
Writing R Extensions
Version 2.15.2 (2012-10-26)

R Core Team

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be
stated in a translation approved by the R Core Team.

Copyright c© 1999–2012 R Core Team

ISBN 3-900051-11-9

i

Table of Contents

Acknowledgements . 1

1 Creating R packages . 2
1.1 Package structure . 3

1.1.1 The ‘DESCRIPTION’ file . 4
1.1.2 The ‘INDEX’ file . 8
1.1.3 Package subdirectories . 9
1.1.4 Package bundles . 12
1.1.5 Data in packages . 12
1.1.6 Non-R scripts in packages . 13

1.2 Configure and cleanup . 13
1.2.1 Using ‘Makevars’ . 16

1.2.1.1 OpenMP support . 19
1.2.1.2 Using pthreads . 19
1.2.1.3 Compiling in sub-directories . 20

1.2.2 Configure example . 21
1.2.3 Using F95 code . 22

1.3 Checking and building packages . 23
1.3.1 Checking packages . 23
1.3.2 Building package tarballs . 26
1.3.3 Building binary packages . 28

1.4 Writing package vignettes . 28
1.4.1 Encodings and vignettes . 30

1.5 Submitting a package to CRAN . 31
1.5.1 PDF size . 33
1.5.2 Package timing . 33
1.5.3 Windows external software . 34

1.6 Package namespaces . 34
1.6.1 Specifying imports and exports . 35
1.6.2 Registering S3 methods . 35
1.6.3 Load hooks . 36
1.6.4 useDynLib . 36
1.6.5 An example . 38
1.6.6 Summary – converting an existing package . 39
1.6.7 Namespaces with S4 classes and methods . 39

1.7 Writing portable packages . 40
1.7.1 Encoding issues . 42
1.7.2 Binary distribution . 43

1.8 Diagnostic messages . 43
1.9 Internationalization . 44

1.9.1 C-level messages . 44
1.9.2 R messages . 45
1.9.3 Installing translations . 45
1.9.4 Makefile support . 46

1.10 CITATION files . 46
1.11 Package types . 47

1.11.1 Frontend . 47
1.12 Services . 47

ii

2 Writing R documentation files . 48
2.1 Rd format . 48

2.1.1 Documenting functions . 49
2.1.2 Documenting data sets . 53
2.1.3 Documenting S4 classes and methods . 54
2.1.4 Documenting packages . 54

2.2 Sectioning . 55
2.3 Marking text . 55
2.4 Lists and tables . 57
2.5 Cross-references . 58
2.6 Mathematics . 58
2.7 Figures . 59
2.8 Insertions . 59
2.9 Indices . 60
2.10 Platform-specific documentation . 60
2.11 Conditional text . 61
2.12 Dynamic pages . 61
2.13 User-defined macros . 62
2.14 Encoding . 62
2.15 Processing Rd format . 63
2.16 Editing Rd files . 64

3 Tidying and profiling R code . 65
3.1 Tidying R code . 65
3.2 Profiling R code for speed . 65
3.3 Profiling R code for memory use . 67

3.3.1 Memory statistics from Rprof . 67
3.3.2 Tracking memory allocations . 68
3.3.3 Tracing copies of an object . 68

3.4 Profiling compiled code . 68
3.4.1 Linux . 69

3.4.1.1 sprof . 69
3.4.1.2 oprofile . 69

3.4.2 Solaris . 70
3.4.3 Mac OS X . 70

4 Debugging . 71
4.1 Browsing . 71
4.2 Debugging R code . 72
4.3 Using gctorture and valgrind . 76

4.3.1 Using gctorture . 76
4.3.2 Using valgrind . 76

4.4 Debugging compiled code . 78
4.4.1 Finding entry points in dynamically loaded code . 79
4.4.2 Inspecting R objects when debugging . 79

iii

5 System and foreign language interfaces . 82
5.1 Operating system access . 82
5.2 Interface functions .C and .Fortran . 82
5.3 dyn.load and dyn.unload . 84
5.4 Registering native routines . 85

5.4.1 Speed considerations . 87
5.4.2 Linking to native routines in other packages . 88

5.5 Creating shared objects . 89
5.6 Interfacing C++ code . 90
5.7 Fortran I/O . 91
5.8 Linking to other packages . 92

5.8.1 Unix-alikes . 92
5.8.2 Windows . 93

5.9 Handling R objects in C . 94
5.9.1 Handling the effects of garbage collection . 95
5.9.2 Allocating storage . 96
5.9.3 Details of R types . 97
5.9.4 Attributes . 98
5.9.5 Classes . 99
5.9.6 Handling lists . 100
5.9.7 Handling character data . 100
5.9.8 Finding and setting variables . 101
5.9.9 Some convenience functions . 101

5.9.9.1 Semi-internal convenience functions . 102
5.9.10 Named objects and copying . 102

5.10 Interface functions .Call and .External . 103
5.10.1 Calling .Call . 103
5.10.2 Calling .External . 104
5.10.3 Missing and special values . 106

5.11 Evaluating R expressions from C . 106
5.11.1 Zero-finding . 108
5.11.2 Calculating numerical derivatives . 109

5.12 Parsing R code from C . 112
5.12.1 Accessing source references . 113

5.13 External pointers and weak references . 114
5.13.1 An example . 115

5.14 Vector accessor functions . 115
5.15 Character encoding issues . 116

6 The R API: entry points for C code . 117
6.1 Memory allocation . 117

6.1.1 Transient storage allocation . 117
6.1.2 User-controlled memory . 118

6.2 Error handling . 118
6.2.1 Error handling from FORTRAN . 119

6.3 Random number generation . 119
6.4 Missing and IEEE special values . 119
6.5 Printing . 120

6.5.1 Printing from FORTRAN . 120
6.6 Calling C from FORTRAN and vice versa . 120
6.7 Numerical analysis subroutines . 121

6.7.1 Distribution functions . 121
6.7.2 Mathematical functions . 122

iv

6.7.3 Numerical Utilities . 123
6.7.4 Mathematical constants . 124

6.8 Optimization . 125
6.9 Integration . 126
6.10 Utility functions . 127
6.11 Re-encoding . 128
6.12 Allowing interrupts . 129
6.13 Platform and version information . 129
6.14 Inlining C functions . 129
6.15 Controlling visibility . 130
6.16 Using these functions in your own C code . 130
6.17 Organization of header files . 131

7 Generic functions and methods . 133
7.1 Adding new generics . 134

8 Linking GUIs and other front-ends to R 135
8.1 Embedding R under Unix-alikes . 135

8.1.1 Compiling against the R library . 137
8.1.2 Setting R callbacks . 137
8.1.3 Registering symbols . 140
8.1.4 Meshing event loops . 140
8.1.5 Threading issues . 141

8.2 Embedding R under Windows . 141
8.2.1 Using (D)COM . 141
8.2.2 Calling R.dll directly . 141
8.2.3 Finding R HOME . 144

Function and variable index . 146

Concept index . 147

Acknowledgements 1

Acknowledgements

The contributions of Saikat DebRoy (who wrote the first draft of a guide to using .Call and
.External) and of Adrian Trapletti (who provided information on the C++ interface) are grate-
fully acknowledged.

Chapter 1: Creating R packages 2

1 Creating R packages

Packages provide a mechanism for loading optional code, data and documentation as needed.
The R distribution itself includes about 30 packages.

In the following, we assume that you know the library() command, including its lib.loc
argument, and we also assume basic knowledge of the R CMD INSTALL utility. Otherwise, please
look at R’s help pages on

?library

?INSTALL

before reading on.

A computing environment including a number of tools is assumed; the “R Installation and
Administration” manual describes what is needed. Under a Unix-alike most of the tools are
likely to be present by default, but Microsoft Windows may require careful setup.

Once a source package is created, it must be installed by the command R CMD INSTALL. See
Section “Add-on-packages” in R Installation and Administration.

Other types of extensions are supported (but rare): See Section 1.11 [Package types], page 47.

Some notes on terminology complete this introduction. These will help with the reading of
this manual, and also in describing concepts accurately when asking for help.

A package is a directory of files which extend R, either a source package (the master files
of a package), or a tarball containing the files of a source package, or an installed package, the
result of running R CMD INSTALL on a source package. On some platforms there are also binary
packages, a zip file or tarball containing the files of an installed package which can be unpacked
rather than installing from sources.

A package is not1 a library. The latter is used in two senses in R documentation. The first
is a directory into which packages are installed, e.g. ‘/usr/lib/R/library’: in that sense it is
sometimes referred to as a library directory or library tree (since the library is a directory which
contains packages as directories, which themselves contain directories). The second sense is that
used by the operating system, as a shared library or static library or (especially on Windows)
a DLL, where the second L stands for ‘library’. Installed packages may contain compiled code
in what is known on most Unix-alikes as a shared object and on Windows as a DLL (and used
to be called a shared library on some Unix-alikes). The concept of a shared library (dynamic
library on Mac OS X) as a collection of compiled code to which a package might link is also
used, especially for R itself on some platforms.

There are a number of well-defined operations on source packages. The most common is
installation which takes a source package and installs it in a library using R CMD INSTALL or
install.packages. Source packages can be built, a distinct concept. This involves taking
a source directory and creating a tarball ready for distribution, including cleaning it up and
creating PDF documentation from any vignettes it may contain. Source packages (and most
often tarballs) can be checked, when a test installation is done and tested (including running
its examples); also, the contents of the package are tested in various ways for consistency and
portability.

Compilation is not a correct term for a package. Installing a source package which contains
C, C++ or Fortran code will involve compiling that code. As from R 2.13.0 there is also the
possibility of (‘byte’) compiling the R code in a package (using the facilities of package compiler):
at some future time this might be done routinely when compiling a package may come to mean
compiling its R code.

1 although this is common mis-usage. It seems to stem from S, whose analogues of R’s packages were officially
known as library sections and later as chapters, but almost always referred to as libraries.

Chapter 1: Creating R packages 3

It used to be unambiguous to talk about loading an installed package using library(), but
since the advent of package name spaces this has been less clear: people now often talk about
loading the package’s namespace and then attaching the package so it becomes visible on the
search path. Function library performs both steps, but a package’s namespace can be loaded
without the package being attached (for example by calls like splines::ns).

The option of lazy loading of code or data is mentioned at several points. This is part of
the installation, always selected for R code (since R 2.14.0) but optional for data. When used
the R objects of the package are created at installation time, and stored in a database in the
‘R’ directory of the installed package, being loaded into the session at first use. This makes the
R session run faster and use less (virtual) memory. (For technical details, see Section “Lazy
loading” in R Internals.)

1.1 Package structure

The sources of an R package consists of a subdirectory containing a file ‘DESCRIPTION’ and the
subdirectories ‘R’, ‘data’, ‘demo’, ‘exec’, ‘inst’, ‘man’, ‘po’, ‘src’, and ‘tests’ (some of which
can be missing, but which should not be empty). The package subdirectory may also contain
files ‘INDEX’, ‘NAMESPACE’, ‘configure’, ‘cleanup’, ‘LICENSE’, ‘LICENCE’ and ‘NEWS’. Other files
such as ‘INSTALL’ (for non-standard installation instructions), ‘README’ or ‘ChangeLog’ will be
ignored by R, but may be useful to end users.

Except where specifically mentioned,2 packages should not contain Unix-style ‘hidden’
files/directory (that is, those whose name starts with a dot).

The ‘DESCRIPTION’ and ‘INDEX’ files are described in the subsections below. The ‘NAMESPACE’
file is described in the section on Section 1.6 [Package namespaces], page 34.

The optional files ‘configure’ and ‘cleanup’ are (Bourne shell) script files which are, re-
spectively, executed before and (provided that option ‘--clean’ was given) after installation on
Unix-alikes, see Section 1.2 [Configure and cleanup], page 13. The analogues on Windows are
‘configure.win’ and ‘cleanup.win’.

The optional file ‘LICENSE’/‘LICENCE’ contains a copy of the license to the package. Whereas
you should feel free to include a license file in your source distribution, please do not arrange
to install yet another copy of the GNU ‘COPYING’ or ‘COPYING.LIB’ files but refer to the copies
on http://www.r-project.org/Licenses/ and included in the R distribution (in directory
‘share/licenses’). Since files named ‘LICENSE’ or ‘LICENCE’ will be installed, do not use these
names for standard licence files.

For the conventions for files ‘NEWS’ and ‘ChangeLog’ in the GNU project see http://www.

gnu.org/prep/standards/standards.html#Documentation.

The package subdirectory should be given the same name as the package. Because some
file systems (e.g., those on Windows and by default on Mac OS X) are not case-sensitive, to
maintain portability it is strongly recommended that case distinctions not be used to distinguish
different packages. For example, if you have a package named ‘foo’, do not also create a package
named ‘Foo’.

To ensure that file names are valid across file systems and supported operating system plat-
forms, the ASCII control characters as well as the characters ‘"’, ‘*’, ‘:’, ‘/’, ‘<’, ‘>’, ‘?’, ‘\’,
and ‘|’ are not allowed in file names. In addition, files with names ‘con’, ‘prn’, ‘aux’, ‘clock$’,
‘nul’, ‘com1’ to ‘com9’, and ‘lpt1’ to ‘lpt9’ after conversion to lower case and stripping possi-
ble “extensions” (e.g., ‘lpt5.foo.bar’), are disallowed. Also, file names in the same directory
must not differ only by case (see the previous paragraph). In addition, the basenames of ‘.Rd’
files may be used in URLs and so must be ASCII and not contain %. For maximal portability

2 currently, top-level files ‘.Rbuildignore’ and ‘.Rinstignore’, and ‘vignettes/.install_extras’.

http://www.r-project.org/Licenses/
http://www.gnu.org/prep/standards/standards.html#Documentation
http://www.gnu.org/prep/standards/standards.html#Documentation

Chapter 1: Creating R packages 4

filenames should only contain only ASCII characters not excluded already (that is A-Za-z0-9._
!#$%&+,;=@^(){}’[] — we exclude space as many utilities do not accept spaces in file paths):
non-English alphabetic characters cannot be guaranteed to be supported in all locales. It would
be good practice to avoid the shell metacharacters (){}’[]$.

A source package if possible should not contain binary executable files: they are not portable,
and a security risk if they are of the appropriate architecture. R CMD check will warn about
them3 unless they are listed (one filepath per line) in a file ‘BinaryFiles’ at the top level of the
package. Note that CRAN will no longer accept submissions containing binary files even if they
are listed.

The R function package.skeleton can help to create the structure for a new package: see
its help page for details.

1.1.1 The ‘DESCRIPTION’ file

The ‘DESCRIPTION’ file contains basic information about the package in the following format:� �
Package: pkgname

Version: 0.5-1

Date: 2004-01-01

Title: My First Collection of Functions

Authors@R: c(person("Joe", "Developer", role = c("aut", "cre"),

email = "Joe.Developer@some.domain.net"),

person("Pat", "Developer", role = "aut"),

person("A.", "User", role = "ctb",

email = "A.User@whereever.net"))

Author: Joe Developer and Pat Developer, with contributions from A. User

Maintainer: Joe Developer <Joe.Developer@some.domain.net>

Depends: R (>= 1.8.0), nlme

Suggests: MASS

Description: A short (one paragraph) description of what

the package does and why it may be useful.

License: GPL (>= 2)

URL: http://www.r-project.org, http://www.another.url

BugReports: http://pkgname.bugtracker.url
 	
The format is that of a ‘Debian Control File’ (see the help for ‘read.dcf’ and http://www.

debian.org/doc/debian-policy/ch-controlfields.html: R does not require encoding in
UTF-8). Continuation lines (for example, for descriptions longer than one line) start with
a space or tab. The ‘Package’, ‘Version’, ‘License’, ‘Description’, ‘Title’, ‘Author’, and
‘Maintainer’ fields are mandatory, all other fields are optional. For R 2.14.0 or later, ‘Author’
and ‘Maintainer’ can be auto-generated from ‘Authors@R’, and may be omitted if the latter is
provided (and the package depends on R (>= 2.14): see below for details): however if they are
not ASCII we recommend that they are provided.

For maximal portability, the ‘DESCRIPTION’ file should be written entirely in ASCII — if this
is not possible it must contain an ‘Encoding’ field (see below).

The mandatory ‘Package’ field gives the name of the package. This should contain only
letters, numbers and dot, have at least two characters and start with a letter and not end in a
dot.

The mandatory ‘Version’ field gives the version of the package. This is a sequence of at
least two (and usually three) non-negative integers separated by single ‘.’ or ‘-’ characters. The
canonical form is as shown in the example, and a version such as ‘0.01’ or ‘0.01.0’ will be
handled as if it were ‘0.1-0’.

3 false positives are possible, but only a handful have been seen so far.

http://www.debian.org/doc/debian-policy/ch-controlfields.html
http://www.debian.org/doc/debian-policy/ch-controlfields.html

Chapter 1: Creating R packages 5

The mandatory ‘License’ field should specify the license of the package in a standardized
form. Alternatives are indicated via vertical bars. Individual specifications must be one of

• One of the “standard” short specifications

GPL-2 GPL-3 LGPL-2 LGPL-2.1 LGPL-3 AGPL-3 Artistic-1.0 Artistic-2.0

as made available via http://www.r-project.org/Licenses/ and contained in subdirec-
tory ‘share/licenses’ of the R source or home directory.

• The names of abbreviations of free or open source software (FOSS, e.g., http: / /

en.wikipedia.org/wiki/FOSS) licenses as contained in the license data base in file
‘share/licenses/license.db’ in the R source or home directory, possibly (for versioned
licenses) followed by a version restriction of the form ‘(op v)’ with op one of the compari-
son operators ‘<’, ‘<=’, ‘>’, ‘>=’, ‘==’, or ‘!=’ and v a numeric version specification (strings
of non-negative integers separated by ‘.’), possibly combined via ‘,’ (see below for an ex-
ample). For versioned licenses, one can also specify the name followed by the version, or
combine an existing abbreviation and the version with a ‘-’. Further free (see http://www.
fsf.org/licenses/license-list.html) or open software (see http://www.opensource.
org/licenses/bsd-license.php) licenses will be added to this data base if necessary.

• One of the strings ‘file LICENSE’ or ‘file LICENCE’ referring to a file named ‘LICENSE’ or
‘LICENCE’ in the package (source and installation) top-level directory.

• The string ‘Unlimited’, meaning that there are no restrictions on distribution or use other
than those imposed by relevant laws (including copyright laws).

If a package license extends a base FOSS license (e.g., using GPL-3 or AGPL-3 with an
attribution clause), the extension should be placed in file ‘LICENSE’ (or ‘LICENCE’), and the string
‘+ file LICENSE’ (or ‘+ file LICENCE’, respectively) should be appended to the corresponding
individual license specification.

Examples for standardized specifications include

License: GPL-2

License: GPL (>= 2) | BSD

License: LGPL (>= 2.0, < 3) | Mozilla Public License

License: GPL-2 | file LICENCE

License: Artistic-1.0 | AGPL-3 + file LICENSE

Please note in particular that “Public domain” is not a valid license, since it is not recognized
in some jurisdictions.

It is very important that you include this license information! Otherwise, it may not even be
legally correct for others to distribute copies of the package. Do not use the ‘License’ field for
copyright information: if needed, use a ‘Copyright’ field.

Please ensure that the license you choose also covers any dependencies (including system
dependencies) of your package: it is particularly important that any restrictions on the use of
such dependencies are evident to people reading your ‘DESCRIPTION’ file.

The mandatory ‘Description’ field should give a comprehensive description of what the
package does. One can use several (complete) sentences, but only one paragraph.

The mandatory ‘Title’ field should give a short description of the package. Some package
listings may truncate the title to 65 characters. It should be capitalized, not use any markup,
not have any continuation lines, and not end in a period.

The mandatory ‘Author’ field describes who wrote the package. It is a plain text field intended
for human readers, but not for automatic processing (such as extracting the email addresses of
all listed contributors: for that use ‘Authors@R’). Note that all significant contributors must be
included: if you wrote an R wrapper for the work of others included in the ‘src’ directory, you
are not the sole (and maybe not even the main) author.

http://www.r-project.org/Licenses/
http://en.wikipedia.org/wiki/FOSS
http://en.wikipedia.org/wiki/FOSS
http://www.fsf.org/licenses/license-list.html
http://www.fsf.org/licenses/license-list.html
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php

Chapter 1: Creating R packages 6

The mandatory ‘Maintainer’ field should give a single name with a valid (RFC 2822) email
address in angle brackets (for sending bug reports etc.). It should not end in a period or comma.
For a public package it should be a person, not a mailing list and not a corporate entity: do
ensure that it is valid and will remain valid for the lifetime of the package.

Both ‘Author’ and ‘Maintainer’ fields can be omitted (as from R 2.14.0) if a suitable
‘Authors@R’ field is given. This field can be used to provide a refined, machine-readable de-
scription of the package “authors” (in particular specifying their precise roles), via suitable R
code. The roles can include ‘"aut"’ (author) for full authors, ‘"cre"’ (creator) for the pack-
age maintainer, and ‘"ctb"’ (contributor) for other contributors, among others. See ?person

for more information. Note that no role is assumed by default. Auto-generated package cita-
tion information takes advantage of this specification; in R 2.14.0 or later, the ‘Author’ and
‘Maintainer’ fields are auto-generated from it if needed when building or installing.

Several optional fields take logical values: these can be specified as ‘yes’, ‘true’, ‘no’ or
‘false’: capitalized values are also accepted.

The ‘Date’ field gives the release date of the current version of the package. It is strongly
recommended to use the yyyy-mm-dd format conforming to the ISO 8601 standard.

The ‘Depends’ field gives a comma-separated list of package names which this package de-
pends on. The package name may be optionally followed by a comment in parentheses. The
comment should contain a comparison operator, whitespace and a valid version number. You
can also use the special package name ‘R’ if your package depends on a certain version of R —
e.g., if the package works only with R version 2.11.0 or later, include ‘R (>= 2.11.0)’ in the
‘Depends’ field. You can also require a certain SVN revision for R-devel or R-patched, e.g. ‘R
(>= 2.14.0), R (>= r56550)’ requires a version later than R-devel of late July 2011 (includ-
ing released versions of 2.14.0). Both library and the R package checking facilities use this
field: hence it is an error to use improper syntax or misuse the ‘Depends’ field for comments on
other software that might be needed. Other dependencies (external to the R system) should be
listed in the ‘SystemRequirements’ field, possibly amplified in a separate ‘README’ file. The R
INSTALL facilities check if the version of R used is recent enough for the package being installed,
and the list of packages which is specified will be attached (after checking version requirements)
before the current package, both when library is called and when preparing for lazy-loading
during installation.

A package (or ‘R’) can appear more than once in the ‘Depends’, but only the first occurrence
was used in versions of R prior to 2.7.0: these are now very unlikely to be encountered.

It makes no sense to declare a dependence on R without a version specification, nor on the
package base: this is an R package and base is always available.

The ‘Imports’ field lists packages whose namespaces are imported from (as specified in the
‘NAMESPACE’ file) but which do not need to be attached. Namespaces accessed by the ‘::’ and
‘:::’ operators must be listed here, or in ‘Suggests’ or ‘Enhances’ (see below). Ideally this
field will include all the standard packages that are used, and it is important to include S4-using
packages (as their class definitions can change and the ‘DESCRIPTION’ file is used to decide which
packages to re-install when this happens). Packages declared in the ‘Depends’ field should not
also be in the ‘Imports’ field. Version requirements can be specified, but will not be checked
when the namespace is loaded (whereas they are checked by R CMD check).

The ‘Suggests’ field uses the same syntax as ‘Depends’ and lists packages that are not neces-
sarily needed. This includes packages used only in examples, tests or vignettes (see Section 1.4
[Writing package vignettes], page 28), and packages loaded in the body of functions. E.g., sup-
pose an example from package foo uses a dataset from package bar. Then it is not necessary
to have bar use foo unless one wants to execute all the examples/tests/vignettes: it is useful
to have bar, but not necessary. Version requirements can be specified, and will be used by R

CMD check. Note that someone wanting to run the examples/tests/vignettes may not have a

Chapter 1: Creating R packages 7

suggested package available (and it may not even be possible to install it for that platform), so
it is helpful if the use of suggested packages is made conditional via if(require(pkgname))).

Finally, the ‘Enhances’ field lists packages “enhanced” by the package at hand, e.g., by
providing methods for classes from these packages, or ways to handle objects from these packages
(so several packages have ‘Enhances: chron’ because they can handle datetime objects from
chron even though they prefer R’s native datetime functions). Version requirements can be
specified, but are currently not used. Such packages cannot be required to check the package:
any tests which use them must be conditional on the presence of the package. (If your tests use
e.g. a dataset from another package it should be in ‘Suggests’ and not ‘Enhances’.)

The general rules are

• Packages whose namespace only is needed to load the package using library(pkgname)

must be listed in the ‘Imports’ field and not in the ‘Depends’ field.

• Packages that need to be attached to successfully load the package using library(pkgname)
must be listed in the ‘Depends’ field, only.

• All packages that are needed4 to successfully run R CMD check on the package must be
listed in one of ‘Depends’ or ‘Suggests’ or ‘Imports’. Packages used to run examples
or tests conditionally (e.g. via if(require(pkgname))) should be listed in ‘Suggests’ or
‘Enhances’. (This allows checkers to ensure that all the packages needed for a complete
check are installed.)

In particular, large packages providing “only” data for examples or vignettes should be listed in
‘Suggests’ rather than ‘Depends’ in order to make lean installations possible.

Version dependencies in the ‘Depends’ field are used by library when it loads the pack-
age, and install.packages checks versions for the ‘Imports’ and (for dependencies = TRUE)
‘Suggests’ fields.

It is increasingly important that the information in these fields is complete and accurate:
it is for example used to compute which packages depend on an updated package and which
packages can safely be installed in parallel.

The ‘URL’ field may give a list of URLs separated by commas or whitespace, for example
the homepage of the author or a page where additional material describing the software can be
found. These URLs are converted to active hyperlinks in CRAN package listings.

The ‘BugReports’ field may contain a single URL to which bug reports about the package
should be submitted. This URL will be used by bug.reports instead of sending an email to the
maintainer.

Base and recommended packages (i.e., packages contained in the R source distribution or
available from CRAN and recommended to be included in every binary distribution of R) have
a ‘Priority’ field with value ‘base’ or ‘recommended’, respectively. These priorities must not
be used by other packages.

An ‘Collate’ field can be used for controlling the collation order for the R code files in a
package when these are processed for package installation. The default is to collate according to
the ‘C’ locale. If present, the collate specification must list all R code files in the package (tak-
ing possible OS-specific subdirectories into account, see Section 1.1.3 [Package subdirectories],
page 9) as a whitespace separated list of file paths relative to the ‘R’ subdirectory. Paths con-
taining white space or quotes need to be quoted. An OS-specific collation field (‘Collate.unix’
or ‘Collate.windows’) will be used instead of ‘Collate’.

4 This includes all packages directly called by library and require calls, as well as data obtained via
data(theirdata, package = "somepkg") calls: R CMD check will warn about all of these. But there are subtler
uses which it will not detect: e.g. if package A uses package B and makes use of functionality in package B
which uses package C which package B suggests or enhances, then package C needs to be in the ‘Suggests’
list for package A. Nor will undeclared uses in included files be reported, nor unconditional uses of packages
listed under ‘Enhances’.

http://CRAN.R-project.org/package=chron

Chapter 1: Creating R packages 8

The ‘LazyData’ logical field controls whether the R datasets use lazy-loading. A ‘LazyLoad’
field was used in versions prior to 2.14.0, but now is ignored.

The ‘KeepSource’ logical field controls if the package code is sourced using keep.source =

TRUE or FALSE: it might be needed exceptionally for a package designed to always be used with
keep.source = TRUE.

The ‘ByteCompile’ logical field controls if the package code is byte-compiled on installation:
the default is currently not to, so this may be useful for a package known to benefit particularly
from byte-compilation (which can take quite a long time and increases the installed size of the
package).

The ‘ZipData’ logical field used to control whether the automatic Windows build would zip
up the data directory or not: set this to ‘no’ if your package will not work with a zipped data
directory. (Setting to any other value is deprecated, and it is unused from R 2.13.0: but it might
still be needed if the package can be installed under earlier versions of R.)

The ‘BuildVignettes’ logical field can be set to a false value to stop R CMD build from
attempting to rebuild the vignettes, as well as preventing R CMD check from testing this. This
should only be used exceptionally, for example if the PDFs need large figures which are not part
of the package sources.

If the ‘DESCRIPTION’ file is not entirely in ASCII it should contain an ‘Encoding’ field speci-
fying an encoding. This is used as the encoding of the ‘DESCRIPTION’ file itself and of the ‘R’ and
‘NAMESPACE’ files, and as the default encoding of ‘.Rd’ files. The examples are assumed to be in
this encoding when running R CMD check, and it is used for the encoding of the CITATION file.
Only encoding names latin1, latin2 and UTF-8 are known to be portable. (Do not specify an
encoding unless one is actually needed: doing so makes the package less portable. If a package
has a specified encoding, you should run R CMD build etc in a locale using that encoding.)

The ‘OS_type’ field specifies the OS(es) for which the package is intended. If present, it
should be one of unix or windows, and indicates that the package can only be installed on a
platform with ‘.Platform$OS.type’ having that value.

The ‘Type’ field specifies the type of the package: see Section 1.11 [Package types], page 47.

Note: There should be no ‘Built’ or ‘Packaged’ fields, as these are added by the
package management tools.

One can add subject classifications for the content of the package using the fields
‘Classification/ACM’ (using the Computing Classification System of the Association
for Computing Machinery, http: / / www . acm . org / class /), ‘Classification/JEL’ (the
Journal of Economic Literature Classification System, http://www.aeaweb.org/journal/

jel_class_system.html), or ‘Classification/MSC’ (the Mathematics Subject Classification
of the American Mathematical Society, http: / / www . ams . org / msc /). The subject
classifications should be comma-separated lists of the respective classification codes, e.g.,
‘Classification/ACM: G.4, H.2.8, I.5.1’.

Finally, an ‘Language’ field can be used to indicate if the package documentation is not in En-
glish: this should be a comma-separated list of standard (not private use or grandfathered) IETF
language tags as currently defined by RFC 5646 (http://tools.ietf.org/html/rfc5646, see
also http://en.wikipedia.org/wiki/IETF_language_tag), i.e., use language subtags which
in essence are 2-letter ISO 639-1 (http://en.wikipedia.org/wiki/ISO_639-1) or 3-letter ISO
639-3 (http://en.wikipedia.org/wiki/ISO_639-3) language codes.

1.1.2 The ‘INDEX’ file

The optional file ‘INDEX’ contains a line for each sufficiently interesting object in the package,
giving its name and a description (functions such as print methods not usually called explicitly

http://www.acm.org/class/
http://www.aeaweb.org/journal/jel_class_system.html
http://www.aeaweb.org/journal/jel_class_system.html
http://www.ams.org/msc/
http://tools.ietf.org/html/rfc5646
http://en.wikipedia.org/wiki/IETF_language_tag
http://en.wikipedia.org/wiki/ISO_639-1
http://en.wikipedia.org/wiki/ISO_639-3

Chapter 1: Creating R packages 9

might not be included). Normally this file is missing and the corresponding information is auto-
matically generated from the documentation sources (using tools::Rdindex()) when installing
from source.

Rather than editing this file, it is preferable to put customized information about the package
into an overview man page (see Section 2.1.4 [Documenting packages], page 54) and/or a vignette
(see Section 1.4 [Writing package vignettes], page 28).

1.1.3 Package subdirectories

The ‘R’ subdirectory contains R code files, only. The code files to be installed must start with
an ASCII (lower or upper case) letter or digit and have one of the extensions5 ‘.R’, ‘.S’, ‘.q’,
‘.r’, or ‘.s’. We recommend using ‘.R’, as this extension seems to be not used by any other
software. It should be possible to read in the files using source(), so R objects must be created
by assignments. Note that there need be no connection between the name of the file and the R
objects created by it. Ideally, the R code files should only directly assign R objects and definitely
should not call functions with side effects such as require and options. If computations are
required to create objects these can use code ‘earlier’ in the package (see the ‘Collate’ field)
plus functions in the ‘Depends’ packages provided that the objects created do not depend on
those packages except via namespace imports.

Two exceptions are allowed: if the ‘R’ subdirectory contains a file ‘sysdata.rda’ (a saved
image of R objects: please use suitable compression as suggested by tools::resaveRdaFiles)
this will be lazy-loaded into the namespace/package environment – this is intended for system
datasets that are not intended to be user-accessible via data. Also, files ending in ‘.in’ will be
allowed in the ‘R’ directory to allow a ‘configure’ script to generate suitable files.

Only ASCII characters (and the control characters tab, formfeed, LF and CR) should be
used in code files. Other characters are accepted in comments, but then the comments may not
be readable in e.g. a UTF-8 locale. Non-ASCII characters in object names will normally6 fail
when the package is installed. Any byte will be allowed in a quoted character string but \uxxxx
escapes should be used7 for non-ASCII characters. However, non-ASCII character strings may
not be usable in some locales and may display incorrectly in others.

Various R functions in a package can be used to initialize and clean up. See Section 1.6.3
[Load hooks], page 36.8

The ‘man’ subdirectory should contain (only) documentation files for the objects in the pack-
age in R documentation (Rd) format. The documentation filenames must start with an ASCII

(lower or upper case) letter or digit and have the extension ‘.Rd’ (the default) or ‘.rd’. Further,
the names must be valid in ‘file://’ URLs, which means9 they must be entirely ASCII and
not contain ‘%’. See Chapter 2 [Writing R documentation files], page 48, for more information.
Note that all user-level objects in a package should be documented; if a package pkg contains
user-level objects which are for “internal” use only, it should provide a file ‘pkg-internal.Rd’
which documents all such objects, and clearly states that these are not meant to be called by

5 Extensions ‘.S’ and ‘.s’ arise from code originally written for S(-PLUS), but are commonly used for assembler
code. Extension ‘.q’ was used for S, which at one time was tentatively called QPE.

6 This is true for OSes which implement the ‘C’ locale: Windows’ idea of the ‘C’ locale uses the WinAnsi charset.
7 the package needs to depend on R (>= 2.10)
8 Prior to R version 2.14.0, the .First.lib and .Last.lib functions handled these tasks in packages without

namespaces. (In current R versions, all packages have namespaces.) To help with conversion of old packages,
here is how they were handled: It was conventional to define these functions in a file called ‘zzz.R’. If
.First.lib was defined in a package, it was called with arguments libname and pkgname after the package
was loaded and attached. A common use was to call library.dynam inside .First.lib to load compiled code:
another use was to call some functions with side effects. If .Last.lib existed in a package it was called (with
argument the full path to the installed package) just before the package was detached.

9 More precisely, they can contain the English alphanumeric characters and the symbols ‘$ - _ . + ! ’ () , ;

= &’.

Chapter 1: Creating R packages 10

the user. See e.g. the sources for package grid in the R distribution for an example. Note
that packages which use internal objects extensively should not export those objects from their
namespace, when they do not need to be documented (see Section 1.6 [Package namespaces],
page 34).

Having a ‘man’ directory containing no documentation files may give an installation error.

The ‘R’ and ‘man’ subdirectories may contain OS-specific subdirectories named ‘unix’ or
‘windows’.

The sources and headers for the compiled code are in ‘src’, plus optionally a file ‘Makevars’
or ‘Makefile’. When a package is installed using R CMD INSTALL, make is used to control compi-
lation and linking into a shared object for loading into R. There are default make variables and
rules for this (determined when R is configured and recorded in ‘R_HOME/etcR_ARCH/Makeconf’),
providing support for C, C++, FORTRAN 77, Fortran 9x10, Objective C and Objective C++11

with associated extensions ‘.c’, ‘.cc’ or ‘.cpp’, ‘.f’, ‘.f90’ or ‘.f95’, ‘.m’, and ‘.mm’ or ‘.M’,
respectively. We recommend using ‘.h’ for headers, also for C++12 or Fortran 9x include files.
(Use of extension ‘.C’ for C++ is no longer supported.) Files in the ‘src’ directory should not
be hidden (start with a dot), and hidden files will under some versions of R be ignored.

It is not portable (and may not be possible at all) to mix all these languages in a single
package, and we do not support using both C++ and Fortran 9x. Because R itself uses it, we
know that C and FORTRAN 77 can be used together and mixing C and C++ seems to be widely
successful.

If your code needs to depend on the platform there are certain defines which can used in C
or C++. On all Windows builds (even 64-bit ones) ‘WIN32’ will be defined: on 64-bit Windows
builds also ‘WIN64’, and on Mac OS X ‘__APPLE__’ and ‘__APPLE_CC__’ are defined.

The default rules can be tweaked by setting macros13 in a file ‘src/Makevars’ (see
Section 1.2.1 [Using Makevars], page 16). Note that this mechanism should be general enough
to eliminate the need for a package-specific ‘src/Makefile’. If such a file is to be distributed,
considerable care is needed to make it general enough to work on all R platforms. If it has any
targets at all, it should have an appropriate first target named ‘all’ and a (possibly empty)
target ‘clean’ which removes all files generated by running make (to be used by ‘R CMD INSTALL

--clean’ and ‘R CMD INSTALL --preclean’). There are platform-specific file names on Windows:
‘src/Makevars.win’ takes precedence over ‘src/Makevars’ and ‘src/Makefile.win’ must be
used. Some make programs require makefiles to have a complete final line, including a newline.

A few packages use the ‘src’ directory for purposes other than making a shared object (e.g. to
create executables). Such packages should have files ‘src/Makefile’ and ‘src/Makefile.win’
(unless intended for only Unix-alikes or only Windows).

In very special cases packages may create binary files other than the shared objects/DLLs
in the ‘src’ directory. Such files will not be installed in multi-arch setting since R CMD INSTALL

--libs-only is used to merge multiple architectures and it only copies shared objects/DLLs.
If a package wants to install other binaries (for example executable programs), it should to
provide an R script ‘src/install.libs.R’ which will be run as part of the installation in the
src build directory instead of copying the shared objects/DLLs. The script is run in a separate
R environment containing the following variables: R_PACKAGE_NAME (the name of the package),
R_PACKAGE_SOURCE (the path to the source directory of the package), R_PACKAGE_DIR (the path

10 Note that Ratfor is not supported. If you have Ratfor source code, you need to convert it to FORTRAN. Only
FORTRAN 77 (which we write in upper case) is supported on all platforms, but most also support Fortran-95
(for which we use title case). If you want to ship Ratfor source files, please do so in a subdirectory of ‘src’
and not in the main subdirectory.

11 either or both of which may not be supported on particular platforms
12 Using ‘.hpp’, although somewhat popular, is not guaranteed to be portable.
13 the POSIX terminology, called ‘make variables’ by GNU make.

Chapter 1: Creating R packages 11

of the target installation directory of the package), R_ARCH (the arch-dependent part of the
path), SHLIB_EXT (the extension of shared objects) and WINDOWS (TRUE on Windows, FALSE
elsewhere). Something close to the default behavior could be replicated with the following
‘src/install.libs.R’ file:

files <- Sys.glob(paste("*", SHLIB_EXT, sep=’’))

libarch <- if (nzchar(R_ARCH)) paste(’libs’, R_ARCH, sep=’’) else ’libs’

dest <- file.path(R_PACKAGE_DIR, libarch)

dir.create(dest, recursive = TRUE, showWarnings = FALSE)

file.copy(files, dest, overwrite = TRUE)

The ‘data’ subdirectory is for data files: See Section 1.1.5 [Data in packages], page 12.

The ‘demo’ subdirectory is for R scripts (for running via demo()) that demonstrate some of
the functionality of the package. Demos may be interactive and are not checked automatically,
so if testing is desired use code in the ‘tests’ directory to achieve this. The script files must
start with a (lower or upper case) letter and have one of the extensions ‘.R’ or ‘.r’. If present,
the ‘demo’ subdirectory should also have a ‘00Index’ file with one line for each demo, giving its
name and a description separated by white space. (Note that it is not possible to generate this
index file automatically.) Note that a demo does not have a specified encoding and so should
be an ASCII file (see Section 1.7.1 [Encoding issues], page 42).

The contents of the ‘inst’ subdirectory will be copied recursively to the installation directory.
Subdirectories of ‘inst’ should not interfere with those used by R (currently, ‘R’, ‘data’, ‘demo’,
‘exec’, ‘libs’, ‘man’, ‘help’, ‘html’ and ‘Meta’, and earlier versions used ‘latex’, ‘R-ex’). The
copying of the ‘inst’ happens after ‘src’ is built so its ‘Makefile’ can create files to be installed.
Prior to R 2.12.2, the files were installed on POSIX platforms with the permissions in the package
sources, so care should be taken to ensure these are not too restrictive: R CMD build will make
suitable adjustments. To exclude files from being installed, one can specify a list of exclude
patterns in file ‘.Rinstignore’ in the top-level source directory. These patterns should be Perl-
like regular expressions (see the help for regexp in R for the precise details), one per line, to be
matched14 against the file and directory paths, e.g. ‘doc/.*[.]png$’ will exclude all PNG files
in ‘inst/doc’ based on the (lower-case) extension.

Note that with the exceptions of ‘INDEX’, ‘LICENSE’/‘LICENCE’ and ‘NEWS’, information files
at the top level of the package will not be installed and so not be known to users of Win-
dows and Mac OS X compiled packages (and not seen by those who use R CMD INSTALL or
install.packages on the tarball). So any information files you wish an end user to see should
be included in ‘inst’. Note that if the named exceptions also occur in ‘inst’, the versions in
‘inst’ will be that seen in the installed package.

One thing you might like to add to ‘inst’ is a ‘CITATION’ file for use by the citation

function.

Subdirectory ‘tests’ is for additional package-specific test code, similar to the specific tests
that come with the R distribution. Test code can either be provided directly in a ‘.R’ file, or via a
‘.Rin’ file containing code which in turn creates the corresponding ‘.R’ file (e.g., by collecting all
function objects in the package and then calling them with the strangest arguments). The results
of running a ‘.R’ file are written to a ‘.Rout’ file. If there is a corresponding15 ‘.Rout.save’
file, these two are compared, with differences being reported but not causing an error. The
directory ‘tests’ is copied to the check area, and the tests are run with the copy as the working
directory and with R_LIBS set to ensure that the copy of the package installed during testing
will be found by library(pkg_name). Note that the package-specific tests are run in a vanilla R

14 case-insensitively on Windows.
15 The best way to generate such a file is to copy the ‘.Rout’ from a successful run of R CMD check. If you

want to generate it separately, do run R with options ‘--vanilla --slave’ and with environment variable
LANGUAGE=en set to get messages in English.

Chapter 1: Creating R packages 12

session without setting the random-number seed, so tests which use random numbers will need
to set the seed to obtain reproducible results (and it can be helpful to do so in all cases, to avoid
occasional failures when tests are run).

If ‘tests’ has a subdirectory ‘Examples’ containing a file pkg-Ex.Rout.save, this is compared
to the output file for running the examples when the latter are checked.

