpline
	polySpline
	predict.bs
	predict.bSpline
	splineDesign
	splineKnots
	splineOrder
	xyVector

	The stats package
	stats-package
	.checkMFClasses
	acf
	acf2AR
	add1
	addmargins
	aggregate
	AIC
	alias
	anova
	anova.glm
	anova.lm
	anova.mlm
	ansari.test
	aov
	approxfun
	ar
	ar.ols
	arima
	arima.sim
	arima0
	ARMAacf
	ARMAtoMA
	as.hclust
	asOneSidedFormula
	ave
	bandwidth
	bartlett.test
	Beta
	binom.test
	Binomial
	biplot
	biplot.princomp
	birthday
	Box.test
	C
	cancor
	case+variable.names
	Cauchy
	chisq.test
	Chisquare
	cmdscale
	coef
	complete.cases
	confint
	constrOptim
	contrast
	contrasts
	convolve
	cophenetic
	cor
	cor.test
	cov.wt
	cpgram
	cutree
	decompose
	delete.response
	dendrapply
	dendrogram
	density
	deriv
	deviance
	df.residual
	diffinv
	dist
	Distributions
	dummy.coef
	ecdf
	eff.aovlist
	effects
	embed
	expand.model.frame
	Exponential
	extractAIC
	factanal
	factor.scope
	family
	FDist
	fft
	filter
	fisher.test
	fitted
	fivenum
	fligner.test
	formula
	formula.nls
	friedman.test
	ftable
	ftable.formula
	GammaDist
	Geometric
	getInitial
	glm
	glm.control
	glm.summaries
	hclust
	heatmap
	HoltWinters
	Hypergeometric
	identify.hclust
	influence.measures
	integrate
	interaction.plot
	IQR
	is.empty.model
	isoreg
	KalmanLike
	kernapply
	kernel
	kmeans
	kruskal.test
	ks.test
	ksmooth
	lag
	lag.plot
	line
	lm
	lm.fit
	lm.influence
	lm.summaries
	loadings
	loess
	loess.control
	Logistic
	logLik
	loglin
	Lognormal
	lowess
	ls.diag
	ls.print
	lsfit
	mad
	mahalanobis
	make.link
	makepredictcall
	manova
	mantelhaen.test
	mauchly.test
	mcnemar.test
	median
	medpolish
	model.extract
	model.frame
	model.matrix
	model.tables
	monthplot
	mood.test
	Multinom
	na.action
	na.contiguous
	na.fail
	naprint
	naresid
	NegBinomial
	nextn
	nlm
	nlminb
	nls
	nls.control
	NLSstAsymptotic
	NLSstClosestX
	NLSstLfAsymptote
	NLSstRtAsymptote
	nobs
	Normal
	numericDeriv
	offset
	oneway.test
	optim
	optimize
	order.dendrogram
	p.adjust
	pairwise.prop.test
	pairwise.t.test
	pairwise.table
	pairwise.wilcox.test
	plot.acf
	plot.density
	plot.HoltWinters
	plot.isoreg
	plot.lm
	plot.ppr
	plot.profile.nls
	plot.spec
	plot.stepfun
	plot.ts
	Poisson
	poisson.test
	poly
	power
	power.anova.test
	power.prop.test
	power.t.test
	PP.test
	ppoints
	ppr
	prcomp
	predict
	predict.Arima
	predict.glm
	predict.HoltWinters
	predict.lm
	predict.loess
	predict.nls
	predict.smooth.spline
	preplot
	princomp
	print.power.htest
	print.ts
	printCoefmat
	profile
	profile.nls
	proj
	prop.test
	prop.trend.test
	qqnorm
	quade.test
	quantile
	r2dtable
	read.ftable
	rect.hclust
	relevel
	reorder.default
	reorder.dendrogram
	replications
	reshape
	residuals
	runmed
	rWishart
	scatter.smooth
	screeplot
	sd
	se.contrast
	selfStart
	setNames
	shapiro.test
	SignRank
	simulate
	smooth
	smooth.spline
	smoothEnds
	sortedXyData
	spec.ar
	spec.pgram
	spec.taper
	spectrum
	splinefun
	SSasymp
	SSasympOff
	SSasympOrig
	SSbiexp
	SSD
	SSfol
	SSfpl
	SSgompertz
	SSlogis
	SSmicmen
	SSweibull
	start
	stat.anova
	stats-deprecated
	step
	stepfun
	stl
	stlmethods
	StructTS
	summary.aov
	summary.glm
	summary.lm
	summary.manova
	summary.nls
	summary.princomp
	supsmu
	symnum
	t.test
	TDist
	termplot
	terms
	terms.formula
	terms.object
	time
	toeplitz
	ts
	ts-methods
	ts.plot
	ts.union
	tsdiag
	tsp
	tsSmooth
	Tukey
	TukeyHSD
	Uniform
	uniroot
	update
	update.formula
	var.test
	varimax
	vcov
	Weibull
	weighted.mean
	weighted.residuals
	weights
	wilcox.test
	Wilcoxon
	window
	xtabs