Subdirectory ‘exec’ could contain additional executable scripts the package needs, typically
scripts for interpreters such as the shell, Perl, or Tcl. This mechanism is currently used only by
a very few packages, and still experimental. NB: only files (and not directories) under ‘exec’
are installed (and those with names starting with a dot are ignored), and they are all marked as
executable (mode 755, moderated by ‘umask’) on POSIX platforms. Note too that this may not
be suitable for executable programs since some platforms (including Mac OS X and Windows)
support multiple architectures using the same installed package directory.

Subdirectory ‘po’ is used for files related to localization: see Section 1.9 [Internationalization],
page 44.

1.1.4 Package bundles

Support for package bundles was removed in R 2.11.0.

1.1.5 Data in packages

The ‘data’ subdirectory is for data files, either to be made available via lazy-loading or for
loading using data(). (The choice is made by the ‘LazyData’ field in the ‘DESCRIPTION’ file:
the default is not to do so.) It should not be used for other data files needed by the package,
and the convention has grown up to use directory ‘inst/extdata’ for such files.

Data files can have one of three types as indicated by their extension: plain R code (‘.R’ or
‘.r’), tables (‘.tab’, ‘.txt’, or ‘.csv’, see ?data for the file formats, and note that ‘.csv’ is not
the standard16 CSV format), or save() images (‘.RData’ or ‘.rda’). The files should not be
hidden (have names starting with a dot). Note that R code should be “self-sufficient” and not
make use of extra functionality provided by the package, so that the data file can also be used
without having to load the package.

Images (extensions ‘.RData’ or ‘.rda’) can contain references to the namespaces of packages
that were used to create them. Preferably there should be no such references in data files, and in
any case they should only be to packages listed in the Depends and Imports fields, as otherwise
it may be impossible to install the package. To check for such references, load all the images
into a vanilla R session, and look at the output of loadedNamespaces().

If your data files are large and you are not using ‘LazyData’ you can speed up installation
by providing a file ‘datalist’ in the ‘data’ subdirectory. This should have one line per topic
that data() will find, in the format ‘foo’ if data(foo) provides ‘foo’, or ‘foo: bar bah’ if
data(foo) provides ‘bar’ and ‘bah’. R CMD build will automatically add a ‘datalist’ file to
‘data’ directories of over 1Mb, using the function tools::add_datalist.

Tables (‘.tab’, ‘.txt’, or ‘.csv’ files) can be compressed by gzip, bzip2 or xz, optionally with
additional extension ‘.gz’, ‘.bz2’ or ‘.xz’. However, such files can only be used with R 2.10.0
or later, and so the package should have an appropriate ‘Depends’ entry in its DESCRIPTION
file.

If your package is to be distributed, do consider the resource implications of large datasets
for your users: they can make packages very slow to download and use up unwelcome amounts
of storage space, as well as taking many seconds to load. It is normally best to distribute
large datasets as ‘.rda’ images prepared by save(, compress = TRUE) (the default): there is no
excuse for distributing ASCII saves. Using bzip2 or xz compression will usually reduce the size

16 e.g http://tools.ietf.org/html/rfc4180.

http://tools.ietf.org/html/rfc4180

Chapter 1: Creating R packages 13

of both the package tarball and the installed package, in some cases by a factor of two or more.
However, such compression can only be used with R 2.10.0 or later, and so the package should
have an appropriate ‘Depends’ entry in its DESCRIPTION file.

Package tools has a couple of functions to help with data images: checkRdaFiles reports
on the way the image was saved, and resaveRdaFiles will re-save with a different type of
compression, including choosing the best type for that particular image.

Some packages using ‘LazyData’ will benefit from using a form of compression other than
gzip in the installed lazy-loading database. This can be selected by the ‘--data-compress’
option to R CMD INSTALL or by using the ‘LazyDataCompression’ field in the ‘DESCRIPTION’ file.
Useful values are bzip2, xz and the default, gzip. The only way to discover which is best is to
try them all and look at the size of the ‘pkgname/data/Rdata.rdb’ file.

Lazy-loading is not supported for very large datasets (those which when serialized exceed
2GB).

1.1.6 Non-R scripts in packages

Code which needs to be compiled (C, C++, FORTRAN, Fortran 95 . . .) is included in the ‘src’
subdirectory and discussed elsewhere in this document.

Subdirectory ‘exec’ could be used for scripts for interpreters such as the shell (e.g.
arulesSequences), BUGS, Java, JavaScript, Matlab, Perl (FEST), php (amap), Python or
Tcl, or even R. However, it seems more common to use the ‘inst’ directory, for example
‘AMA/inst/java’, ‘WriteXLS/inst/Perl’, ‘Amelia/inst/tklibs’, ‘CGIwithR/inst/cgi-bin’,
‘NMF/inst/matlab’ and ‘emdbook/inst/BUGS’.

If your package requires one of these interpreters or an extension then this should be declared
in the ‘SystemRequirements’ field of its ‘DESCRIPTION’ file. Windows users should be aware
that the Tcl extensions ‘BWidget’ and ‘Tktable’ which are included with the R for Windows
installer are extensions and do need to be declared. ‘Tktable’ does ship as part of the Tcl/Tk
provided on CRAN for Mac OS X, but you will need to tell your users how to make use of it:

> addTclPath(’/usr/local/lib/Tktable2.9’)

> tclRequire(’Tktable’)

<Tcl> 2.9

1.2 Configure and cleanup

Note that most of this section is specific to Unix-alikes: see the comments later on about the
Windows port of R.

If your package needs some system-dependent configuration before installation you can in-
clude an executable (Bourne shell) script ‘configure’ in your package which (if present) is
executed by R CMD INSTALL before any other action is performed. This can be a script created
by the Autoconf mechanism, but may also be a script written by yourself. Use this to detect
if any nonstandard libraries are present such that corresponding code in the package can be
disabled at install time rather than giving error messages when the package is compiled or used.
To summarize, the full power of Autoconf is available for your extension package (including
variable substitution, searching for libraries, etc.).

Under a Unix-alike only, an executable (Bourne shell) script ‘cleanup’ is executed as the
last thing by R CMD INSTALL if option ‘--clean’ was given, and by R CMD build when preparing
the package for building from its source. It can be used to clean up the package source tree: in
particular, it should remove all files created by configure.

As an example consider we want to use functionality provided by a (C or FORTRAN) library
foo. Using Autoconf, we can create a configure script which checks for the library, sets variable
HAVE_FOO to TRUE if it was found and to FALSE otherwise, and then substitutes this value into

http://CRAN.R-project.org/package=arulesSequences
http://CRAN.R-project.org/package=FEST
http://CRAN.R-project.org/package=amap

Chapter 1: Creating R packages 14

output files (by replacing instances of ‘@HAVE_FOO@’ in input files with the value of HAVE_FOO).
For example, if a function named bar is to be made available by linking against library foo (i.e.,
using ‘-lfoo’), one could use

AC_CHECK_LIB(foo, fun, [HAVE_FOO=TRUE], [HAVE_FOO=FALSE])

AC_SUBST(HAVE_FOO)

......

AC_CONFIG_FILES([foo.R])

AC_OUTPUT

in ‘configure.ac’ (assuming Autoconf 2.50 or later).

The definition of the respective R function in ‘foo.R.in’ could be

foo <- function(x) {

if(!@HAVE_FOO@)

stop("Sorry, library ’foo’ is not available"))

...

From this file configure creates the actual R source file ‘foo.R’ looking like

foo <- function(x) {

if(!FALSE)

stop("Sorry, library ’foo’ is not available"))

...

if library foo was not found (with the desired functionality). In this case, the above R code
effectively disables the function.

One could also use different file fragments for available and missing functionality, respectively.

You will very likely need to ensure that the same C compiler and compiler flags are used
in the ‘configure’ tests as when compiling R or your package. Under a Unix-alike, you can
achieve this by including the following fragment early in ‘configure.ac’

: ${R_HOME=‘R RHOME‘}

if test -z "${R_HOME}"; then

echo "could not determine R_HOME"

exit 1

fi

CC=‘"${R_HOME}/bin/R" CMD config CC‘

CFLAGS=‘"${R_HOME}/bin/R" CMD config CFLAGS‘

CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS‘

(Using ‘${R_HOME}/bin/R’ rather than just ‘R’ is necessary in order to use the correct version
of R when running the script as part of R CMD INSTALL, and the quotes since ‘${R_HOME}’ might
contain spaces.)

If your code does load checks then you may also need

LDFLAGS=‘"${R_HOME}/bin/R" CMD config LDFLAGS‘

and packages written with C++ need to pick up the details for the C++ compiler and switch the
current language to C++ by

AC_LANG(C++)

The latter is important, as for example C headers may not be available to C++ programs or may
not be written to avoid C++ name-mangling.

You can use R CMD config for getting the value of the basic configuration variables, or the
header and library flags necessary for linking against R, see R CMD config --help for details.

To check for an external BLAS library using the ACX_BLAS macro from the official Autoconf
Macro Archive, one can simply do

Chapter 1: Creating R packages 15

F77=‘"${R_HOME}/bin/R" CMD config F77‘

AC_PROG_F77

FLIBS=‘"${R_HOME}/bin/R" CMD config FLIBS‘

ACX_BLAS([], AC_MSG_ERROR([could not find your BLAS library], 1))

Note that FLIBS as determined by R must be used to ensure that FORTRAN 77 code works on
all R platforms. Calls to the Autoconf macro AC_F77_LIBRARY_LDFLAGS, which would overwrite
FLIBS, must not be used (and hence e.g. removed from ACX_BLAS). (Recent versions of Autoconf
in fact allow an already set FLIBS to override the test for the FORTRAN linker flags. Also,
recent versions of R can detect external BLAS and LAPACK libraries.)

You should bear in mind that the configure script will not be used on Windows systems. If
your package is to be made publicly available, please give enough information for a user on a
non-Unix-alike platform to configure it manually, or provide a ‘configure.win’ script to be used
on that platform. (Optionally, there can be a ‘cleanup.win’ script. Both should be shell scripts
to be executed by ash, which is a minimal version of Bourne-style sh.) When ‘configure.win’
is run the environment variables R_HOME (which uses ‘/’ as the file separator) and R_ARCH will
be set. Use R_ARCH to decide if this is a 64-bit build (its value there is ‘/x64’) and to install
DLLs to the correct place (‘${R_HOME}/libs${R_ARCH}’). Use R_ARCH_BIN to find the correct
place under the ‘bin’ directory, e.g. ‘${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe’.

In some rare circumstances, the configuration and cleanup scripts need to know the location
into which the package is being installed. An example of this is a package that uses C code
and creates two shared object/DLLs. Usually, the object that is dynamically loaded by R is
linked against the second, dependent, object. On some systems, we can add the location of this
dependent object to the object that is dynamically loaded by R. This means that each user does
not have to set the value of the LD_LIBRARY_PATH (or equivalent) environment variable, but
that the secondary object is automatically resolved. Another example is when a package installs
support files that are required at run time, and their location is substituted into an R data
structure at installation time. (This happens with the Java Archive files in the Omegahat SJava
package.) The names of the top-level library directory (i.e., specifiable via the ‘-l’ argument)
and the directory of the package itself are made available to the installation scripts via the two
shell/environment variables R_LIBRARY_DIR and R_PACKAGE_DIR. Additionally, the name of the
package (e.g. ‘survival’ or ‘MASS’) being installed is available from the environment variable
R_PACKAGE_NAME. (Currently the value of R_PACKAGE_DIR is always ${R_LIBRARY_DIR}/${R_

PACKAGE_NAME}, but this used not to be the case when versioned installs were allowed. Its main
use is in ‘configure.win’ scripts for the installation path of external software’s DLLs.) Note
that the value of R_PACKAGE_DIR may contain spaces and other shell-unfriendly characters, and
so should be quoted in makefiles and configure scripts.

One of the more tricky tasks can be to find the headers and libraries of external software.
One tool which is increasingly available on Unix-alikes (but not Mac OS X) to do this is pkg-
config. The ‘configure’ script will need to test for the presence of the command itself (see for
example package Cairo), and if present it can be asked if the software is installed, of a suitable
version and for compilation/linking flags by e.g.

$ pkg-config --exists ’QtCore >= 4.0.0’ # check the status

$ pkg-config --modversion QtCore

4.7.1

$ pkg-config --cflags QtCore

-DQT_SHARED -I/usr/include/QtCore

$ pkg-config --libs QtCore

-lQtCore

Note that pkg-config --libs gives the information required to link against the default version
of that library (usually the dynamic one), and pkg-config --static is needed if the static
library is to be used.

http://CRAN.R-project.org/package=Cairo

Chapter 1: Creating R packages 16

Sometimes the name by which the software is known to pkg-config is not what one might
expect (e.g. ‘gtk+-2.0’ even for 2.22). To get a complete list use

pkg-config --list-all | sort

1.2.1 Using ‘Makevars’

Sometimes writing your own ‘configure’ script can be avoided by supplying a file ‘Makevars’:
also one of the most common uses of a ‘configure’ script is to make ‘Makevars’ from
‘Makevars.in’.

A ‘Makevars’ file is a makefile and is used as one of several makefiles by R CMD SHLIB (which
is called by R CMD INSTALL to compile code in the ‘src’ directory). It should be written if at all
possible in a portable style, in particular (except for ‘Makevars.win’) without the use of GNU
extensions.

The most common use of a ‘Makevars’ file is to set additional preprocessor options (for
example include paths) for C/C++ files via PKG_CPPFLAGS, and additional compiler flags by
setting PKG_CFLAGS, PKG_CXXFLAGS, PKG_FFLAGS or PKG_FCFLAGS, for C, C++, FORTRAN or
Fortran 9x respectively (see Section 5.5 [Creating shared objects], page 89).

NB: Include paths are preprocessor options, not compiler options, and must be set in PKG_

CPPFLAGS as otherwise platform-specific paths (e.g. ‘-I/usr/local/include’) will take prece-
dence.

‘Makevars’ can also be used to set flags for the linker, for example ‘-L’ and ‘-l’ options, via
PKG_LIBS.

When writing a ‘Makevars’ file for a package you intend to distribute, take care to ensure
that it is not specific to your compiler: flags such as ‘-O2 -Wall -pedantic’ are all specific to
GCC.

There are some macros17 which are set whilst configuring the building of R itself and
are stored in ‘R_HOME/etcR_ARCH/Makeconf’. That makefile is included as a ‘Makefile’ af-
ter ‘Makevars[.win]’, and the macros it defines can be used in macro assignments and make
command lines in the latter. These include

FLIBS A macro containing the set of libraries need to link FORTRAN code. This may
need to be included in PKG_LIBS: it will normally be included automatically if the
package contains FORTRAN source files.

BLAS_LIBS

A macro containing the BLAS libraries used when building R. This may need to
be included in PKG_LIBS. Beware that if it is empty then the R executable will
contain all the double-precision and double-complex BLAS routines, but no single-
precision or complex routines. If BLAS_LIBS is included, then FLIBS also needs to
be18 included following it, as most BLAS libraries are written at least partially in
FORTRAN.

LAPACK_LIBS

A macro containing the LAPACK libraries (and paths where appropriate) used when
building R. This may need to be included in PKG_LIBS. It may point to a dynamic
library libRlapack which contains all the double-precision LAPACK routines as
well as those double-complex LAPACK and BLAS routines needed to build R, or it
may point to an external LAPACK library, or may be empty if an external BLAS
library also contains LAPACK.

17 in POSIX parlance: GNU make calls these ‘make variables’.
18 at least on Unix-alikes: the Windows build currently resolves such dependencies to a static FORTRAN library

when ‘Rblas.dll’ is built.

Chapter 1: Creating R packages 17

[There is no guarantee that the LAPACK library will provide more than all the
double-precision and double-complex routines, and some do not provide all the aux-
iliary routines.]

For portability, the macros BLAS_LIBS and FLIBS should always be included after
LAPACK_LIBS (and in that order).

SAFE_FFLAGS

A macro containing flags which are needed to circumvent over-optimization of FOR-
TRAN code: it is typically ‘-g -O2 -ffloat-store’ on ‘ix86’ platforms using
gfortran. Note that this is not an additional flag to be used as part of PKG_

FFLAGS, but a replacement for FFLAGS, and that it is intended for the FORTRAN
77 compiler ‘F77’ and not necessarily for the Fortran 90/95 compiler ‘FC’. See the
example later in this section.

Setting certain macros in ‘Makevars’ will prevent R CMD SHLIB setting them: in particular if
‘Makevars’ sets ‘OBJECTS’ it will not be set on the make command line. This can be useful in
conjunction with implicit rules to allow other types of source code to be compiled and included
in the shared object. It can also be used to control the set of files which are compiled, either by
excluding some files in ‘src’ or including some files in subdirectories. For example

OBJECTS = 4dfp/endianio.o 4dfp/Getifh.o R4dfp-object.o

Note that ‘Makevars’ should not normally contain targets, as it is included before the default
makefile and make will call the first target, intended to be all in the default makefile. If you
really need to circumvent that, use a suitable (phony) target all before any actual targets in
‘Makevars.[win]’: for example package fastICA has

PKG_LIBS = @BLAS_LIBS@

SLAMC_FFLAGS=$(R_XTRA_FFLAGS) $(FPICFLAGS) $(SHLIB_FFLAGS) $(SAFE_FFLAGS)

all: $(SHLIB)

slamc.o: slamc.f

$(F77) $(SLAMC_FFLAGS) -c -o slamc.o slamc.f

needed to ensure that the LAPACK routines find some constants without infinite looping. The
Windows equivalent is

all: $(SHLIB)

slamc.o: slamc.f

$(F77) $(SAFE_FFLAGS) -c -o slamc.o slamc.f

(since the other macros are all empty on that platform, and R’s internal BLAS is not used).
Note that the first target in ‘Makevars’ will be called, but for back-compatibility it is best named
all.

If you want to create and then link to a library, say using code in a subdirectory, use something
like

.PHONY: all mylibs

all: $(SHLIB)

$(SHLIB): mylibs

mylibs:

(cd subdir; make)

Be careful to create all the necessary dependencies, as there is a no guarantee that the depen-
dencies of all will be run in a particular order (and some of the CRAN build machines use
multiple CPUs and parallel makes).

http://CRAN.R-project.org/package=fastICA

Chapter 1: Creating R packages 18

Note that on Windows it is required that ‘Makevars[.win]’ does create a DLL: this is needed
as it is the only reliable way to ensure that building a DLL succeeded. If you want to use the
‘src’ directory for some purpose other than building a DLL, use a ‘Makefile.win’ file.

It is sometimes useful to have a target ‘clean’ in ‘Makevars’ or ‘Makevars.win’: this will
be used by R CMD build to clean up (a copy of) the package sources. When it is run by build

it will have fewer macros set, in particular not $(SHLIB), nor $(OBJECTS) unless set in the file
itself. It would also be possible to add tasks to the target ‘shlib-clean’ which is run by R CMD

INSTALL and R CMD SHLIB with options ‘--clean’ and ‘--preclean’.

If you want to run R code in ‘Makevars’, e.g. to find configuration information, please do
ensure that you use the correct copy of R or Rscript: there might not be one in the path at all,
or it might be the wrong version or architecture. The correct way to do this is via

"$(R_HOME)/bin$(R_ARCH_BIN)/Rscript" filename

"$(R_HOME)/bin$(R_ARCH_BIN)/Rscript" -e ’R expression’

where $(R_ARCH_BIN) is only needed currently on Windows.

Environment or make variables can be used to select different macros for 32- and 64-bit code,
for example (GNU make syntax, allowed on Windows)

ifeq "$(WIN)" "64"

PKG_LIBS = value for 64-bit Windows

else

PKG_LIBS = value for 32-bit Windows

endif

On Windows there is normally a choice between linking to an import library or directly to
a DLL. Where possible, the latter is much more reliable: import libraries are tied to a specific
toolchain, and in particular on 64-bit Windows two different conventions have been commonly
used. So for example instead of

PKG_LIBS = -L$(XML_DIR)/lib -lxml2

one can use

PKG_LIBS = -L$(XML_DIR)/bin -lxml2

since on Windows -lxxx will look in turn for

libxxx.dll.a

xxx.dll.a

libxxx.a

xxx.lib

libxxx.dll

xxx.dll

where the first and second are conventionally import libraries, the third and fourth often static
libraries (with .lib intended for Visual C++), but might be import libraries. See for example
http://sourceware.org/binutils/docs-2.20/ld/WIN32.html#WIN32.

The fly in the ointment is that the DLL might not be named ‘libxxx.dll’, and in fact on
32-bit Windows there is a ‘libxml2.dll’ whereas on one build for 64-bit Windows the DLL is
called ‘libxml2-2.dll’. Using import libraries can cover over these differences but can cause
equal difficulties.

If static libraries are available they can save a lot of problems with run-time finding of DLLs,
especially when binary packages are to be distributed and even more when these support both
architectures. Where using DLLs is unavoidable we normally arrange (via ‘configure.win’) to
ship them in the same directory as the package DLL.

http://sourceware.org/binutils/docs-2.20/ld/WIN32.html#WIN32

Chapter 1: Creating R packages 19

1.2.1.1 OpenMP support

As from R 2.13.0 there is some support for packages which wish to use OpenMP19. The make

macros

SHLIB_OPENMP_CFLAGS

SHLIB_OPENMP_CXXFLAGS

SHLIB_OPENMP_FCFLAGS

SHLIB_OPENMP_FFLAGS

are available for use in ‘src/Makevars’ or ‘src/Makevars.win’.20 Include the appropriate macro
in PKG_CFLAGS, PKG_CPPFLAGS and so on, and also in PKG_LIBS. C/C++ code that needs to be
conditioned on the use of OpenMP can be used inside #ifdef SUPPORT_OPENMP, a macro defined
in the header ‘Rconfig.h’ (see Section 6.13 [Platform and version information], page 129):
however the use of OpenMP is most often indicated by ‘#pragma’ statements.

For example, a package with C code written for OpenMP should have in ‘src/Makevars’ the
lines

PKG_CFLAGS = $(SHLIB_OPENMP_CFLAGS)

PKG_LIBS = $(SHLIB_OPENMP_CFLAGS)

There is nothing to say what version of OpenMP is supported: version 3.0 (May 2008)
is supported by recent versions of the main platforms (but note that Mac OS X binaries are
currently built for 10.5 using compilers which support version 2.5), but portable packages cannot
assume that end users have recent versions (there are some years-old versions of Linux in use),
and it may be safest to assume version 2.5.

C/C++ code written to use OpenMP should include omp pragmas and other OpenMP-specific
code in #ifdef _OPENMP ... #endif.

OpenMP support is available on Windows in the toolchain used for R 2.15.0 and these macros
will be set appropriately. It is not available on Windows prior to R 2.14.2.

The performance of OpenMP varies substantially between platforms. Both the Mac OS
X and Windows implementations have substantial overheads and are only beneficial if quite
substantial tasks are run in parallel.

Calling any of the R API from threaded code is ‘for experts only’: they will need to read
the source code to determine if it is thread-safe. In particular, code which makes use of the
stack-checking mechanism must not be called from threaded code.

1.2.1.2 Using pthreads

There is no direct support for the POSIX threads (more commonly known as pthreads): by
the time we considered adding it several packages were using it unconditionally so it seems that
nowadays it is universally available on POSIX operating systems (hence not Windows).

For reasonably recent versions of gcc the correct specification is

PKG_CPPFLAGS = -pthread

PKG_LIBS = -pthread

(and the plural version is also accepted on some systems/versions). For other platforms the
specification is

PKG_CPPFLAGS = -D_REENTRANT

PKG_LIBS = -lpthread

(and note that the library name is singular). This is what ‘-pthread’ does on all known current
platforms (although earlier version of OpenBSD used a different library name).

19 http://www.openmp.org/ , http://en.wikipedia.org/wiki/OpenMP, https://computing.llnl.gov/

tutorials/openMP/
20 But OpenMP support is not available with the default toolchain used prior to R 2.14.2 on Windows.

http://www.openmp.org/
http://en.wikipedia.org/wiki/OpenMP
https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/

Chapter 1: Creating R packages 20

For a tutorial see https://computing.llnl.gov/tutorials/pthreads/.

POSIX threads are not normally used on Windows, which has its own native concepts of
threads. However, there are two projects implementing pthreads on top of Windows, pthreads-
w32 and winpthreads (a recent part of the MinGW-w64 project). Both implement libptheads
as an import library for a DLL.

Whether Windows toolchains implement pthreads is up to the toolchain provider. One
issue has been licenses: pthreads-w32 is licensed under LGPL which requires source code to
be made available. The toolchains used to compile R prior to version 2.14.2 do not contain
pthreads, although in some cases pthreads-w32 could be retro-fitted. As from R 2.14.2 a make

variable SHLIB_PTHREAD_FLAGS is available: this should be included in both PKG_CPPFLAGS (or
the Fortran or F9x equivalents) and PKG_LIBS.

The presence of a working pthreads implementation cannot be unambiguously determined
without testing for yourself: however, that ‘_REENTRANT’ is defined21 in C/C++ code is a good
indication.

See also the comments on thread-safety and performance under OpenMP: on all known R
platforms OpenMP is implemented via pthreads and the known performance issues are in the
latter.

1.2.1.3 Compiling in sub-directories

Package authors fairly often want to organize code in sub-directories of ‘src’, for example if
they are including a separate piece of external software to which this is an R interface.

One simple way is simply to set OBJECTS to be all the objects that need to be compiled,
including in sub-directories. For example, CRAN package RSiena has

SOURCES = $(wildcard data/*.cpp network/*.cpp utils/*.cpp model/*.cpp model/*/*.cpp model/*/*/*.cpp)

OBJECTS = siena07utilities.o siena07internals.o siena07setup.o siena07models.o $(SOURCES:.cpp=.o)

One problem with that approach is that unless GNU make extensions are used, the source files
need to be listed and kept up-to-date. As in the following from CRAN package lossDev:

OBJECTS.samplers = samplers/ExpandableArray.o samplers/Knots.o \

samplers/RJumpSpline.o samplers/RJumpSplineFactory.o \

samplers/RealSlicerOV.o samplers/SliceFactoryOV.o samplers/MNorm.o

OBJECTS.distributions = distributions/DSpline.o \

distributions/DChisqrOV.o distributions/DTOV.o \

distributions/DNormOV.o distributions/DUnifOV.o distributions/RScalarDist.o

OBJECTS.root = RJump.o

OBJECTS = $(OBJECTS.samplers) $(OBJECTS.distributions) $(OBJECTS.root)

Where the subdirectory is self-contained code with a suitable makefile, the best approach is
something like

PKG_LIBS = -LCsdp/lib -lsdp $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)

$(SHLIB): Csdp/lib/libsdp.a

Csdp/lib/libsdp.a

@(cd Csdp/lib && $(MAKE) libsdp.a \

CC="$(CC)" CFLAGS="$(CFLAGS) $(CPICFLAGS)" AR="$(AR)" RANLIB="$(RANLIB)")

Note the quotes: the macros can contain spaces, e.g. gcc -m64 -std=gnu99. Several authors have
forgotten about parallel makes: the static library in the subdirectory must be made before the
shared library and so must depend on the latter. Others forget the need for position-independent
code.

We really do not recommend using a ‘src/Makefile’ instead on ‘src/Makevars’, and as the
example above shows, it is not necessary.

21 some Windows toolchains have the typo ‘_REENTRANCE’ instead.

https://computing.llnl.gov/tutorials/pthreads/
http://CRAN.R-project.org/package=RSiena
http://CRAN.R-project.org/package=lossDev

Chapter 1: Creating R packages 21

1.2.2 Configure example

It may be helpful to give an extended example of using a ‘configure’ script to create a
‘src/Makevars’ file: this is based on that in the RODBC package.

The ‘configure.ac’ file follows: ‘configure’ is created from this by running autoconf in
the top-level package directory (containing ‘configure.ac’).

AC_INIT([RODBC], 1.1.8) dnl package name, version

dnl A user-specifiable option

odbc_mgr=""

AC_ARG_WITH([odbc-manager],

AC_HELP_STRING([--with-odbc-manager=MGR],

[specify the ODBC manager, e.g. odbc or iodbc]),

[odbc_mgr=$withval])

if test "$odbc_mgr" = "odbc" ; then

AC_PATH_PROGS(ODBC_CONFIG, odbc_config)

fi

dnl Select an optional include path, from a configure option

dnl or from an environment variable.

AC_ARG_WITH([odbc-include],

AC_HELP_STRING([--with-odbc-include=INCLUDE_PATH],

[the location of ODBC header files]),

[odbc_include_path=$withval])

RODBC_CPPFLAGS="-I."

if test [-n "$odbc_include_path"] ; then

RODBC_CPPFLAGS="-I. -I${odbc_include_path}"

else

if test [-n "${ODBC_INCLUDE}"] ; then

RODBC_CPPFLAGS="-I. -I${ODBC_INCLUDE}"

fi

fi

dnl ditto for a library path

AC_ARG_WITH([odbc-lib],

AC_HELP_STRING([--with-odbc-lib=LIB_PATH],

[the location of ODBC libraries]),

[odbc_lib_path=$withval])

if test [-n "$odbc_lib_path"] ; then

LIBS="-L$odbc_lib_path ${LIBS}"

else

if test [-n "${ODBC_LIBS}"] ; then

LIBS="-L${ODBC_LIBS} ${LIBS}"

else

if test -n "${ODBC_CONFIG}"; then

odbc_lib_path=‘odbc_config --libs | sed s/-lodbc//‘

LIBS="${odbc_lib_path} ${LIBS}"

fi

fi

fi

dnl Now find the compiler and compiler flags to use

: ${R_HOME=‘R RHOME‘}

if test -z "${R_HOME}"; then

echo "could not determine R_HOME"

exit 1

fi

CC=‘"${R_HOME}/bin/R" CMD config CC‘

CPP=‘"${R_HOME}/bin/R" CMD config CPP‘

CFLAGS=‘"${R_HOME}/bin/R" CMD config CFLAGS‘

CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS‘

AC_PROG_CC

AC_PROG_CPP

http://CRAN.R-project.org/package=RODBC

Chapter 1: Creating R packages 22

if test -n "${ODBC_CONFIG}"; then

RODBC_CPPFLAGS=‘odbc_config --cflags‘

fi

CPPFLAGS="${CPPFLAGS} ${RODBC_CPPFLAGS}"

dnl Check the headers can be found

AC_CHECK_HEADERS(sql.h sqlext.h)

if test "${ac_cv_header_sql_h}" = no ||

test "${ac_cv_header_sqlext_h}" = no; then

AC_MSG_ERROR("ODBC headers sql.h and sqlext.h not found")

fi

dnl search for a library containing an ODBC function

if test [-n "${odbc_mgr}"] ; then

AC_SEARCH_LIBS(SQLTables, ${odbc_mgr}, ,

AC_MSG_ERROR("ODBC driver manager ${odbc_mgr} not found"))

else

AC_SEARCH_LIBS(SQLTables, odbc odbc32 iodbc, ,

AC_MSG_ERROR("no ODBC driver manager found"))

fi

dnl for 64-bit ODBC need SQL[U]LEN, and it is unclear where they are defined.

AC_CHECK_TYPES([SQLLEN, SQLULEN], , , [# include <sql.h>])

dnl for unixODBC header

AC_CHECK_SIZEOF(long, 4)

dnl substitute RODBC_CPPFLAGS and LIBS

AC_SUBST(RODBC_CPPFLAGS)

AC_SUBST(LIBS)

AC_CONFIG_HEADERS([src/config.h])

dnl and do substitution in the src/Makevars.in and src/config.h

AC_CONFIG_FILES([src/Makevars])

AC_OUTPUT

where ‘src/Makevars.in’ would be simply

PKG_CPPFLAGS = @RODBC_CPPFLAGS@

PKG_LIBS = @LIBS@

A user can then be advised to specify the location of the ODBC driver manager files by
options like (lines broken for easier reading)

R CMD INSTALL \

--configure-args=’--with-odbc-include=/opt/local/include \

--with-odbc-lib=/opt/local/lib --with-odbc-manager=iodbc’ \

RODBC

or by setting the environment variables ODBC_INCLUDE and ODBC_LIBS.

1.2.3 Using F95 code

R assumes that source files with extension ‘.f’ are FORTRAN 77, and passes them to the
compiler specified by ‘F77’. On most but not all platforms that compiler will accept Fortran
90/95 code: some platforms have a separate Fortran 90/95 compiler and a few (by now quite
rare22) platforms have no Fortran 90/95 support.

This means that portable packages need to be written in correct FORTRAN 77, which will
also be valid Fortran 95. See http://developer.r-project.org/Portability.html for
reference resources. In particular, free source form F95 code is not portable.

On some systems an alternative F95 compiler is available: from the gcc family this might
be gfortran or g95. Configuring R will try to find a compiler which (from its name) appears

22 Cygwin used g77 up to 2011, and some pre-built versions of R for Unix OSes still do.

http://developer.r-project.org/Portability.html

Chapter 1: Creating R packages 23

to be a Fortran 90/95 compiler, and set it in macro ‘FC’. Note that it does not check that such
a compiler is fully (or even partially) compliant with Fortran 90/95. Packages making use of
Fortran 90/95 features should use file extension ‘.f90’ or ‘.f95’ for the source files: the variable
PKG_FCFLAGS specifies any special flags to be used. There is no guarantee that compiled Fortran
90/95 code can be mixed with any other type of compiled code, nor that a build of R will have
support for such packages.

Some (but not) all compilers specified by the ‘FC’ macro will accept Fortran 2003 or 2008 code.
For platforms using gfortran, you may need to include ‘-std=f2003’ or ‘-std=f2008’ in PKG_

FCFLAGS: the default is ‘GNU Fortran’, Fortran 95 with non-standard extensions. The Solaris
f95 compiler ‘accepts some Fortran 2003 features’. Such code should still use file extension
‘.f90’ or ‘.f95’.

1.3 Checking and building packages

Before using these tools, please check that your package can be installed and loaded. R CMD

check will inter alia do this, but you may get more detailed error messages doing the checks
directly.

If your package specifies an encoding in its ‘DESCRIPTION’ file, you should run these tools in
a locale which makes use of that encoding: they may not work at all or may work incorrectly in
other locales.

Note: R CMD check and R CMD build run R with ‘--vanilla’, so none of the
user’s startup files are read. If you need R_LIBS set (to find packages in a
non-standard library) you can set it in the environment: also you can use the
check and build environment files (as specified by the environment variables R_

CHECK_ENVIRON and R_BUILD_ENVIRON; if unset, files23 ‘~/.R/check.Renviron’ and
‘~/.R/build.Renviron’ are used) to set environment variables when using these
utilities.

Note to Windows users: R CMD buildmay require you to have installed the Windows
toolset (see the “R Installation and Administration” manual) and have it in your
path, and R CMD check will make use of it if present. You may need to set TMPDIR to
point to a suitable writable directory with a path not containing spaces – use forward
slashes for the separators. Also, the directory needs to be on a case-honouring file
system (some network-mounted file systems are not).

1.3.1 Checking packages

Using R CMD check, the R package checker, one can test whether source R packages work cor-
rectly. It can be run on one or more directories, or gzipped package tar archives24 with exten-
sion ‘.tar.gz’ or ‘.tgz’. (Some platforms may allow other forms of compression and extensions
‘.tar.bz2’ and ‘.tar.xz’.)

This runs a series of checks, including

1. The package is installed. This will warn about missing cross-references and duplicate aliases
in help files.

2. The file names are checked to be valid across file systems and supported operating system
platforms.

3. The files and directories are checked for sufficient permissions (Unix-alikes only).

23 On systems which use sub-architectures, architecture-specific versions such as ‘~/.R/check.Renviron.i386’
take precedence.

24 This may require GNU tar: the command used can be set with environment variable TAR.

Chapter 1: Creating R packages 24

4. The files are checked for binary executables, using a suitable version of file if available25.
(There may be rare false positives.)

5. The ‘DESCRIPTION’ file is checked for completeness, and some of its entries for correctness.
Unless installation tests are skipped, checking is aborted if the package dependencies cannot
be resolved at run time. (You may need to set R_LIBS if dependent packages are in a separate
library tree.) One check is that the package name is not that of a standard package, nor
one of the defunct standard packages (‘ctest’, ‘eda’, ‘lqs’, ‘mle’, ‘modreg’, ‘mva’, ‘nls’,
‘stepfun’ and ‘ts’). Another check is that all packages mentioned in library or requires
or from which the ‘NAMESPACE’ file imports or are called via :: or ::: are listed (in ‘Depends’,
‘Imports’, ‘Suggests’ or ‘Contains’): this is not an exhaustive check of the actual imports.

6. Available index information (in particular, for demos and vignettes) is checked for com-
pleteness.

7. The package subdirectories are checked for suitable file names and for not being empty. The
checks on file names are controlled by the option ‘--check-subdirs=value’. This defaults
to ‘default’, which runs the checks only if checking a tarball: the default can be overridden
by specifying the value as ‘yes’ or ‘no’. Further, the check on the ‘src’ directory is only
run if the package does not contain a ‘configure’ script (which corresponds to the value
‘yes-maybe’) and there is no ‘src/Makefile’ or ‘src/Makefile.in’.

To allow a ‘configure’ script to generate suitable files, files ending in ‘.in’ will be allowed
in the ‘R’ directory.

A warning is given for directory names that look like R package check directories – many
packages have been submitted to CRAN containing these.

8. The R files are checked for syntax errors. Bytes which are non-ASCII are reported as
warnings, but these should be regarded as errors unless it is known that the package will
always be used in the same locale.

9. It is checked that the package can be loaded, first with the usual default packages and then
only with package base already loaded. It is checked that the namespace this can be loaded
in an empty session with only the base namespace loaded. (Namespaces and packages can
be loaded very early in the session, before the default packages are available, so packages
should work then.)

10. The R files are checked for correct calls to library.dynam. Package startup functions are
checked for correct argument lists and (incorrect) calls to functions which modify the search
path or inappropriately generate messages. The R code is checked for possible problems
using codetools. In addition, it is checked whether S3 methods have all arguments of
the corresponding generic, and whether the final argument of replacement functions is
called ‘value’. All foreign function calls (.C, .Fortran, .Call and .External calls) are
tested to see if they have a PACKAGE argument, and if not, whether the appropriate DLL
might be deduced from the namespace of the package. Any other calls are reported. (The
check is generous, and users may want to supplement this by examining the output of
tools::checkFF("mypkg", verbose=TRUE), especially if the intention were to always use
a PACKAGE argument)

11. The ‘Rd’ files are checked for correct syntax and metadata, including the presence of the
mandatory fields (\name, \alias, \title and \description). The ‘Rd’ name and title are
checked for being non-empty, and there is a check for missing cross-references (links).

12. A check is made for missing documentation entries, such as undocumented user-level objects
in the package.

13. Documentation for functions, data sets, and S4 classes is checked for consistency with the
corresponding code.

25 A suitable file.exe is part of the Windows toolset.

http://CRAN.R-project.org/package=codetools

Chapter 1: Creating R packages 25

14. It is checked whether all function arguments given in \usage sections of ‘Rd’ files are doc-
umented in the corresponding \arguments section.

15. The ‘data’ directory is checked for non-ASCII characters and for the use of reasonable levels
of compression.

16. C, C++ and FORTRAN source and header files26 are tested for portable (LF-only) line
endings. If there is a ‘Makefile’ or ‘Makefile.in’ or ‘Makevars’ or ‘Makevars.in’ file
under the ‘src’ directory, it is checked for portable line endings and the correct use of
‘$(BLAS_LIBS)’ and ‘$(LAPACK_LIBS)’

Compiled code is checked for symbols corresponding to functions which might terminate R
or write to ‘stdout’/‘stderr’ instead of the console. Note that the latter might give false
positives in that the symbols might be pulled in with external libraries and could never
be called. Windows27 users should note that the Fortran and C++ runtime libraries are
examples of such external libraries.

17. Some checks are made of the contents of the ‘inst/doc’ directory. These always include
checking for files that look like leftovers, and if suitable tools (such as qpdf) are available,
checking that the PDF documentation is of minimal size.

18. The examples provided by the package’s documentation are run. (see Chapter 2 [Writing R
documentation files], page 48, for information on using \examples to create executable ex-
ample code.) If there is a file ‘tests/Examples/pkg-Ex.Rout.save’, the output of running
the examples is compared to that file.

Of course, released packages should be able to run at least their own examples. Each
example is run in a ‘clean’ environment (so earlier examples cannot be assumed to have
been run), and with the variables T and F redefined to generate an error unless they are set
in the example: See Section “Logical vectors” in An Introduction to R.

19. If the package sources contain a ‘tests’ directory then the tests specified in that directory
are run. (Typically they will consist of a set of ‘.R’ source files and target output files
‘.Rout.save’.) Please note that the comparison will be done in the end user’s locale, so
the target output files should be ASCII if at all possible.

20. The code in package vignettes (see Section 1.4 [Writing package vignettes], page 28) is
executed, and the vignette PDFs re-made from their sources as a check of completeness of
the sources (unless there is a ‘BuildVignettes’ field in the package’s ‘DESCRIPTION’ file
with a false value). If there is a target output file ‘.Rout.save’ in the vignette source
directory, the output from running the code in that vignette is compared with the target
output file and any differences are reported (but not recorded in the log file). (If the vignette
sources are in the deprecated location ‘inst/doc’, do mark such target output files to not
be installed in ‘.Rinstignore’.)

If there is an error28 in executing the R code in vignette ‘foo.ext’, a log file ‘foo.ext.log’
is created in the check directory. The vignette PDFs are re-made in a copy of the package
sources in the ‘vign_test’ subdirectory of the check directory, so for further information
on errors look in directory ‘pkgname/vign_test/inst/doc’. (It is only retained if there are
errors or if environment variable _R_CHECK_CLEAN_VIGN_TEST_ is set to a false value.)

21. The PDF version of the package’s manual is created (to check that the ‘Rd’ files can be
converted successfully). This needs LATEX and suitable fonts and LATEX packages to be
installed. See Section “Making the manuals” in R Installation and Administration.

26 An exception is made for subdirectories stating ‘win’ or ‘Win’.
27 on most other platforms such runtime libraries are dynamic, but static libraries are currently used on Windows

because the toolchain is not a standard part of the OS.
28 or if option ‘--use-valgrind’ is used or environment variable _R_CHECK_ALWAYS_LOG_VIGNETTE_OUTPUT_ is

set to a true value or if there are differences from a target output file

Chapter 1: Creating R packages 26

All these tests are run with collation set to the C locale, and for the examples and tests with
environment variable LANGUAGE=en: this is to minimize differences between platforms.

Use R CMD check --help to obtain more information about the usage of the R package
checker. A subset of the checking steps can be selected by adding command-line options. It also
allows customization by setting environment variables _R_CHECK_*_:, as described in Section
“Tools” in R Internals: a set of these customizations similar to those used by CRAN can be
selected by the option ‘--as-cran’ (which works best if Internet access is available29).

You do need to ensure that the package is checked in a suitable locale if it contains non-ASCII

characters. Such packages are likely to fail some of the checks in a C locale, and R CMD check

will warn if it spots the problem. You should be able to check any package in a UTF-8 locale
(if one is available). Beware that although a C locale is rarely used at a console, it may be the
default if logging in remotely or for batch jobs.

Multiple sub-architectures: On systems which support multiple sub-architectures
(principally Windows and Mac OS X), R CMD check will install and check a package
which contains compiled code under all available sub-architectures. (Use option
‘--force-multiarch’ to force this for packages without compiled code, which are
otherwise only checked under the main sub-architecture.) This will run the loading
tests, examples and ‘tests’ directory under each installed sub-architecture in turn,
and give an error if any fail. Where environment variables (including perhaps PATH)
need to be set differently for each sub-architecture, these can be set in architecture-
specific files such as ‘R_HOME/etc/i386/Renviron.site’.

An alternative approach is to use R CMD check --no-multiarch to check the pri-
mary sub-architecture, and then to use something like R --arch=x86_64 CMD check

--extra-arch or (Windows) /path/to/R/bin/x64/Rcmd check --extra-arch to
run for each additional sub-architecture just the checks30 which differ by sub-
architecture.

1.3.2 Building package tarballs

Packages may be distributed in source form as “tarballs” (‘.tar.gz’ files) or in binary form.
The source form can be installed on all platforms with suitable tools and is the usual form for
Unix-like systems; the binary form is platform-specific, and is more common distribution form
for the Windows and Mac platforms.

Using R CMD build, the R package builder, one can build R package tarballs from their sources
(for example, for subsequent release).

Prior to actually building the package in the standard gzipped tar file format, a few diagnostic
checks and cleanups are performed. In particular, it is tested whether object indices exist and
can be assumed to be up-to-date, and C, C++ and FORTRAN source files and relevant make
files are tested and converted to LF line-endings if necessary.

Run-time checks whether the package works correctly should be performed using R CMD check

prior to invoking the final build procedure.

To exclude files from being put into the package, one can specify a list of exclude patterns in
file ‘.Rbuildignore’ in the top-level source directory. These patterns should be Perl-like regular
expressions (see the help for regexp in R for the precise details), one per line, to be matched31

against the file names32 relative to the top-level package source directory. In addition, directories

29 Windows users behind proxies may want to set environment variable R_WIN_INTERNET2 to a non-empty value,
e.g. in ‘~/.R/check_environ’. Some Windows users may need to set R_WIN_NO_JUNCTIONS to a non-empty
value.

30 loading, examples, tests, vignettes
31 case-insensitively on Windows.
32 including directory names as from R 2.13.0: earlier versions accepted the names of non-empty directories.

Chapter 1: Creating R packages 27

from source control systems33 or from eclipse34, directories with names ending ‘.Rcheck’ or
‘Old’ or ‘old’ and files ‘GNUMakefile’, ‘Read-and-delete-me’ or with base names starting with
‘.#’, or starting and ending with ‘#’, or ending in ‘~’, ‘.bak’ or ‘.swp’, are excluded by default.
In addition, those files in the ‘R’, ‘demo’ and ‘man’ directories which are flagged by R CMD check

as having invalid names will be excluded.

Use R CMD build --help to obtain more information about the usage of the R package
builder.

Unless R CMD build is invoked with the ‘--no-vignettes’ option35, it will attempt to rebuild
the vignettes (see Section 1.4 [Writing package vignettes], page 28) in the package. To do so it
installs the current package into a temporary library tree, but any dependent packages need to
be installed in an available library tree (see the Note: at the top of this section).

Similarly, if the ‘.Rd’ documentation files contain any \Sexpr macros (see Section 2.12 [Dy-
namic pages], page 61), the package will be temporarily installed to execute them. Post-execution
binary copies of those pages containing build-time macros will be saved in ‘build/partial.rdb’.
If there are any install-time or render-time macros, a ‘.pdf’ version of the package manual will
be built and installed in the ‘build/’ subdirectory. (This allows CRAN or other repositories to
display the manual even if they are unable to install the package.) This can be suppressed by
the option ‘--no-manual’ or if package’s description contains ‘BuildManual: no’ or similar.

One of the checks that R CMD build runs is for empty source directories. These are in most
(but not all) cases unintentional, if they are intentional use the option ‘--keep-empty-dirs’
(or set the environment variable _R_BUILD_KEEP_EMPTY_DIRS_ to ‘TRUE’, or have a
‘BuildKeepEmpty’ field with a true value in the ‘DESCRIPTION’ file).

The ‘--resave-data’ option allows saved images (‘.rda’ and ‘.RData’ files) in the ‘data’
directory to be optimized for size. It will also compress tabular files and convert ‘.R’ files to
saved images. It can take values no, gzip (the default if this option is not supplied, which can
be changed by setting the environment variable _R_BUILD_RESAVE_DATA_) and best (equivalent
to giving it without a value), which chooses the most effective compression. Using best adds a
dependence on R (>= 2.10) to the ‘DESCRIPTION’ file if bzip2 or xz compression is selected for
any of the files. If this is thought undesirable, ‘--resave-data=gzip’ (which is the default if
that option is not supplied) will do what compression it can with gzip. A package can control
how its data is resaved by supplying a ‘BuildResaveData’ field (with one of the values given
earlier in this paragraph) in its ‘DESCRIPTION’ file.

The ‘--compact-vignettes’ option will run tools::compactPDF over the PDF files in
‘inst/doc’ (and its subdirectories) to losslessly compress them. This is not enabled by de-
fault (it can be selected by environment variable _R_BUILD_COMPACT_VIGNETTES_) and needs
qpdf (http://qpdf.sourceforge.net/) to be available.

It can be useful to run R CMD check --check-subdirs=yes on the built tarball as a final
check on the contents.

Note that prior to R 2.13.0, R CMD build did some cleaning in the supplied source directory,
but this was undocumented and is no longer done.

R CMD build requires a suitable tar program that can produce a compressed tarball: almost
certainly one will have been found when R was configured on a Unix-alike (and the Windows
toolset contains one), but if there are problems, set the environment variable TAR to the path
to a suitable program or to "internal" if none is available.

33 called ‘CVS’ or ‘.svn’ or ‘.arch-ids’ or ‘.bzr’ or ‘.git’ (but not files called ‘.git’) or ‘.hg’.
34 called ‘.metadata’.
35 or the package’s description contains ‘BuildVignettes: no’ or similar.

http://qpdf.sourceforge.net/

Chapter 1: Creating R packages 28

1.3.3 Building binary packages

Binary packages are compressed copies of installed versions of packages. They contain compiled
shared libraries rather than C, C++ or Fortran source code, and the R functions are included
in their installed form. The format and filename are platform-specific; for example, a binary
package for Windows is usually supplied as a ‘.zip’ file, and for the Mac platform the default
binary package file extension is ‘.tgz’.

The recommended method of building binary packages is to use

R CMD INSTALL --build pkg where ‘pkg’ is either the name of a source tarball (in the usual
‘.tar.gz’ format) or the location of the directory of the package source to be built.

R CMD INSTALL --build operates by first installing the package and then packing the installed
binaries into the appropriate binary package file for the particular platform.

By default, R CMD INSTALL --build will attempt to install the package into the default library
tree for the local installation of R. This has two implications:

• If the installation is successful, it will overwrite any existing installation of the same package.

• The default library tree must have write permission; if not, the package will not install and
the binary will not be created.

To prevent changes to the present working installation or to provide an install location with
write access, create a suitably located directory with write access and use the -l option to build
the package in the chosen location. The usage is then

R CMD INSTALL -l location --build pkg

where ‘location’ is the chosen directory with write access. The package will be installed as a
subdirectory of ‘location’, and the package binary will be created in the current directory.

Other options for R CMD INSTALL can be found using R CMD INSTALL --help, and platform-
specific details for special cases (e.g. handling Fortran sources on Mac OS X) are discussed in
the platform-specific FAQs.

In earlier versions of R, R CMD build --binary could build a binary version of a package, but
this approach is now deprecated in favour of R CMD INSTALL --build.

Finally, at least one web-based service is available for building binary packages from (checked)
source code: WinBuilder (see http://win-builder.r-project.org/) is able to build Windows
binaries. Note that this is intended for developers on other platforms who do not have access to
Windows but wish to provide binaries for the Windows platform.

1.4 Writing package vignettes

In addition to the help files in ‘Rd’ format, R packages allow the inclusion of documents in
arbitrary other formats. The standard location for these is subdirectory ‘inst/doc’ of a source
package, the contents will be copied to subdirectory ‘doc’ when the package is installed. Pointers
from package help indices to the installed documents are automatically created. Documents in
‘inst/doc’ can be in arbitrary format, however we strongly recommend providing them in PDF
format, so users on almost all platforms can easily read them. To ensure that they can be
accessed from a browser (as an HTML index is provided), the file names should start with an
ASCII letter and be comprised entirely of ASCII letters or digits or hyphen or underscore.

A special case are PDF documents with sources in Sweave format, which we call package
vignettes. As from R 2.14.0 the preferred location for the Sweave sources is the subdirectory
‘vignettes’ of the source packages, but for compatibility with earlier versions of R, vignette
sources will be looked for in ‘inst/doc’ if ‘vignettes’ does not exist.

Vignette sources are normally given the file extension ‘.Rnw’ or ‘.Rtex’, but for historical
reasons extensions36 ‘.Snw’ and ‘.Stex’ are also recognized as vignettes. Sweave allows the

36 and to avoid problems with case-insensitive file systems, lower-case versions of all these extensions.

http://win-builder.r-project.org/

Chapter 1: Creating R packages 29

integration of LATEX documents: see the Sweave help page in R and the Sweave vignette in
package utils for details on the document format. Package vignettes are tested by R CMD check

by executing all R code chunks they contain (except those with option eval=FALSE). The R
working directory for all vignette tests in R CMD check is a copy of the vignette source directory.
Make sure all files needed to run the R code in the vignette (data sets, . . .) are accessible
by either placing them in the ‘inst/doc’ hierarchy of the source package or by using calls to
system.file(). All other files needed to re-make the vignette PDFs (such as LaTeX style files,
BiBTeX input files and files for any figures not created by running the code in the vignette)
must in the vignette source directory.

R CMD build will automatically37 create PDF versions of the vignettes in ‘inst/doc’ for
distribution with the package sources. By including the PDF version in the package sources it
is not necessary that the vignette PDFs can be re-built at install time, i.e., the package author
can use private R packages, screen snapshots and LATEX extensions which are only available on
his machine.38

By default R CMD build will run Sweave on all files in Sweave format in ‘vignettes’, or
if that does not exist, ‘inst/doc’ (but not in sub-directories). If no ‘Makefile’ is found in
directory ‘inst/doc’, then tools::texi2dvi(pdf = TRUE) is run on all processed vignettes.
Whenever a ‘Makefile’ is found, then R CMD build will try to run make after the Sweave runs.
The first target in the ‘Makefile’ should take care of both creation of PDF files and cleaning up
afterwards (including after Sweave), i.e., delete all files that shall not appear in the final package
archive. Note that if the make step runs R it needs to be careful to respect the environment
values of R_LIBS and R_HOME39. Finally, if there is a ‘Makefile’ and it has a ‘clean:’ target,
make clean is run.

All the usual caveats about including a ‘Makefile’ apply. It must be portable (no GNU

extensions) and must work correctly with a parallel make: too many authors have written things
like

BAD EXAMPLE

all: pdf clean

pdf: ABC-intro.pdf ABC-details.pdf

%.pdf: %.tex

texi2dvi --pdf $*

clean:

rm *.tex ABC-details-*.pdf

which will start removing the source files whilst pdflatex is working.

Note that it is pointless (and potentially misleading since the files might be outdated) to
include in ‘inst/doc’ R code files which would be generated from vignettes, as these will be
re-generated when the package is installed (unless the vignette does not generate any R code,
in which case it is also pointless/misleading).

Metadata lines can be placed in the source file, preferably in LaTeX comments in the pream-
ble. One such is a \VignetteIndexEntry of the form

%\VignetteIndexEntry{Using Animal}

37 unless inhibited by using ‘BuildVignettes: no’ in the ‘DESCRIPTION’ file.
38 provided the conditions of the package’s licence are met: many would see these as incompatible with an Open

Source licence.
39 As from R 2.13.0, R_HOME/bin is prepended to the PATH so that references to R or Rscript in the ‘Makefile’

do make use of the currently running version of R.

Chapter 1: Creating R packages 30

Others you may see are \VignettePackage (currently ignored), \VignetteDepends and
\VignetteKeyword (which replaced \VignetteKeywords). These are processed at package
installation time to create the saved data frame ‘Meta/vignette.rds’, but only the
\VignetteIndexEntry and \VignetteKeyword statements are currently used.

At install time an HTML index for all vignettes in the package is automatically cre-
ated from the \VignetteIndexEntry statements unless a file ‘index.html’ exists in directory
‘inst/doc’. This index is linked from the HTML help index for the package. If you do supply a
‘inst/doc/index.html’ file it should contain relative links only to files under the installed ‘doc’
directory, or perhaps (not really an index) to HTML help files or to the ‘DESCRIPTION’ file.

Sweave/Stangle allows the document to specify the split=TRUE option to create a single R
file for each code chunk: this will not work for vignettes where it is assumed that each vignette
source generates a single file with the vignette extension replaced by ‘.R’.

Do watch that PDFs are not too large – one in a CRAN package was 72MB! This is usually
caused by the inclusion of overly detailed figures, which will not render well in PDF viewers.
Sometimes it is much better to generate fairly high resolution bitmap (PNG, JPEG) figures and
include those in the PDF document.

When R CMD build builds the vignette PDFs, it copies these and the vignette sources from
directory ‘vignettes’ to ‘inst/doc’. To install any other files from the ‘vignettes’ directory,
include a file ‘vignettes/.install_extras’ which specifies these as Perl-like regular expressions
on one or more lines. (See the description of the ‘.Rinstignore’ file for full details.)

1.4.1 Encodings and vignettes

Vignette PDFs will in general include descriptive text, R input, R output and figures, LATEX
include files and bibliographic references. As any of these may contain non-ASCII characters,
the handling of encodings can become very complicated.

The vignette source file should be written in ASCII or contain a declaration of the encoding
(see below). This applies even to comments within the source file, since Sweave() processes
comments to look for options and metadata lines. When Sweave() or Stangle() is called on
the vignette source, it will be converted40 to the encoding of the current R session.

Stangle() will produce an R code file in the current locale’s encoding: for a non-ASCII
vignette what that is recorded in a comment at the top of the file.

Sweave() will produce a ‘.tex’ file in the current locale’s encoding. That needs to be declared
to LATEX via a line like

\usepackage[utf8]{inputenc}

R CMD check will warn about any non-ASCII vignettes it finds which do not have such a dec-
laration. The problem is that this cannot be known in advance, so vignette PDFs may only
be re-createable on the author’s own machine. R CMD check will report on any non-ASCII vi-
gnettes it finds which do not have such a declaration. (It is also possible to use the more recent
‘inputenx’ LATEX package.)

Sweave() will also parse and evaluate the R code in each chunk. The R output will also
be in the current locale, and should be covered by the ‘inputenc’ declaration. One thing
people often forget is that the R output may not be ASCII even for ASCII R sources, for many
possible reasons. One common one is the use of ‘fancy’ quotes: see the R help on sQuote:
note carefully that it is not portable to declare UTF-8 or CP1252 to cover such quotes, as their
encoding will depend on the locale used to run Sweave(): this can be circumvented by setting
options(useFancyQuotes="UTF-8") in the vignette.

40 provided the encoding is known: currently if it is not, it is guessed to be Latin-1.

Chapter 1: Creating R packages 31

The final issue is the encoding of figures – this applies only to PDF figures and not PNG
etc. The PDF figures will contain declarations for their encoding, but the Sweave option
pdf.encoding may need to be set appropriately: see the help for the pdf() graphics device.

As a real example of the complexities, consider the fortunes package version ‘1.4-0’. That
package did not have a declared encoding, and its vignette was in ASCII. However, the data it
displays are read from a UTF-8 CSV file and will be assumed to be in the current encoding,
so ‘fortunes.tex’ will be in UTF-8 in any locale. Had read.table been told the data were
UTF-8, ‘fortunes.tex’ would have been in the locale’s encoding.

1.5 Submitting a package to CRAN

CRAN is a network of WWW sites holding the R distributions and contributed code, especially
R packages. Users of R are encouraged to join in the collaborative project and to submit their
own packages to CRAN.

Before submitting a package mypkg, read the CRAN policies linked from http://CRAN.

R-project.org/web/packages/ and note that by submitting a package you are confirming that
your package complies with them. If this is a package new to CRAN, confirm that you have
read and agree to those policies in your submission email.

Next, do run the following steps to test it is complete and will install properly. (Run from
the directory containing ‘mypkg’ as a subdirectory.)

1. Run R CMD build to make the release ‘.tar.gz’ file.

2. Run R CMD check --as-cran on the ‘.tar.gz’ file to check that the package will install and
will run its examples, and that the documentation is complete and can be processed. If
the package contains code that needs to be compiled, try to enable a reasonable amount
of diagnostic messaging (“warnings”) when compiling, such as e.g. ‘-Wall -pedantic’ for
tools from GCC, the GNU Compiler Collection. If R was not configured accordingly, one can
achieve this via personal ‘Makevars’ files. See Section “Customizing package compilation”
in R Installation and Administration,

Note that it is particularly important to use ‘-Wall -pedantic’ with C++ code: the GNU

C++ compiler has many extensions which are not supported by other compilers, and this
will report some of them (such as the misuse of variable-length arrays). If possible, check
C++ code on a standards-conformant compiler.

Although there is now a 2011 version of the C++ standard, it is not yet implemented (nor
is it likely to be widely available for some years) and portable C++ code needs to follow the
1998 standard (and not use features from C99).

Similarly, the 2011 C standard is unlikely to be widely implemented for several years.

3. Study the output from running your examples, in file ‘mypkg.Rcheck/mypkg-Ex.Rout’.
Often warnings there indicate actual errors, and warnings about your mistakes (which the
R developers are warning you that they are working around for you) will just annoy or
confuse your users.

If your package has tests or vignettes, study their output too.

4. Look for any problems with help file conversions. For example, you should

• Read through the PDF manual that was produced by R CMD check at
‘mypkg.Rcheck/mypkg-manual.pdf’, or produce another copy by R CMD Rd2pdf

mypkg.

• Look at the rendering of your help pages in text from within R.

Many aspects of help rendering changed in R 2.10.0, and in particular the interpretation
of comment lines (which are rendered as blank lines, so do not put comment lines in the
middle of a paragraph of text).

http://CRAN.R-project.org/package=fortunes
http://CRAN.R-project.org/web/packages/
http://CRAN.R-project.org/web/packages/

Chapter 1: Creating R packages 32

5. Ensure that the package sources are not unnecessarily large. In particular, R CMD check will
report41 on installed packages of more than 5Mb, detailing directories of more than 1Mb.
It warns about inefficient compression of data: R CMD build --resave-data will compact
data as best it can.

Watch out for unnecessary files in ‘inst/doc’: R CMD check will note files of types that
probably should be installed, but it cannot distinguish PDF figures from PDF documents.
If files need to be in ‘inst/doc’ but not installed, use a ‘.Rinstignore’ file.

The CRAN policy is that ‘doc’ directories should not exceed 5Mb, and where ‘data’ direc-
tories need to be more than 5–10Mb, consideration should be given to a separate package
containing just the data. (Similarly for external data directories, large ‘jar’ files and other
libraries that need to be installed.)

See below for ways to reduce the size of PDF files such as vignettes.

6. Ensure that checking the package takes no more time than is needed (the CRAN check farm
is a resource shared between several thousand packages).

See below for ways to find out where your package checks are taking significant time.

Please ensure that you can run through the complete procedure with only warnings that you
understand and have reasons not to eliminate. In principle, packages must pass R CMD check

without warnings or significant notes to be admitted to the main CRAN package area. If there are
warnings or notes you cannot eliminate (for example because you believe them to be spurious)
send an explanatory note as part of your covering email.

When all the testing is done, upload the ‘.tar.gz’ file, using ‘anonymous’ as log-in name and
your e-mail address as password, to ftp://CRAN.R-project.org/incoming/ (note: use ‘ftp’42

and not ‘sftp’ to connect to this server, and passive ‘ftp’ is more often successful) and send a
message to CRAN@R-project.org about it (with your package name and version in the subject
line of the form “CRAN submission ‘package’ ‘version’”, and please do not submit a package
by email). For a new submission, please note in the message that you have read and agreed to
the CRAN policies.

The CRAN maintainers will run these tests before putting a submission online. (They will
use the latest development version of R, so if at all possible so should you.)

Please note that submissions without an accompanying email to CRAN@R-project.org will
not be processed, and that emails should not be sent personally to members of the CRAN team.

Note also that for running LATEX, the Debian GNU/Linux CRAN check systems use the
Debian TeXLive43 distribution (http://packages.debian.org/en/sid/texlive); the Fedora
and Solaris check systems use current TexLive; the Windows CRAN builder uses a reasonably
recent version of MikTeX (including all packages available directly for MikTeX); the Mac OS
X builders use a current full version of MacTeX, which includes all of the current TeXLive.
Developers wanting to have their vignettes use TEX packages or style files not (yet) included
in these distributions should add44 the style files to the ‘vignettes’ (or for the legacy layout,
‘inst/doc’) subdirectory of their package.

41 provided a POSIX-compliant du program is found on the system: it is possible that some other du programs
will incorrectly report double the actual size. This can be disabled by setting _R_CHECK_PKG_SIZE_ to a false
value.

42 for Windows users the simplest way may be to open that URL in Internet Explorer and (depending on the
version) follow the instructions to view it as a folder, then copy the submission to the folder.

43 currently the long obsolete TeXLive 2009.
44 if their license allows: this often requires also including the corresponding ‘.dtx’ file.

ftp://CRAN.R-project.org/incoming/
mailto:CRAN@R-project.org
mailto:CRAN@R-project.org
http://packages.debian.org/en/sid/texlive

Chapter 1: Creating R packages 33

1.5.1 PDF size

There are a several tools available to reduce the size of PDF files, including Adobe Acrobat (not
Reader), Apple’s Preview45, qpdf (http://qpdf.sourceforge.net/), and Ghostscript (which
converts PDF to PDF by

ps2pdf options -dAutoRotatePages=/None in.pdf out.pdf

and suitable options might be

-dPDFSETTINGS=/ebook

-dPDFSETTINGS=/screen

; see http://www.ghostscript.com/doc/9.04/Ps2pdf.htm for more such and consider all
the options for image downsampling) as well as numerous commercial and shareware Windows
programs. Note that these do not all try the same size-reduction strategies, and Acrobat and
ps2pdf can sometimes do much better at reducing the size of embedded bitmap images, and
ps2pdf does not use PDF object compression (see below).

Since qpdf is fairly readily available (e.g. it has binaries for Windows and packages in De-
bian/Ubuntu, and is installed as part of the CRAN Mac OS X distribution of R), there is an
option ‘--compact-vignettes’ to R CMD build to run qpdf over PDF files under ‘inst/doc’
and replace them if at least 10Kb and 10% is saved. The full path to the qpdf command can
be supplied as environment variable R_QPDF (and is on the CRAN binary of R for Mac OS X).
This option can take values ‘qpdf’ (the default) as well as ‘gs’ or ‘both’ to try harder to reduce
the size. These should definitely be tried before submission to CRAN for packages with more
than 250Kb of PDF files: as ‘gs’ may make lossy changes such as downsampling bitmap images,
do examine the results and if necessary use ps2pdf or tools::compactPDF directly.

Most of the large PDFs we have encountered have been large because of the inclusion of
figures, for example complex figures from R (where ‘.png’ versions may be more appropriate,
and PDF compression was not used by pdf() prior to R 2.14.0, so it may help to re-generate
them) and screendumps. However, some have been unnecessarily large due to pdftex settings.
The modern default is to use both PDF compression and PDF object compression (which needs
PDF version 1.5 from 2003): this is the default in most TEX distributions but not MiKTeX. It
can be overridden by code in the preamble of an Sweave or LATEX file: see how this is done for
the R reference manual at https://svn.r-project.org/R/trunk/doc/manual/refman.top.

1.5.2 Package timing

There are several ways to find out where time is being spent in the check process. Start by setting
the environment variable _R_CHECK_TIMINGS_ to ‘0’. This will report the total CPU times (not
Windows) and elapsed times for installation and running examples, tests and vignettes, under
each sub-architecture if appropriate. For tests and vignettes, it reports the time for each as well
as the total.

Setting _R_CHECK_TIMINGS_ to a non-zero value sets a threshold (in seconds elapsed time)
for reporting timings.

If you need to look in more detail at the timings for examples, use option ‘--timings’ to R

CMD check. This generates a file called ‘mypkg.Rcheck/mypkg-Ex.timings’ containing timings
for each help files (as given by system.time()). It is a tab-delimited file which can be read into
R for further analysis.

Timings for the tests and vignette runs are given at the bottom of the corresponding log
file: note that log files for successful vignette runs are only retained if _R_CHECK_ALWAYS_LOG_
VIGNETTE_OUTPUT_ is set to a true value.

45 Select ‘Save as’, and select ‘Reduce file size’ from the ‘Quartz filter’ menu’: this can be accessed in other ways,
for example by Automator.

http://qpdf.sourceforge.net/
http://www.ghostscript.com/doc/9.04/Ps2pdf.htm
https://svn.r-project.org/R/trunk/doc/manual/refman.top

Chapter 1: Creating R packages 34

1.5.3 Windows external software

Note that CRAN does not accept submissions of precompiled binaries due to security concerns,
and does not allow binary executables in source packages. Maintainers who need additional
software for the Windows binaries of their packages on CRAN have three options

1. To arrange for installation of the package to download the additional software from a URL,
as e.g. package Cairo does.

2. To negotiate with Uwe Ligges to host the additional components on WinBuilder, and write
a ‘configure.win’ file to install them. There are used to be many examples, e.g. package
rgdal (however nowadays CRAN prefers to use a uniform cross-compilation approach for
software such as GDAL).

3. To negotiate with Brian Ripley to host the package on CRAN extras, as was done for package
BRugs versions 0.5-x.

Be aware that in all cases license requirements will need to be met so you may need to supply
the sources for the additional components (and will if your package has a GPL-like license).

Also be aware that there are both 32- and 64-bit builds of R for Windows with a combined
distribution of binary packages, so the CRAN team will be unwilling to support a package that
works under just one of the architectures.

1.6 Package namespaces

R has a namespace management system for code in packages. This system allows the package
writer to specify which variables in the package should be exported to make them available to
package users, and which variables should be imported from other packages.

The mechanism for specifying a namespace for a package is to place a ‘NAMESPACE’ file in the
top level package directory. This file contains namespace directives describing the imports and
exports of the namespace. Additional directives register any shared objects to be loaded and
any S3-style methods that are provided. Note that although the file looks like R code (and often
has R-style comments) it is not processed as R code. Only very simple conditional processing
of if statements is implemented.

Packages are loaded and attached to the search path by calling library or require. Only the
exported variables are placed in the attached frame. Loading a package that imports variables
from other packages will cause these other packages to be loaded as well (unless they have
already been loaded), but they will not be placed on the search path by these implicit loads.

Namespaces are sealed once they are loaded. Sealing means that imports and exports cannot
be changed and that internal variable bindings cannot be changed. Sealing allows a simpler
implementation strategy for the namespace mechanism. Sealing also allows code analysis and
compilation tools to accurately identify the definition corresponding to a global variable reference
in a function body.

The namespace controls the search strategy for variables used by functions in the package.
If not found locally, R searches the package namespace first, then the imports, then the base
namespace and then the normal search path.

If a ‘NAMESPACE’ file is not present, then one is generated automatically when the package
is built or installed, all objects are exported, and all packages listed in the Imports or Depends
fields in the ‘DESCRIPTION’ file are imported. This is only intended as a temporary measure
whilst packages are converted to have a ‘NAMESPACE’ file and will be removed in due course. A
hand-crafted ‘NAMESPACE’ should be added to any existing package which does not have one.

Prior to version 2.14.0, namespaces were optional in packages. In such packages searches for
non-local variables started with the search path, so a package’s own functions could be masked
by those of a package appearing earlier.

http://CRAN.R-project.org/package=Cairo
http://CRAN.R-project.org/package=rgdal

Chapter 1: Creating R packages 35

As from R 2.14.0 all packages have a namespace, and a default ‘NAMESPACE’ file is generated
on installation if there is not one in the sources. However, not all versions of R will read the
‘NAMESPACE’ file if the package contains not R code.

1.6.1 Specifying imports and exports

Exports are specified using the export directive in the ‘NAMESPACE’ file. A directive of the form

export(f, g)

specifies that the variables f and g are to be exported. (Note that variable names may be
quoted, and reserved words and non-standard names such as [<-.fractions must be.)

For packages with many variables to export it may be more convenient to specify the names
to export with a regular expression using exportPattern. The directive

exportPattern("^[^\\.]")

exports all variables that do not start with a period. However, such broad patterns are not
recommended for production code: it is better to list all exports or use narrowly-defined groups.
(As from R 2.13.0 this pattern applies to S4 classes, but did not in earlier versions of R.) Beware
of patterns which include names starting with a period: some of these are internal-only variables
and should never be exported, e.g. ‘.__S3MethodsTable__.’ . (Such objects are excluded from
pattern matches in recent versions of R, so such patterns are safer for packages only to be used
with R 2.14.0 or later.)

Packages implicitly import the base namespace. Variables exported from other packages
with namespaces need to be imported explicitly using the directives import and importFrom.
The import directive imports all exported variables from the specified package(s). Thus the
directives

import(foo, bar)

specifies that all exported variables in the packages foo and bar are to be imported. If only
some of the exported variables from a package are needed, then they can be imported using
importFrom. The directive

importFrom(foo, f, g)

specifies that the exported variables f and g of the package foo are to be imported.

It is possible to export variables from a namespace that it has imported from other names-
paces.

If a package only needs a few objects from another package it can use a fully qualified variable
reference in the code instead of a formal import. A fully qualified reference to the function f

in package foo is of the form foo::f. This is slightly less efficient than a formal import and
also loses the advantage of recording all dependencies in the ‘NAMESPACE’ file, so this approach
is usually not recommended. Evaluating foo::f will cause package foo to be loaded, but not
attached, if it was not loaded already—this can be an advantage in delaying the loading of a
rarely used package.

Using foo:::f instead of foo::f allows access to unexported objects. This is generally not
recommended, as the semantics of unexported objects may be changed by the package author
in routine maintenance.

1.6.2 Registering S3 methods

The standard method for S3-style UseMethod dispatching might fail to locate methods defined
in a package that is imported but not attached to the search path. To ensure that these methods
are available the packages defining the methods should ensure that the generics are imported
and register the methods using S3method directives. If a package defines a function print.foo

intended to be used as a print method for class foo, then the directive

Chapter 1: Creating R packages 36

S3method(print, foo)

ensures that the method is registered and available for UseMethod dispatch, and the function
print.foo does not need to be exported. Since the generic print is defined in base it does not
need to be imported explicitly.

(Note that function and class names may be quoted, and reserved words and non-standard
names such as [<- and function must be.)

1.6.3 Load hooks

There are a number of hooks called as packages are loaded, attached, detached, and unloaded.
See help(".onLoad") for more details.

Since loading and attaching are distinct operations, separate hooks are provided for each.
These hook functions are called .onLoad and .onAttach. They both take arguments46 libname
and pkgname; they should be defined in the namespace but not exported.

Packages use the .Last.lib function (provided it is exported from the namespace) when
detach is called on the package. It is called with a single argument, the full path to the installed
package. There is also a hook .onUnload which is called when the namespace is unloaded (via
a call to unloadNamespace, perhaps called by detach(unload=TRUE)) with argument the full
path to the installed package’s directory. .onUnload should be defined in the name space and
not exported, but .Last.lib does need to be exported.

Packages are not likely to need .onAttach (except perhaps for a start-up banner); code to
set options and load shared objects should be placed in a .onLoad function, or use made of the
useDynLib directive described next.

User-level hooks are also available: see the help on function setHook.

1.6.4 useDynLib

A ‘NAMESPACE’ file can contain one or more useDynLib directives which allows shared objects
that need to be loaded.47 The directive

useDynLib(foo)

registers the shared object foo48 for loading with library.dynam. Loading of registered ob-
ject(s) occurs after the package code has been loaded and before running the load hook func-
tion. Packages that would only need a load hook function to load a shared object can use the
useDynLib directive instead.

The useDynLib directive also accepts the names of the native routines that are to be used in
R via the .C, .Call, .Fortran and .External interface functions. These are given as additional
arguments to the directive, for example,

useDynLib(foo, myRoutine, myOtherRoutine)

By specifying these names in the useDynLib directive, the native symbols are resolved when
the package is loaded and R variables identifying these symbols are added to the package’s
namespace with these names. These can be used in the .C, .Call, .Fortran and .External

calls in place of the name of the routine and the PACKAGE argument. For instance, we can call
the routine myRoutine from R with the code

.Call(myRoutine, x, y)

rather than

46 they will be called with two unnamed arguments, in that order.
47 NB: this will only be read in all versions of R if the package contains R code in a ‘R’ directory.
48 Note that this is the basename of the shared object, and the appropriate extension (‘.so’ or ‘.dll’) will be

added.

Chapter 1: Creating R packages 37

.Call("myRoutine", x, y, PACKAGE = "foo")

There are at least two benefits to this approach. Firstly, the symbol lookup is done just
once for each symbol rather than each time the routine is invoked. Secondly, this removes any
ambiguity in resolving symbols that might be present in several compiled DLLs.

In some circumstances, there will already be an R variable in the package with the same name
as a native symbol. For example, we may have an R function in the package named myRoutine.
In this case, it is necessary to map the native symbol to a different R variable name. This can
be done in the useDynLib directive by using named arguments. For instance, to map the native
symbol name myRoutine to the R variable myRoutine_sym, we would use

useDynLib(foo, myRoutine_sym = myRoutine, myOtherRoutine)

We could then call that routine from R using the command

.Call(myRoutine_sym, x, y)

Symbols without explicit names are assigned to the R variable with that name.

In some cases, it may be preferable not to create R variables in the package’s namespace
that identify the native routines. It may be too costly to compute these for many routines
when the package is loaded if many of these routines are not likely to be used. In this case,
one can still perform the symbol resolution correctly using the DLL, but do this each time the
routine is called. Given a reference to the DLL as an R variable, say dll, we can call the routine
myRoutine using the expression

.Call(dll$myRoutine, x, y)

The $ operator resolves the routine with the given name in the DLL using a call to
getNativeSymbol. This is the same computation as above where we resolve the symbol when the
package is loaded. The only difference is that this is done each time in the case of dll$myRoutine.

In order to use this dynamic approach (e.g., dll$myRoutine), one needs the reference to the
DLL as an R variable in the package. The DLL can be assigned to a variable by using the
variable = dllName format used above for mapping symbols to R variables. For example, if
we wanted to assign the DLL reference for the DLL foo in the example above to the variable
myDLL, we would use the following directive in the ‘NAMESPACE’ file:

myDLL = useDynLib(foo, myRoutine_sym = myRoutine, myOtherRoutine)

Then, the R variable myDLL is in the package’s namespace and available for calls such as
myDLL$dynRoutine to access routines that are not explicitly resolved at load time.

If the package has registration information (see Section 5.4 [Registering native routines],
page 85), then we can use that directly rather than specifying the list of symbols again in
the useDynLib directive in the ‘NAMESPACE’ file. Each routine in the registration information
is specified by giving a name by which the routine is to be specified along with the address
of the routine and any information about the number and type of the parameters. Using the
.registration argument of useDynLib, we can instruct the namespace mechanism to create R
variables for these symbols. For example, suppose we have the following registration information
for a DLL named myDLL:

R_CMethodDef cMethods[] = {

{"foo", (DL_FUNC) &foo, 4, {REALSXP, INTSXP, STRSXP, LGLSXP}},

{"bar_sym", (DL_FUNC) &bar, 0},

{NULL, NULL, 0}

};

R_CallMethodDef callMethods[] = {

{"R_call_sym", (DL_FUNC) &R_call, 4},

{"R_version_sym", (DL_FUNC) &R_version, 0},

{NULL, NULL, 0}

Chapter 1: Creating R packages 38

};

Then, the directive in the ‘NAMESPACE’ file

useDynLib(myDLL, .registration = TRUE)

causes the DLL to be loaded and also for the R variables foo, bar_sym, R_call_sym and R_

version_sym to be defined in the package’s namespace.

Note that the names for the R variables are taken from the entry in the registration informa-
tion and do not need to be the same as the name of the native routine. This allows the creator
of the registration information to map the native symbols to non-conflicting variable names in
R, e.g. R_version to R_version_sym for use in an R function such as

R_version <- function()

{

.Call(R_version_sym)

}

Using argument .fixes allows an automatic prefix to be added to the registered symbols,
which can be useful when working with an existing package. For example, package KernSmooth
has

useDynLib(KernSmooth, .registration = TRUE, .fixes = "F_")

which makes the R variables corresponding to the FORTRAN symbols F_bkde and so on, and
so avoid clashes with R code in the name space.

1.6.5 An example

As an example consider two packages named foo and bar. The R code for package foo in file
‘foo.R’ is� �

x <- 1

f <- function(y) c(x,y)

foo <- function(x) .Call("foo", x, PACKAGE="foo")

print.foo <- function(x, ...) cat("<a foo>\n")
 	
Some C code defines a C function compiled into DLL foo (with an appropriate extension). The
‘NAMESPACE’ file for this package is� �

useDynLib(foo)

export(f, foo)

S3method(print, foo)
 	
The second package bar has code file ‘bar.R’� �

c <- function(...) sum(...)

g <- function(y) f(c(y, 7))

h <- function(y) y+9
 	
and ‘NAMESPACE’ file� �

import(foo)

export(g, h)
 	
Calling library(bar) loads bar and attaches its exports to the search path. Package foo is also
loaded but not attached to the search path. A call to g produces

http://CRAN.R-project.org/package=KernSmooth

Chapter 1: Creating R packages 39

> g(6)

[1] 1 13

This is consistent with the definitions of c in the two settings: in bar the function c is defined
to be equivalent to sum, but in foo the variable c refers to the standard function c in base.

1.6.6 Summary – converting an existing package

To summarize, converting a pre-2.14.0 package to use a namespace involves several simple steps:

• Identify the public definitions and place them in export directives.

• Identify S3-style method definitions and write corresponding S3method declarations.

• Identify dependencies and replace any require calls by import directives (and make ap-
propriate changes in the Depends and Imports fields of the ‘DESCRIPTION’ file).

• Replace .First.lib functions with .onLoad/.onAttach functions or use a useDynLib di-
rective in the ‘NAMESPACE’ file.

The first two of these are done automatically, but a package author can usually improve on
R’s guesswork.

R CMD build will add a basic ‘NAMESPACE’ file to a package. If this is edited, do remove the
first line (as the comment in the file says).

1.6.7 Namespaces with S4 classes and methods

Some additional steps are needed for packages which make use of formal (S4-style) classes and
methods (unless these are purely used internally). The package should have Depends: methods

in its ‘DESCRIPTION’ file and any classes and methods which are to be exported need to be
declared in the ‘NAMESPACE’ file. For example, the stats4 package has

export(mle)

importFrom("graphics", plot)

importFrom("stats", optim, qchisq)

For these, we define methods or (AIC, BIC, nobs) an implicit generic:

importFrom("stats", AIC, BIC, coef, confint, logLik, nobs, profile,

update, vcov)

exportClasses(mle, profile.mle, summary.mle)

All methods for imported generics:

exportMethods(coef, confint, logLik, plot, profile, summary, show, update, vcov)

implicit generics which do not have any methods here

export(AIC, BIC, nobs)

All S4 classes to be used outside the package need to be listed in an exportClasses direc-
tive. Alternatively, they can be specified using exportClassPattern.49 in the same style as
for exportPattern. To export methods for generics from other packages an exportMethods

directive can be used.

Note that exporting methods on a generic in the namespace will also export the generic, and
exporting a generic in the namespace will also export its methods. If the generic function is not
local to this package, either because it was imported as a generic function or because the non-
generic version has been made generic solely to add S4 methods to it (as for functions such as
plot in the example above), it can be declared via either or both of export or exportMethods,
but the latter is clearer (and is used in the stats4 example above). In particular, for primitive
functions there is no generic function, so export would export the primitive, which makes no
sense. On the other hand, if the generic is local to this package, it is more natural to export the

49 As from R 2.13.0 this defaults to the same pattern as exportPattern: use something like
exportClassPattern("^$") to override this.

Chapter 1: Creating R packages 40

function itself using export(), and this must be done if an implicit generic is created without
setting any methods for it (as is the case for AIC in stats4).

A non-local generic function is only exported to ensure that calls to the function will dispatch
the methods from this package (and that is not done or required when the methods are for
primitive functions). For this reason, you do not need to document such implicitly created
generic functions, and undoc in package tools will not report them.

If a package uses S4 classes and methods exported from another package, but does not import
the entire namespace of the other package, it needs to import the classes and methods explicitly,
with directives

importClassesFrom(package, ...)

importMethodsFrom(package, ...)

listing the classes and functions with methods respectively. Suppose we had two small packages
A and B with B using A. Then they could have NAMESPACE files� �

export(f1, ng1)

exportMethods("[")

exportClasses(c1)
 	
and � �

importFrom(A, ng1)

importClassesFrom(A, c1)

importMethodsFrom(A, f1)

export(f4, f5)

exportMethods(f6, "[")

exportClasses(c1, c2)
 	
respectively.

Note that importMethodsFrom will also import any generics defined in the namespace on
those methods.

It is important if you export S4 methods that the corresponding generics are available: the
requirements on this are stricter as from R 2.15.0. You may for example need to import plot
from graphics to make visible a function to be converted into its implicit generic. But it is
better practice to make use of the generics exported by stats4 as this enables multiple packages
to unambiguously set methods on those generics.

1.7 Writing portable packages

Portable packages should have simple file names: use only alphanumeric ASCII characters and
., and avoid those names not allowed under Windows which are mentioned above.

R CMD check provides a basic set of checks, but often further problems emerge when people
try to install and use packages submitted to CRAN – many of these involve compiled code. Here
are some further checks that you can do to make your package more portable.

• If your package has a ‘configure’ script, provide a ‘configure.win’ script to be used on
Windows. The CRAN binary packages for Windows are built automatically, and if your
package does not build without intervention it is unlikely to be easily available to a high
proportion of R users.

• If your package has a ‘Makevars’ or ‘Makefile’ file, make sure that you use only portable
make features. Such files should be LF-terminated (including the final line of the file) and
not make use of GNU extensions. Commonly misused GNU extensions are conditional

Chapter 1: Creating R packages 41

inclusions (ifeq and the like), ${shell ...} and ${wildcard ...}, and the use of += and
:=. Also, the use of $< other than in implicit rules is a GNU extension. Unfortunately
makefiles which use GNU extensions often run on other platforms but do not have the
intended results.