	The stats4 package
	stats4-package
	coef-methods
	confint-methods
	logLik-methods
	mle
	mle-class
	plot-methods
	profile-methods
	profile.mle-class
	show-methods
	summary-methods
	summary.mle-class
	update-methods
	vcov-methods

	The tcltk package
	tcltk-package
	TclInterface
	tclServiceMode
	TkCommands
	tkpager
	tkProgressBar
	tkStartGUI
	TkWidgetcmds
	TkWidgets
	tk_choose.dir
	tk_choose.files
	tk_messageBox
	tk_select.list

	The tools package
	tools-package
	add_datalist
	bibstyle
	buildVignettes
	charsets
	checkFF
	checkMD5sums
	checkPoFiles
	checkRd
	checkRdaFiles
	checkTnF
	checkVignettes
	codoc
	compactPDF
	delimMatch
	dependsOnPkgs
	encoded_text_to_latex
	fileutils
	getDepList
	HTMLheader
	HTMLlinks
	installFoundDepends
	md5sum
	package.dependencies
	package_dependencies
	parseLatex
	parse_Rd
	pskill
	psnice
	QC
	Rd2HTML
	Rd2txt_options
	Rdiff
	Rdindex
	RdTextFilter
	Rdutils
	read.00Index
	readNEWS
	showNonASCII
	startDynamicHelp
	SweaveTeXFilter
	testInstalledPackage
	texi2dvi
	toHTML
	tools-deprecated
	toRd
	undoc
	vignetteDepends
	write_PACKAGES
	xgettext

	The utils package
	utils-package
	adist
	alarm
	apropos
	aregexec
	arrangeWindows
	aspell
	aspell-utils
	available.packages
	BATCH
	bibentry
	browseEnv
	browseURL
	browseVignettes
	bug.report
	capture.output
	choose.dir
	choose.files
	chooseBioCmirror
	chooseCRANmirror
	citation
	citEntry
	clipboard
	close.socket
	combn
	compareVersion
	contrib.url
	count.fields
	create.post
	data
	dataentry
	debugger
	demo
	DLL.version
	download.file
	download.packages
	edit
	edit.data.frame
	example
	file.edit
	file_test
	findLineNum
	fix
	flush.console
	format
	getAnywhere
	getFromNamespace
	getS3method
	getWindowsHandle
	getWindowsHandles
	glob2rx
	globalVariables
	head
	help
	help.request
	help.search
	help.start
	INSTALL
	install.packages
	installed.packages
	localeToCharset
	ls.str
	maintainer
	make.packages.html
	make.socket
	memory.size
	menu
	methods
	mirrorAdmin
	modifyList
	news
	object.size
	package.skeleton
	packageDescription
	packageStatus
	page
	person
	PkgUtils
	prompt
	promptData
	promptPackage
	Question
	rcompgen
	read.DIF
	read.fortran
	read.fwf
	read.socket
	read.table
	readRegistry
	recover
	relist
	REMOVE
	remove.packages
	removeSource
	roman
	Rprof
	Rprofmem
	Rscript
	RShowDoc
	RSiteSearch
	rtags
	Rtangle
	RweaveLatex
	Rwin configuration
	savehistory
	select.list
	sessionInfo
	setInternet2
	setRepositories
	setWindowTitle
	SHLIB
	shortPathName
	sourceutils
	stack
	str
	summaryRprof
	Sweave
	SweaveSyntConv
	tar
	toLatex
	txtProgressBar
	type.convert
	untar
	unzip
	update.packages
	url.show
	URLencode
	utils-deprecated
	View
	vignette
	winDialog
	winextras
	winMenus
	winProgressBar
	write.table
	zip

	Index