The use of ${shell ...} can be avoided by using backticks, e.g.

PKG_CPPFLAGS = ‘gsl-config --cflags‘

which works in all versions of make known50 to be used with R.

If you really must assume GNU make, declare it in the ‘DESCRIPTON’ file by

SystemRequirements: GNU make

Since the only viable make for Windows is GNU make, it is permissible to use GNU exten-
sions in files ‘Makevars.win’ or ‘Makefile.win’.

• Make use of the abilities of your compilers to check the standards-conformance of your code.
For example, gcc can be used with options ‘-Wall -pedantic’ to alert you to potential
problems. This is particularly important for C++, where g++ -Wall -pedantic will alert
you to the use of GNU extensions which fail to compile on most other C++ compilers. R
assumes a C99 compiler as from version 2.12.0, but if you want your package to be portable
to earlier versions you should write in C90. (In practice C99 has been available on most
platforms since ca 2007 but old versions of gcc were still in use for R 2.11.x.)

If you use FORTRAN 77, ftnchek (http://www.dsm.fordham.edu/~ftnchek/) provides
thorough testing of conformance to the standard.

• Do be very careful with passing arguments between R, C and FORTRAN code. In particular,
long in C will be 32-bit on most R platforms (including those mostly used by the CRAN

maintainers), but 64-bit on many modern Unix and Linux platforms. It is rather unlikely
that the use of long in C code has been thought through: if you need a longer type than
int you should use a configure test for a C99 type such as int_fast64_t (and failing that,
long long51) and typedef your own type to be long or long long, or use another suitable
type (such as size_t).

It is not safe to assume that long and pointer types are the same size, and they are not on
64-bit Windows. If you need to convert pointers to and from integers use the C99 integer
types intptr_t and uintptr_t (which are defined in the header <stdint.h> and are not
required to be implemented by the C99 standard).

Note that integer in FORTRAN corresponds to int in C on all R platforms.

• Under no circumstances should your compiled code ever call abort or exit: these terminate
the user’s R process, quite possibly including all his unsaved work. One usage that could
call abort is the assert macro in C or C++ functions, which should never be active in
production code. The normal way to ensure that is to define the macro NDEBUG, and as
from R 2.15.0 R CMD INSTALL does so as part of the compilation flags. If you wish to use
assert during development. you can include -UNDEBUG in PKG_CPPFLAGS. Note that your
own ‘src/Makefile’ or makefiles in sub-directories may also need to define NDEBUG.

This applies not only to your own code but to any external software you compile in or link
to.

• Compiled code should not write to ‘stdout’ or ‘stderr’ and C++ and Fortran I/O should
not be used. As with the previous item such calls may come from external software and
may never be called.

50 GNU make, BSD make as in FreeBSD and bsdmake on Darwin, AT&T make as implemented on Solaris.
51 but note that long long is not a standard C++ type, and C++ compilers set up for strict checking will reject

it.

http://www.dsm.fordham.edu/~ftnchek/

Chapter 1: Creating R packages 42

• Errors in memory allocation and reading/writing outside arrays are very common causes of
crashes (e.g., segfaults) on some machines. See Section 4.3.2 [Using valgrind], page 76 for a
tool which can be used to look for this.

• Many platforms will allow unsatisfied entry points in compiled code, but will crash the
application (here R) if they are ever used. Some (notably Windows) will not. Looking at
the output of

nm -pg mypkg.so # or other extension such as ‘.sl’

and checking if any of the symbols marked U is unexpected is a good way to avoid this.

• Conflicts between symbols in DLLs are handled in very platform-specific ways. Good ways
to avoid trouble are to make as many symbols as possible static (check with nm -pg), and
to use unusual names, as well as ensuring you have used the PACKAGE argument.

• It is not portable to call compiled code in R or other packages via .Internal, .C, .Fortran,
.Call or .External, since such interfaces are subject to change without notice and will
probably result in your code terminating the R process.

• Do not use (hard or symbolic) file links in your package sources. R CMD build packages the
tarball with the ‘-h’ tar flag which is documented to dereference links so this is not usually
a problem, but versions 1.24 and later of GNU tar dereference some links to hard links
which may not be handled correctly by R CMD INSTALL.

• If you do not yourself have a Windows system, submit your source package to WinBuilder
(http://win-builder.r-project.org/) before distribution (including submission to
CRAN).

1.7.1 Encoding issues

Care is needed if your package contains non-ASCII text, and in particular if it is intended to be
used in more than one locale. It is possible to mark the encoding used in the ‘DESCRIPTION’ file
and in ‘.Rd’ files, as discussed elsewhere in this manual.

First, consider carefully if you really need non-ASCII text. Many users of R will only be able
to view correctly text in their native language group (e.g. Western European, Eastern European,
Simplified Chinese) and ASCII. Other characters may not be rendered at all, rendered incorrectly,
or cause your R code to give an error. For documentation, marking the encoding and including
ASCII transliterations is likely to do a reasonable job. The set of characters which is commonly
supported is wider than it used to be around 2000, but non-Latin alphabets (Greek, Russian,
Georgian, . . .) are still often problematic and those with double-width characters (Chinese,
Japanese, Korean) often need specialist fonts to render correctly.

Several CRAN packages have messages in their R code in French (and a few in German). A
better way to tackle this is to use the internationalization facilities discussed elsewhere in this
manual.

Function showNonASCIIfile in package tools can help in finding non-ASCII bytes in files.

From R 2.10.0 there is a portable way to have arbitrary text in character strings (only) in your
R code, which is to supply them in Unicode as \uxxxx escapes. If there are any characters not in
the current encoding the parser will encode the character string as UTF-8 and mark it as such.
This applies also to character strings in datasets: they can be prepared using \uxxxx escapes or
encoded in UTF-8 in a UTF-8 locale, or even converted to UTF-8 via ‘iconv()’. If you do this,
make sure you have ‘R (>= 2.10)’ (or later) in the ‘Depends:’ field of the ‘DESCRIPTION’ file.

R sessions running in non-UTF-8 locales will if possible re-encode such strings for display
(and this is done by RGui on Windows, for example). Suitable fonts will need to be selected
or made available52 both for the console/terminal and graphics devices such as ‘X11()’ and

52 Typically on a Unix-alike this is done by telling fontconfig where to find suitable fonts to select glyphs from.

http://win-builder.r-project.org/

Chapter 1: Creating R packages 43

‘windows()’. Using ‘postscript’ or ‘pdf’ will choose a default 8-bit encoding depending on the
language of the UTF-8 locale, and your users would need to be told how to select the ‘encoding’
argument.

If you want to run R CMD check on a Unix-alike over a package that sets a package encoding
in its ‘DESCRIPTION’ file you may need to specify a suitable locale via environment variable
R_ENCODING_LOCALES. The default is equivalent to the value

"latin1=en_US:latin2=pl_PL:UTF-8=en_US.UTF-8:latin9=fr_FR.iso885915@euro"

(which is appropriate for a system based on glibc) except that if the current locale is UTF-8
then the package code is translated to UTF-8 for syntax checking.

1.7.2 Binary distribution

If you want to distribute a binary version of a package on Windows or Mac OS X, there are
further checks you need to do to check it is portable: it is all too easy to depend on external
software on your own machine that other users will not have.

For Windows, check what other DLLs your package’s DLL depends on (‘imports’ from in the
DLL tools’ parlance). A convenient GUI-based tool to do so is ‘Dependency Walker’ (http://
www.dependencywalker.com/) for both 32-bit and 64-bit DLLs – note that this will report
as missing links to R’s own DLLs such as ‘R.dll’ and ‘Rblas.dll’. For 32-bit DLLs only,
the command-line tool pedump.exe -i (in ‘Rtools*.exe’) can be used, and for the brave, the
objdump tool in the appropriate toolchain will also reveal what DLLs are imported from. If
you use a toolchain other than one provided by the R developers or use your own makefiles,
watch out in particular for dependencies on the toolchain’s runtime DLLs such as ‘libgfortran’,
‘libstdc++’ and ‘libgcc_s’.

For Mac OS X, using R CMD otool -L on the package’s shared objects under ‘libs’ will
show what they depend on: watch for any dependencies in ‘/usr/local/lib’, notably
‘libgfortran.2.dylib’.

1.8 Diagnostic messages

Now that diagnostic messages can be made available for translation, it is important to write
them in a consistent style. Using the tools described in the next section to extract all the
messages can give a useful overview of your consistency (or lack of it).

Some guidelines follow.

• Messages are sentence fragments, and not viewed in isolation. So it is conventional not to
capitalize the first word and not to end with a period (or other punctuation).

• Try not to split up messages into small pieces. In C error messages use a single format
string containing all English words in the messages.

In R error messages do not construct a message with paste (such messages will not be
translated) but via multiple arguments to stop or warning, or via gettextf.

• Do not use colloquialisms such as “can’t” and “don’t”.

• If possible, make quotation marks part of your message as different languages have different
conventions. In R messages this means not using sQuote or dQuote except where the
argument is a variable.

Conventionally single quotation marks are used for quotations such as

’ord’ must be a positive integer, at most the number of knots

and double quotation marks when referring to an R character string such as

’format’ must be "normal" or "short" - using "normal"

Since ASCII does not contain directional quotation marks, it is best to use ‘’’ and let the
translator (including automatic translation) use directional quotations where available. The

http://www.dependencywalker.com/
http://www.dependencywalker.com/

Chapter 1: Creating R packages 44

range of quotation styles is immense: unfortunately we cannot reproduce them in a portable
texinfo document. But as a taster, some languages use ‘up’ and ‘down’ (comma) quotes
rather than left or right quotes, and some use guillemets (and some use what Adobe calls
‘guillemotleft’ to start and others use it to end).

• Occasionally messages need to be singular or plural (and in other languages there may be
no such concept or several plural forms – Slovenian has four). So avoid constructions such
as was once used in library

if((length(nopkgs) > 0) && !missing(lib.loc)) {

if(length(nopkgs) > 1)

warning("libraries ",

paste(sQuote(nopkgs), collapse = ", "),

" contain no packages")

else

warning("library ", paste(sQuote(nopkgs)),

" contains no package")

}

and was replaced by

if((length(nopkgs) > 0) && !missing(lib.loc)) {

pkglist <- paste(sQuote(nopkgs), collapse = ", ")

msg <- sprintf(ngettext(length(nopkgs),

"library %s contains no packages",

"libraries %s contain no packages"),

pkglist)

warning(msg, domain=NA)

}

Note that it is much better to have complete clauses as here, since in another language one
might need to say ‘There is no package in library %s’ or ‘There are no packages in libraries
%s’.

1.9 Internationalization

There are mechanisms to translate the R- and C-level error and warning messages. There are
only available if R is compiled with NLS support (which is requested by configure option
‘--enable-nls’, the default).

The procedures make use of msgfmt and xgettext which are part of GNU gettext and this
will need to be installed: Windows users can find pre-compiled binaries at http://www.stats.
ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip and packaged with the poEdit package
(http://poedit.sourceforge.net/download.php#win32).

1.9.1 C-level messages

The process of enabling translations is

• In a header file that will be included in all the C files containing messages that should be
translated, declare

#include <R.h> /* to include Rconfig.h */

#ifdef ENABLE_NLS

#include <libintl.h>

#define _(String) dgettext ("pkg", String)

/* replace pkg as appropriate */

#else

http://www.stats.ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip
http://www.stats.ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip
http://poedit.sourceforge.net/download.php#win32

Chapter 1: Creating R packages 45

#define _(String) (String)

#endif

• For each message that should be translated, wrap it in _(...), for example

error(_("’ord’ must be a positive integer"));

If you want to use different messages for singular and plural forms, you need to add

#ifndef ENABLE_NLS

#define dngettext(pkg, String, StringP, N) (N > 1 ? StringP : String)

#endif

and mark strings by

dngettext(("pkg", <singular string>, <plural string>, n)

(This is only supported from R 2.10.0, so packages which use dngettext need to depend
on R (>= 2.10).)

• In the package’s ‘src’ directory run

xgettext --keyword=_ -o pkg.pot *.c

The file ‘src/pkg.pot’ is the template file, and conventionally this is shipped as ‘po/pkg.pot’.
A translator to another language makes a copy of this file and edits it (see the gettextmanual) to
produce say ‘ll.po’, where ll is the code for the language in which the translation is to be used.
(This file would be shipped in the ‘po’ directory.) Next run msgfmt on ‘ll.po’ to produce ‘ll.mo’,
and copy that to ‘inst/po/ll/LC_MESSAGES/pkg.mo’. Now when the package is loaded after
installation it will look for translations of its messages in the ‘po/lang/LC_MESSAGES/pkg.mo’
file for any language lang that matches the user’s preferences (via the setting of the LANGUAGE

environment variable or from the locale settings).

1.9.2 R messages

Mechanisms are also available to support the automatic translation of R stop, warning and
message messages. They make use of message catalogs in the same way as C-level messages,
but using domain R-pkg rather than pkg. Translation of character strings inside stop, warning
and message calls is automatically enabled, as well as other messages enclosed in calls to gettext
or gettextf. (To suppress this, use argument domain=NA.)

Tools to prepare the ‘R-pkg.pot’ file are provided in package tools: xgettext2pot will
prepare a file from all strings occurring inside gettext/gettextf, stop, warning and message

calls. Some of these are likely to be spurious and so the file is likely to need manual editing.
xgettext extracts the actual calls and so is more useful when tidying up error messages.

Translation of messages which might be singular or plural can be very intricate: languages
can have up to four different forms. The R function ngettext provides an interface to the
C function of the same name, and will choose an appropriate singular or plural form for the
selected language depending on the value of its first argument n. It is safest to use domain="R-
pkg" explicitly in calls to ngettext, and necessary for earlier versions of R unless they are calls
directly from a function in the package.

1.9.3 Installing translations

Once the template files have been created, translations can be made. Conventional translations
have file extension ‘.po’ and are placed in the ‘po’ subdirectory of the package with a name that
is either ‘ll.po’ or ‘R-ll.po’ for translations of the C and R messages respectively to language
with code ‘ll’.

See Section “Localization of messages” in R Installation and Administration, for details of
language codes.

Translations need to be prepared and installed in ‘inst/po/’ to be usable once the package
is installed. To do this use the appropriate lines of

Chapter 1: Creating R packages 46

mkdir -p inst/po/ll/LC_MESSAGES

msgfmt -c --statistics -o inst/po/ll/LC_MESSAGES/R-pkg.mo po/R-ll.po

msgfmt -c --statistics -o inst/po/ll/LC_MESSAGES/pkg.mo po/ll.po

from the package’s top-level directory. Using ‘-c’ does some useful validity checks, and
‘--statistics’ notes the coverage.

1.9.4 Makefile support

There is some makefile support in the ‘po’ directory of the R sources. To use this to create the
template files, use

mkdir -p pkgdir/po

where ‘pkgdir’ is the top-level directory of the package sources. If the package has C source
files in its ‘src’ directory that are marked for translation, use

touch pkgdir/po/pkg.pot

to create a dummy template file. Then

cd R_BUILD_DIR/po

make pkg-update PKG=pkg PKGDIR=pkgdir

will create a template file of R messages and update any template of C messages. It will also
prepare and install a translation for the ‘en@quot’ pseudo-language, which if selected interprets
(single and double) quotes in their directional forms in suitable (e.g. UTF-8) locales.

When translations to new languages are added in the ‘pkgdir/po’ directory, running the
same make command will check and then install the translations.

If the package sources are updated, the same make command will update the template files,
merge the changes into the translation ‘.po’ files and then installed the updated translations.
You will often see that merging marks translations as ‘fuzzy’ and this is reported in the coverage
statistics. As fuzzy translations are not used, this is an indication that the translation files need
human attention.

This support is only for Unix-alikes, and the tools did not work correctly on at least one Mac
OS X system.

1.10 CITATION files

An installed file named ‘CITATION’ will be used by the citation() function. (To be installed,
it needed to be in the ‘inst’ subdirectory of the package sources.)

The ‘CITATION’ file is parsed as R code (in the package’s declared encoding, or in ASCII
if none is declared). If no such file is present, citation auto-generates citation information
from the package ‘DESCRIPTION’ metadata, and an example of what that would look like as a
‘CITATION’ file can be seen in recommended package nlme (see below): recommended packages
boot, cluster and mgcv have further examples.

A ‘CITATION’ file will contain calls to function bibentry (new style, only works with R 2.12.0
or later), or to the functions citHeader, citEntry and (optionally) citFooter (old style).

Here is that for nlme, re-formatted:

citHeader("To cite package ’nlme’ in publications use:")

year <- sub(".*(2[[:digit:]]{3})-.*", "\\1", meta$Date, perl = TRUE)

vers <- paste("R package version", meta$Version)

citEntry(entry="Manual",

title = "nlme: Linear and Nonlinear Mixed Effects Models",

author = personList(as.person("Jose Pinheiro"),

http://CRAN.R-project.org/package=nlme
http://CRAN.R-project.org/package=boot
http://CRAN.R-project.org/package=cluster
http://CRAN.R-project.org/package=mgcv
http://CRAN.R-project.org/package=nlme

Chapter 1: Creating R packages 47

as.person("Douglas Bates"),

as.person("Saikat DebRoy"),

as.person("Deepayan Sarkar"),

person("R Core Team")),

year = year,

note = vers,

textVersion =

paste("Jose Pinheiro, Douglas Bates, Saikat DebRoy,",

"Deepayan Sarkar and the R Core Team (",

year,

"). nlme: Linear and Nonlinear Mixed Effects Models. ",

vers, ".", sep=""))

Note the way that information that may need to be updated is picked up from the
‘DESCRIPTION’ file – it is tempting to hardcode such information, but it normally then gets
outdated. See ?bibentry for further details of the information which can be provided.

The ‘CITATION’ file should itself produce no output when source-d.

1.11 Package types

The ‘DESCRIPTION’ file has an optional field Type which if missing is assumed to be Package,
the sort of extension discussed so far in this chapter. Currently one other type is recognized;
there used also to be a Translation type.

1.11.1 Frontend

This is a rather general mechanism, designed for adding new front-ends such as the former
gnomeGUI package (see the ‘Archive’ area on CRAN). If a ‘configure’ file is found in the top-
level directory of the package it is executed, and then if a Makefile is found (often generated by
‘configure’), make is called. If R CMD INSTALL --clean is used make clean is called. No other
action is taken.

R CMD build can package up this type of extension, but R CMD check will check the type and
skip it.

Many packages of this type need write permission for the R installation directory.

1.12 Services

Several members of the R project have set up services to assist those writing R packages,
particularly those intended for public distribution.

win-builder.r-project.org offers the automated preparation of (32/64-bit) Windows binaries
from well-tested source packages.

R-Forge (R-Forge.r-project.org) and RForge (www.rforge.net) are similar services with sim-
ilar names. Both provide source-code management through SVN, daily building and checking,
mailing lists and a repository that can be accessed via install.packages (they can be selected
by setRepositories and the GUI menus that use it). Package developers have the opportunity
to present their work on the basis of project websites or news announcements. Mailing lists,
forums or wikis provide useRs with convenient instruments for discussions and for exchanging
information between developers and/or interested useRs.

http://win-builder.r-project.org
http://R-Forge.r-project.org
http://www.rforge.net

Chapter 2: Writing R documentation files 48

2 Writing R documentation files

2.1 Rd format

R objects are documented in files written in “R documentation” (Rd) format, a simple markup
language much of which closely resembles (La)TEX, which can be processed into a variety of
formats, including LATEX, HTML and plain text. The translation is carried out by functions in
the tools package called by the script Rdconv in ‘R_HOME/bin’ and by the installation scripts for
packages.

The R distribution contains more than 1300 such files which can be found in the
‘src/library/pkg/man’ directories of the R source tree, where pkg stands for one of the
standard packages which are included in the R distribution.

As an example, let us look at a simplified version of ‘src/library/base/man/load.Rd’ which
documents the R function load.� �

% File src/library/base/man/load.Rd

\name{load}

\alias{load}

\title{Reload Saved Datasets}

\description{

Reload the datasets written to a file with the function

\code{save}.

}

\usage{

load(file, envir = parent.frame())

}

\arguments{

\item{file}{a connection or a character string giving the

name of the file to load.}

\item{envir}{the environment where the data should be

loaded.}

}

\seealso{

\code{\link{save}}.

}

\examples{

save all data

save(list = ls(), file= "all.RData")

restore the saved values to the current environment

load("all.RData")

restore the saved values to the workspace

load("all.RData", .GlobalEnv)

}

\keyword{file}
 	
An ‘Rd’ file consists of three parts. The header gives basic information about the name of

the file, the topics documented, a title, a short textual description and R usage information for
the objects documented. The body gives further information (for example, on the function’s
arguments and return value, as in the above example). Finally, there is an optional footer with
keyword information. The header is mandatory.

Information is given within a series of sections with standard names (and user-defined sections
are also allowed). Unless otherwise specified1 these should occur only once in an ‘Rd’ file (in any

1 e.g. \alias, \keyword and \note sections.

Chapter 2: Writing R documentation files 49

order), and the processing software will retain only the first occurrence of a standard section in
the file, with a warning.

See “Guidelines for Rd files” for guidelines for writing documentation in ‘Rd’ format which
should be useful for package writers. The R generic function prompt is used to construct a bare-
bones ‘Rd’ file ready for manual editing. Methods are defined for documenting functions (which
fill in the proper function and argument names) and data frames. There are also functions
promptData, promptPackage, promptClass, and promptMethods for other types of ‘Rd’ file.

The general syntax of ‘Rd’ files is summarized below. For a detailed technical discussion of
current ‘Rd’ syntax, see “Parsing Rd files”. Note that there have been a number of changes to
the ‘Rd’ format over the years, which can be important if a package is intended to be used with
earlier versions of R: see earlier versions of this manual if a package is intended to be used with
R before 2.10.0.

‘Rd’ files consists of three types of text input. The most common is LATEX-like, with the
backslash used as a prefix on markup (e.g. \alias), and braces used to indicate arguments (e.g.
{load}). The least common type of text is verbatim text, where no markup is processed. The
third type is R-like, intended for R code, but allowing some embedded macros. Quoted strings
within R-like text are handled specially: regular character escapes such as \n may be entered
as-is. Only markup starting with \l (e.g. \link) or \v (e.g. \var) will be recognized within
quoted strings. The rarely used vertical tab \v must be entered as \\v.

Each macro defines the input type for its argument. For example, the file initially uses
LATEX-like syntax, and this is also used in the \description section, but the \usage section
uses R-like syntax, and the \alias macro uses verbatim syntax. Comments run from a percent
symbol % to the end of the line in all types of text (as on the first line of the load example).

Because backslashes, braces and percent symbols have special meaning, to enter them into
text sometimes requires escapes using a backslash. In general balanced braces do not need to be
escaped, but percent symbols always do. For the complete list of macros and rules for escapes,
see “Parsing Rd files”.

2.1.1 Documenting functions

The basic markup commands used for documenting R objects (in particular, functions) are given
in this subsection.

\name{name}

name typically2 is the basename of the ‘Rd’ file containing the documentation. It
is the “name” of the ‘Rd’ object represented by the file and has to be unique in a
package. To avoid problems with indexing the package manual, it may not contain
‘!’ ‘|’ nor ‘@’, and to avoid possible problems with the HTML help system it should
not contain ‘/’ nor a space. (LATEX special characters are allowed, but may not be
collated correctly in the index.) There can only be one \name entry in a file, and it
must not contain any markup. Entries in the package manual will be in alphabetic3

order of the \name entries.

\alias{topic}

The \alias sections specify all “topics” the file documents. This information is
collected into index data bases for lookup by the on-line (plain text and HTML)
help systems. The topic can contain spaces, but (for historical reasons) leading and
trailing spaces will be stripped. Percent and left brace need to be escaped by a
backslash.

2 There can be exceptions: for example ‘Rd’ files are not allowed to start with a dot, and have to be uniquely
named on a case-insensitive file system.

3 in the current locale, and with special treatment for LATEX special characters and with any ‘pkgname-package’
topic moved to the top of the list.

http://developer.r-project.org/Rds.html
http://developer.r-project.org/parseRd.pdf
http://developer.r-project.org/parseRd.pdf

Chapter 2: Writing R documentation files 50

There may be several \alias entries. Quite often it is convenient to document
several R objects in one file. For example, file ‘Normal.Rd’ documents the density,
distribution function, quantile function and generation of random variates for the
normal distribution, and hence starts with

\name{Normal}

\alias{Normal}

\alias{dnorm}

\alias{pnorm}

\alias{qnorm}

\alias{rnorm}

Also, it is often convenient to have several different ways to refer to an R object,
and an \alias does not need to be the name of an object.

Note that the \name is not necessarily a topic documented, and if so desired it needs
to have an explicit \alias entry (as in this example).

\title{Title}

Title information for the ‘Rd’ file. This should be capitalized and not end in a period;
try to limit its length to at most 65 characters for widest compatibility.

Since R version 2.12.0 markup has been supported in the text, but use of characters
other than English text and punctuation (e.g., ‘<’) may limit portability.

There must be one (and only one) \title section in a help file.

\description{...}

A short description of what the function(s) do(es) (one paragraph, a few lines only).
(If a description is too long and cannot easily be shortened, the file probably tries to
document too much at once.) This is mandatory except for package-overview files.

\usage{fun(arg1, arg2, ...)}

One or more lines showing the synopsis of the function(s) and variables documented
in the file. These are set in typewriter font. This is an R-like command.

The usage information specified should match the function definition exactly (such
that automatic checking for consistency between code and documentation is possi-
ble).

It is no longer advisable to use \synopsis for the actual synopsis and show modified
synopses in the \usage. Support for \synopsis will be removed eventually. To
indicate that a function can be used in several different ways, depending on the
named arguments specified, use section \details. E.g., ‘abline.Rd’ contains

\details{

Typical usages are

\preformatted{

abline(a, b, untf = FALSE, \dots)

......

}

Use \method{generic}{class} to indicate the name of an S3 method for the generic
function generic for objects inheriting from class "class". In the printed versions,
this will come out as generic (reflecting the understanding that methods should not
be invoked directly but via method dispatch), but codoc() and other QC tools
always have access to the full name.

For example, ‘print.ts.Rd’ contains

\usage{

\method{print}{ts}(x, calendar, \dots)

}

Chapter 2: Writing R documentation files 51

which will print as

Usage:

S3 method for class ’ts’:

print(x, calendar, ...)

Usage for replacement functions should be given in the style of dim(x) <- value

rather than explicitly indicating the name of the replacement function ("dim<-" in
the above). Similarly, one can use \method{generic}{class}(arglist) <- value

to indicate the usage of an S3 replacement method for the generic replacement
function "generic<-" for objects inheriting from class "class".

Usage for S3 methods for extracting or replacing parts of an object, S3 methods for
members of the Ops group, and S3 methods for user-defined (binary) infix opera-
tors (‘%xxx%’) follows the above rules, using the appropriate function names. E.g.,
‘Extract.factor.Rd’ contains

\usage{

\method{[}{factor}(x, \dots, drop = FALSE)

\method{[[}{factor}(x, \dots)

\method{[}{factor}(x, \dots) <- value

}

which will print as

Usage:

S3 method for class ’factor’:

x[..., drop = FALSE]

S3 method for class ’factor’:

x[[...]]

S3 replacement method for class ’factor’:

x[...] <- value

\S3method is accepted as an alternative to \method.

\arguments{...}

Description of the function’s arguments, using an entry of the form

\item{arg_i}{Description of arg_i.}

for each element of the argument list. (Note that there is no whitespace between
the three parts of the entry.) There may be optional text outside the \item entries,
for example to give general information about groups of parameters.

\details{...}

A detailed if possible precise description of the functionality provided, extending
the basic information in the \description slot.

\value{...}

Description of the function’s return value.

If a list with multiple values is returned, you can use entries of the form

\item{comp_i}{Description of comp_i.}

for each component of the list returned. Optional text may precede4 this list (see
for example the help for rle). Note that \value is implicitly a \describe environ-
ment, so that environment should not be used for listing components, just individual
\item{}{} entries.

4 Text between or after list items was discarded prior to R 2.10.0, and is discouraged.

Chapter 2: Writing R documentation files 52

\references{...}

A section with references to the literature. Use \url{} or \href{}{} for web point-
ers.

\note{...}

Use this for a special note you want to have pointed out. Multiple \note sections
are allowed, but might be confusing to the end users.

For example, ‘pie.Rd’ contains

\note{

Pie charts are a very bad way of displaying information.

The eye is good at judging linear measures and bad at

judging relative areas.

......

}

\author{...}

Information about the author(s) of the ‘Rd’ file. Use \email{} without extra delim-
iters (such as ‘()’ or ‘< >’) to specify email addresses, or \url{} or \href{}{} for
web pointers.

\seealso{...}

Pointers to related R objects, using \code{\link{...}} to refer to them (\code is
the correct markup for R object names, and \link produces hyperlinks in output
formats which support this. See Section 2.3 [Marking text], page 55, and Section 2.5
[Cross-references], page 58).

\examples{...}

Examples of how to use the function. Code in this section is set in typewriter font
without reformatting and is run by example() unless marked otherwise (see below).

Examples are not only useful for documentation purposes, but also provide test code
used for diagnostic checking of R code. By default, text inside \examples{} will
be displayed in the output of the help page and run by example() and by R CMD

check. You can use \dontrun{} for text that should only be shown, but not run,
and \dontshow{} for extra commands for testing that should not be shown to users,
but will be run by example(). (Previously this was called \testonly, and that is
still accepted.)

Text inside \dontrun{} is verbatim, but the other parts of the \examples section
are R-like text.

For example,

x <- runif(10) # Shown and run.
\dontrun{plot(x)} # Only shown.
\dontshow{log(x)} # Only run.

Thus, example code not included in \dontrun must be executable! In addition, it
should not use any system-specific features or require special facilities (such as In-
ternet access or write permission to specific directories). Text included in \dontrun

is indicated by comments in the processed help files: it need not be valid R code
but the escapes must still be used for %, \ and unpaired braces as in other verbatim
text.

Example code must be capable of being run by example, which uses source. This
means that it should not access ‘stdin’, e.g. to scan() data from the example file.

Data needed for making the examples executable can be obtained by random number
generation (for example, x <- rnorm(100)), or by using standard data sets listed
by data() (see ?data for more info).

Chapter 2: Writing R documentation files 53

Finally, there is \donttest, used (at the beginning of a separate line) to mark code
that should be run by examples() but not by R CMD check. This should be needed
only occasionally but can be used for code which might fail in circumstances that
are hard to test for, for example in some locales. (Use e.g. capabilities() to test
for features needed in the examples wherever possible, and you can also use try()

or tryCatch().)

\keyword{key}

There can be zero or more \keyword sections per file. Each \keyword section
should specify a single keyword, preferably one of the standard keywords as listed in
file ‘KEYWORDS’ in the R documentation directory (default ‘R_HOME/doc’). Use e.g.
RShowDoc("KEYWORDS") to inspect the standard keywords from within R. There can
be more than one \keyword entry if the R object being documented falls into more
than one category, or none.

The special keyword ‘internal’ marks a page of internal objects that are not part
of the package’s API. If the help page for object foo has keyword ‘internal’, then
help(foo) gives this help page, but foo is excluded from several object indices,
including the alphabetical list of objects in the HTML help system.

help.search() can search by keyword, including user-defined values: however
the ‘Search Engine & Keywords’ HTML page accessed via help.start() provides
single-click access only to a pre-defined list of keywords.

2.1.2 Documenting data sets

The structure of ‘Rd’ files which document R data sets is slightly different. Sections such as
\arguments and \value are not needed but the format and source of the data should be ex-
plained.

As an example, let us look at ‘src/library/datasets/man/rivers.Rd’ which documents
the standard R data set rivers.� �

\name{rivers}

\docType{data}

\alias{rivers}

\title{Lengths of Major North American Rivers}

\description{

This data set gives the lengths (in miles) of 141 \dQuote{major}

rivers in North America, as compiled by the US Geological

Survey.

}

\usage{rivers}

\format{A vector containing 141 observations.}

\source{World Almanac and Book of Facts, 1975, page 406.}

\references{

McNeil, D. R. (1977) \emph{Interactive Data Analysis}.

New York: Wiley.

}

\keyword{datasets}
 	
This uses the following additional markup commands.

\docType{...}

Indicates the “type” of the documentation object. Always ‘data’ for data sets, and
‘package’ for ‘pkg-package.Rd’ overview files. Documentation for S4 methods and
classes uses ‘methods’ (from promptMethods()) and ‘class’ (from promptClass()).

Chapter 2: Writing R documentation files 54

\format{...}

A description of the format of the data set (as a vector, matrix, data frame, time
series, . . .). For matrices and data frames this should give a description of each
column, preferably as a list or table. See Section 2.4 [Lists and tables], page 57, for
more information.

\source{...}

Details of the original source (a reference or URL). In addition, section \references

could give secondary sources and usages.

Note also that when documenting data set bar,

• The \usage entry is always bar or (for packages which do not use lazy-loading of data)
data(bar). (In particular, only document a single data object per ‘Rd’ file.)

• The \keyword entry should always be ‘datasets’.

If bar is a data frame, documenting it as a data set can be initiated via prompt(bar).
Otherwise, the promptData function may be used.

2.1.3 Documenting S4 classes and methods

There are special ways to use the ‘?’ operator, namely ‘class?topic’ and ‘methods?topic’,
to access documentation for S4 classes and methods, respectively. This mechanism depends on
conventions for the topic names used in \alias entries. The topic names for S4 classes and
methods respectively are of the form

class-class

generic,signature_list-method

where signature list contains the names of the classes in the signature of the method (without
quotes) separated by ‘,’ (without whitespace), with ‘ANY’ used for arguments without an explicit
specification. E.g., ‘genericFunction-class’ is the topic name for documentation for the S4
class "genericFunction", and ‘coerce,ANY,NULL-method’ is the topic name for documentation
for the S4 method for coerce for signature c("ANY", "NULL").

Skeletons of documentation for S4 classes and methods can be generated by using the func-
tions promptClass() and promptMethods() from package methods. If it is necessary or desired
to provide an explicit function declaration (in a \usage section) for an S4 method (e.g., if it has
“surprising arguments” to be mentioned explicitly), one can use the special markup

\S4method{generic}{signature_list}(argument_list)

(e.g., ‘\S4method{coerce}{ANY,NULL}(from, to)’).

To make full use of the potential of the on-line documentation system, all user-visible S4
classes and methods in a package should at least have a suitable \alias entry in one of the
package’s ‘Rd’ files. If a package has methods for a function defined originally somewhere else,
and does not change the underlying default method for the function, the package is responsible
for documenting the methods it creates, but not for the function itself or the default method.

An S4 replacement method is documented in the same way as an S3 one: see the description
of \method in Section 2.1.1 [Documenting functions], page 49.

See help("Documentation", package = "methods") for more information on using and cre-
ating on-line documentation for S4 classes and methods.

2.1.4 Documenting packages

Packages may have an overview help page with an \alias pkgname-package, e.g.
‘utils-package’ for the utils package, when package?pkgname will open that help page. If a
topic named pkgname does not exist in another ‘Rd’ file, it is helpful to use this as an additional
\alias.

Chapter 2: Writing R documentation files 55

Skeletons of documentation for a package can be generated using the function
promptPackage(). If the final = TRUE argument is used, then the ‘Rd’ file will be generated
in final form, containing the information that would be produced up to library(help =

pkgname). Otherwise (the default) comments will be inserted giving suggestions for content.

Apart from the mandatory \name and \title and the pkgname-package alias, the only
requirement for the package overview page is that it include a \docType{package} statement.
All other content is optional. We suggest that it should be a short overview, to give a reader
unfamiliar with the package enough information to get started. More extensive documentation is
better placed into a package vignette (see Section 1.4 [Writing package vignettes], page 28) and
referenced from this page, or into individual man pages for the functions, datasets, or classes.

2.2 Sectioning

To begin a new paragraph or leave a blank line in an example, just insert an empty line (as in
(La)TEX). To break a line, use \cr.

In addition to the predefined sections (such as \description{}, \value{}, etc.), you can
“define” arbitrary ones by \section{section_title}{...}. For example

\section{Warning}{

You must not call this function unless ...

}

For consistency with the pre-assigned sections, the section name (the first argument to \section)
should be capitalized (but not all upper case). Whitespace between the first and second braced
expressions is not allowed. Markup (e.g. \code) within the section title may cause problems
with the latex conversion (depending on the version of macro packages such as ‘hyperref’) and
so should be avoided.

The \subsection macro takes arguments in the same format as \section, but is used within
a section, so it may be used to nest subsections within sections or other subsections. There is
no predefined limit on the nesting level, but formatting is not designed for more than 3 levels
(i.e. subsections within subsections within sections).

Note that additional named sections are always inserted at a fixed position in the output
(before \note, \seealso and the examples), no matter where they appear in the input (but in
the same order amongst themselves as in the input).

2.3 Marking text

The following logical markup commands are available for emphasizing or quoting text.

\emph{text}

\strong{text}

Emphasize text using italic and bold font if possible; \strong is regarded as stronger
(more emphatic).

\bold{text}

Set text in bold font if possible.

\sQuote{text}

\dQuote{text}

Portably single or double quote text (without hard-wiring the characters used for
quotation marks).

Each of the above commands takes LATEX-like input, so other macros may be used within
text.

Chapter 2: Writing R documentation files 56

The following logical markup commands are available for indicating specific kinds of text.
Except as noted, these take verbatim text input, and so other macros may not be used within
them. Some characters will need to be escaped (see Section 2.8 [Insertions], page 59).

\code{text}

Indicate text that is a literal example of a piece of an R program, e.g., a fragment of
R code or the name of an R object. Text is entered in R-like syntax, and displayed
using typewriter font if possible. Macros \var and \link are interpreted within
text.

\preformatted{text}

Indicate text that is a literal example of a piece of a program. Text is displayed
using typewriter font if possible. Formatting, e.g. line breaks, is preserved.

Due to limitations in LATEX as of this writing, this macro may not be nested within
other markup macros other than \dQuote and \sQuote, as errors or bad formatting
may result.

\kbd{keyboard-characters}

Indicate keyboard input, using slanted typewriter font if possible, so users can
distinguish the characters they are supposed to type from computer output. Text
is entered verbatim.

\samp{text}

Indicate text that is a literal example of a sequence of characters, entered verbatim.
No wrapping or reformatting will occur. Displayed using typewriter font if possible.

\verb{text}

Indicate text that is a literal example of a sequence of characters, with no interpre-
tation of e.g. \var, but which will be included within word-wrapped text. Displayed
using typewriter font if possible.

\pkg{package_name}

Indicate the name of an R package. LATEX-like.

\file{file_name}

Indicate the name of a file. Text is LATEX-like, so backslash needs to be escaped.
Displayed using a distinct font if possible.

\email{email_address}

Indicate an electronic mail address. LATEX-like, will be rendered as a hyperlink in
HTML and PDF conversion. Displayed using typewriter font if possible.

\url{uniform_resource_locator}

Indicate a uniform resource locator (URL) for the World Wide Web. The argument
is handled verbatim, and rendered as a hyperlink in HTML and PDF conversion.
Displayed using typewriter font if possible.

\href{uniform_resource_locator}{text}

Indicate a hyperlink to the World Wide Web. The first argument is handled verba-
tim, and is used as the URL in the hyperlink, with the second argument of LATEX-like
text displayed to the user.

\var{metasyntactic_variable}

Indicate a metasyntactic variable. In some cases this will be rendered distinctly, e.g.
in italic, but not in all5. LATEX-like.

5 Currently it is rendered differently only in HTML conversions, and LATEX conversion outside ‘\usage’ and
‘\examples’ environments.

Chapter 2: Writing R documentation files 57

\env{environment_variable}

Indicate an environment variable. Verbatim. Displayed using typewriter font if
possible

\option{option}

Indicate a command-line option. Verbatim. Displayed using typewriter font if
possible.

\command{command_name}

Indicate the name of a command. LATEX-like, so \var is interpreted. Displayed
using typewriter font if possible.

\dfn{term}

Indicate the introductory or defining use of a term. LATEX-like.

\cite{reference}

Indicate a reference without a direct cross-reference via \link (see Section 2.5
[Cross-references], page 58), such as the name of a book. LATEX-like.

\acronym{acronym}

Indicate an acronym (an abbreviation written in all capital letters), such as GNU.
LATEX-like.

2.4 Lists and tables

The \itemize and \enumerate commands take a single argument, within which there may be
one or more \item commands. The text following each \item is formatted as one or more para-
graphs, suitably indented and with the first paragraph marked with a bullet point (\itemize)
or a number (\enumerate).

Note that unlike argument lists, \item in these formats is followed by a space and the text
(not enclosed in braces). For example

\enumerate{

\item A database consists of one or more records, each with one or

more named fields.

\item Regular lines start with a non-whitespace character.

\item Records are separated by one or more empty lines.

}

\itemize and \enumerate commands may be nested.

The \describe command is similar to \itemize but allows initial labels to be specified.
Each \item takes two arguments, the label and the body of the item, in exactly the same way
as an argument or value \item. \describe commands are mapped to <DL> lists in HTML and
\description lists in LATEX.

The \tabular command takes two arguments. The first gives for each of the columns the
required alignment (‘l’ for left-justification, ‘r’ for right-justification or ‘c’ for centring.) The
second argument consists of an arbitrary number of lines separated by \cr, and with fields
separated by \tab. For example:

\tabular{rlll}{

[,1] \tab Ozone \tab numeric \tab Ozone (ppb)\cr

[,2] \tab Solar.R \tab numeric \tab Solar R (lang)\cr

[,3] \tab Wind \tab numeric \tab Wind (mph)\cr

[,4] \tab Temp \tab numeric \tab Temperature (degrees F)\cr

[,5] \tab Month \tab numeric \tab Month (1--12)\cr

[,6] \tab Day \tab numeric \tab Day of month (1--31)

}

Chapter 2: Writing R documentation files 58

There must be the same number of fields on each line as there are alignments in the first
argument, and they must be non-empty (but can contain only spaces). (There is no whitespace
between \tabular and the first argument, nor between the two arguments.)

2.5 Cross-references

The markup \link{foo} (usually in the combination \code{\link{foo}}) produces a hyperlink
to the help for foo. Here foo is a topic, that is the argument of \alias markup in another ‘Rd’
file (possibly in another package). Hyperlinks are supported in some of the formats to which
‘Rd’ files are converted, for example HTML and PDF, but ignored in others, e.g. the text format.

One main usage of \link is in the \seealso section of the help page, see Section 2.1 [Rd
format], page 48.

Note that whereas leading and trailing spaces are stripped when extracting a topic from a
\alias, they are not stripped when looking up the topic of a \link.

You can specify a link to a different topic than its name by \link[=dest]{name} which links
to topic dest with name name. This can be used to refer to the documentation for S3/4 classes,
for example \code{"\link[=abc-class]{abc}"} would be a way to refer to the documentation
of an S4 class "abc" defined in your package, and \code{"\link[=terms.object]{terms}"}

to the S3 "terms" class (in package stats). To make these easy to read in the source file,
\code{"\linkS4class{abc}"} expands to the form given above.

There are two other forms of optional argument specified as \link[pkg]{foo} and
\link[pkg:bar]{foo} to link to the package pkg , to files ‘foo.html’ and ‘bar.html’
respectively. These are rarely needed, perhaps to refer to not-yet-installed packages (but there
the HTML help system will resolve the link at run time) or in the normally undesirable event
that more than one package offers help on a topic6 (in which case the present package has
precedence so this is only needed to refer to other packages). They are currently only used in
HTML help (and ignored for hyperlinks in LATEX conversions of help pages), and link to the
file rather than the topic (since there is no way to know which topics are in which files in an
uninstalled package). The only reason to use these forms for base and recommended packages
is to force a reference to a package that might be further down the search path. Because they
have been frequently misused, the HTML help system looks for topic foo in package pkg if it
does not find file ‘foo.html’.

2.6 Mathematics

Mathematical formulae should be set beautifully for printed documentation yet we still
want something useful for text and HTML online help. To this end, the two commands
\eqn{latex}{ascii} and \deqn{latex}{ascii} are used. Whereas \eqn is used for “inline”
formulae (corresponding to TEX’s $...$), \deqn gives “displayed equations” (as in LATEX’s
displaymath environment, or TEX’s $$...$$). Both arguments are treated as verbatim text.

Both commands can also be used as \eqn{latexascii} (only one argument) which then
is used for both latex and ascii. No whitespace is allowed between command and the first
argument, nor between the first and second arguments.

The following example is from ‘Poisson.Rd’:

\deqn{p(x) = \frac{\lambda^x e^{-\lambda}}{x!}}{%

p(x) = \lambda^x exp(-\lambda)/x!}

for \eqn{x = 0, 1, 2, \ldots}.

For the LATEX manual, this becomes

6 a common example in CRAN packages is \link[mgcv]{gam}.

Chapter 2: Writing R documentation files 59� �
p(x) = λx

e−λ

x!

for x = 0, 1, 2,
 	
For text on-line help we get� �

p(x) = lambda^x exp(-lambda)/x!

for x = 0, 1, 2,
 	
Greek letters (both cases) will be rendered in HTML if preceded by a backslash, \dots and

\ldots will be rendered as ellipses and \sqrt, \ge and \le as mathematical symbols.

Note that only basic LATEX can be used, there being no provision to specify LATEX style files
such as the AMS extensions.

2.7 Figures

To include figures in help pages, use the \figure markup. There are three forms.

The two commonly used simple forms are \figure{filename} and
\figure{filename}{alternate text}. This will include a copy of the figure in ei-
ther HTML or LATEX output. In text output, the alternate text will be displayed instead.
(When the second argument is omitted, the filename will be used.) Both the filename and
the alternate text will be parsed verbatim, and should not include special characters that are
significant in HTML or LATEX.

The expert form is \figure{filename}{options: string}. (The word ‘options:’ must be
typed exactly as shown and followed by at least one space.) In this form, the string is copied
into the HTML img tag as attributes following the src attribute, or into the second argument
of the \Figure macro in LaTeX, which by default is used as options to an \includegraphics

call. As it is unlikely that any single string would suffice for both display modes, the expert
form would normally be wrapped in conditionals. It is up to the author to make sure that legal
HTML/LaTeX is used. For example, to include a logo in both HTML (using the simple form)
and LaTeX (using the expert form), the following could be used:

\if{html}{\figure{logo.jpg}{Our logo}}

\if{latex}{\figure{logo.jpg}{options: width=0.5in}}

The files containing the figures should be stored in the directory ‘man/figures’. Files
with extensions ‘.jpg’, ‘.pdf’, ‘.png’ and ‘.svg’ from that directory will be copied to the
‘help/figures’ directory at install time. (Figures in PDF format will not display in most
HTML browsers, but might be the best choice in reference manuals.) Specify the filename
relative to ‘man/figures’ in the \figure directive.

2.8 Insertions

Use \R for the R system itself. Use \dots for the dots in function argument lists ‘...’, and
\ldots for ellipsis dots in ordinary text.7 These can be followed by {}, and should be unless
followed by whitespace.

After an unescaped ‘%’, you can put your own comments regarding the help text. The rest
of the line (but not the newline at the end) will be completely disregarded. Therefore, you can
also use it to make part of the “help” invisible.

7 There is only a fine distinction between \dots and \ldots. It is technically incorrect to use \ldots in code
blocks and tools::checkRd will warn about this—on the other hand the current converters treat them the
same way in code blocks, and elsewhere apart from the small distinction between the two in LaTeX.

Chapter 2: Writing R documentation files 60

You can produce a backslash (‘\’) by escaping it by another backslash. (Note that \cr is
used for generating line breaks.)

The “comment” character ‘%’ and unpaired braces8 almost always need to be escaped by ‘\’,
and ‘\\’ can be used for backslash and needs to be when there two or more adjacent backslashes).
In R-like code quoted strings are handled slightly differently; see “Parsing Rd files” for details
– in particular braces should not be escaped in quoted strings.

All of ‘% { } \’ should be escaped in LATEX-like text.

Text which might need to be represented differently in different encodings should be marked
by \enc, e.g. \enc{Jöreskog}{Joreskog} (with no whitespace between the braces) where the
first argument will be used where encodings are allowed and the second should be ASCII (and
is used for e.g. the text conversion in locales that cannot represent the encoded form). (This is
intended to be used for individual words, not whole sentences or paragraphs.)

2.9 Indices

The \alias command (see Section 2.1.1 [Documenting functions], page 49) is used to specify
the “topics” documented, which should include all R objects in a package such as functions and
variables, data sets, and S4 classes and methods (see Section 2.1.3 [Documenting S4 classes and
methods], page 54). The on-line help system searches the index data base consisting of all alias
topics.

In addition, it is possible to provide “concept index entries” using \concept, which can be
used for help.search() lookups. E.g., file ‘cor.test.Rd’ in the standard package stats contains

\concept{Kendall correlation coefficient}

\concept{Pearson correlation coefficient}

\concept{Spearman correlation coefficient}

so that e.g. ??Spearman will succeed in finding the help page for the test for association between
paired samples using Spearman’s ρ.

(Note that help.search() only uses “sections” of documentation objects with no additional
markup.)

If you want to cross reference such items from other help files via \link, you need to use
\alias and not \concept.

2.10 Platform-specific documentation

Sometimes the documentation needs to differ by platform. Currently two OS-specific options
are available, ‘unix’ and ‘windows’, and lines in the help source file can be enclosed in

#ifdef OS

...

#endif

or

#ifndef OS

...

#endif

for OS-specific inclusion or exclusion. Such blocks should not be nested, and should be entirely
within a block (that, is between the opening and closing brace of a section or item), or at
top-level contain one or more complete sections.

If the differences between platforms are extensive or the R objects documented are only rele-
vant to one platform, platform-specific ‘Rd’ files can be put in a ‘unix’ or ‘windows’ subdirectory.

8 See the examples section in the file ‘Paren.Rd’ for an example.

http://developer.r-project.org/parseRd.pdf

Chapter 2: Writing R documentation files 61

2.11 Conditional text

Occasionally the best content for one output format is different from the best content for another.
For this situation, the \if{format}{text} or \ifelse{format}{text}{alternate} markup is
used. Here format is a comma separated list of formats in which the text should be rendered.
The alternate will be rendered if the format does not match. Both text and alternate may be
any sequence of text and markup.

Currently the following formats are recognized: example, html, latex and text. These select
output for the corresponding targets. (Note that example refers to extracted example code
rather than the displayed example in some other format.) Also accepted are TRUE (matching
all formats) and FALSE (matching no formats). These could be the output of the \Sexpr macro
(see Section 2.12 [Dynamic pages], page 61).

The \out{literal} macro would usually be used within the text part of
\if{format}{text}. It causes the renderer to output the literal text exactly, with
no attempt to escape special characters. For example, use the following to output the markup
necessary to display the Greek letter in LATEX or HTML, and the text string alpha in other
formats:

\if{latex}{\out{\alpha}}\ifelse{html}{\out{α}}{alpha}

2.12 Dynamic pages

Two new macros supporting dynamically generated man pages were introduced in R 2.10.0,
\Sexpr and \RdOpts. These are modelled after Sweave, and are intended to contain executable
R expressions in the ‘Rd’ file.

The main argument to \Sexpr must be valid R code that can be executed. It may also take
options in square brackets before the main argument. Depending on the options, the code may
be executed at package build time, package install time, or man page rendering time.

The options follow the same format as in Sweave, but different options are supported. Cur-
rently the allowed options and their defaults are:

• eval=TRUE Whether the R code should be evaluated.

• echo=FALSE Whether the R code should be echoed. If TRUE, a display will be given in a
preformatted block. For example, \Sexpr[echo=TRUE]{ x <- 1 } will be displayed as

> x <- 1

• keep.source=TRUE Whether to keep the author’s formatting when displaying the code, or
throw it away and use a deparsed version.

• results=text How should the results be displayed? The possibilities are:

− results=text Apply as.character() to the result of the code, and insert it as a text
element.

− results=verbatim Print the results of the code just as if it was executed at the console,
and include the printed results verbatim. (Invisible results will not print.)

− results=rd The result is assumed to be a character vector containing markup to be
passed to parse_Rd(), with the result inserted in place. This could be used to insert
computed aliases, for instance. As of R 2.13.1-patched, parse_Rd() is called first with
fragment=FALSE to allow a single Rd section macro to be inserted. If that fails, it is
called again with fragment=TRUE, the older behavior.

− results=hide Insert no output.

• strip.white=TRUE Remove leading and trailing white space from each line of output if
strip.white=TRUE. With strip.white=all, also remove blank lines.

• stage=install Control when this macro is run. Possible values are

Chapter 2: Writing R documentation files 62

− stage=build The macro is run when building a source tarball.

− stage=install The macro is run when installing from source.

− stage=render The macro is run when displaying the help page.

Conditionals such as #ifdef (see Section 2.10 [Platform-specific sections], page 60) are
applied after the build macros but before the install macros. In some situations (e.g.
installing directly from a source directory without a tarball, or building a binary package)
the above description is not literally accurate, but authors can rely on the sequence being
build, #ifdef, install, render, with all stages executed.

Code is only run once in each stage, so a \Sexpr[results=rd] macro can output an \Sexpr

macro designed for a later stage, but not for the current one or any earlier stage.

• width, height, fig These options are currently allowed but ignored.

The \RdOpts macro is used to set new defaults for options to apply to following uses of
\Sexpr.

For more details, see the online document “Parsing Rd files”.

2.13 User-defined macros

Two new macros supporting user-defined macros were introduced in R 2.12.0. The \newcommand
and \renewcommand macros allow new macros to be defined within an Rd file. These are similar
but not identical to the same-named LaTeX macros.

They each take two arguments which are parsed verbatim. The first is the name of the
new macro including the initial backslash, and the second is the macro definition. As in
LATEX, \newcommand requires that the new macro not have been previously defined, whereas
\renewcommand allows existing macros (including all built-in ones) to be replaced.

Also as in LATEX, the new macro may be defined to take arguments, and numeric placeholders
such as #1 are used in the macro definition. However, unlike LATEX, the number of arguments
is determined automatically from the highest placeholder number seen in the macro definition.
For example, a macro definition containing #1 and #3 (but no other placeholders) will define
a three argument macro (whose second argument will be ignored). As in LATEX, at most 9
arguments may be defined. If the # character is followed by a non-digit it will have no special
significance. All arguments to user-defined macros will be parsed as verbatim text, and simple
text-substitution will be used to replace the place-holders, after which the replacement text will
be parsed.

For example, the ‘NEWS.Rd’ file currently uses the definition

\newcommand{\PR}{\Sexpr[results=rd]{tools:::Rd_expr_PR(#1)}}

which defines \PR to be a single argument macro; then code like

\PR{1234}

will expand to

\Sexpr[results=rd]{tools:::Rd_expr_PR(1234)}

when parsed.

2.14 Encoding

Rd files are text files and so it is impossible to deduce the encoding they are written in unless
ASCII: files with 8-bit characters could be UTF-8, Latin-1, Latin-9, KOI8-R, EUC-JP, etc. So an
\encoding{} section must be used to specify the encoding if it is not ASCII. (The \encoding{}
section must be on a line by itself, and in particular one containing no non-ASCII characters.
The encoding declared in the ‘DESCRIPTION’ file will be used if none is declared in the file.)

http://developer.r-project.org/parseRd.pdf

Chapter 2: Writing R documentation files 63

The ‘Rd’ files are converted to UTF-8 before parsing and so the preferred encoding for the files
themselves is now UTF-8.

Wherever possible, avoid non-ASCII chars in ‘Rd’ files, and even symbols such as ‘<’, ‘>’, ‘$’,
‘^’, ‘&’, ‘|’, ‘@’, ‘~’, and ‘*’ outside verbatim environments (since they may disappear in fonts
designed to render text). (Function showNonASCIIfile in package tools can help in finding
non-ASCII bytes in the files.)

For convenience, encoding names ‘latin1’ and ‘latin2’ are always recognized: these and
‘UTF-8’ are likely to work fairly widely. However, this does not mean that all characters in
UTF-8 will be recognized, and the coverage of non-Latin characters9 is fairly low. Using LATEX
inputenx (see ?Rd2pdf in R) will give greater coverage of UTF-8.

The \enc command (see Section 2.8 [Insertions], page 59) can be used to provide transliter-
ations which will be used in conversions that do not support the declared encoding.

The LATEX conversion converts the file to UTF-8 from the declared encoding, and includes a

\inputencoding{utf8}

command, and this needs to be matched by a suitable invocation of the \usepackage{inputenc}
command. The R utility R CMD Rd2pdf looks at the converted code and includes the encodings
used: it might for example use

\usepackage[utf8]{inputenc}

(Use of utf8 as an encoding requires LATEX dated 2003/12/01 or later. Also, the use of Cyrillic
characters in ‘UTF-8’ appears to also need ‘\usepackage[T2A]{fontenc}’, and R CMD Rd2pdf

includes this conditionally on the file ‘t2aenc.def’ being present and environment variable
_R_CYRILLIC_TEX_ being set.)

Note that this mechanism works best with Latin letters: the coverage of UTF-8 in LATEX is
quite low.

2.15 Processing Rd format

There are several commands to process Rd files from the system command line.

Using R CMD Rdconv one can convert R documentation format to other formats, or extract
the executable examples for run-time testing. The currently supported conversions are to plain
text, HTML and LATEX as well as extraction of the examples.

R CMD Rd2pdf generates PDF output from documentation in ‘Rd’ files, which can be specified
either explicitly or by the path to a directory with the sources of a package. In the latter case, a
reference manual for all documented objects in the package is created, including the information
in the ‘DESCRIPTION’ files.

R CMD Sweave and R CMD Stangle process ‘Sweave’ documentation files (usually with exten-
sion ‘.Snw’ or ‘.Rnw’): R CMD Stangle is use to extract the R code fragments.

The exact usage and a detailed list of available options for all of these commands can be ob-
tained by running R CMD command --help, e.g., R CMD Rdconv --help. All available commands
can be listed using R --help (or Rcmd --help under Windows).

All of these work under Windows. You may need to have installed the the tools to build
packages from source as described in the “R Installation and Administration” manual, although
typically all that is needed is a LATEX installation.

9 R 2.9.0 added support for UTF-8 Cyrillic characters in LATEX, but on some OSes this will need Cyrillic
support added to LATEX, so environment variable _R_CYRILLIC_TEX_ may need to be set to a non-empty value
to enable this.

Chapter 2: Writing R documentation files 64

2.16 Editing Rd files

It can be very helpful to prepare ‘.Rd’ files using a editor which knows about their syntax and
will highlight commands, indent to show the structure and detect mis-matched braces, and so
on.

The system most commonly used for this is some version of Emacs (including XEmacs) with
the ESS package (http://ess.r-project.org/: it is often is installed with Emacs but may
need to be loaded, or even installed, separately).

Another is the Eclipse IDE with the Stat-ET plugin (http://www.walware.de/goto/
statet), and (on Windows only) Tinn-R (http://sourceforge.net/projects/tinn-r/).

People have also used LATEX mode in a editor, as ‘.Rd’ files are rather similar to LATEX files.

Some R front-ends provide editing support for ‘.Rd’ files, for example RStudio (http://
rstudio.org/).

http://ess.r-project.org/
http://www.walware.de/goto/statet
http://www.walware.de/goto/statet
http://sourceforge.net/projects/tinn-r/
http://rstudio.org/
http://rstudio.org/

Chapter 3: Tidying and profiling R code 65

3 Tidying and profiling R code

R code which is worth preserving in a package and perhaps making available for others to use
is worth documenting, tidying up and perhaps optimizing. The last two of these activities are
the subject of this chapter.

3.1 Tidying R code

R treats function code loaded from packages and code entered by users differently. By default
code entered by users has the source code stored internally, and when the function is listed, the
original source is reproduced. Loading code from a package (by default) discards the source
code, and the function listing is re-created from the parse tree of the function.

Normally keeping the source code is a good idea, and in particular it avoids comments being
removed from the source. However, we can make use of the ability to re-create a function
listing from its parse tree to produce a tidy version of the function, for example with consistent
indentation and spaces around operators. If the original source does not follow the standard
format this tidied version can be much easier to read.

We can subvert the keeping of source in two ways.

1. The option keep.source can be set to FALSE before the code is loaded into R.

2. The stored source code can be removed by calling the removeSource() function, for example
by

myfun <- removeSource(myfun)

In each case if we then list the function we will get the standard layout.

Suppose we have a file of functions ‘myfuns.R’ that we want to tidy up. Create a file ‘tidy.R’
containing

source("myfuns.R", keep.source = FALSE)

dump(ls(all = TRUE), file = "new.myfuns.R")

and run R with this as the source file, for example by R --vanilla < tidy.R or by pasting into
an R session. Then the file ‘new.myfuns.R’ will contain the functions in alphabetical order in
the standard layout. Warning: comments in your functions will be lost.

The standard format provides a good starting point for further tidying. Although the de-
parsing cannot do so, we recommend the consistent use of the preferred assignment operator ‘<-’
(rather than ‘=’) for assignment. Many package authors use a version of Emacs (on a Unix-alike
or Windows) to edit R code, using the ESS[S] mode of the ESS Emacs package. See Section “R
coding standards” in R Internals for style options within the ESS[S] mode recommended for the
source code of R itself.

3.2 Profiling R code for speed

It is possible to profile R code on Windows and most1 Unix-alike versions of R.

The command Rprof is used to control profiling, and its help page can be consulted for full
details. Profiling works by recording at fixed intervals2 (by default every 20 msecs) which R
function is being used, and recording the results in a file (default ‘Rprof.out’ in the working di-
rectory). Then the function summaryRprof or the command-line utility R CMD Rprof Rprof.out

can be used to summarize the activity.

As an example, consider the following code (from Venables & Ripley, 2002, pp. 225–6).

1 R has to be built to enable this, but the option ‘--enable-R-profiling’ is the default.
2 For Unix-alikes these are intervals of CPU time, and for Windows of elapsed time.

Chapter 3: Tidying and profiling R code 66

library(MASS); library(boot)

storm.fm <- nls(Time ~ b*Viscosity/(Wt - c), stormer,

start = c(b=30.401, c=2.2183))

st <- cbind(stormer, fit=fitted(storm.fm))

storm.bf <- function(rs, i) {

st$Time <- st$fit + rs[i]

tmp <- nls(Time ~ (b * Viscosity)/(Wt - c), st,

start = coef(storm.fm))

tmpmgetAllPars()

}

rs <- scale(resid(storm.fm), scale = FALSE) # remove the mean

Rprof("boot.out")

storm.boot <- boot(rs, storm.bf, R = 4999) # slow enough to profile

Rprof(NULL)

Having run this we can summarize the results by
R CMD Rprof boot.out

Each sample represents 0.02 seconds.

Total run time: 22.52 seconds.

Total seconds: time spent in function and callees.

Self seconds: time spent in function alone.

% total % self

total seconds self seconds name

100.0 25.22 0.2 0.04 "boot"

99.8 25.18 0.6 0.16 "statistic"

96.3 24.30 4.0 1.02 "nls"

33.9 8.56 2.2 0.56 "<Anonymous>"

32.4 8.18 1.4 0.36 "eval"

31.8 8.02 1.4 0.34 ".Call"

28.6 7.22 0.0 0.00 "eval.parent"

28.5 7.18 0.3 0.08 "model.frame"

28.1 7.10 3.5 0.88 "model.frame.default"

17.4 4.38 0.7 0.18 "sapply"

15.0 3.78 3.2 0.80 "nlsModel"

12.5 3.16 1.8 0.46 "lapply"

12.3 3.10 2.7 0.68 "assign"

...

% self % total

self seconds total seconds name

5.7 1.44 7.5 1.88 "inherits"

4.0 1.02 96.3 24.30 "nls"

3.6 0.92 3.6 0.92 "$"

3.5 0.88 28.1 7.10 "model.frame.default"

3.2 0.80 15.0 3.78 "nlsModel"

2.8 0.70 9.8 2.46 "qr.coef"

2.7 0.68 12.3 3.10 "assign"

2.5 0.64 2.5 0.64 ".Fortran"

2.5 0.62 7.1 1.80 "qr.default"

2.2 0.56 33.9 8.56 "<Anonymous>"

2.1 0.54 5.9 1.48 "unlist"

2.1 0.52 7.9 2.00 "FUN"

...

(Function names are not quoted on Windows.) This often produces surprising results and can
be used to identify bottlenecks or pieces of R code that could benefit from being replaced by
compiled code.

Two warnings: profiling does impose a small performance penalty, and the output files can
be very large if long runs are profiled at the default sampling interval.

Profiling short runs can sometimes give misleading results. R from time to time performs
garbage collection to reclaim unused memory, and this takes an appreciable amount of time

Chapter 3: Tidying and profiling R code 67

which profiling will charge to whichever function happens to provoke it. It may be useful to
compare profiling code immediately after a call to gc() with a profiling run without a preceding
call to gc.

More detailed analysis of the output can be achieved by the tools in the CRAN packages
proftools and profr: in particular these allow call graphs to be studied.

3.3 Profiling R code for memory use

Measuring memory use in R code is useful either when the code takes more memory than is
conveniently available or when memory allocation and copying of objects is responsible for slow
code. There are three ways to profile memory use over time in R code. All three require R
to have been compiled with ‘--enable-memory-profiling’, which is not the default, but is
currently used for the Mac OS X and Windows binary distributions. All can be misleading, for
different reasons.

In understanding the memory profiles it is useful to know a little more about R’s memory
allocation. Looking at the results of gc() shows a division of memory into Vcells used to store
the contents of vectors and Ncells used to store everything else, including all the administrative
overhead for vectors such as type and length information. In fact the vector contents are divided
into two pools. Memory for small vectors (by default 128 bytes or less) is obtained in large chunks
and then parcelled out by R; memory for larger vectors is obtained directly from the operating
system.

Some memory allocation is obvious in interpreted code, for example,
y <- x + 1

allocates memory for a new vector y. Other memory allocation is less obvious and occurs because
R is forced to make good on its promise of ‘call-by-value’ argument passing. When an argument
is passed to a function it is not immediately copied. Copying occurs (if necessary) only when
the argument is modified. This can lead to surprising memory use. For example, in the ‘survey’
package we have

print.svycoxph <- function (x, ...)

{

print(x$survey.design, varnames = FALSE, design.summaries = FALSE,

...)

x$call <- x$printcall

NextMethod()

}

It may not be obvious that the assignment to x$call will cause the entire object x to be copied.
This copying to preserve the call-by-value illusion is usually done by the internal C function
duplicate.

The main reason that memory-use profiling is difficult is garbage collection. Memory is
allocated at well-defined times in an R program, but is freed whenever the garbage collector
happens to run.

3.3.1 Memory statistics from Rprof

The sampling profiler Rprof described in the previous section can be given the option
memory.profiling=TRUE. It then writes out the total R memory allocation in small vectors,
large vectors, and cons cells or nodes at each sampling interval. It also writes out the number
of calls to the internal function duplicate, which is called to copy R objects. summaryRprof

provides summaries of this information. The main reason that this can be misleading is that
the memory use is attributed to the function running at the end of the sampling interval. A
second reason is that garbage collection can make the amount of memory in use decrease, so a
function appears to use little memory. Running under gctorture helps with both problems: it
slows down the code to effectively increase the sampling frequency and it makes each garbage

http://CRAN.R-project.org/package=proftools
http://CRAN.R-project.org/package=profr

Chapter 3: Tidying and profiling R code 68

collection release a smaller amount of memory. Changing the memory limits with mem.limits()

may also be useful, to see how the code would run under different memory conditions.

3.3.2 Tracking memory allocations

The second method of memory profiling uses a memory-allocation profiler, Rprofmem(), which
writes out a stack trace to an output file every time a large vector is allocated (with a user-
specified threshold for ‘large’) or a new page of memory is allocated for the R heap. Summary
functions for this output are still being designed.

Running the example from the previous section with

> Rprofmem("boot.memprof",threshold=1000)

> storm.boot <- boot(rs, storm.bf, R = 4999)

> Rprofmem(NULL)

shows that apart from some initial and final work in boot there are no vector allocations over
1000 bytes.

3.3.3 Tracing copies of an object

The third method of memory profiling involves tracing copies made of a specific (presumably
large) R object. Calling tracemem on an object marks it so that a message is printed to standard
output when the object is copied via duplicate or coercion to another type, or when a new
object of the same size is created in arithmetic operations. The main reason that this can be
misleading is that copying of subsets or components of an object is not tracked. It may be
helpful to use tracemem on these components.

In the example above we can run tracemem on the data frame st

> tracemem(st)

[1] "<0x9abd5e0>"

> storm.boot <- boot(rs, storm.bf, R = 4)

memtrace[0x9abd5e0->0x92a6d08]: statistic boot

memtrace[0x92a6d08->0x92a6d80]: $<-.data.frame $<- statistic boot

memtrace[0x92a6d80->0x92a6df8]: $<-.data.frame $<- statistic boot

memtrace[0x9abd5e0->0x9271318]: statistic boot

memtrace[0x9271318->0x9271390]: $<-.data.frame $<- statistic boot

memtrace[0x9271390->0x9271408]: $<-.data.frame $<- statistic boot

memtrace[0x9abd5e0->0x914f558]: statistic boot

memtrace[0x914f558->0x914f5f8]: $<-.data.frame $<- statistic boot

memtrace[0x914f5f8->0x914f670]: $<-.data.frame $<- statistic boot

memtrace[0x9abd5e0->0x972cbf0]: statistic boot

memtrace[0x972cbf0->0x972cc68]: $<-.data.frame $<- statistic boot

memtrace[0x972cc68->0x972cd08]: $<-.data.frame $<- statistic boot

memtrace[0x9abd5e0->0x98ead98]: statistic boot

memtrace[0x98ead98->0x98eae10]: $<-.data.frame $<- statistic boot

memtrace[0x98eae10->0x98eae88]: $<-.data.frame $<- statistic boot

The object is duplicated fifteen times, three times for each of the R+1 calls to storm.bf. This
is surprising, since none of the duplications happen inside nls. Stepping through storm.bf in
the debugger shows that all three happen in the line

st$Time <- st$fit + rs[i]

Data frames are slower than matrices and this is an example of why. Using
tracemem(st$Viscosity) does not reveal any additional copying.

3.4 Profiling compiled code

Profiling compiled code is highly system-specific, but this section contains some hints gleaned
from various R users. Some methods need to be different for a compiled executable and for
dynamic/shared libraries/objects as used by R packages. We know of no good way to profile
DLLs on Windows.

Chapter 3: Tidying and profiling R code 69

3.4.1 Linux

Options include using sprof for a shared object, and oprofile (see http: / /oprofile .

sourceforge.net/) and perf (see https://perf.wiki.kernel.org/index.php/Tutorial)
for any executable or shared object.

3.4.1.1 sprof

You can select shared objects to be profiled with sprof by setting the environment variable
LD_PROFILE. For example

% setenv LD_PROFILE /path/to/R_HOME/library/stats/libs/stats.so

R

... run the boot example

% sprof /path/to/R_HOME/library/stats/libs/stats.so \

/var/tmp/path/to/R_HOME/library/stats/libs/stats.so.profile

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

76.19 0.32 0.32 0 0.00 numeric_deriv

16.67 0.39 0.07 0 0.00 nls_iter

7.14 0.42 0.03 0 0.00 getListElement

rm /path/to/R_HOME/library/stats/libs/stats.so.profile

... to clean up ...

It is possible that root access is needed to create the directories used for the profile data.

3.4.1.2 oprofile

oprofile works by running a daemon which collects information. The daemon must be started
as root, e.g.

% su

% opcontrol --no-vmlinux

% (optional, some platforms) opcontrol --callgraph=5

% opcontrol --start

% exit

Then as a user

% R

... run the boot example

% opcontrol --dump

% opreport -l /path/to/R_HOME/library/stats/libs/stats.so

...

samples % symbol name

1623 75.5939 anonymous symbol from section .plt

349 16.2552 numeric_deriv

113 5.2632 nls_iter

62 2.8878 getListElement

% opreport -l /path/to/R_HOME/bin/exec/R

...

samples % symbol name

76052 11.9912 Rf_eval

http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/
https://perf.wiki.kernel.org/index.php/Tutorial

Chapter 3: Tidying and profiling R code 70

54670 8.6198 Rf_findVarInFrame3

37814 5.9622 Rf_allocVector

31489 4.9649 Rf_duplicate

28221 4.4496 Rf_protect

26485 4.1759 Rf_cons

23650 3.7289 Rf_matchArgs

21088 3.3250 Rf_findFun

19995 3.1526 findVarLocInFrame

14871 2.3447 Rf_evalList

13794 2.1749 R_Newhashpjw

13522 2.1320 R_gc_internal

...

Shutting down the profiler and clearing the records needs to be done as root. You can use
opannotate to annotate the source code with the times spent in each section, if the appropriate
source code was compiled with debugging support, and opreport -c to generate a callgraph (if
collection was enabled and the platform supports this).

3.4.2 Solaris

On 64-bit (only) Solaris, the standard profiling tool gprof collects information from shared
objects compiled with ‘-pg’.

3.4.3 Mac OS X

Developers have recommended sample (or Sampler.app, which is a GUI version) and Shark (see
http://developer.apple.com/tools/sharkoptimize.html and http://developer.apple.

com/tools/shark_optimize.html).

http://developer.apple.com/tools/sharkoptimize.html
http://developer.apple.com/tools/shark_optimize.html
http://developer.apple.com/tools/shark_optimize.html

Chapter 4: Debugging 71

4 Debugging

This chapter covers the debugging of R extensions, starting with the ways to get useful error
information and moving on to how to deal with errors that crash R. For those who prefer other
styles there are contributed packages such as debug on CRAN (described in an article in R-News
3/3). (There are notes from 2002 provided by Roger Peng at http://www.biostat.jhsph.

edu/~rpeng/docs/R-debug-tools.pdf which provide complementary examples to those given
here.)

4.1 Browsing

Most of the R-level debugging facilities are based around the built-in browser. This can be
used directly by inserting a call to browser() into the code of a function (for example, using
fix(my_function)). When code execution reaches that point in the function, control returns
to the R console with a special prompt. For example

> fix(summary.data.frame) ## insert browser() call after for() loop

> summary(women)

Called from: summary.data.frame(women)

Browse[1]> ls()

[1] "digits" "i" "lbs" "lw" "maxsum" "nm" "nr" "nv"

[9] "object" "sms" "z"

Browse[1]> maxsum

[1] 7

Browse[1]>

height weight

Min. :58.0 Min. :115.0

1st Qu.:61.5 1st Qu.:124.5

Median :65.0 Median :135.0

Mean :65.0 Mean :136.7

3rd Qu.:68.5 3rd Qu.:148.0

Max. :72.0 Max. :164.0

> rm(summary.data.frame)

At the browser prompt one can enter any R expression, so for example ls() lists the objects in
the current frame, and entering the name of an object will1 print it. The following commands
are also accepted

• n

Enter ‘step-through’ mode. In this mode, hitting return executes the next line of code
(more precisely one line and any continuation lines). Typing c will continue to the end of
the current context, e.g. to the end of the current loop or function.

• c

In normal mode, this quits the browser and continues execution, and just return works in
the same way. cont is a synonym.

• where

This prints the call stack. For example

> summary(women)

Called from: summary.data.frame(women)

Browse[1]> where

where 1: summary.data.frame(women)

1 With the exceptions of the commands listed below: an object of such a name can be printed via an explicit
call to print.

http://CRAN.R-project.org/package=debug
http://CRAN.R-project.org/doc/Rnews/Rnews_2003-3.pdf
http://CRAN.R-project.org/doc/Rnews/Rnews_2003-3.pdf
http://www.biostat.jhsph.edu/~rpeng/docs/R-debug-tools.pdf
http://www.biostat.jhsph.edu/~rpeng/docs/R-debug-tools.pdf

Chapter 4: Debugging 72

where 2: summary(women)

Browse[1]>

• Q

Quit both the browser and the current expression, and return to the top-level prompt.

Errors in code executed at the browser prompt will normally return control to the browser
prompt. Objects can be altered by assignment, and will keep their changed values when the
browser is exited. If really necessary, objects can be assigned to the workspace from the browser
prompt (by using <<- if the name is not already in scope).

4.2 Debugging R code

Suppose your R program gives an error message. The first thing to find out is what R was doing
at the time of the error, and the most useful tool is traceback(). We suggest that this is run
whenever the cause of the error is not immediately obvious. Daily, errors are reported to the R
mailing lists as being in some package when traceback() would show that the error was being
reported by some other package or base R. Here is an example from the regression suite.

> success <- c(13,12,11,14,14,11,13,11,12)

> failure <- c(0,0,0,0,0,0,0,2,2)

> resp <- cbind(success, failure)

> predictor <- c(0, 5^(0:7))

> glm(resp ~ 0+predictor, family = binomial(link="log"))

Error: no valid set of coefficients has been found: please supply starting values

> traceback()

3: stop("no valid set of coefficients has been found: please supply

starting values", call. = FALSE)

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,

mustart = mustart, offset = offset, family = family, control = control,

intercept = attr(mt, "intercept") > 0)

1: glm(resp ~ 0 + predictor, family = binomial(link ="log"))

The calls to the active frames are given in reverse order (starting with the innermost). So we
see the error message comes from an explicit check in glm.fit. (traceback() shows you all the
lines of the function calls, which can be limited by setting option ‘"deparse.max.lines"’.)

Sometimes the traceback will indicate that the error was detected inside compiled code, for
example (from ?nls)

Error in nls(y ~ a + b * x, start = list(a = 0.12345, b = 0.54321), trace = TRUE) :

step factor 0.000488281 reduced below ’minFactor’ of 0.000976563

> traceback()

2: .Call(R_nls_iter, m, ctrl, trace)

1: nls(y ~ a + b * x, start = list(a = 0.12345, b = 0.54321), trace = TRUE)

This will be the case if the innermost call is to .C, .Fortran, .Call, .External or .Internal,
but as it is also possible for such code to evaluate R expressions, this need not be the innermost
call, as in

> traceback()

9: gm(a, b, x)

8: .Call(R_numeric_deriv, expr, theta, rho, dir)

7: numericDeriv(form[[3]], names(ind), env)

6: getRHS()

5: assign("rhs", getRHS(), envir = thisEnv)

4: assign("resid", .swts * (lhs - assign("rhs", getRHS(), envir = thisEnv)),

envir = thisEnv)

3: function (newPars)

{

setPars(newPars)

assign("resid", .swts * (lhs - assign("rhs", getRHS(), envir = thisEnv)),

envir = thisEnv)

Chapter 4: Debugging 73

assign("dev", sum(resid^2), envir = thisEnv)

assign("QR", qr(.swts * attr(rhs, "gradient")), envir = thisEnv)

return(QR$rank < min(dim(QR$qr)))

}(c(-0.00760232418963883, 1.00119632515036))

2: .Call(R_nls_iter, m, ctrl, trace)

1: nls(yeps ~ gm(a, b, x), start = list(a = 0.12345, b = 0.54321))

Occasionally traceback() does not help, and this can be the case if S4 method dispatch is
involved. Consider the following example

> xyd <- new("xyloc", x=runif(20), y=runif(20))

Error in as.environment(pkg) : no item called "package:S4nswv"

on the search list

Error in initialize(value, ...) : S language method selection got

an error when called from internal dispatch for function ’initialize’

> traceback()

2: initialize(value, ...)

1: new("xyloc", x = runif(20), y = runif(20))

which does not help much, as there is no call to as.environment in initialize (and the note
“called from internal dispatch” tells us so). In this case we searched the R sources for the quoted
call, which occurred in only one place, methods:::.asEnvironmentPackage. So now we knew
where the error was occurring. (This was an unusually opaque example.)

The error message

evaluation nested too deeply: infinite recursion / options(expressions=)?

can be hard to handle with the default value (5000). Unless you know that there actually is
deep recursion going on, it can help to set something like

options(expressions=500)

and re-run the example showing the error.

Sometimes there is warning that clearly is the precursor to some later error, but it is not
obvious where it is coming from. Setting options(warn = 2) (which turns warnings into errors)
can help here.

Once we have located the error, we have some choices. One way to proceed is to find out
more about what was happening at the time of the crash by looking a post-mortem dump. To
do so, set options(error=dump.frames) and run the code again. Then invoke debugger() and
explore the dump. Continuing our example:

> options(error = dump.frames)

> glm(resp ~ 0 + predictor, family = binomial(link ="log"))

Error: no valid set of coefficients has been found: please supply starting values

which is the same as before, but an object called last.dump has appeared in the workspace.
(Such objects can be large, so remove it when it is no longer needed.) We can examine this at
a later time by calling the function debugger.

> debugger()

Message: Error: no valid set of coefficients has been found: please supply starting values

Available environments had calls:

1: glm(resp ~ 0 + predictor, family = binomial(link = "log"))

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart, mus

3: stop("no valid set of coefficients has been found: please supply starting values

Enter an environment number, or 0 to exit Selection:

which gives the same sequence of calls as traceback, but in outer-first order and with only the
first line of the call, truncated to the current width. However, we can now examine in more
detail what was happening at the time of the error. Selecting an environment opens the browser
in that frame. So we select the function call which spawned the error message, and explore some
of the variables (and execute two function calls).

Chapter 4: Debugging 74

Enter an environment number, or 0 to exit Selection: 2

Browsing in the environment with call:

glm.fit(x = X, y = Y, weights = weights, start = start, etas

Called from: debugger.look(ind)

Browse[1]> ls()

[1] "aic" "boundary" "coefold" "control" "conv"

[6] "dev" "dev.resids" "devold" "EMPTY" "eta"

[11] "etastart" "family" "fit" "good" "intercept"

[16] "iter" "linkinv" "mu" "mu.eta" "mu.eta.val"

[21] "mustart" "n" "ngoodobs" "nobs" "nvars"

[26] "offset" "start" "valideta" "validmu" "variance"

[31] "varmu" "w" "weights" "x" "xnames"

[36] "y" "ynames" "z"

Browse[1]> eta

1 2 3 4 5

0.000000e+00 -2.235357e-06 -1.117679e-05 -5.588393e-05 -2.794197e-04

6 7 8 9

-1.397098e-03 -6.985492e-03 -3.492746e-02 -1.746373e-01

Browse[1]> valideta(eta)

[1] TRUE

Browse[1]> mu

1 2 3 4 5 6 7 8

1.0000000 0.9999978 0.9999888 0.9999441 0.9997206 0.9986039 0.9930389 0.9656755

9

0.8397616

Browse[1]> validmu(mu)

[1] FALSE

Browse[1]> c

Available environments had calls:

1: glm(resp ~ 0 + predictor, family = binomial(link = "log"))

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart

3: stop("no valid set of coefficients has been found: please supply starting v

Enter an environment number, or 0 to exit Selection: 0

> rm(last.dump)

Because last.dump can be looked at later or even in another R session, post-mortem debug-
ging is possible even for batch usage of R. We do need to arrange for the dump to be saved:
this can be done either using the command-line flag ‘--save’ to save the workspace at the end
of the run, or via a setting such as

> options(error = quote({dump.frames(to.file=TRUE); q()}))

See the help on dump.frames for further options and a worked example.

An alternative error action is to use the function recover():

> options(error = recover)

> glm(resp ~ 0 + predictor, family = binomial(link = "log"))

Error: no valid set of coefficients has been found: please supply starting values

Enter a frame number, or 0 to exit

1: glm(resp ~ 0 + predictor, family = binomial(link = "log"))

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart

Selection:

which is very similar to dump.frames. However, we can examine the state of the program
directly, without dumping and re-loading the dump. As its help page says, recover can be
routinely used as the error action in place of dump.calls and dump.frames, since it behaves
like dump.frames in non-interactive use.

Post-mortem debugging is good for finding out exactly what went wrong, but not necessarily
why. An alternative approach is to take a closer look at what was happening just before the

Chapter 4: Debugging 75

error, and a good way to do that is to use debug. This inserts a call to the browser at the
beginning of the function, starting in step-through mode. So in our example we could use

> debug(glm.fit)

> glm(resp ~ 0 + predictor, family = binomial(link ="log"))

debugging in: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,

mustart = mustart, offset = offset, family = family, control = control,

intercept = attr(mt, "intercept") > 0)

debug: {

lists the whole function

Browse[1]>

debug: x <- as.matrix(x)

...

Browse[1]> start

[1] -2.235357e-06

debug: eta <- drop(x %*% start)

Browse[1]> eta

1 2 3 4 5

0.000000e+00 -2.235357e-06 -1.117679e-05 -5.588393e-05 -2.794197e-04

6 7 8 9

-1.397098e-03 -6.985492e-03 -3.492746e-02 -1.746373e-01

Browse[1]>

debug: mu <- linkinv(eta <- eta + offset)

Browse[1]> mu

1 2 3 4 5 6 7 8

1.0000000 0.9999978 0.9999888 0.9999441 0.9997206 0.9986039 0.9930389 0.9656755

9

0.8397616

(The prompt Browse[1]> indicates that this is the first level of browsing: it is possible to step
into another function that is itself being debugged or contains a call to browser().)

debug can be used for hidden functions and S3 methods by e.g.
debug(stats:::predict.Arima). (It cannot be used for S4 methods, but an alter-
native is given on the help page for debug.) Sometimes you want to debug a function defined
inside another function, e.g. the function arimafn defined inside arima. To do so, set debug on
the outer function (here arima) and step through it until the inner function has been defined.
Then call debug on the inner function (and use c to get out of step-through mode in the outer
function).

To remove debugging of a function, call undebug with the argument previously given to
debug; debugging otherwise lasts for the rest of the R session (or until the function is edited or
otherwise replaced).

trace can be used to temporarily insert debugging code into a function, for example to insert
a call to browser() just before the point of the error. To return to our running example

first get a numbered listing of the expressions of the function

> page(as.list(body(glm.fit)), method="print")

> trace(glm.fit, browser, at=22)

Tracing function "glm.fit" in package "stats"

[1] "glm.fit"

> glm(resp ~ 0 + predictor, family = binomial(link ="log"))

Tracing glm.fit(x = X, y = Y, weights = weights, start = start,

etastart = etastart, step 22

Called from: eval(expr, envir, enclos)

Browse[1]> n

and single-step from here.

> untrace(glm.fit)

For your own functions, it may be as easy to use fix to insert temporary code, but trace can help
with functions in a namespace (as can fixInNamespace). Alternatively, use trace(,edit=TRUE)
to insert code visually.

Chapter 4: Debugging 76

4.3 Using gctorture and valgrind

Errors in memory allocation and reading/writing outside arrays are very common causes of
crashes (e.g., segfaults) on some machines. Often the crash appears long after the invalid memory
access: in particular damage to the structures which R itself has allocated may only become
apparent at the next garbage collection (or even at later garbage collections after objects have
been deleted).

4.3.1 Using gctorture

We can help to detect memory problems earlier by running garbage collection as often as possible.
This is achieved by gctorture(TRUE), which as described on its help page

Provokes garbage collection on (nearly) every memory allocation. Intended to ferret
out memory protection bugs. Also makes R run very slowly, unfortunately.

The reference to ‘memory protection’ is to missing C-level calls to PROTECT/UNPROTECT (see
Section 5.9.1 [Garbage Collection], page 95) which if missing allow R objects to be garbage-
collected when they are still in use. But it can also help with other memory-related errors.

Normally running under gctorture(TRUE) will just produce a crash earlier in the R program,
hopefully close to the actual cause. See the next section for how to decipher such crashes.

It is possible to run all the examples, tests and vignettes covered by R CMD check under
gctorture(TRUE) by using the option ‘--use-gct’.

The function gctorture2 provides more refined control over the GC torture process. Its ar-
guments step, wait and inhibit_release are documented on its help page. Environment vari-
ables can also be used to turn on GC torture: R_GCTORTURE corresponds to the step argument
to gctorture, R_GCTORTURE_WAIT to wait, and R_GCTORTURE_INHIBIT_RELEASE to inhibit_

release.

If R is configured with ‘--enable-strict-barrier’ then a variety of tests for the integrity
of the write barrier are enabled. In addition tests to help detect protect issues are enabled as
well:

• All GCs are full GCs.

• New nodes in small node pages are marked as NEWSXP on creation.

• After a GC all free nodes that are not of type NEWSXP are marked as type FREESXP and
their previous type is recorded.

• Most calls to accessor functions check their SEXP inputs and SEXP outputs and signal an
error if a FREESXP is found. The address of the node and the old type are included in the
error message.

Used with a debugger and with gctorture or gctorture2 this mechanism can be helpful in
isolating memory protect problems.

4.3.2 Using valgrind

If you have access to Linux on an ‘ix86’, ‘x86_64’, ‘ppc32’, ‘ppc64’ or ‘s390x’ platform, or
Mac OS 10.5/6/7 on ‘i386’ or ‘x86_64’ you can use valgrind (http://www.valgrind.org/
, pronounced to rhyme with ‘tinned’) to check for possible problems. To run some examples
under valgrind use something like

R -d valgrind --vanilla < mypkg-Ex.R

R -d "valgrind --tool=memcheck --leak-check=full" --vanilla < mypkg-Ex.R

where ‘mypkg-Ex.R’ is a set of examples, e.g. the file created in ‘mypkg.Rcheck’ by R CMD check.
Occasionally this reports memory reads of ‘uninitialised values’ that are the result of compiler
optimization, so can be worth checking under an unoptimized compile: for maximal information
use a build with debugging symbols. We know there will be some small memory leaks from

http://www.valgrind.org/
http://www.valgrind.org/

Chapter 4: Debugging 77

readline and R itself — these are memory areas that are in use right up to the end of the R
session. Expect this to run around 20x slower than without valgrind, and in some cases even
slower than that. Earlier versions of valgrind were not happy with many optimized BLASes
that use CPU-specific instructions (3D now, SSE, SSE2, SSE3 and similar) so you may need to
build a version of R specifically to use with valgrind.

On Mac OS 10.6/7 the valgrind session is liable to hang when R terminates. This was an
issue in valgrind prior to 3.8.1 and can be circumvented by setting the environment variable
R_OSX_VALGRIND. It is still necessary to avoid the use of system() in the R session, directly or
indirectly.

On platforms supported by valgrind you can build a version of R with extra instrumentation
to help valgrind detect errors in the use of memory allocated from the R heap. The configure
option is ‘--with-valgrind-instrumentation=level’, where level is 0, 1, or 2. Level 0 is the
default and does not add any anything. Level 1 will detect use of uninitialised memory and
has little impact on speed. Level 2 will detect many other memory-use bugs but makes R much
slower when running under valgrind. Using this in conjunction with gctorture can be even
more effective (and even slower).

An example of valgrind output is

==12539== Invalid read of size 4

==12539== at 0x1CDF6CBE: csc_compTr (Mutils.c:273)

==12539== by 0x1CE07E1E: tsc_transpose (dtCMatrix.c:25)

==12539== by 0x80A67A7: do_dotcall (dotcode.c:858)

==12539== by 0x80CACE2: Rf_eval (eval.c:400)

==12539== by 0x80CB5AF: R_execClosure (eval.c:658)

==12539== by 0x80CB98E: R_execMethod (eval.c:760)

==12539== by 0x1B93DEFA: R_standardGeneric (methods_list_dispatch.c:624)

==12539== by 0x810262E: do_standardGeneric (objects.c:1012)

==12539== by 0x80CAD23: Rf_eval (eval.c:403)

==12539== by 0x80CB2F0: Rf_applyClosure (eval.c:573)

==12539== by 0x80CADCC: Rf_eval (eval.c:414)

==12539== by 0x80CAA03: Rf_eval (eval.c:362)

==12539== Address 0x1C0D2EA8 is 280 bytes inside a block of size 1996 alloc’d

==12539== at 0x1B9008D1: malloc (vg_replace_malloc.c:149)

==12539== by 0x80F1B34: GetNewPage (memory.c:610)

==12539== by 0x80F7515: Rf_allocVector (memory.c:1915)

...

This example is from an instrumented version of R, while tracking down a bug in the Matrix
package in January, 2006. The first line indicates that R has tried to read 4 bytes from a
memory address that it does not have access to. This is followed by a C stack trace showing
where the error occurred. Next is a description of the memory that was accessed. It is inside
a block allocated by malloc, called from GetNewPage, that is, in the internal R heap. Since
this memory all belongs to R, valgrind would not (and did not) detect the problem in an
uninstrumented build of R. In this example the stack trace was enough to isolate and fix the
bug, which was in tsc_transpose, and in this example running under gctorture() did not
provide any additional information. When the stack trace is not sufficiently informative the
option ‘--db-attach=yes’ to valgrind may be helpful. This starts a post-mortem debugger
(by default gdb) so that variables in the C code can be inspected (see Section 4.4.2 [Inspecting
R objects], page 79).

It is possible to run all the examples, tests and vignettes covered by R CMD check under
valgrind by using the option ‘--use-valgrind’. If you do this you will need to select the
valgrind options some other way, for example by having a ‘~/.valgrindrc’ file containing

--tool=memcheck

--memcheck:leak-check=full

or setting the environment variable VALGRIND_OPTS.

http://CRAN.R-project.org/package=Matrix

Chapter 4: Debugging 78

On Mac OS X you may need to ensure that debugging symbols are made available (so
valgrind reports line numbers in files). This can usually be done with the valgrind option
‘--dysmutil=yes’ to ask for the symbols to be dumped when the ‘.so’ file is loaded. This will
not work where packages are installed into a system area (such as the ‘R.framework’) and can
be slow. Installing packages with R CMD INSTALL --dsym installs the dumped symbols. (This
can also be done by setting environment variable PKG_MAKE_DSYM to a non-empty value.)

4.4 Debugging compiled code

Sooner or later programmers will be faced with the need to debug compiled code loaded into R.
This section is geared to platforms using gdb with code compiled by gcc, but similar things are
possible with front-ends to gdb such as ddd and insight, and other debuggers such as Sun’s
dbx.

Consider first ‘crashes’, that is when R terminated unexpectedly with an illegal memory
access (a ‘segfault’ or ‘bus error’), illegal instruction or similar. Unix-alike versions of R use a
signal handler which aims to give some basic information. For example

*** caught segfault ***

address 0x20000028, cause ’memory not mapped’

Traceback:

1: .identC(class1[[1]], class2)

2: possibleExtends(class(sloti), classi, ClassDef2 = getClassDef(classi,

where = where))

3: validObject(t(cu))

4: stopifnot(validObject(cu <- as(tu, "dtCMatrix")), validObject(t(cu)),

validObject(t(tu)))

Possible actions:

1: abort (with core dump)

2: normal R exit

3: exit R without saving workspace

4: exit R saving workspace

Selection: 3

Since the R process may be damaged, the only really safe option is the first.

Another cause of a ‘crash’ is to overrun the C stack. R tries to track that in its own code,
but it may happen in third-party compiled code. For modern POSIX-compliant OSes R can
safely catch that and return to the top-level prompt, so one gets something like

> .C("aaa")

Error: segfault from C stack overflow

>

However, C stack overflows are fatal under Windows and normally defeat attempts at debugging
on that platform.

If you have a crash which gives a core dump you can use something like

gdb /path/to/R/bin/exec/R core.12345

to examine the core dump. If core dumps are disabled or to catch errors that do not generate a
dump one can run R directly under a debugger by for example

$ R -d gdb --vanilla

...

gdb> run

Chapter 4: Debugging 79

at which point R will run normally, and hopefully the debugger will catch the error and return
to its prompt. This can also be used to catch infinite loops or interrupt very long-running code.
For a simple example

> for(i in 1:1e7) x <- rnorm(100)

[hit Ctrl-C]

Program received signal SIGINT, Interrupt.

0x00397682 in _int_free () from /lib/tls/libc.so.6

(gdb) where

#0 0x00397682 in _int_free () from /lib/tls/libc.so.6

#1 0x00397eba in free () from /lib/tls/libc.so.6

#2 0xb7cf2551 in R_gc_internal (size_needed=313)

at /users/ripley/R/svn/R-devel/src/main/memory.c:743

#3 0xb7cf3617 in Rf_allocVector (type=13, length=626)

at /users/ripley/R/svn/R-devel/src/main/memory.c:1906

#4 0xb7c3f6d3 in PutRNGstate ()

at /users/ripley/R/svn/R-devel/src/main/RNG.c:351

#5 0xb7d6c0a5 in do_random2 (call=0x94bf7d4, op=0x92580e8, args=0x9698f98,

rho=0x9698f28) at /users/ripley/R/svn/R-devel/src/main/random.c:183

...

Some “tricks” worth knowing follow:

4.4.1 Finding entry points in dynamically loaded code

Under most compilation environments, compiled code dynamically loaded into R cannot have
breakpoints set within it until it is loaded. To use a symbolic debugger on such dynamically
loaded code under Unix-alikes use

• Call the debugger on the R executable, for example by R -d gdb.

• Start R.

• At the R prompt, use dyn.load or library to load your shared object.

• Send an interrupt signal. This will put you back to the debugger prompt.

• Set the breakpoints in your code.

• Continue execution of R by typing signal 0RET.

Under Windows signals may not be able to be used, and if so the procedure is more com-
plicated. See the rw-FAQ and www.stats.uwo.ca/faculty/murdoch/software/debuggingR/

gdb.shtml.

4.4.2 Inspecting R objects when debugging

The key to inspecting R objects from compiled code is the function PrintValue(SEXP s) which
uses the normal R printing mechanisms to print the R object pointed to by s, or the safer version
R_PV(SEXP s) which will only print ‘objects’.

One way to make use of PrintValue is to insert suitable calls into the code to be debugged.

Another way is to call R_PV from the symbolic debugger. (PrintValue is hidden as Rf_

PrintValue.) For example, from gdb we can use

(gdb) p R_PV(ab)

using the object ab from the convolution example, if we have placed a suitable breakpoint in
the convolution C code.

To examine an arbitrary R object we need to work a little harder. For example, let

R> DF <- data.frame(a = 1:3, b = 4:6)

By setting a breakpoint at do_get and typing get("DF") at the R prompt, one can find out the
address in memory of DF, for example

http://www.stats.uwo.ca/faculty/murdoch/software/debuggingR/gdb.shtml
http://www.stats.uwo.ca/faculty/murdoch/software/debuggingR/gdb.shtml

Chapter 4: Debugging 80

Value returned is $1 = (SEXPREC *) 0x40583e1c

(gdb) p *$1

$2 = {

sxpinfo = {type = 19, obj = 1, named = 1, gp = 0,

mark = 0, debug = 0, trace = 0, = 0},

attrib = 0x40583e80,

u = {

vecsxp = {

length = 2,

type = {c = 0x40634700 "0>X@D>X@0>X@", i = 0x40634700,

f = 0x40634700, z = 0x40634700, s = 0x40634700},

truelength = 1075851272,

},

primsxp = {offset = 2},

symsxp = {pname = 0x2, value = 0x40634700, internal = 0x40203008},

listsxp = {carval = 0x2, cdrval = 0x40634700, tagval = 0x40203008},

envsxp = {frame = 0x2, enclos = 0x40634700},

closxp = {formals = 0x2, body = 0x40634700, env = 0x40203008},

promsxp = {value = 0x2, expr = 0x40634700, env = 0x40203008}

}

}

(Debugger output reformatted for better legibility).

Using R_PV() one can “inspect” the values of the various elements of the SEXP, for example,

(gdb) p R_PV($1->attrib)

$names

[1] "a" "b"

$row.names

[1] "1" "2" "3"

$class

[1] "data.frame"

$3 = void

To find out where exactly the corresponding information is stored, one needs to go “deeper”:

(gdb) set $a = $1->attrib

(gdb) p $a->u.listsxp.tagval->u.symsxp.pname->u.vecsxp.type.c

$4 = 0x405d40e8 "names"

(gdb) p $a->u.listsxp.carval->u.vecsxp.type.s[1]->u.vecsxp.type.c

$5 = 0x40634378 "b"

(gdb) p $1->u.vecsxp.type.s[0]->u.vecsxp.type.i[0]

$6 = 1

(gdb) p $1->u.vecsxp.type.s[1]->u.vecsxp.type.i[1]

$7 = 5

Another alternative available from R 2.13.0 on is the R_inspect function which shows the
low-level structure of the objects recursively (addresses differ from the above as this example is
created on another machine):

Chapter 4: Debugging 81

(gdb) p R_inspect($1)

@100954d18 19 VECSXP g0c2 [OBJ,NAM(2),ATT] (len=2, tl=0)

@100954d50 13 INTSXP g0c2 [NAM(2)] (len=3, tl=0) 1,2,3

@100954d88 13 INTSXP g0c2 [NAM(2)] (len=3, tl=0) 4,5,6

ATTRIB:

@102a70140 02 LISTSXP g0c0 []

TAG: @10083c478 01 SYMSXP g0c0 [MARK,NAM(2),gp=0x4000] "names"

@100954dc0 16 STRSXP g0c2 [NAM(2)] (len=2, tl=0)

@10099df28 09 CHARSXP g0c1 [MARK,gp=0x21] "a"

@10095e518 09 CHARSXP g0c1 [MARK,gp=0x21] "b"

TAG: @100859e60 01 SYMSXP g0c0 [MARK,NAM(2),gp=0x4000] "row.names"

@102a6f868 13 INTSXP g0c1 [NAM(2)] (len=2, tl=1) -2147483648,-3

TAG: @10083c948 01 SYMSXP g0c0 [MARK,gp=0x4000] "class"

@102a6f838 16 STRSXP g0c1 [NAM(2)] (len=1, tl=1)

@1008c6d48 09 CHARSXP g0c2 [MARK,gp=0x21,ATT] "data.frame"

In general the representation of each object follows the format:
@<address> <type-nr> <type-name> <gc-info> [<flags>] ...

For a more fine-grained control over the the depth of the recursion and the output of vectors
R_inspect3 takes additional two integer parameters: maximum depth and the maximal number
of elements that will be printed for scalar vectors. The defaults in R_inspect are currently -1
(no limit) and 5 respectively.

Chapter 5: System and foreign language interfaces 82

5 System and foreign language interfaces

5.1 Operating system access

Access to operating system functions is via the R functions system and system2. The details
will differ by platform (see the on-line help), and about all that can safely be assumed is that
the first argument will be a string command that will be passed for execution (not necessarily
by a shell) and the second argument to system will be internal which if true will collect the
output of the command into an R character vector.

The function system.time is available for timing. Timing on child processes is only available
on Unix-alikes, and may not be reliable there.

5.2 Interface functions .C and .Fortran

These two functions provide an interface to compiled code that has been linked into R, either
at build time or via dyn.load (see Section 5.3 [dyn.load and dyn.unload], page 84). They are
primarily intended for compiled C and FORTRAN 77 code respectively, but the .C function can
be used with other languages which can generate C interfaces, for example C++ (see Section 5.6
[Interfacing C++ code], page 90).

The first argument to each function is a character string specifying the symbol name as
known1 to C or FORTRAN, that is the function or subroutine name. (That the symbol is
loaded can be tested by, for example, is.loaded("cg"). Use the name you pass to .C or
.Fortran rather than the translated symbol name.)

There can be up to 65 further arguments giving R objects to be passed to compiled code.
Normally these are copied before being passed in, and copied again to an R list object when
the compiled code returns. If the arguments are given names, these are used as names for the
components in the returned list object (but not passed to the compiled code).

The following table gives the mapping between the modes of R atomic vectors and the types
of arguments to a C function or FORTRAN subroutine.

R storage mode C type FORTRAN type
logical int * INTEGER

integer int * INTEGER

double double * DOUBLE PRECISION

complex Rcomplex * DOUBLE COMPLEX

character char ** CHARACTER*255

raw unsigned char * none

Do please note the first two. On the 64-bit Unix/Linux/OS X platforms, long is 64-bit
whereas int and INTEGER are 32-bit. Code ported from S-PLUS (which uses long * for logical
and integer) will not work on all 64-bit platforms (although it may appear to work on some,
including Windows). Note also that if your compiled code is a mixture of C functions and
FORTRAN subprograms the argument types must match as given in the table above.

C type Rcomplex is a structure with double members r and i defined in the header file
‘R_ext/Complex.h’ included by ‘R.h’. (On most platforms this is stored in a way compatible
with the C99 double complex type: however, it may not be possible to pass Rcomplex to a C99
function expecting a double complex argument. Nor need it be compatible with a C++ complex

type. Moreover, the compatibility can depends on the optimization level set for the compiler.)

1 possibly after some platform-specific translation, e.g. adding leading or trailing underscores.

Chapter 5: System and foreign language interfaces 83

Only a single character string can be passed to or from FORTRAN, and the success of this
is compiler-dependent. Other R objects can be passed to .C, but it is much better to use one of
the other interfaces.

It is possible to pass numeric vectors of storage mode double to C as float * or to FORTRAN
as REAL by setting the attribute Csingle, most conveniently by using the R functions as.single,
single or mode. This is intended only to be used to aid interfacing existing C or FORTRAN
code.

Logical values are sent as 0 (FALSE), 1 (TRUE) or INT_MIN = -2147483648 (NA, but only if
NAOK is true), and the compiled code should return one of these three values. (Non-zero values
other than INT_MIN are mapped to TRUE.)

Unless formal argument NAOK is true, all the other arguments are checked for missing values
NA and for the IEEE special values NaN, Inf and -Inf, and the presence of any of these generates
an error. If it is true, these values are passed unchecked.

Argument DUP can be used to suppress copying. It is dangerous: see the on-line help for
arguments against its use. It is not possible to pass numeric vectors as float * or REAL if DUP
= FALSE, and character vectors cannot be used.

Argument PACKAGE confines the search for the symbol name to a specific shared object (or
use "base" for code compiled into R). Its use is highly desirable, as there is no way to avoid two
package writers using the same symbol name, and such name clashes are normally sufficient to
cause R to crash. (If it is not present and the call is from the body of a function defined in a
package namespace, the shared object loaded by the first (if any) useDynLib directive will be
used. However, prior to R 2.16.0 the detection of the correct namespace is unreliable and you
are strongly recommended to use the PACKAGE argument for packages to be used with earlier
versions of R.

Note that the compiled code should not return anything except through its arguments: C
functions should be of type void and FORTRAN subprograms should be subroutines.

To fix ideas, let us consider a very simple example which convolves two finite sequences.
(This is hard to do fast in interpreted R code, but easy in C code.) We could do this using .C

by

void convolve(double *a, int *na, double *b, int *nb, double *ab)

{

R_len_t i, j, nab = *na + *nb - 1;

for(i = 0; i < nab; i++)

ab[i] = 0.0;

for(i = 0; i < *na; i++)

for(j = 0; j < *nb; j++)

ab[i + j] += a[i] * b[j];

}

called from R by

conv <- function(a, b)

.C("convolve",

as.double(a),

as.integer(length(a)),

as.double(b),

as.integer(length(b)),

ab = double(length(a) + length(b) - 1))$ab

Note that we take care to coerce all the arguments to the correct R storage mode before
calling .C; mistakes in matching the types can lead to wrong results or hard-to-catch errors.

Chapter 5: System and foreign language interfaces 84

Special care is needed in handling character vector arguments in C (or C++). Since only
DUP = TRUE is allowed, on entry the contents of the elements are duplicated and assigned to the
elements of a char ** array, and on exit the elements of the C array are copied to create new
elements of a character vector. This means that the contents of the character strings of the
char ** array can be changed, including to \0 to shorten the string, but the strings cannot be
lengthened. It is possible to allocate a new string via R_alloc and replace an entry in the char
** array by the new string. However, when character vectors are used other than in a read-only
way, the .Call interface is much to be preferred.

Passing character strings to FORTRAN code needs even more care, and should be avoided
where possible. Only the first element of the character vector is passed in, as a fixed-length
(255) character array. Up to 255 characters are passed back to a length-one character vector.
How well this works (or even if it works at all) depends on the C and FORTRAN compilers on
each platform.

It is possible to pass R objects other than atomic vectors via .C, but this is only supported
for historical compatibility: use the .Call or .External interfaces for such objects. Any C/C++
code that includes ‘Rinternals.h’ should be called via .Call or .External.

5.3 dyn.load and dyn.unload

Compiled code to be used with R is loaded as a shared object (Unix-alikes including Mac OS
X, see Section 5.5 [Creating shared objects], page 89 for more information) or DLL (Windows).

The shared object/DLL is loaded by dyn.load and unloaded by dyn.unload. Unloading is
not normally necessary, but it is needed to allow the DLL to be re-built on some platforms,
including Windows.

The first argument to both functions is a character string giving the path to the object.
Programmers should not assume a specific file extension for the object/DLL (such as ‘.so’) but
use a construction like

file.path(path1, path2, paste0("mylib", .Platform$dynlib.ext))

for platform independence. On Unix-alike systems the path supplied to dyn.load can be an
absolute path, one relative to the current directory or, if it starts with ‘~’, relative to the user’s
home directory.

Loading is most often done automatically based on the useDynLib() declaration in the
‘NAMESPACE’ file, but may be done explicitly via a call to library.dynam. This has the form

library.dynam("libname", package, lib.loc)

where libname is the object/DLL name with the extension omitted. Note that the first argument,
chname, should not be package since this will not work if the package is installed under another
name.

Under some Unix-alike systems there is a choice of how the symbols are resolved when the
object is loaded, governed by the arguments local and now. Only use these if really neces-
sary: in particular using now=FALSE and then calling an unresolved symbol will terminate R
unceremoniously.

R provides a way of executing some code automatically when a object/DLL is either loaded
or unloaded. This can be used, for example, to register native routines with R’s dynamic symbol
mechanism, initialize some data in the native code, or initialize a third party library. On loading
a DLL, R will look for a routine within that DLL named R_init_lib where lib is the name of
the DLL file with the extension removed. For example, in the command

library.dynam("mylib", package, lib.loc)

R looks for the symbol named R_init_mylib. Similarly, when unloading the object, R looks for
a routine named R_unload_lib, e.g., R_unload_mylib. In either case, if the routine is present,

Chapter 5: System and foreign language interfaces 85

R will invoke it and pass it a single argument describing the DLL. This is a value of type DllInfo
which is defined in the ‘Rdynload.h’ file in the ‘R_ext’ directory.

Note that there are some implicit restrictions on this mechanism as the basename of the DLL
needs to be both a valid file name and valid as part of a C entry point (e.g. it cannot contain ‘.’):
for portable code it is best to confine DLL names to be ASCII alphanumeric plus underscore.
As from R 2.15.0, if entry point R_init_lib is not found it is also looked for with ‘.’ replaced
by ‘_’.

The following example shows templates for the initialization and unload routines for the
mylib DLL.� �

#include <R.h>

#include <Rinternals.h>

#include <R_ext/Rdynload.h>

void

R_init_mylib(DllInfo *info)

{

/* Register routines,

allocate resources. */

}

void

R_unload_mylib(DllInfo *info)

{

/* Release resources. */

}
 	
If a shared object/DLL is loaded more than once the most recent version is used. More

generally, if the same symbol name appears in several shared objects, the most recently loaded
occurrence is used. The PACKAGE argument and registration (see the next section) provide good
ways to avoid any ambiguity in which occurrence is meant.

On Unix-alikes the paths used to resolve dynamically linked dependent libraries are fixed (for
security reasons) when the process is launched, so dyn.load will only look for such libraries in
the locations set by the ‘R’ shell script (via ‘etc/ldpaths’) and in the OS-specific defaults.

Windows allows more control (and less security) over where dependent DLLs are looked for.
On all versions this includes the PATH environment variable, but with lowest priority: note that
it does not include the directory from which the DLL was loaded. It is possible to add a single
path with quite high priority via the DLLpath argument to dyn.load. This is (by default) used
by library.dynam to include the package’s ‘libs/i386’ or ‘libs/x64’ directory in the DLL
search path.

5.4 Registering native routines

By ‘native’ routine, we mean an entry point in compiled code.

In calls to .C, .Call, .Fortran and .External, R must locate the specified native routine by
looking in the appropriate shared object/DLL. By default, R uses the operating system-specific
dynamic loader to lookup the symbol in all loaded DLLs and elsewhere. Alternatively, the
author of the DLL can explicitly register routines with R and use a single, platform-independent
mechanism for finding the routines in the DLL. One can use this registration mechanism to
provide additional information about a routine, including the number and type of the arguments,

Chapter 5: System and foreign language interfaces 86

and also make it available to R programmers under a different name. In the future, registration
may be used to implement a form of “secure” or limited native access.

To register routines with R, one calls the C routine R_registerRoutines. This is typically
done when the DLL is first loaded within the initialization routine R_init_dll name described in
Section 5.3 [dyn.load and dyn.unload], page 84. R_registerRoutines takes 5 arguments. The
first is the DllInfo object passed by R to the initialization routine. This is where R stores the
information about the methods. The remaining 4 arguments are arrays describing the routines
for each of the 4 different interfaces: .C, .Call, .Fortran and .External. Each argument is a
NULL-terminated array of the element types given in the following table:

.C R_CMethodDef

.Call R_CallMethodDef

.Fortran R_FortranMethodDef

.External R_ExternalMethodDef

Currently, the R_ExternalMethodDef is the same as R_CallMethodDef type and contains
fields for the name of the routine by which it can be accessed in R, a pointer to the actual native
symbol (i.e., the routine itself), and the number of arguments the routine expects. For routines
with a variable number of arguments invoked via the .External interface, one specifies -1 for
the number of arguments which tells R not to check the actual number passed. For example, if
we had a routine named myCall defined as

SEXP myCall(SEXP a, SEXP b, SEXP c);

we would describe this as

R_CallMethodDef callMethods[] = {

{"myCall", (DL_FUNC) &myCall, 3},

{NULL, NULL, 0}

};

along with any other routines for the .Call interface.

Routines for use with the .C and .Fortran interfaces are described with similar data struc-
tures, but which have two additional fields for describing the type and “style” of each argument.
Each of these can be omitted. However, if specified, each should be an array with the same
number of elements as the number of parameters for the routine. The types array should con-
tain the SEXP types describing the expected type of the argument. (Technically, the elements
of the types array are of type R_NativePrimitiveArgType which is just an unsigned integer.)
The R types and corresponding type identifiers are provided in the following table:

numeric REALSXP

integer INTSXP

logical LGLSXP

single SINGLESXP

character STRSXP

list VECSXP

Consider a C routine, myC, declared as

void myC(double *x, int *n, char **names, int *status);

We would register it as

R_CMethodDef cMethods[] = {

{"myC", (DL_FUNC) &myC, 4, {REALSXP, INTSXP, STRSXP, LGLSXP}},

{NULL, NULL, 0}

};

One can also specify whether each argument is used simply as input, or as output, or as both
input and output. The style field in the description of a method is used for this. The purpose is

Chapter 5: System and foreign language interfaces 87

to allow2 R to transfer values more efficiently across the R-C/FORTRAN interface by avoiding
copying values when it is not necessary. Typically, one omits this information in the registration
data.

Having created the arrays describing each routine, the last step is to actually register them
with R. We do this by calling R_registerRoutines. For example, if we have the descriptions
above for the routines accessed by the .C and .Call we would use the following code:

void

R_init_myLib(DllInfo *info)

{

R_registerRoutines(info, cMethods, callMethods, NULL, NULL);

}

This routine will be invoked when R loads the shared object/DLL named myLib. The last
two arguments in the call to R_registerRoutines are for the routines accessed by .Fortran

and .External interfaces. In our example, these are given as NULL since we have no routines of
these types.

When R unloads a shared object/DLL, its registrations are automatically removed. There is
no other facility for unregistering a symbol.

Examples of registering routines can be found in the different packages in the R source tree
(e.g., stats). Also, there is a brief, high-level introduction in R News (volume 1/3, September
2001, pages 20–23, http://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf).

Once routines are registered, they can be referred to as R objects if they this is arranged in
the useDynLib call in the package’s ‘NAMESPACE’ file (see Section 1.6.4 [useDynLib], page 36).
This avoids the overhead of looking up an entry point each time it is used, and ensure that
the entry point in the package is the one used (without a PACKAGE = "pkg" argument). So for
example the stats package has

Refer to all C/Fortran routines by their name prefixed by C_

useDynLib(stats, .registration = TRUE, .fixes = "C_")

in its ‘NAMESPACE’ file, and then ansari.test’s default methods can contain

pansari <- function(q, m, n)

.C(C_pansari, as.integer(length(q)), p = as.double(q),

as.integer(m), as.integer(n))$p

5.4.1 Speed considerations

Sometimes registering native routines or using a PACKAGE argument can make a large difference.
The results can depend quite markedly on the OS (and even if it is 32- or 64-bit), on the version
of R and what else is loaded into R at the time.

To fix ideas, first consider x84_64 Mac OS 10.7 and R 2.15.2. A simple .Call function might
be

foo <- function(x) .Call("foo", x)

with C code

SEXP foo(SEXP x)

{

return x;

}

If we compile with by R CMD SHLIB foo.c, load the code by dyn.load("foo.so") and run
foo(pi) it took around 22 microseconds (us). Specifying the DLL by

2 but this is not currently done.

http://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf

Chapter 5: System and foreign language interfaces 88

foo2 <- function(x) .Call("foo", x, PACKAGE = "foo")

reduced the time to 1.7 us.

Now consider making these functions part of a package whose ‘NAMESPACE’ file uses
useDynlib(foo). This immediately reduces the running time as "foo" will be preferentially
looked for ‘foo.dll’. Without specifying PACKAGE it took about 5 us (it needs to fathom out
the appropriate DLL each time it is invoked but it does not need to search all DLLs), and with
the PACKAGE argument it is again about 1.7 us.

Next suppose the package has registered the native routine foo. Then foo() still has to find
the appropriate DLL but can get to the entry point in the DLL faster, in about 4.2 us. And
foo2() now takes about 1 us. If we register the symbols in the ‘NAMESPACE’ file and use

foo3 <- function(x) .Call(C_foo, x)

then the address for the native routine is looked up just once when the package is loaded,
and foo3(pi) takes about 0.8 us.

Versions using .C() rather than .Call() take about 0.2 us longer.

These are all quite small differences, but C routines are not uncommonly invoked millions of
times for run times of a few microseconds, and those doing such things may wish to be aware of
the differences.

On Linux and Solaris there is a much smaller overhead in looking up symbols so foo(pi)

takes around 5 times as long as foo3(pi).

Symbol lookup on Windows used to be far slower, so R maintains a small cache. If the cache
is currently empty enough that the symbol can be stored in the cache then the performance
is similar to Linux and Solaris: if not it may be slower. R’s own code always uses registered
symbols and so these never contribute to the cache: however many other packages do rely on
symbol lookup.

5.4.2 Linking to native routines in other packages

In addition to registering C routines to be called by R, it can at times be useful for one package
to make some of its C routines available to be called by C code in another package. An interface
to support this has been provided since R 2.4.0. The interface consists of two routines declared
as

void R_RegisterCCallable(const char *package, const char *name,

DL_FUNC fptr);

DL_FUNC R_GetCCallable(const char *package, const char *name);

A package packA that wants to make a C routine myCfun available to C code in other packages
would include the call

R_RegisterCCallable("packA", "myCfun", myCfun);

in its initialization function R_init_packA. A package packB that wants to use this routine
would retrieve the function pointer with a call of the form

p_myCfun = R_GetCCallable("packA", "myCfun");

The author of packB is responsible for ensuring that p_myCfun has an appropriate declaration.
In the future R may provide some automated tools to simplify exporting larger numbers of
routines.

A package that wishes to make use of header files in other packages needs to declare them as
a comma-separated list in the field LinkingTo in the ‘DESCRIPTION’ file. For example

Depends: link2, link3

LinkingTo: link2, link3

It must also ‘Depends’ on those packages for they have to be installed prior to this one, and
loaded prior to this one (so the path to their compiled code can be found).

Chapter 5: System and foreign language interfaces 89

This then arranges that the ‘include’ directories in the installed linked-to packages are added
to the include paths for C and C++ code.

A CRAN example of the use of this mechanism is package lme4, which links to Matrix.

5.5 Creating shared objects

Shared objects for loading into R can be created using R CMD SHLIB. This accepts as arguments
a list of files which must be object files (with extension ‘.o’) or sources for C, C++, FORTRAN
77, Fortran 9x, Objective C or Objective C++ (with extensions ‘.c’, ‘.cc’ or ‘.cpp’, ‘.f’, ‘.f90’
or ‘.f95’, ‘.m’, and ‘.mm’ or ‘.M’, respectively), or commands to be passed to the linker. See R

CMD SHLIB --help (or the R help for SHLIB) for usage information.

If compiling the source files does not work “out of the box”, you can specify additional flags
by setting some of the variables PKG_CPPFLAGS (for the C preprocessor, typically ‘-I’ flags),
PKG_CFLAGS, PKG_CXXFLAGS, PKG_FFLAGS, PKG_FCFLAGS, and PKG_OBJCFLAGS (for the C, C++,
FORTRAN 77, Fortran 9x, and Objective C compilers, respectively) in the file ‘Makevars’ in
the compilation directory (or, of course, create the object files directly from the command line).
Similarly, variable PKG_LIBS in ‘Makevars’ can be used for additional ‘-l’ and ‘-L’ flags to be
passed to the linker when building the shared object. (Supplying linker commands as arguments
to R CMD SHLIB will take precedence over PKG_LIBS in ‘Makevars’.)

It is possible to arrange to include compiled code from other languages by setting the macro
‘OBJECTS’ in file ‘Makevars’, together with suitable rules to make the objects.

Flags which are already set (for example in file ‘etcR_ARCH/Makeconf’) can be overridden
by the environment variable MAKEFLAGS (at least for systems using a POSIX-compliant make),
as in (Bourne shell syntax)

MAKEFLAGS="CFLAGS=-O3" R CMD SHLIB *.c

It is also possible to set such variables in personal ‘Makevars’ files, which are read after the
local ‘Makevars’ and the system makefiles or in a site-wide ‘Makevars.site’ file. See Section
“Customizing package compilation” in R Installation and Administration,

Note that as R CMD SHLIB uses Make, it will not remake a shared object just because the flags
have changed, and if ‘test.c’ and ‘test.f’ both exist in the current directory

R CMD SHLIB test.f

will compile ‘test.c’!

If the ‘src’ subdirectory of an add-on package contains source code with one of the extensions
listed above or a file ‘Makevars’ but not a file Makefile, R CMD INSTALL creates a shared object
(for loading into R through useDynlib in the ‘NAMESPACE’, or in the .onLoad function of the
package) using the R CMD SHLIB mechanism. If file ‘Makevars’ exists it is read first, then the
system makefile and then any personal ‘Makevars’ files.

If the ‘src’ subdirectory of package contains a file ‘Makefile’, this is used by R

CMD INSTALL in place of the R CMD SHLIB mechanism. make is called with makefiles
‘R_HOME/etcR_ARCH/Makeconf’, ‘src/Makefile’ and any personal ‘Makevars’ files (in that
order). The first target found in ‘src/Makefile’ is used.

It is better to make use of a Makevars file rather than a Makefile: the latter should be
needed only exceptionally.

Under Windows the same commands work, but ‘Makevars.win’ will be used in pref-
erence to ‘Makevars’, and only ‘src/Makefile.win’ will be used by R CMD INSTALL with
‘src/Makefile’ being ignored. For past experiences of building DLLs with a variety of com-
pilers, see file ‘README.packages’ and http: / /www .stats .uwo .ca /faculty /murdoch /

software/compilingDLLs/ . Under Windows you can supply an exports definitions file called
‘dllname-win.def’: otherwise all entry points in objects (but not libraries) supplied to R CMD

http://CRAN.R-project.org/package=lme4
http://CRAN.R-project.org/package=Matrix
http://www.stats.uwo.ca/faculty/murdoch/software/compilingDLLs/
http://www.stats.uwo.ca/faculty/murdoch/software/compilingDLLs/

Chapter 5: System and foreign language interfaces 90

SHLIB will be exported from the DLL. An example is ‘stats-win.def’ for the stats package: a
CRAN example in package fastICA.

If you feel tempted to read the source code and subvert these mechanisms, please resist. Far
too much developer time has been wasted in chasing down errors caused by failures to follow
this documentation, and even more by package authors demanding explanations as to why their
packages not longer work. In particular, undocumented environment or make variables are not
for use by package writers and are subject to change without notice.

5.6 Interfacing C++ code

Suppose we have the following hypothetical C++ library, consisting of the two files ‘X.h’ and
‘X.cpp’, and implementing the two classes X and Y which we want to use in R.� �

// X.h

class X {

public: X (); ~X ();

};

class Y {

public: Y (); ~Y ();

};
 	� �
// X.cpp

#include <R.h>

#include "X.h"

static Y y;

X::X() { REprintf("constructor X\n"); }

X::~X() { REprintf("destructor X\n"); }

Y::Y() { REprintf("constructor Y\n"); }

Y::~Y() { REprintf("destructor Y\n"); }
 	
To use with R, the only thing we have to do is writing a wrapper function and ensuring that

the function is enclosed in

extern "C" {

}

For example,

http://CRAN.R-project.org/package=fastICA

Chapter 5: System and foreign language interfaces 91� �
// X_main.cpp:

#include "X.h"

extern "C" {

void X_main () {

X x;

}

} // extern "C"
 	
Compiling and linking should be done with the C++ compiler-linker (rather than the C

compiler-linker or the linker itself); otherwise, the C++ initialization code (and hence the con-
structor of the static variable Y) are not called. On a properly configured system, one can simply
use

R CMD SHLIB X.cpp X_main.cpp

to create the shared object, typically ‘X.so’ (the file name extension may be different on your
platform). Now starting R yields

R version 2.14.1 Patched (2012-01-16 r58124)

Copyright (C) 2012 The R Foundation for Statistical Computing

...

Type "q()" to quit R.

R> dyn.load(paste("X", .Platform$dynlib.ext, sep = ""))

constructor Y

R> .C("X_main")

constructor X

destructor X

list()

R> q()

Save workspace image? [y/n/c]: y

destructor Y

The R for Windows FAQ (‘rw-FAQ’) contains details of how to compile this example under
Windows.

Earlier version of this example used C++ iostreams: this is best avoided. There is no guarantee
that the output will appear in the R console, and indeed it will not on the R for Windows console.
Use R code or the C entry points (see Section 6.5 [Printing], page 120) for all I/O if at all possible.
Examples have been seen where merely loading a DLL that contained calls to C++ I/O upset
R’s own C I/O (for example by resetting buffers on open files).

Most R header files can be included within C++ programs, and they should not be included
within an extern "C" block (as they include C++ system headers). It may not be possible to
include some R headers as they in turn include C header files that may cause conflicts—if this
happens, define ‘NO_C_HEADERS’ before including the R headers, and include C++ versions (such
as ‘cmath’) of the appropriate headers yourself before the R headers.

5.7 Fortran I/O

We have already warned against the use of C++ iostreams not least because output is not
guaranteed to appear on the R console, and this warning applies equally to Fortran (77 or 9x)
output to units * and 6. See Section 6.5.1 [Printing from FORTRAN], page 120, which describes
workarounds.

Chapter 5: System and foreign language interfaces 92

In the past most Fortran compilers implemented I/O on top of the C I/O system and so the
two interworked successfully. This was true of g77, but it is less true of gfortran as used in
gcc 4.y.z. In particular, any package that makes use of Fortran I/O will when compiled on
Windows interfere with C I/O: when the Fortran I/O is initialized (typically when the package
is loaded) the C stdout and stderr are switched to LF line endings. (Function init in file
‘src/modules/lapack/init_win.c’ shows how to mitigate this.) Even worse, prior to R 2.6.2
using Fortran output when running under the Windows GUI console (Rgui) would hang the R
session. This is now avoided by ensuring that the Fortran output is written to a file (‘fort.6’
in the working directory).

5.8 Linking to other packages

It is not in general possible to link a DLL in package packA to a DLL provided by package
packB (for the security reasons mentioned in Section 5.3 [dyn.load and dyn.unload], page 84,
and also because some platforms distinguish between shared objects and dynamic libraries), but
it is on Windows.

Note that there can be tricky versioning issues here, as package packB could be re-installed af-
ter package packA — it is desirable that the API provided by package packB remains backwards-
compatible.

5.8.1 Unix-alikes

It is possible to link a shared object in package packA to a library provided by package packB
under limited circumstances on a Unix-alike OS. There are severe portability issues, so this is
not recommended for a distributed package.

This is easiest if packB provides a static library ‘packB/libs/libpackB.a’. (This will need
to be compiled with PIC flags on platforms where it matters.) Then as the code from package
packB is incorporated when package packA is installed, we only need to find the static library
at install time for package packB. The only issue is to find package packB, and for that we can
ask R by something like

PKGB_PATH=‘echo ’cat(system.file("libs", .Platform$r_arch, package="packB", mustWork=TRUE))’ \

| "${R_HOME}/bin/R" --vanilla --slave‘

PKG_LIBS="$(PKGB_PATH)/libpackB.a"

which will give an empty path component if sub-architectures are not in use (but that works on
current platforms).

For a dynamic library ‘packB/libs/libpackB.so’ (‘packB/libs/libpackB.dylib’ on Mac
OS X) we could use

PKGB_PATH=‘echo ’cat(system.file("libs", .Platform$r_arch, package="packB", mustWork=TRUE))’ \

| "${R_HOME}/bin/R" --vanilla --slave‘

PKG_LIBS=-L"$(PKGB_PATH)" -lpackB

This will work for installation, but very likely not when package packB is loaded, as the path
to package packB’s ‘libs’ directory is not in the ld.so3 search path. You can arrange to put it
there before R is launched by setting (on some platforms) LD_RUN_PATH or LD_LIBRARY_PATH or
adding to the ld.so cache (see man ldconfig). On platforms that support it, the path to the
dynamic library can be hardcoded at install time (which assumes that the location of package
packB will not be changed) nor the package updated to a changed API). On systems with the
GNU linker (e.g. Linux) and some others (e.g. Mac OS X) this can be done by

PKGB_PATH=‘echo ’library(packB); cat(system.file("libs", package="packB"))’ \

| "${R_HOME}/bin/R" --vanilla --slave‘

3 dyld on Mac OS X, and DYLD_LIBRARY_PATHS below.

Chapter 5: System and foreign language interfaces 93

PKG_LIBS=-L"$(PKGB_PATH)" -rpath "$(PKGB_PATH)" -lpackB

and on some other systems (e.g. Solaris with its native linker) use -R rather than -rpath.

It may be possible to figure out what is required semi-automatically from the result of R CMD

libtool --config (look for ‘hardcode’).

Making headers provided by package packB available to the code to be compiled in package
packA can be done by the LinkingTo mechanism (see Section 5.4 [Registering native routines],
page 85).

5.8.2 Windows

Suppose package packA wants to make use of compiled code provided by packB in DLL
‘packB/libs/exB.dll’, possibly the package’s DLL ‘packB/libs/packB.dll’. (This can be
extended to linking to more than one package in a similar way.) There are three issues to be
addressed:

• Making headers provided by package packB available to the code to be compiled in package
packA.

This is done by the LinkingTo mechanism (see Section 5.4 [Registering native routines],
page 85).

• preparing packA.dll to link to ‘packB/libs/exB.dll’.

This needs an entry in ‘Makevars.win’ of the form

PKG_LIBS= -L<something> -lexB

and one possibility is that <something> is the path to the installed ‘pkgB/libs’ directory.
To find that we need to ask R where it is by something like

PKGB_PATH=‘echo ’library(packB); cat(system.file("libs", package="packB"))’ \

| rterm --vanilla --slave‘

PKG_LIBS= -L"$(PKGB_PATH)" -lexB

Another possibility is to use an import library, shipping with package packA an exports file
‘exB.def’. Then ‘Makevars.win’ could contain

PKG_LIBS= -L. -lexB

all: $(SHLIB) before

before: libexB.dll.a

libexB.dll.a: exB.def

and then installing package packA will make and use the import library for ‘exB.dll’. (One
way to prepare the exports file is to use ‘pexports.exe’.)

• loading ‘packA.dll’ which depends on ‘exB.dll’.

If exB.dll was used by package packB (because it is in fact ‘packB.dll’ or ‘packB.dll’
depends on it) and packB has been loaded before packA, then nothing more needs to be
done as ‘exB.dll’ will already be loaded into the R executable. (This is the most common
scenario).

More generally, we can use the DLLpath argument to library.dynam to ensure that exB.dll
is found, for example by setting

library.dynam("packA", pkg, lib,

DLLpath = system.file("libs", package="packB"))

Note that DLLpath can only set one path, and so for linking to two or more packages you
would need to resort to setting PATH.

Chapter 5: System and foreign language interfaces 94

5.9 Handling R objects in C

Using C code to speed up the execution of an R function is often very fruitful. Traditionally this
has been done via the .C function in R. However, if a user wants to write C code using internal
R data structures, then that can be done using the .Call and .External functions. The syntax
for the calling function in R in each case is similar to that of .C, but the two functions have
different C interfaces. Generally the .Call interface (which is modelled on the interface of the
same name in S version 4) is a little simpler to use, but .External is a little more general.

A call to .Call is very similar to .C, for example

.Call("convolve2", a, b)

The first argument should be a character string giving a C symbol name of code that has already
been loaded into R. Up to 65 R objects can passed as arguments. The C side of the interface is

#include <R.h>

#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b)

...

A call to .External is almost identical

.External("convolveE", a, b)

but the C side of the interface is different, having only one argument

#include <R.h>

#include <Rinternals.h>

SEXP convolveE(SEXP args)

...

Here args is a LISTSXP, a Lisp-style pairlist from which the arguments can be extracted.

In each case the R objects are available for manipulation via a set of functions and macros de-
fined in the header file ‘Rinternals.h’ or some S4-compatibility macros defined in ‘Rdefines.h’.
See Section 5.10 [Interface functions .Call and .External], page 103 for details on .Call and
.External.

Before you decide to use .Call or .External, you should look at other alternatives. First,
consider working in interpreted R code; if this is fast enough, this is normally the best option.
You should also see if using .C is enough. If the task to be performed in C is simple enough
involving only atomic vectors and requiring no call to R, .C suffices. The new interfaces are
relatively recent additions to S and R, and a great deal of useful code has been written using just
.C before they were available. The .Call and .External interfaces allow much more control,
but they also impose much greater responsibilities so need to be used with care. Neither .Call
nor .External copy their arguments: you should treat arguments you receive through these
interfaces as read-only.

There are two approaches that can be taken to handling R objects from within C code. The
first (historically) is to use the macros and functions that have been used to implement the
core parts of R through .Internal calls. A public4 subset of these is defined in the header file
‘Rinternals.h’ in the directory ‘R_INCLUDE_DIR’ (default ‘R_HOME/include’) that should be
available on any R installation.

Another approach is to use R versions of the macros and functions defined for the S version 4
interface .Call, which are defined in the header file ‘Rdefines.h’. This is a somewhat simpler
approach, and is to be preferred if the code is intended to be shared with S. However, it is less

4 see Chapter 6 [The R API], page 117: note that these are not all part of the API.

Chapter 5: System and foreign language interfaces 95

well documented and even less tested. Note too that some idiomatic S4 constructions with these
macros (such as assigning elements of character vectors or lists) are invalid in R.

A substantial amount of R is implemented using the functions and macros described here, so
the R source code provides a rich source of examples and “how to do it”: do make use of the
source code for inspirational examples.

It is necessary to know something about how R objects are handled in C code. All the R
objects you will deal with will be handled with the type SEXP5, which is a pointer to a structure
with typedef SEXPREC. Think of this structure as a variant type that can handle all the usual
types of R objects, that is vectors of various modes, functions, environments, language objects
and so on. The details are given later in this section and in Section “R Internal Structures” in
R Internals, but for most purposes the programmer does not need to know them. Think rather
of a model such as that used by Visual Basic, in which R objects are handed around in C code
(as they are in interpreted R code) as the variant type, and the appropriate part is extracted
for, for example, numerical calculations, only when it is needed. As in interpreted R code, much
use is made of coercion to force the variant object to the right type.

5.9.1 Handling the effects of garbage collection

We need to know a little about the way R handles memory allocation. The memory allocated for
R objects is not freed by the user; instead, the memory is from time to time garbage collected.
That is, some or all of the allocated memory not being used is freed or marked as re-usable.

The R object types are represented by a C structure defined by a typedef SEXPREC in
‘Rinternals.h’. It contains several things among which are pointers to data blocks and to
other SEXPRECs. A SEXP is simply a pointer to a SEXPREC.

If you create an R object in your C code, you must tell R that you are using the object by
using the PROTECT macro on a pointer to the object. This tells R that the object is in use so it
is not destroyed during garbage collection. Notice that it is the object which is protected, not
the pointer variable. It is a common mistake to believe that if you invoked PROTECT(p) at some
point then p is protected from then on, but that is not true once a new object is assigned to p.

Protecting an R object automatically protects all the R objects pointed to in the correspond-
ing SEXPREC, for example all elements of a protected list are automatically protected.

The programmer is solely responsible for housekeeping the calls to PROTECT. There is a
corresponding macro UNPROTECT that takes as argument an int giving the number of objects
to unprotect when they are no longer needed. The protection mechanism is stack-based, so
UNPROTECT(n) unprotects the last n objects which were protected. The calls to PROTECT and
UNPROTECT must balance when the user’s code returns. R will warn about "stack imbalance

in .Call" (or .External) if the housekeeping is wrong.

Here is a small example of creating an R numeric vector in C code. First we use the macros
in ‘Rinternals.h’:

#include <R.h>

#include <Rinternals.h>

SEXP ab;

....

PROTECT(ab = allocVector(REALSXP, 2));

REAL(ab)[0] = 123.45;

REAL(ab)[1] = 67.89;

UNPROTECT(1);

and then those in ‘Rdefines.h’:

5 SEXP is an acronym for S imple EXPression, common in LISP-like language syntaxes.

Chapter 5: System and foreign language interfaces 96

#include <R.h>

#include <Rdefines.h>

SEXP ab;

....

PROTECT(ab = NEW_NUMERIC(2));

NUMERIC_POINTER(ab)[0] = 123.45;

NUMERIC_POINTER(ab)[1] = 67.89;

UNPROTECT(1);

Now, the reader may ask how the R object could possibly get removed during those manipu-
lations, as it is just our C code that is running. As it happens, we can do without the protection
in this example, but in general we do not know (nor want to know) what is hiding behind the
R macros and functions we use, and any of them might cause memory to be allocated, hence
garbage collection and hence our object ab to be removed. It is usually wise to err on the side
of caution and assume that any of the R macros and functions might remove the object.

In some cases it is necessary to keep better track of whether protection is really needed. Be
particularly aware of situations where a large number of objects are generated. The pointer
protection stack has a fixed size (default 10,000) and can become full. It is not a good idea
then to just PROTECT everything in sight and UNPROTECT several thousand objects at the end. It
will almost invariably be possible to either assign the objects as part of another object (which
automatically protects them) or unprotect them immediately after use.

Protection is not needed for objects which R already knows are in use. In particular, this
applies to function arguments.

There is a less-used macro UNPROTECT_PTR(s) that unprotects the object pointed to by the
SEXP s, even if it is not the top item on the pointer protection stack. This is rarely needed
outside the parser (the R sources currently have three examples, one in ‘src/main/plot3d.c’).

Sometimes an object is changed (for example duplicated, coerced or grown) yet the current
value needs to be protected. For these cases PROTECT_WITH_INDEX saves an index of the pro-
tection location that can be used to replace the protected value using REPROTECT. For example
(from the internal code for optim)

PROTECT_INDEX ipx;

....

PROTECT_WITH_INDEX(s = eval(OS->R_fcall, OS->R_env), &ipx);

REPROTECT(s = coerceVector(s, REALSXP), ipx);

Note that it is dangerous to mix UNPROTECT_PTR with PROTECT_WITH_INDEX, as the former
changes the protection locations of objects that were protected after the one being unprotected.

5.9.2 Allocating storage

For many purposes it is sufficient to allocate R objects and manipulate those. There are quite
a few allocXxx functions defined in ‘Rinternals.h’—you may want to explore them. These
allocate R objects of various types, and for the standard vector types there are equivalent NEW_
XXX macros defined in ‘Rdefines.h’.

If storage is required for C objects during the calculations this is best allocating by calling
R_alloc; see Section 6.1 [Memory allocation], page 117. All of these memory allocation routines
do their own error-checking, so the programmer may assume that they will raise an error and
not return if the memory cannot be allocated.

Chapter 5: System and foreign language interfaces 97

5.9.3 Details of R types

Users of the ‘Rinternals.h’ macros will need to know how the R types are known internally:
if the ‘Rdefines.h’ macros are used then S4-compatible names are used.

The different R data types are represented in C by SEXPTYPE. Some of these are familiar
from R and some are internal data types. The usual R object modes are given in the table.

SEXPTYPE R equivalent
REALSXP numeric with storage mode double
INTSXP integer
CPLXSXP complex
LGLSXP logical
STRSXP character
VECSXP list (generic vector)
LISTSXP pairlist
DOTSXP a ‘...’ object
NILSXP NULL
SYMSXP name/symbol
CLOSXP function or function closure
ENVSXP environment

Among the important internal SEXPTYPEs are LANGSXP, CHARSXP, PROMSXP, etc. (Note: although
it is possible to return objects of internal types, it is unsafe to do so as assumptions are made
about how they are handled which may be violated at user-level evaluation.) More details are
given in Section “R Internal Structures” in R Internals.

Unless you are very sure about the type of the arguments, the code should check the data
types. Sometimes it may also be necessary to check data types of objects created by evaluating
an R expression in the C code. You can use functions like isReal, isInteger and isString to
do type checking. See the header file ‘Rinternals.h’ for definitions of other such functions. All
of these take a SEXP as argument and return 1 or 0 to indicate TRUE or FALSE. Once again
there are two ways to do this, and ‘Rdefines.h’ has macros such as IS_NUMERIC.

What happens if the SEXP is not of the correct type? Sometimes you have no other option
except to generate an error. You can use the function error for this. It is usually better to
coerce the object to the correct type. For example, if you find that an SEXP is of the type
INTEGER, but you need a REAL object, you can change the type by using, equivalently,

PROTECT(newSexp = coerceVector(oldSexp, REALSXP));

or

PROTECT(newSexp = AS_NUMERIC(oldSexp));

Protection is needed as a new object is created; the object formerly pointed to by the SEXP is
still protected but now unused.

All the coercion functions do their own error-checking, and generate NAs with a warning or
stop with an error as appropriate.

Note that these coercion functions are not the same as calling as.numeric (and so on) in R
code, as they do not dispatch on the class of the object. Thus it is normally preferable to do
the coercion in the calling R code.

So far we have only seen how to create and coerce R objects from C code, and how to extract
the numeric data from numeric R vectors. These can suffice to take us a long way in interfacing
R objects to numerical algorithms, but we may need to know a little more to create useful return
objects.

Chapter 5: System and foreign language interfaces 98

5.9.4 Attributes

Many R objects have attributes: some of the most useful are classes and the dim and dimnames

that mark objects as matrices or arrays. It can also be helpful to work with the names attribute
of vectors.

To illustrate this, let us write code to take the outer product of two vectors (which outer

and %o% already do). As usual the R code is simple

out <- function(x, y)

{

storage.mode(x) <- storage.mode(y) <- "double"

.Call("out", x, y)

}

where we expect x and y to be numeric vectors (possibly integer), possibly with names. This
time we do the coercion in the calling R code.

C code to do the computations is

#include <R.h>

#include <Rinternals.h>

SEXP out(SEXP x, SEXP y)

{

R_len_t i, j, nx = length(x), ny = length(y);

double tmp, *rx = REAL(x), *ry = REAL(y), *rans;

SEXP ans;

PROTECT(ans = allocMatrix(REALSXP, nx, ny));

rans = REAL(ans);

for(i = 0; i < nx; i++) {

tmp = rx[i];

for(j = 0; j < ny; j++)

rans[i + nx*j] = tmp * ry[j];

}

UNPROTECT(1);

return(ans);

}

Note the way REAL is used: as it is a function call it can be considerably faster to store the result
and index that.

However, we would like to set the dimnames of the result. Although allocMatrix provides
a short cut, we will show how to set the dim attribute directly.

#include <R.h>

#include <Rinternals.h>

SEXP out(SEXP x, SEXP y)

{

R_len_t i, j, nx = length(x), ny = length(y);

double tmp, *rx = REAL(x), *ry = REAL(y), *rans;

SEXP ans, dim, dimnames;

Chapter 5: System and foreign language interfaces 99

PROTECT(ans = allocVector(REALSXP, nx*ny));

rans = REAL(ans);

for(i = 0; i < nx; i++) {

tmp = rx[i];

for(j = 0; j < ny; j++)

rans[i + nx*j] = tmp * ry[j];

}

PROTECT(dim = allocVector(INTSXP, 2));

INTEGER(dim)[0] = nx; INTEGER(dim)[1] = ny;

setAttrib(ans, R_DimSymbol, dim);

PROTECT(dimnames = allocVector(VECSXP, 2));

SET_VECTOR_ELT(dimnames, 0, getAttrib(x, R_NamesSymbol));

SET_VECTOR_ELT(dimnames, 1, getAttrib(y, R_NamesSymbol));

setAttrib(ans, R_DimNamesSymbol, dimnames);

UNPROTECT(3);

return(ans);

}

This example introduces several new features. The getAttrib and setAttrib functions get
and set individual attributes. Their second argument is a SEXP defining the name in the symbol
table of the attribute we want; these and many such symbols are defined in the header file
‘Rinternals.h’.

There are shortcuts here too: the functions namesgets, dimgets and dimnamesgets are the
internal versions of the default methods of names<-, dim<- and dimnames<- (for vectors and
arrays), and there are functions such as GetMatrixDimnames and GetArrayDimnames.

What happens if we want to add an attribute that is not pre-defined? We need to add a
symbol for it via a call to install. Suppose for illustration we wanted to add an attribute
"version" with value 3.0. We could use

SEXP version;

PROTECT(version = allocVector(REALSXP, 1));

REAL(version)[0] = 3.0;

setAttrib(ans, install("version"), version);

UNPROTECT(1);

Using install when it is not needed is harmless and provides a simple way to retrieve the
symbol from the symbol table if it is already installed. However, the lookup takes a non-trivial
amount of time, so consider code such as

static SEXP VerSymbol = NULL;

...

if (VerSymbol == NULL) VerSymbol = install("version");

if it is to be done frequently.

5.9.5 Classes

In R the class is just the attribute named "class" so it can be handled as such, but there is a
shortcut classgets. Suppose we want to give the return value in our example the class "mat".
We can use

Chapter 5: System and foreign language interfaces 100

#include <R.h>

#include <Rdefines.h>

....

SEXP ans, dim, dimnames, class;

....

PROTECT(class = allocVector(STRSXP, 1));

SET_STRING_ELT(class, 0, mkChar("mat"));

classgets(ans, class);

UNPROTECT(4);

return(ans);

}

As the value is a character vector, we have to know how to create that from a C character array,
which we do using the function mkChar.

5.9.6 Handling lists

Some care is needed with lists, as R moved early on from using LISP-like lists (now called
“pairlists”) to S-like generic vectors. As a result, the appropriate test for an object of mode
list is isNewList, and we need allocVector(VECSXP, n) and not allocList(n).

List elements can be retrieved or set by direct access to the elements of the generic vector.
Suppose we have a list object

a <- list(f = 1, g = 2, h = 3)

Then we can access a$g as a[[2]] by

double g;

....

g = REAL(VECTOR_ELT(a, 1))[0];

This can rapidly become tedious, and the following function (based on one in package stats)
is very useful:

/* get the list element named str, or return NULL */

SEXP getListElement(SEXP list, const char *str)

{

SEXP elmt = R_NilValue, names = getAttrib(list, R_NamesSymbol);

for (R_len_t i = 0; i < length(list); i++)

if(strcmp(CHAR(STRING_ELT(names, i)), str) == 0) {

elmt = VECTOR_ELT(list, i);

break;

}

return elmt;

}

and enables us to say

double g;

g = REAL(getListElement(a, "g"))[0];

5.9.7 Handling character data

R character vectors are stored as STRSXPs, a vector type like VECSXP where every element is
of type CHARSXP. The CHARSXP elements of STRSXPs are accessed using STRING_ELT and SET_

STRING_ELT.

CHARSXPs are read-only objects and must never be modified. In particular, the C-style string
contained in a CHARSXP should be treated as read-only and for this reason the CHAR function used

Chapter 5: System and foreign language interfaces 101

to access the character data of a CHARSXP returns (const char *) (this also allows compilers to
issue warnings about improper use). Since CHARSXPs are immutable, the same CHARSXP can be
shared by any STRSXP needing an element representing the same string. R maintains a global
cache of CHARSXPs so that there is only ever one CHARSXP representing a given string in memory.

You can obtain a CHARSXP by calling mkChar and providing a nul-terminated C-style string.
This function will return a pre-existing CHARSXP if one with a matching string already exists,
otherwise it will create a new one and add it to the cache before returning it to you. The variant
mkCharLen can be used to create a CHARSXP from part of a buffer and will ensure null-termination.

Note that R character strings are restricted to 2^31 - 1 bytes, and hence so should the input
to mkChar be (C allows longer strings on 64-bit platforms): the function itself did not check
prior to R 2.15.1.

5.9.8 Finding and setting variables

It will be usual that all the R objects needed in our C computations are passed as arguments to
.Call or .External, but it is possible to find the values of R objects from within the C given
their names. The following code is the equivalent of get(name, envir = rho).

SEXP getvar(SEXP name, SEXP rho)

{

SEXP ans;

if(!isString(name) || length(name) != 1)

error("name is not a single string");

if(!isEnvironment(rho))

error("rho should be an environment");

ans = findVar(install(CHAR(STRING_ELT(name, 0))), rho);

Rprintf("first value is %f\n", REAL(ans)[0]);

return(R_NilValue);

}

The main work is done by findVar, but to use it we need to install name as a name in the
symbol table. As we wanted the value for internal use, we return NULL.

Similar functions with syntax

void defineVar(SEXP symbol, SEXP value, SEXP rho)

void setVar(SEXP symbol, SEXP value, SEXP rho)

can be used to assign values to R variables. defineVar creates a new binding or changes the value
of an existing binding in the specified environment frame; it is the analogue of assign(symbol,
value, envir = rho, inherits = FALSE), but unlike assign, defineVar does not make a copy
of the object value.6 setVar searches for an existing binding for symbol in rho or its enclosing
environments. If a binding is found, its value is changed to value. Otherwise, a new binding with
the specified value is created in the global environment. This corresponds to assign(symbol,

value, envir = rho, inherits = TRUE).

5.9.9 Some convenience functions

Some operations are done so frequently that there are convenience functions to handle them.
(All these are provided via the header file ‘Rinternals.h’.)

Suppose we wanted to pass a single logical argument ignore_quotes: we could use

int ign = asLogical(ignore_quotes);

if(ign == NA_LOGICAL) error("’ignore_quotes’ must be TRUE or FALSE");

6 You can assign a copy of the object in the environment frame rho using defineVar(symbol,

duplicate(value), rho)).

Chapter 5: System and foreign language interfaces 102

which will do any coercion needed (at least from a vector argument), and return NA_LOGICAL if
the value passed was NA or coercion failed. There are also asInteger, asReal and asComplex.
The function asChar returns a CHARSXP. All of these functions ignore any elements of an input
vector after the first.

To return a length-one real vector we can use

double x;

...

return ScalarReal(x);

and there are versions of this for all the atomic vector types (those for a length-one character
vector being ScalarString with argument a CHARSXP and mkString with argument const char

*).

Some of the isXXXX functions differ from their apparent R-level counterparts: for example
isVector is true for any atomic vector type (isVectorAtomic) and for lists and expressions
(isVectorList) (with no check on attributes). isMatrix is a test of a length-2 "dim" attribute.

There are a series of small macros/functions to help construct pairlists and language objects
(whose internal structures just differ by SEXPTYPE). Function CONS(u, v) is the basic building
block: is constructs a pairlist from u followed by v (which is a pairlist or R_NilValue). LCONS is
a variant that constructs a language object. Functions list1 to list5 construct a pairlist from
one to five items, and lang1 to lang6 do the same for a language object (a function to call plus
zero to five arguments). Functions elt and lastElt find the ith element and the last element
of a pairlist, and nthcdr returns a pointer to the nth position in the pairlist (whose CAR is the
nth item).

Functions str2type and type2str map R length-one character strings to and from SEXPTYPE

numbers, and type2char maps numbers to C character strings.

5.9.9.1 Semi-internal convenience functions

There is quite a collection of functions that may be used in your C code if you are willing to
adapt to rare “API” changes. These typically contain “workhorses” of their R counterparts.

Functions any_duplicated and any_duplicated3 are fast versions of R’s
any(duplicated(.)).

Function R_compute_identical corresponds to R’s identical function.

5.9.10 Named objects and copying

When assignments are done in R such as

x <- 1:10

y <- x

the named object is not necessarily copied, so after those two assignments y and x are bound to
the same SEXPREC (the structure a SEXP points to). This means that any code which alters one of
them has to make a copy before modifying the copy if the usual R semantics are to apply. Note
that whereas .C and .Fortran do copy their arguments (unless the dangerous dup = FALSE is
used), .Call and .External do not. So duplicate is commonly called on arguments to .Call

before modifying them.

However, at least some of this copying is unneeded. In the first assignment shown, x <- 1:10,
R first creates an object with value 1:10 and then assigns it to x but if x is modified no copy is
necessary as the temporary object with value 1:10 cannot be referred to again. R distinguishes
between named and unnamed objects via a field in a SEXPREC that can be accessed via the
macros NAMED and SET_NAMED. This can take values

0 The object is not bound to any symbol

Chapter 5: System and foreign language interfaces 103

1 The object has been bound to exactly one symbol

2 The object has potentially been bound to two or more symbols, and one should act
as if another variable is currently bound to this value.

Note the past tenses: R does not do full reference counting and there may currently be fewer
bindings.

It is safe to modify the value of any SEXP for which NAMED(foo) is zero, and if NAMED(foo) is
two, the value should be duplicated (via a call to duplicate) before any modification. Note that
it is the responsibility of the author of the code making the modification to do the duplication,
even if it is x whose value is being modified after y <- x.

The case NAMED(foo) == 1 allows some optimization, but it can be ignored (and duplication
done whenever NAMED(foo) > 0). (This optimization is not currently usable in user code.) It is
intended for use within replacement functions. Suppose we used

x <- 1:10

foo(x) <- 3

which is computed as

x <- 1:10

x <- "foo<-"(x, 3)

Then inside "foo<-" the object pointing to the current value of x will have NAMED(foo) as one,
and it would be safe to modify it as the only symbol bound to it is x and that will be rebound
immediately. (Provided the remaining code in "foo<-" make no reference to x, and no one is
going to attempt a direct call such as y <- "foo<-"(x).)

Currently all arguments to a .Call call will have NAMED set to 2, and so users must assume
that they need to be duplicated before alteration.

5.10 Interface functions .Call and .External

In this section we consider the details of the R/C interfaces.

These two interfaces have almost the same functionality. .Call is based on the interface
of the same name in S version 4, and .External is based on .Internal. .External is more
complex but allows a variable number of arguments.

5.10.1 Calling .Call

Let us convert our finite convolution example to use .Call, first using the ‘Rdefines.h’ macros.
The calling function in R is

conv <- function(a, b) .Call("convolve2", a, b)

which could hardly be simpler, but as we shall see all the type checking must be transferred to
the C code, which is

Chapter 5: System and foreign language interfaces 104

#include <R.h>

#include <Rdefines.h>

SEXP convolve2(SEXP a, SEXP b)

{

R_len_t i, j, na, nb, nab;

double *xa, *xb, *xab;

SEXP ab;

PROTECT(a = AS_NUMERIC(a));

PROTECT(b = AS_NUMERIC(b));

na = LENGTH(a); nb = LENGTH(b); nab = na + nb - 1;

PROTECT(ab = NEW_NUMERIC(nab));

xa = NUMERIC_POINTER(a); xb = NUMERIC_POINTER(b);

xab = NUMERIC_POINTER(ab);

for(i = 0; i < nab; i++) xab[i] = 0.0;

for(i = 0; i < na; i++)

for(j = 0; j < nb; j++) xab[i + j] += xa[i] * xb[j];

UNPROTECT(3);

return(ab);

}

Now for the version in ‘Rinternals.h’ style. Only the C code changes.

#include <R.h>

#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b)

{

R_len_t i, j, na, nb, nab;

double *xa, *xb, *xab;

SEXP ab;

PROTECT(a = coerceVector(a, REALSXP));

PROTECT(b = coerceVector(b, REALSXP));

na = length(a); nb = length(b); nab = na + nb - 1;

PROTECT(ab = allocVector(REALSXP, nab));

xa = REAL(a); xb = REAL(b);

xab = REAL(ab);

for(i = 0; i < nab; i++) xab[i] = 0.0;

for(i = 0; i < na; i++)

for(j = 0; j < nb; j++) xab[i + j] += xa[i] * xb[j];

UNPROTECT(3);

return(ab);

}

This is called in exactly the same way.

5.10.2 Calling .External

We can use the same example to illustrate .External. The R code changes only by replacing
.Call by .External

conv <- function(a, b) .External("convolveE", a, b)

but the main change is how the arguments are passed to the C code, this time as a single SEXP.
The only change to the C code is how we handle the arguments.

Chapter 5: System and foreign language interfaces 105

#include <R.h>

#include <Rinternals.h>

SEXP convolveE(SEXP args)

{

R_len_t i, j, na, nb, nab;

double *xa, *xb, *xab;

SEXP a, b, ab;

PROTECT(a = coerceVector(CADR(args), REALSXP));

PROTECT(b = coerceVector(CADDR(args), REALSXP));

...

}

Once again we do not need to protect the arguments, as in the R side of the interface they are
objects that are already in use. The macros

first = CADR(args);

second = CADDR(args);

third = CADDDR(args);

fourth = CAD4R(args);

provide convenient ways to access the first four arguments. More generally we can use the CDR

and CAR macros as in

args = CDR(args); a = CAR(args);

args = CDR(args); b = CAR(args);

which clearly allows us to extract an unlimited number of arguments (whereas .Call has a limit,
albeit at 65 not a small one).

More usefully, the .External interface provides an easy way to handle calls with a variable
number of arguments, as length(args) will give the number of arguments supplied (of which
the first is ignored). We may need to know the names (‘tags’) given to the actual arguments,
which we can by using the TAG macro and using something like the following example, that
prints the names and the first value of its arguments if they are vector types.

SEXP showArgs(SEXP args)

{

args = CDR(args); /* skip ’name’ */

for(int i = 0; args != R_NilValue; i++, args = CDR(args)) {

const char *name =

isNull(TAG(args)) ? "" : CHAR(PRINTNAME(TAG(args)));

SEXP el = CAR(args);

if (length(el) == 0) {

Rprintf("[%d] ’%s’ R type, length 0\n", i+1, name);

continue;

}

switch(TYPEOF(el)) {

case REALSXP:

Rprintf("[%d] ’%s’ %f\n", i+1, name, REAL(el)[0]);

break;

case LGLSXP:

case INTSXP:

Rprintf("[%d] ’%s’ %d\n", i+1, name, INTEGER(el)[0]);

break;

Chapter 5: System and foreign language interfaces 106

case CPLXSXP:

{

Rcomplex cpl = COMPLEX(el)[0];

Rprintf("[%d] ’%s’ %f + %fi\n", i+1, name, cpl.r, cpl.i);

}

break;

case STRSXP:

Rprintf("[%d] ’%s’ %s\n", i+1, name,

CHAR(STRING_ELT(el, 0)));

break;

default:

Rprintf("[%d] ’%s’ R type\n", i+1, name);

}

}

return(R_NilValue);

}

This can be called by the wrapper function

showArgs <- function(...) invisible(.External("showArgs", ...))

Note that this style of programming is convenient but not necessary, as an alternative style is

showArgs1 <- function(...) invisible(.Call("showArgs1", list(...)))

The (very similar) C code is in the scripts.

5.10.3 Missing and special values

One piece of error-checking the .C call does (unless NAOK is true) is to check for missing (NA)
and IEEE special values (Inf, -Inf and NaN) and give an error if any are found. With the .Call
interface these will be passed to our code. In this example the special values are no problem, as
IEC60559 arithmetic will handle them correctly. In the current implementation this is also true
of NA as it is a type of NaN, but it is unwise to rely on such details. Thus we will re-write the
code to handle NAs using macros defined in ‘R_exts/Arith.h’ included by ‘R.h’.

The code changes are the same in any of the versions of convolve2 or convolveE:

...

for(i = 0; i < na; i++)

for(j = 0; j < nb; j++)

if(ISNA(xa[i]) || ISNA(xb[j]) || ISNA(xab[i + j]))

xab[i + j] = NA_REAL;

else

xab[i + j] += xa[i] * xb[j];

...

Note that the ISNA macro, and the similar macros ISNAN (which checks for NaN or NA) and
R_FINITE (which is false for NA and all the special values), only apply to numeric values of type
double. Missingness of integers, logicals and character strings can be tested by equality to the
constants NA_INTEGER, NA_LOGICAL and NA_STRING. These and NA_REAL can be used to set
elements of R vectors to NA.

The constants R_NaN, R_PosInf and R_NegInf can be used to set doubles to the special
values.

5.11 Evaluating R expressions from C

The main function we will use is

Chapter 5: System and foreign language interfaces 107

SEXP eval(SEXP expr, SEXP rho);

the equivalent of the interpreted R code eval(expr, envir = rho), although we can also make
use of findVar, defineVar and findFun (which restricts the search to functions).

To see how this might be applied, here is a simplified internal version of lapply for expres-
sions, used as

a <- list(a = 1:5, b = rnorm(10), test = runif(100))

.Call("lapply", a, quote(sum(x)), new.env())

with C code

SEXP lapply(SEXP list, SEXP expr, SEXP rho)

{

R_len_t i, n = length(list);

SEXP ans;

if(!isNewList(list)) error("’list’ must be a list");

if(!isEnvironment(rho)) error("’rho’ should be an environment");

PROTECT(ans = allocVector(VECSXP, n));

for(i = 0; i < n; i++) {

defineVar(install("x"), VECTOR_ELT(list, i), rho);

SET_VECTOR_ELT(ans, i, eval(expr, rho));

}

setAttrib(ans, R_NamesSymbol, getAttrib(list, R_NamesSymbol));

UNPROTECT(1);

return(ans);

}

It would be closer to lapply if we could pass in a function rather than an expression. One
way to do this is via interpreted R code as in the next example, but it is possible (if somewhat
obscure) to do this in C code. The following is based on the code in ‘src/main/optimize.c’.

SEXP lapply2(SEXP list, SEXP fn, SEXP rho)

{

R_len_t i, n = length(list);

SEXP R_fcall, ans;

if(!isNewList(list)) error("’list’ must be a list");

if(!isFunction(fn)) error("’fn’ must be a function");

if(!isEnvironment(rho)) error("’rho’ should be an environment");

PROTECT(R_fcall = lang2(fn, R_NilValue));

PROTECT(ans = allocVector(VECSXP, n));

for(i = 0; i < n; i++) {

SETCADR(R_fcall, VECTOR_ELT(list, i));

SET_VECTOR_ELT(ans, i, eval(R_fcall, rho));

}

setAttrib(ans, R_NamesSymbol, getAttrib(list, R_NamesSymbol));

UNPROTECT(2);

return(ans);

}

used by

.Call("lapply2", a, sum, new.env())

Function lang2 creates an executable pairlist of two elements, but this will only be clear to
those with a knowledge of a LISP-like language.

Chapter 5: System and foreign language interfaces 108

As a more comprehensive example of constructing an R call in C code and evaluating, consider
the following fragment of printAttributes in ‘src/main/print.c’.

/* Need to construct a call to

print(CAR(a), digits=digits)

based on the R_print structure, then eval(call, env).

See do_docall for the template for this sort of thing.

*/

SEXP s, t;

PROTECT(t = s = allocList(3));

SET_TYPEOF(s, LANGSXP);

SETCAR(t, install("print")); t = CDR(t);

SETCAR(t, CAR(a)); t = CDR(t);

SETCAR(t, ScalarInteger(digits));

SET_TAG(t, install("digits"));

eval(s, env);

UNPROTECT(1);

At this point CAR(a) is the R object to be printed, the current attribute. There are three steps:
the call is constructed as a pairlist of length 3, the list is filled in, and the expression represented
by the pairlist is evaluated.

A pairlist is quite distinct from a generic vector list, the only user-visible form of list in R. A
pairlist is a linked list (with CDR(t) computing the next entry), with items (accessed by CAR(t))
and names or tags (set by SET_TAG). In this call there are to be three items, a symbol (pointing
to the function to be called) and two argument values, the first unnamed and the second named.
Setting the type to LANGSXP makes this a call which can be evaluated.

5.11.1 Zero-finding

In this section we re-work the example of Becker, Chambers & Wilks (1988, pp.~205–10) on
finding a zero of a univariate function. The R code and an example are

zero <- function(f, guesses, tol = 1e-7) {

f.check <- function(x) {

x <- f(x)

if(!is.numeric(x)) stop("Need a numeric result")

as.double(x)

}

.Call("zero", body(f.check), as.double(guesses), as.double(tol),

new.env())

}

cube1 <- function(x) (x^2 + 1) * (x - 1.5)

zero(cube1, c(0, 5))

where this time we do the coercion and error-checking in the R code. The C code is

SEXP mkans(double x)

{

SEXP ans;

PROTECT(ans = allocVector(REALSXP, 1));

REAL(ans)[0] = x;

UNPROTECT(1);

return ans;

}

Chapter 5: System and foreign language interfaces 109

double feval(double x, SEXP f, SEXP rho)

{

defineVar(install("x"), mkans(x), rho);

return(REAL(eval(f, rho))[0]);

}

SEXP zero(SEXP f, SEXP guesses, SEXP stol, SEXP rho)

{

double x0 = REAL(guesses)[0], x1 = REAL(guesses)[1],

tol = REAL(stol)[0];

double f0, f1, fc, xc;

if(tol <= 0.0) error("non-positive tol value");

f0 = feval(x0, f, rho); f1 = feval(x1, f, rho);

if(f0 == 0.0) return mkans(x0);

if(f1 == 0.0) return mkans(x1);

if(f0*f1 > 0.0) error("x[0] and x[1] have the same sign");

for(;;) {

xc = 0.5*(x0+x1);

if(fabs(x0-x1) < tol) return mkans(xc);

fc = feval(xc, f, rho);

if(fc == 0) return mkans(xc);

if(f0*fc > 0.0) {

x0 = xc; f0 = fc;

} else {

x1 = xc; f1 = fc;

}

}

}

5.11.2 Calculating numerical derivatives

We will use a longer example (by Saikat DebRoy) to illustrate the use of evaluation and
.External. This calculates numerical derivatives, something that could be done as effectively
in interpreted R code but may be needed as part of a larger C calculation.

An interpreted R version and an example are

Chapter 5: System and foreign language interfaces 110

numeric.deriv <- function(expr, theta, rho=sys.frame(sys.parent()))

{

eps <- sqrt(.Machine$double.eps)

ans <- eval(substitute(expr), rho)

grad <- matrix(, length(ans), length(theta),

dimnames=list(NULL, theta))

for (i in seq_along(theta)) {

old <- get(theta[i], envir=rho)

delta <- eps * max(1, abs(old))

assign(theta[i], old+delta, envir=rho)

ans1 <- eval(substitute(expr), rho)

assign(theta[i], old, envir=rho)

grad[, i] <- (ans1 - ans)/delta

}

attr(ans, "gradient") <- grad

ans

}

omega <- 1:5; x <- 1; y <- 2

numeric.deriv(sin(omega*x*y), c("x", "y"))

where expr is an expression, theta a character vector of variable names and rho the environment
to be used.

For the compiled version the call from R will be

.External("numeric_deriv", expr, theta, rho)

with example usage

.External("numeric_deriv", quote(sin(omega*x*y)),

c("x", "y"), .GlobalEnv)

Note the need to quote the expression to stop it being evaluated in the caller.

Here is the complete C code which we will explain section by section.

#include <R.h> /* for DOUBLE_EPS */

#include <Rinternals.h>

SEXP numeric_deriv(SEXP args)

{

SEXP theta, expr, rho, ans, ans1, gradient, par, dimnames;

double tt, xx, delta, eps = sqrt(DOUBLE_EPS), *rgr, *rans;

R_len_t start, i, j;

expr = CADR(args);

if(!isString(theta = CADDR(args)))

error("theta should be of type character");

if(!isEnvironment(rho = CADDDR(args)))

error("rho should be an environment");

PROTECT(ans = coerceVector(eval(expr, rho), REALSXP));

PROTECT(gradient = allocMatrix(REALSXP, LENGTH(ans), LENGTH(theta)));

rgr = REAL(gradient); rans = REAL(ans);

Chapter 5: System and foreign language interfaces 111

for(i = 0, start = 0; i < LENGTH(theta); i++, start += LENGTH(ans)) {

PROTECT(par = findVar(install(CHAR(STRING_ELT(theta, i))), rho));

tt = REAL(par)[0];

xx = fabs(tt);

delta = (xx < 1) ? eps : xx*eps;

REAL(par)[0] += delta;

PROTECT(ans1 = coerceVector(eval(expr, rho), REALSXP));

for(j = 0; j < LENGTH(ans); j++)

rgr[j + start] = (REAL(ans1)[j] - rans[j])/delta;

REAL(par)[0] = tt;

UNPROTECT(2); /* par, ans1 */

}

PROTECT(dimnames = allocVector(VECSXP, 2));

SET_VECTOR_ELT(dimnames, 1, theta);

dimnamesgets(gradient, dimnames);

setAttrib(ans, install("gradient"), gradient);

UNPROTECT(3); /* ans gradient dimnames */

return ans;

}

The code to handle the arguments is

expr = CADR(args);

if(!isString(theta = CADDR(args)))

error("theta should be of type character");

if(!isEnvironment(rho = CADDDR(args)))

error("rho should be an environment");

Note that we check for correct types of theta and rho but do not check the type of expr. That
is because eval can handle many types of R objects other than EXPRSXP. There is no useful
coercion we can do, so we stop with an error message if the arguments are not of the correct
mode.

The first step in the code is to evaluate the expression in the environment rho, by

PROTECT(ans = coerceVector(eval(expr, rho), REALSXP));

We then allocate space for the calculated derivative by

PROTECT(gradient = allocMatrix(REALSXP, LENGTH(ans), LENGTH(theta)));

The first argument to allocMatrix gives the SEXPTYPE of the matrix: here we want it to be
REALSXP. The other two arguments are the numbers of rows and columns.

for(i = 0, start = 0; i < LENGTH(theta); i++, start += LENGTH(ans)) {

PROTECT(par = findVar(install(CHAR(STRING_ELT(theta, i))), rho));

Here, we are entering a for loop. We loop through each of the variables. In the for loop, we
first create a symbol corresponding to the i’th element of the STRSXP theta. Here, STRING_
ELT(theta, i) accesses the i’th element of the STRSXP theta. Macro CHAR() extracts the
actual character representation7 of it: it returns a pointer. We then install the name and use
findVar to find its value.

tt = REAL(par)[0];

xx = fabs(tt);

delta = (xx < 1) ? eps : xx*eps;

REAL(par)[0] += delta;

PROTECT(ans1 = coerceVector(eval(expr, rho), REALSXP));

7 see Section 5.15 [Character encoding issues], page 116 for why this might not be what is required.

Chapter 5: System and foreign language interfaces 112

We first extract the real value of the parameter, then calculate delta, the increment to be
used for approximating the numerical derivative. Then we change the value stored in par (in
environment rho) by delta and evaluate expr in environment rho again. Because we are directly
dealing with original R memory locations here, R does the evaluation for the changed parameter
value.

for(j = 0; j < LENGTH(ans); j++)

rgr[j + start] = (REAL(ans1)[j] - rans[j])/delta;

REAL(par)[0] = tt;

UNPROTECT(2);

}

Now, we compute the i’th column of the gradient matrix. Note how it is accessed: R stores
matrices by column (like FORTRAN).

PROTECT(dimnames = allocVector(VECSXP, 2));

SET_VECTOR_ELT(dimnames, 1, theta);

dimnamesgets(gradient, dimnames);

setAttrib(ans, install("gradient"), gradient);

UNPROTECT(3);

return ans;

}

First we add column names to the gradient matrix. This is done by allocating a list (a VECSXP)
whose first element, the row names, is NULL (the default) and the second element, the col-
umn names, is set as theta. This list is then assigned as the attribute having the symbol
R_DimNamesSymbol. Finally we set the gradient matrix as the gradient attribute of ans, unpro-
tect the remaining protected locations and return the answer ans.

5.12 Parsing R code from C

Suppose an R extension want to accept an R expression from the user and evaluate it. The
previous section covered evaluation, but the expression will be entered as text and needs to be
parsed first. A small part of R’s parse interface is declared in header file ‘R_ext/Parse.h’8.

An example of the usage can be found in the (example) Windows package windlgs included
in the R source tree. The essential part is

8 This is only guaranteed to show the current interface: it is liable to change.

Chapter 5: System and foreign language interfaces 113

#include <R.h>

#include <Rinternals.h>

#include <R_ext/Parse.h>

SEXP menu_ttest3()

{

char cmd[256];

SEXP cmdSexp, cmdexpr, ans = R_NilValue;

ParseStatus status;

...

if(done == 1) {

PROTECT(cmdSexp = allocVector(STRSXP, 1));

SET_STRING_ELT(cmdSexp, 0, mkChar(cmd));

cmdexpr = PROTECT(R_ParseVector(cmdSexp, -1, &status, R_NilValue));

if (status != PARSE_OK) {

UNPROTECT(2);

error("invalid call %s", cmd);

}

/* Loop is needed here as EXPSEXP will be of length > 1 */

for(R_len_t i = 0; i < length(cmdexpr); i++)

ans = eval(VECTOR_ELT(cmdexpr, i), R_GlobalEnv);

UNPROTECT(2);

}

return ans;

}

Note that a single line of text may give rise to more than one R expression.

R_ParseVector is essentially the code used to implement parse(text=) at R level. The first
argument is a character vector (corresponding to text) and the second the maximal number
of expressions to parse (corresponding to n). The third argument is a pointer to a variable of
an enumeration type, and it is normal (as parse does) to regard all values other than PARSE_

OK as an error. Other values which might be returned are PARSE_INCOMPLETE (an incomplete
expression was found) and PARSE_ERROR (a syntax error), in both cases the value returned being
R_NilValue. The fourth argument is a srcfile object or the R NULL object (as in the example
above). In the former case a srcref attribute would be attached to the result, containing a list
of srcref objects of the same length as the expression, to allow it to be echoed with its original
formatting.

5.12.1 Accessing source references

The source references added by the parser are recorded by R’s evaluator as it evaluates code.
Two functions make these available to debuggers running C code:

SEXP R_GetCurrentSrcref(int skip);

This function checks R_Srcref and the current evaluation stack for entries that contain
source reference information. The skip argument tells how many source references to skip
before returning the SEXP of the srcref object, counting from the top of the stack. If skip <

0, abs(skip) locations are counted up from the bottom of the stack. If too few or no source
references are found, NULL is returned.

SEXP R_GetSrcFilename(SEXP srcref);

This function extracts the filename from the source reference for display, returning a length
1 character vector containing the filename. If no name is found, "" is returned.

Chapter 5: System and foreign language interfaces 114

5.13 External pointers and weak references

The SEXPTYPEs EXTPTRSXP and WEAKREFSXP can be encountered at R level, but are created in
C code.

External pointer SEXPs are intended to handle references to C structures such as ‘handles’,
and are used for this purpose in package RODBC for example. They are unusual in their copying
semantics in that when an R object is copied, the external pointer object is not duplicated. (For
this reason external pointers should only be used as part of an object with normal semantics,
for example an attribute or an element of a list.)

An external pointer is created by

SEXP R_MakeExternalPtr(void *p, SEXP tag, SEXP prot);

where p is the pointer (and hence this cannot portably be a function pointer), and tag and prot

are references to ordinary R objects which will remain in existence (be protected from garbage
collection) for the lifetime of the external pointer object. A useful convention is to use the tag

field for some form of type identification and the prot field for protecting the memory that the
external pointer represents, if that memory is allocated from the R heap. Both tag and prot

can be R_NilValue, and often are.

The elements of an external pointer can be accessed and set via

void *R_ExternalPtrAddr(SEXP s);

SEXP R_ExternalPtrTag(SEXP s);

SEXP R_ExternalPtrProtected(SEXP s);

void R_ClearExternalPtr(SEXP s);

void R_SetExternalPtrAddr(SEXP s, void *p);

void R_SetExternalPtrTag(SEXP s, SEXP tag);

void R_SetExternalPtrProtected(SEXP s, SEXP p);

Clearing a pointer sets its value to the C NULL pointer.

An external pointer object can have a finalizer, a piece of code to be run when the object is
garbage collected. This can be R code or C code, and the various interfaces are, respectively.

void R_RegisterFinalizerEx(SEXP s, SEXP fun, Rboolean onexit);

typedef void (*R_CFinalizer_t)(SEXP);

void R_RegisterCFinalizerEx(SEXP s, R_CFinalizer_t fun, Rboolean onexit);

The R function indicated by fun should be a function of a single argument, the object to be
finalized. R does not perform a garbage collection when shutting down, and the onexit argument
of the extended forms can be used to ask that the finalizer be run during a normal shutdown of
the R session. It is suggested that it is good practice to clear the pointer on finalization.

The only R level function for interacting with external pointers is reg.finalizer which can
be used to set a finalizer.

It is probably not a good idea to allow an external pointer to be saved and then reloaded,
but if this happens the pointer will be set to the C NULL pointer.

Weak references are used to allow the programmer to maintain information on entities without
preventing the garbage collection of the entities once they become unreachable.

A weak reference contains a key and a value. The value is reachable is if it either reachable
directly or via weak references with reachable keys. Once a value is determined to be unreachable
during garbage collection, the key and value are set to R_NilValue and the finalizer will be run
later in the garbage collection.

Weak reference objects are created by one of

SEXP R_MakeWeakRef(SEXP key, SEXP val, SEXP fin, Rboolean onexit);

SEXP R_MakeWeakRefC(SEXP key, SEXP val, R_CFinalizer_t fin,

http://CRAN.R-project.org/package=RODBC

Chapter 5: System and foreign language interfaces 115

Rboolean onexit);

where the R or C finalizer are specified in exactly the same way as for an external pointer object
(whose finalization interface is implemented via weak references).

The parts can be accessed via

SEXP R_WeakRefKey(SEXP w);

SEXP R_WeakRefValue(SEXP w);

void R_RunWeakRefFinalizer(SEXP w);

A toy example of the use of weak references can be found at www.stat.uiowa.edu/~luke/
R/references/weakfinex.html, but that is used to add finalizers to external pointers which
can now be done more directly. At the time of writing no CRAN or Bioconductor package uses
weak references.

5.13.1 An example

Package RODBC uses external pointers to maintain its channels, connections to databases.
There can be several connections open at once, and the status information for each is stored in
a C structure (pointed to by this_handle) in the code extract below) that is returned via an
external pointer as part of the RODBC ‘channel’ (as the "handle_ptr" attribute). The external
pointer is created by

SEXP ans, ptr;

PROTECT(ans = allocVector(INTSXP, 1));

ptr = R_MakeExternalPtr(thisHandle, install("RODBC_channel"), R_NilValue);

PROTECT(ptr);

R_RegisterCFinalizerEx(ptr, chanFinalizer, TRUE);

...

/* return the channel no */

INTEGER(ans)[0] = nChannels;

/* and the connection string as an attribute */

setAttrib(ans, install("connection.string"), constr);

setAttrib(ans, install("handle_ptr"), ptr);

UNPROTECT(3);

return ans;

Note the symbol given to identify the usage of the external pointer, and the use of the finalizer.
Since the final argument when registering the finalizer is TRUE, the finalizer will be run at the
the of the R session (unless it crashes). This is used to close and clean up the connection to the
database. The finalizer code is simply

static void chanFinalizer(SEXP ptr)

{

if(!R_ExternalPtrAddr(ptr)) return;

inRODBCClose(R_ExternalPtrAddr(ptr));

R_ClearExternalPtr(ptr); /* not really needed */

}

Clearing the pointer and checking for a NULL pointer avoids any possibility of attempting to
close an already-closed channel.

R’s connections provide another example of using external pointers, in that case purely to
be able to use a finalizer to close and destroy the connection if it is no longer is use.

5.14 Vector accessor functions

The vector accessors like REAL and INTEGER and VECTOR_ELT are functions when used in R
extensions. (For efficiency they are macros when used in the R source code, apart from SET_

STRING_ELT and SET_VECTOR_ELT which are always functions.)

http://www.stat.uiowa.edu/~luke/R/references/weakfinex.html
http://www.stat.uiowa.edu/~luke/R/references/weakfinex.html
http://CRAN.R-project.org/package=RODBC

Chapter 5: System and foreign language interfaces 116

The accessor functions check that they are being used on an appropriate type of SEXP.

If efficiency is essential, the macro versions of the accessors can be obtained by defining
‘USE_RINTERNALS’ before including ‘Rinternals.h’. If you find it necessary to do so, please do
test that your code compiles without ‘USE_RINTERNALS’ defined, as this provides a stricter test
that the accessors have been used correctly.

5.15 Character encoding issues

CHARSXPs can be marked as coming from a known encoding (Latin-1 or UTF-8). This is mainly
intended for human-readable output, and most packages can just treat such CHARSXPs as a
whole. However, if they need to be interpreted as characters or output at C level then it would
normally be correct to ensure that they are converted to the encoding of the current locale: this
can be done by accessing the data in the CHARSXP by translateChar rather than by CHAR. If
re-encoding is needed this allocates memory with R_alloc which thus persists to the end of the
.Call/.External call unless vmaxset is used.

There is a similar function translateCharUTF8 which converts to UTF-8: this has the ad-
vantage that a faithful translation is almost always possible (whereas only a few languages can
be represented in the encoding of the current locale unless that is UTF-8).

There is a public interface to the encoding marked on CHARXSXPs via

typedef enum {CE_NATIVE, CE_UTF8, CE_LATIN1, CE_SYMBOL, CE_ANY} cetype_t;

cetype_t getCharCE(SEXP);

SEXP mkCharCE(const char *, cetype_t);

Only CE_UTF8 and CE_LATIN1 are marked on CHARSXPs (and so Rf_getCharCE will only return
one of the first three), and these should only be used on non-ASCII strings. Value CE_SYMBOL is
used internally to indicate Adobe Symbol encoding. Value CE_ANY is used to indicate a character
string that will not need re-encoding – this is used for character strings known to be in ASCII,
and can also be used as an input parameter where the intention is that the string is treated as
a series of bytes. (See the comments under mkChar about the length of input allowed.)

Function

const char *reEnc(const char *x, cetype_t ce_in, cetype_t ce_out,

int subst);

can be used to re-encode character strings: like translateChar it returns a string allocated by
R_alloc. This can translate from CE_SYMBOL to CE_UTF8, but not conversely. Argument subst
controls what to do with untranslatable characters or invalid input: this is done byte-by-byte
with 1 indicates to output hex of the form <a0>, and 2 to replace by ., with any other value
causing the byte to produce no output.

There is also

SEXP mkCharLenCE(const char *, size_t, cetype_t);

to create marked character strings of a given length.

Chapter 6: The R API: entry points for C code 117

6 The R API: entry points for C code

There are a large number of entry points in the R executable/DLL that can be called from C
code (and some that can be called from FORTRAN code). Only those documented here are
stable enough that they will only be changed with considerable notice.

The recommended procedure to use these is to include the header file ‘R.h’ in your C code
by

#include <R.h>

This will include several other header files from the directory ‘R_INCLUDE_DIR/R_ext’, and there
are other header files there that can be included too, but many of the features they contain should
be regarded as undocumented and unstable.

An alternative is to include the header file ‘S.h’, which may be useful when porting code
from S. This includes rather less than ‘R.h’, and has some extra compatibility definitions (for
example the S_complex type from S).

The defines used for compatibility with S sometimes causes conflicts (notably with Windows
headers), and the known problematic defines can be removed by defining STRICT_R_HEADERS.

Most of these header files, including all those included by ‘R.h’, can be used from C++
code. Some others need to be included within an extern "C" declaration, and for clarity this is
advisable for all R header files.

Note: Because R re-maps many of its external names to avoid clashes with user
code, it is essential to include the appropriate header files when using these entry
points.

This remapping can cause problems1, and can be eliminated by defining R_NO_REMAP and
prepending ‘Rf_’ to all the function names used from ‘Rinternals.h’ and ‘R_ext/Error.h’.

We can classify the entry points as

API Entry points which are documented in this manual and declared in an installed
header file. These can be used in distributed packages and will only be changed
after deprecation.

public Entry points declared in an installed header file that are exported on all R platforms
but are not documented and subject to change without notice.

private Entry points that are used when building R and exported on all R platforms but
are not declared in the installed header files. Do not use these in distributed code.

hidden Entry points that are where possible (Windows and some modern Unix-alike com-
pilers/loaders when using R as a shared library) not exported.

6.1 Memory allocation

There are two types of memory allocation available to the C programmer, one in which R
manages the clean-up and the other in which user has full control (and responsibility).

6.1.1 Transient storage allocation

Here R will reclaim the memory at the end of the call to .C. Use

char *R_alloc(size_t n, int size)

which allocates n units of size bytes each. A typical usage (from package stats) is

1 Known problems are redefining error, length, vector and warning

Chapter 6: The R API: entry points for C code 118

x = (int *) R_alloc(nrows(merge)+2, sizeof(int));

(size_t is defined in ‘stddef.h’ which the header defining R_alloc includes.)

There is a similar call, S_alloc (for compatibility with older versions of S) which zeroes the
memory allocated,

char *S_alloc(long n, int size)

and

char *S_realloc(char *p, long new, long old, int size)

which changes the allocation size from old to new units, and zeroes the additional units.

For compatibility with current versions of S, header ‘S.h’ (only) defines wrapper macros
equivalent to

type* Salloc(long n, int type)

type* Srealloc(char *p, long new, long old, int type)

This memory is taken from the heap, and released at the end of the .C, .Call or .External
call. Users can also manage it, by noting the current position with a call to vmaxget and clearing
memory allocated subsequently by a call to vmaxset. This is only recommended for experts.

Note that this memory will be freed on error or user interrupt (if allowed: see Section 6.12
[Allowing interrupts], page 129).

Note that although n is long, there are limits imposed by R’s internal allocation mechanism.
These will only come into play on 64-bit systems, where the current limit for n is just under
16Gb.

6.1.2 User-controlled memory

The other form of memory allocation is an interface to malloc, the interface providing R error
handling. This memory lasts until freed by the user and is additional to the memory allocated
for the R workspace.

The interface functions are

type* Calloc(size_t n, type)

type* Realloc(any *p, size_t n, type)

void Free(any *p)

providing analogues of calloc, realloc and free. If there is an error during allocation it is
handled by R, so if these routines return the memory has been successfully allocated or freed.
Free will set the pointer p to NULL. (Some but not all versions of S do so.)

Users should arrange to Free this memory when no longer needed, including on error or user
interrupt. This can often be done most conveniently from an on.exit action in the calling R
function – see pwilcox for an example.

Do not assume that memory allocated by Calloc/Realloc comes from the same pool as used
by malloc: in particular do not use free or strdup with it.

These entry points need to be prefixed by R_ if STRICT_R_HEADERS has been defined.

6.2 Error handling

The basic error handling routines are the equivalents of stop and warning in R code, and use
the same interface.

void error(const char * format, ...);

void warning(const char * format, ...);

These have the same call sequences as calls to printf, but in the simplest case can be called
with a single character string argument giving the error message. (Don’t do this if the string
contains ‘%’ or might otherwise be interpreted as a format.)

Chapter 6: The R API: entry points for C code 119

If STRICT_R_HEADERS is not defined there is also an S-compatibility interface which uses calls
of the form

PROBLEM ERROR

MESSAGE WARN

PROBLEM RECOVER(NULL_ENTRY)

MESSAGE WARNING(NULL_ENTRY)

the last two being the forms available in all S versions. Here ‘......’ is a set of arguments to
printf, so can be a string or a format string followed by arguments separated by commas.

6.2.1 Error handling from FORTRAN

There are two interface function provided to call error and warning from FORTRAN code, in
each case with a simple character string argument. They are defined as

subroutine rexit(message)

subroutine rwarn(message)

Messages of more than 255 characters are truncated, with a warning.

6.3 Random number generation

The interface to R’s internal random number generation routines is

double unif_rand();

double norm_rand();

double exp_rand();

giving one uniform, normal or exponential pseudo-random variate. However, before these are
used, the user must call

GetRNGstate();

and after all the required variates have been generated, call

PutRNGstate();

These essentially read in (or create) .Random.seed and write it out after use.

File ‘S.h’ defines seed_in and seed_out for S-compatibility rather than GetRNGstate and
PutRNGstate. These take a long * argument which is ignored.

The random number generator is private to R; there is no way to select the kind of RNG or
set the seed except by evaluating calls to the R functions.

The C code behind R’s rxxx functions can be accessed by including the header file ‘Rmath.h’;
See Section 6.7.1 [Distribution functions], page 121. Those calls generate a single variate and
should also be enclosed in calls to GetRNGstate and PutRNGstate.

6.4 Missing and IEEE special values

A set of functions is provided to test for NA, Inf, -Inf and NaN. These functions are accessed
via macros:

ISNA(x) True for R’s NA only
ISNAN(x) True for R’s NA and IEEE NaN

R_FINITE(x) False for Inf, -Inf, NA, NaN

and via function R_IsNaN which is true for NaN but not NA.

Do use R_FINITE rather than isfinite or finite; the latter is often mendacious and
isfinite is only available on a some platforms, on which R_FINITE is a macro expanding
to isfinite.

Currently in C code ISNAN is a macro calling isnan. (Since this gives problems on some C++
systems, if the R headers is called from C++ code a function call is used.)

Chapter 6: The R API: entry points for C code 120

You can check for Inf or -Inf by testing equality to R_PosInf or R_NegInf, and set (but
not test) an NA as NA_REAL.

All of the above apply to double variables only. For integer variables there is a variable
accessed by the macro NA_INTEGER which can used to set or test for missingness.

6.5 Printing

The most useful function for printing from a C routine compiled into R is Rprintf. This is used
in exactly the same way as printf, but is guaranteed to write to R’s output (which might be
a GUI console rather than a file, and can be re-directed by sink). It is wise to write complete
lines (including the "\n") before returning to R. It is defined in ‘R_ext/Print.h’.

The function REprintf is similar but writes on the error stream (stderr) which may or may
not be different from the standard output stream.

Functions Rvprintf and REvprintf are analogues using the vprintf interface. Because
that is a C99 interface, they are only defined by ‘R_ext/Print.h’ in C++ code if the macro
R_USE_C99_IN_CXX is defined when it is included.

Another circumstance when it may be important to use these functions is when using parallel
computation on a cluster of computational nodes, as their output will be re-directed/logged
appropriately.

6.5.1 Printing from FORTRAN

On many systems FORTRAN write and print statements can be used, but the output may
not interleave well with that of C, and will be invisible on GUI interfaces. They are not portable
and best avoided.

Three subroutines are provided to ease the output of information from FORTRAN code.

subroutine dblepr(label, nchar, data, ndata)

subroutine realpr(label, nchar, data, ndata)

subroutine intpr (label, nchar, data, ndata)

Here label is a character label of up to 255 characters, nchar is its length (which can be -1 if the
whole label is to be used), and data is an array of length at least ndata of the appropriate type
(double precision, real and integer respectively). These routines print the label on one line
and then print data as if it were an R vector on subsequent line(s). They work with zero ndata,
and so can be used to print a label alone.

6.6 Calling C from FORTRAN and vice versa

Naming conventions for symbols generated by FORTRAN differ by platform: it is not safe to
assume that FORTRAN names appear to C with a trailing underscore. To help cover up the
platform-specific differences there is a set of macros that should be used.

F77_SUB(name)

to define a function in C to be called from FORTRAN

F77_NAME(name)

to declare a FORTRAN routine in C before use

F77_CALL(name)

to call a FORTRAN routine from C

F77_COMDECL(name)

to declare a FORTRAN common block in C

F77_COM(name)

to access a FORTRAN common block from C

Chapter 6: The R API: entry points for C code 121

On most current platforms these are all the same, but it is unwise to rely on this. Note that
names with underscores are not legal in FORTRAN 77, and are not portably handled by the
above macros. (Also, all FORTRAN names for use by R are lower case, but this is not enforced
by the macros.)

For example, suppose we want to call R’s normal random numbers from FORTRAN. We
need a C wrapper along the lines of

#include <R.h>

void F77_SUB(rndstart)(void) { GetRNGstate(); }

void F77_SUB(rndend)(void) { PutRNGstate(); }

double F77_SUB(normrnd)(void) { return norm_rand(); }

to be called from FORTRAN as in

subroutine testit()

double precision normrnd, x

call rndstart()

x = normrnd()

call dblepr("X was", 5, x, 1)

call rndend()

end

Note that this is not guaranteed to be portable, for the return conventions might not be com-
patible between the C and FORTRAN compilers used. (Passing values via arguments is safer.)

The standard packages, for example stats, are a rich source of further examples.

6.7 Numerical analysis subroutines

R contains a large number of mathematical functions for its own use, for example numerical
linear algebra computations and special functions.

The header files ‘R_ext/BLAS.h’, ‘R_ext/Lapack.h’ and ‘R_ext/Linpack.h’ contains decla-
rations of the BLAS, LAPACK and LINPACK/EISPACK linear algebra functions included in
R. These are expressed as calls to FORTRAN subroutines, and they will also be usable from
users’ FORTRAN code. Although not part of the official API, this set of subroutines is unlikely
to change (but might be supplemented).

The header file ‘Rmath.h’ lists many other functions that are available and documented in
the following subsections. Many of these are C interfaces to the code behind R functions, so the
R function documentation may give further details.

6.7.1 Distribution functions

The routines used to calculate densities, cumulative distribution functions and quantile functions
for the standard statistical distributions are available as entry points.

The arguments for the entry points follow the pattern of those for the normal distribution:

double dnorm(double x, double mu, double sigma, int give_log);

double pnorm(double x, double mu, double sigma, int lower_tail,

int give_log);

double qnorm(double p, double mu, double sigma, int lower_tail,

int log_p);

double rnorm(double mu, double sigma);

That is, the first argument gives the position for the density and CDF and probability for the
quantile function, followed by the distribution’s parameters. Argument lower tail should be
TRUE (or 1) for normal use, but can be FALSE (or 0) if the probability of the upper tail is desired
or specified.

Chapter 6: The R API: entry points for C code 122

Finally, give log should be non-zero if the result is required on log scale, and log p should
be non-zero if p has been specified on log scale.

Note that you directly get the cumulative (or “integrated”) hazard function, H(t) = − log(1−
F (t)), by using

- pdist(t, ..., /*lower_tail = */ FALSE, /* give_log = */ TRUE)

or shorter (and more cryptic) - pdist(t, ..., 0, 1).

The random-variate generation routine rnorm returns one normal variate. See Section 6.3
[Random numbers], page 119, for the protocol in using the random-variate routines.

Note that these argument sequences are (apart from the names and that rnorm has no n)
mainly the same as the corresponding R functions of the same name, so the documentation of the
R functions can be used. Note that the exponential and gamma distributions are parametrized
by scale rather than rate.

For reference, the following table gives the basic name (to be prefixed by ‘d’, ‘p’, ‘q’ or ‘r’
apart from the exceptions noted) and distribution-specific arguments for the complete set of
distributions.

beta beta a, b
non-central beta nbeta a, b, ncp
binomial binom n, p
Cauchy cauchy location, scale
chi-squared chisq df

non-central chi-squared nchisq df, ncp
exponential exp scale (and not rate)
F f n1, n2
non-central F nf n1, n2, ncp
gamma gamma shape, scale
geometric geom p

hypergeometric hyper NR, NB, n
logistic logis location, scale
lognormal lnorm logmean, logsd
negative binomial nbinom size, prob
normal norm mu, sigma
Poisson pois lambda

Student’s t t n

non-central t nt df, delta
Studentized range tukey (*) rr, cc, df
uniform unif a, b
Weibull weibull shape, scale
Wilcoxon rank sum wilcox m, n
Wilcoxon signed rank signrank n

Entries marked with an asterisk only have ‘p’ and ‘q’ functions available, and none of the
non-central distributions have ‘r’ functions. After a call to dwilcox, pwilcox or qwilcox the
function wilcox_free() should be called, and similarly for the signed rank functions.

6.7.2 Mathematical functions

[Function]double gammafn (double x)
[Function]double lgammafn (double x)
[Function]double digamma (double x)
[Function]double trigamma (double x)
[Function]double tetragamma (double x)

Chapter 6: The R API: entry points for C code 123

[Function]double pentagamma (double x)
[Function]double psigamma (double x, double deriv)

The Gamma function, the natural logarithm of its absolute value and first four derivatives
and the n-th derivative of Psi, the digamma function, which is the derivative of lgammafn. In
other words, digamma(x) is the same as (psigamma(x,0), trigamma(x) == psigamma(x,1),
etc.

[Function]double beta (double a, double b)
[Function]double lbeta (double a, double b)

The (complete) Beta function and its natural logarithm.

[Function]double choose (double n, double k)
[Function]double lchoose (double n, double k)

The number of combinations of k items chosen from from n and the natural logarithm of its
absolute value, generalized to arbitrary real n. k is rounded to the nearest integer (with a
warning if needed).

[Function]double bessel_i (double x, double nu, double expo)
[Function]double bessel_j (double x, double nu)
[Function]double bessel_k (double x, double nu, double expo)
[Function]double bessel_y (double x, double nu)

Bessel functions of types I, J, K and Y with index nu. For bessel_i and bessel_k there
is the option to return exp(-x) I(x; nu) or exp(x) K(x; nu) if expo is 2. (Use expo == 1 for
unscaled values.)

6.7.3 Numerical Utilities

There are a few other numerical utility functions available as entry points.

[Function]double R_pow (double x, double y)
[Function]double R_pow_di (double x, int i)

R_pow(x, y) and R_pow_di(x, i) compute x^y and x^i, respectively using R_FINITE checks
and returning the proper result (the same as R) for the cases where x, y or i are 0 or missing
or infinite or NaN.

[Function]double log1p (double x)
Computes log(1 + x) (log 1 plus x), accurately even for small x, i.e., |x| � 1.

This should be provided by your platform, in which case it is not included in ‘Rmath.h’, but
is (probably) in ‘math.h’ which ‘Rmath.h’ includes.

[Function]double log1pmx (double x)
Computes log(1 + x) - x (log 1 plus x minus x), accurately even for small x, i.e., |x| � 1.

[Function]double log1pexp (double x)
Computes log(1 + exp(x)) (log 1 plus exp), accurately, notably for large x, e.g., x > 720.

[Function]double expm1 (double x)
Computes exp(x) - 1 (exp x minus 1), accurately even for small x, i.e., |x| � 1.

This should be provided by your platform, in which case it is not included in ‘Rmath.h’, but
is (probably) in ‘math.h’ which ‘Rmath.h’ includes.

[Function]double lgamma1p (double x)
Computes log(gamma(x + 1)) (log(gamma(1 plus x))), accurately even for small x, i.e., 0 <
x < 0.5.

Chapter 6: The R API: entry points for C code 124

[Function]double logspace_add (double logx, double logy)
[Function]double logspace_sub (double logx, double logy)

Compute the log of a sum or difference from logs of terms, i.e., “x + y” as log (exp(logx)

+ exp(logy)) and “x - y” as log (exp(logx) - exp(logy)), without causing unnecessary
overflows or throwing away too much accuracy.

[Function]int imax2 (int x, int y)
[Function]int imin2 (int x, int y)
[Function]double fmax2 (double x, double y)
[Function]double fmin2 (double x, double y)

Return the larger (max) or smaller (min) of two integer or double numbers, respectively. Note
that fmax2 and fmin2 differ from C99’s fmax and fmin when one of the arguments is a NaN:
these versions return NaN.

[Function]double sign (double x)
Compute the signum function, where sign(x) is 1, 0, or −1, when x is positive, 0, or negative,
respectively, and NaN if x is a NaN.

[Function]double fsign (double x, double y)
Performs “transfer of sign” and is defined as |x| ∗ sign(y).

[Function]double fprec (double x, double digits)
Returns the value of x rounded to digits decimal digits (after the decimal point).

This is the function used by R’s round().

[Function]double fround (double x, double digits)
Returns the value of x rounded to digits significant decimal digits.

This is the function used by R’s signif().

[Function]double ftrunc (double x)
Returns the value of x truncated (to an integer value) towards zero.

6.7.4 Mathematical constants

R has a set of commonly used mathematical constants encompassing constants usually found
‘math.h’ and contains further ones that are used in statistical computations. All these are
defined to (at least) 30 digits accuracy in ‘Rmath.h’. The following definitions use ln(x) for the
natural logarithm (log(x) in R).

Name Definition (ln = log) round(value, 7)
M_E e 2.7182818
M_LOG2E log2(e) 1.4426950
M_LOG10E log10(e) 0.4342945
M_LN2 ln(2) 0.6931472
M_LN10 ln(10) 2.3025851
M_PI π 3.1415927
M_PI_2 π/2 1.5707963
M_PI_4 π/4 0.7853982
M_1_PI 1/π 0.3183099
M_2_PI 2/π 0.6366198
M_2_SQRTPI 2/sqrt(π) 1.1283792
M_SQRT2 sqrt(2) 1.4142136
M_SQRT1_2 1/sqrt(2) 0.7071068
M_SQRT_3 sqrt(3) 1.7320508

Chapter 6: The R API: entry points for C code 125

M_SQRT_32 sqrt(32) 5.6568542
M_LOG10_2 log10(2) 0.3010300
M_2PI 2π 6.2831853
M_SQRT_PI sqrt(π) 1.7724539
M_1_SQRT_2PI 1/sqrt(2π) 0.3989423
M_SQRT_2dPI sqrt(2/π) 0.7978846
M_LN_SQRT_PI ln(sqrt(π)) 0.5723649
M_LN_SQRT_2PI ln(sqrt(2π)) 0.9189385
M_LN_SQRT_PId2 ln(sqrt(π/2)) 0.2257914

There are a set of constants (PI, DOUBLE_EPS) (and so on) defined (unless STRICT_R_HEADERS
is defined) in the included header ‘R_ext/Constants.h’, mainly for compatibility with S.

Further, the included header ‘R_ext/Boolean.h’ has constants TRUE and FALSE = 0 of type
Rboolean in order to provide a way of using “logical” variables in C consistently.

6.8 Optimization

The C code underlying optim can be accessed directly. The user needs to supply a function to
compute the function to be minimized, of the type

typedef double optimfn(int n, double *par, void *ex);

where the first argument is the number of parameters in the second argument. The third
argument is a pointer passed down from the calling routine, normally used to carry auxiliary
information.

Some of the methods also require a gradient function

typedef void optimgr(int n, double *par, double *gr, void *ex);

which passes back the gradient in the gr argument. No function is provided for finite-differencing,
nor for approximating the Hessian at the result.

The interfaces (defined in header ‘R_ext/Applic.h’) are

• Nelder Mead:

void nmmin(int n, double *xin, double *x, double *Fmin, optimfn fn,

int *fail, double abstol, double intol, void *ex,

double alpha, double beta, double gamma, int trace,

int *fncount, int maxit);

• BFGS:

void vmmin(int n, double *x, double *Fmin,

optimfn fn, optimgr gr, int maxit, int trace,

int *mask, double abstol, double reltol, int nREPORT,

void *ex, int *fncount, int *grcount, int *fail);

• Conjugate gradients:

void cgmin(int n, double *xin, double *x, double *Fmin,

optimfn fn, optimgr gr, int *fail, double abstol,

double intol, void *ex, int type, int trace,

int *fncount, int *grcount, int maxit);

• Limited-memory BFGS with bounds:

void lbfgsb(int n, int lmm, double *x, double *lower,

double *upper, int *nbd, double *Fmin, optimfn fn,

optimgr gr, int *fail, void *ex, double factr,

double pgtol, int *fncount, int *grcount,

int maxit, char *msg, int trace, int nREPORT);

• Simulated annealing:

Chapter 6: The R API: entry points for C code 126

void samin(int n, double *x, double *Fmin, optimfn fn, int maxit,

int tmax, double temp, int trace, void *ex);

Many of the arguments are common to the various methods. n is the number of parameters, x
or xin is the starting parameters on entry and x the final parameters on exit, with final value
returned in Fmin. Most of the other parameters can be found from the help page for optim: see
the source code ‘src/appl/lbfgsb.c’ for the values of nbd, which specifies which bounds are
to be used.

6.9 Integration

The C code underlying integrate can be accessed directly. The user needs to supply a vector-
izing C function to compute the function to be integrated, of the type

typedef void integr_fn(double *x, int n, void *ex);

where x[] is both input and output and has length n, i.e., a C function, say fn, of type integr_
fn must basically do for(i in 1:n) x[i] := f(x[i], ex). The vectorization requirement can
be used to speed up the integrand instead of calling it n times. Note that in the current
implementation built on QUADPACK, n will be either 15 or 21. The ex argument is a pointer
passed down from the calling routine, normally used to carry auxiliary information.

There are interfaces (defined in header ‘R_ext/Applic.h’) for definite and for indefinite
integrals. ‘Indefinite’ means that at least one of the integration boundaries is not finite.

• Finite:

void Rdqags(integr_fn f, void *ex, double *a, double *b,

double *epsabs, double *epsrel,

double *result, double *abserr, int *neval, int *ier,

int *limit, int *lenw, int *last,

int *iwork, double *work);

• Indefinite:

void Rdqagi(integr_fn f, void *ex, double *bound, int *inf,

double *epsabs, double *epsrel,

double *result, double *abserr, int *neval, int *ier,

int *limit, int *lenw, int *last,

int *iwork, double *work);

Only the 3rd and 4th argument differ for the two integrators; for the definite integral, using
Rdqags, a and b are the integration interval bounds, whereas for an indefinite integral, using
Rdqagi, bound is the finite bound of the integration (if the integral is not doubly-infinite) and
inf is a code indicating the kind of integration range,

inf = 1 corresponds to (bound, +Inf),

inf = -1 corresponds to (-Inf, bound),

inf = 2 corresponds to (-Inf, +Inf),

f and ex define the integrand function, see above; epsabs and epsrel specify the absolute
and relative accuracy requested, result, abserr and last are the output components value,
abs.err and subdivisions of the R function integrate, where neval gives the number of
integrand function evaluations, and the error code ier is translated to R’s integrate() $

message, look at that function definition. limit corresponds to integrate(..., subdivisions

= *). It seems you should always define the two work arrays and the length of the second one
as

lenw = 4 * limit;

iwork = (int *) R_alloc(limit, sizeof(int));

Chapter 6: The R API: entry points for C code 127

work = (double *) R_alloc(lenw, sizeof(double));

The comments in the source code in ‘src/appl/integrate.c’ give more details, particularly
about reasons for failure (ier >= 1).

6.10 Utility functions

R has a fairly comprehensive set of sort routines which are made available to users’ C code.
These are declared in header file ‘R_ext/Utils.h’ (included by ‘R.h’) and include the following.

[Function]void R_isort (int* x, int n)
[Function]void R_rsort (double* x, int n)
[Function]void R_csort (Rcomplex* x, int n)
[Function]void rsort_with_index (double* x, int* index, int n)

The first three sort integer, real (double) and complex data respectively. (Complex numbers
are sorted by the real part first then the imaginary part.) NAs are sorted last.

rsort_with_index sorts on x, and applies the same permutation to index. NAs are sorted
last.

[Function]void revsort (double* x, int* index, int n)
Is similar to rsort_with_index but sorts into decreasing order, and NAs are not handled.

[Function]void iPsort (int* x, int n, int k)
[Function]void rPsort (double* x, int n, int k)
[Function]void cPsort (Rcomplex* x, int n, int k)

These all provide (very) partial sorting: they permute x so that x[k] is in the correct place
with smaller values to the left, larger ones to the right.

[Function]void R_qsort (double *v, int i, int j)
[Function]void R_qsort_I (double *v, int *I, int i, int j)
[Function]void R_qsort_int (int *iv, int i, int j)
[Function]void R_qsort_int_I (int *iv, int *I, int i, int j)

These routines sort v[i:j] or iv[i:j] (using 1-indexing, i.e., v[1] is the first element)
calling the quicksort algorithm as used by R’s sort(v, method = "quick") and documented
on the help page for the R function sort. The ..._I() versions also return the sort.index()
vector in I. Note that the ordering is not stable, so tied values may be permuted.

Note that NAs are not handled (explicitly) and you should use different sorting functions if
NAs can be present.

[Function]subroutine qsort4 (double precision v, integer indx, integer ii, integer jj)
[Function]subroutine qsort3 (double precision v, integer ii, integer jj)

The FORTRAN interface routines for sorting double precision vectors are qsort3 and qsort4,
equivalent to R_qsort and R_qsort_I, respectively.

[Function]void R_max_col (double* matrix, int* nr, int* nc, int* maxes, int*
ties_meth)

Given the nr by nc matrix matrix in column-major (“FORTRAN”) order, R_max_col()
returns in maxes[i-1] the column number of the maximal element in the i-th row (the same
as R’s max.col() function). In the case of ties (multiple maxima), *ties_meth is an integer
code in 1:3 determining the method: 1 = “random”, 2 = “first” and 3 = “last”. See R’s
help page ?max.col.

[Function]int findInterval (double* xt, int n, double x, Rboolean
rightmost_closed, Rboolean all_inside, int ilo, int* mflag)

Given the ordered vector xt of length n, return the interval or index of x in xt[], typically
max(i; 1 ≤ i ≤ n & xt[i] ≤ x) where we use 1-indexing as in R and FORTRAN (but not C).

Chapter 6: The R API: entry points for C code 128

If rightmost closed is true, also returns n−1 if x equals xt[n]. If all inside is not 0, the result
is coerced to lie in 1:(n-1) even when x is outside the xt[] range. On return, *mflag equals
−1 if x < xt[1], +1 if x >= xt[n], and 0 otherwise.

The algorithm is particularly fast when ilo is set to the last result of findInterval() and x
is a value of a sequence which is increasing or decreasing for subsequent calls.

There is also an F77_CALL(interv)() version of findInterval() with the same arguments,
but all pointers.

The following two functions do numerical colorspace conversion from HSV to RGB and back.
Note that all colours must be in [0,1].

[Function]void hsv2rgb (double h, double s, double v, double *r, double *g, double *b)

[Function]void rgb2hsv (double r, double g, double b, double *h, double *s, double *v)
A system-independent interface to produce the name of a temporary file is provided as

[Function]char * R_tmpnam (const char *prefix, const char *tmpdir)
[Function]char * R_tmpnam2 (const char *prefix, const char *tmpdir, const char

*fileext)
Return a pathname for a temporary file with name beginning with prefix and ending with
fileext in directory tmpdir. A NULL prefix or extension is replaced by "". Note that the
return value is malloced and should be freed when no longer needed (unlike the system call
tmpnam).

There is also the internal function used to expand file names in several R functions, and
called directly by path.expand.

[Function]const char * R_ExpandFileName (const char *fn)
Expand a path name fn by replacing a leading tilde by the user’s home directory (if defined).
The precise meaning is platform-specific; it will usually be taken from the environment vari-
able HOME if this is defined.

6.11 Re-encoding

R has its own C-level interface to the encoding conversion capabilities provided by iconv because
there are incompatibilities between the declarations in different implementations of iconv.

These are declared in header file ‘R_ext/Riconv.h’.

[Function]void *Riconv_open (const char *to, const char *from)
Set up a pointer to an encoding object to be used to convert between two encodings: ""

indicates the current locale.

[Function]size_t Riconv (void *cd, const char **inbuf, size t *inbytesleft, char
**outbuf, size t *outbytesleft)

Convert as much as possible of inbuf to outbuf. Initially the int variables indicate the
number of bytes available in the buffers, and they are updated (and the char pointers are
updated to point to the next free byte in the buffer). The return value is the number of
characters converted, or (size_t)-1 (beware: size_t is usually an unsigned type). It should
be safe to assume that an error condition sets errno to one of E2BIG (the output buffer is
full), EILSEQ (the input cannot be converted, and might be invalid in the encoding specified) or
EINVAL (the input does not end with a complete multi-byte character).

[Function]int Riconv_close (void * cd)
Free the resources of an encoding object.

Chapter 6: The R API: entry points for C code 129

6.12 Allowing interrupts

No port of R can be interrupted whilst running long computations in compiled code, so pro-
grammers should make provision for the code to be interrupted at suitable points by calling
from C

#include <R_ext/Utils.h>

void R_CheckUserInterrupt(void);

and from FORTRAN

subroutine rchkusr()

These check if the user has requested an interrupt, and if so branch to R’s error handling
functions.

Note that it is possible that the code behind one of the entry points defined here if called
from your C or FORTRAN code could be interruptible or generate an error and so not return
to your code.

6.13 Platform and version information

The header files define USING_R, which can be used to test if the code is indeed being used with
R.

Header file ‘Rconfig.h’ (included by ‘R.h’) is used to define platform-specific macros that
are mainly for use in other header files. The macro WORDS_BIGENDIAN is defined on big-endian2

systems (e.g. most OSes on Sparc and PowerPC hardware) and not on little-endian systems
(such as i686 and x86_64 on all OSes, and Linux on Alpha and Itanium). It can be useful when
manipulating binary files. The macro SUPPORT_OPENMP is defined on suitable systems as from
R 2.13.0, and can be used in conjunction with the SUPPORT_OPENMP_* macros in packages that
want to make use of OpenMP.

Header file ‘Rversion.h’ (not included by ‘R.h’) defines a macro R_VERSION giving the version
number encoded as an integer, plus a macro R_Version to do the encoding. This can be used to
test if the version of R is late enough, or to include back-compatibility features. For protection
against very old versions of R which did not have this macro, use a construction such as

#if defined(R_VERSION) && R_VERSION >= R_Version(1, 9, 0)

...

#endif

More detailed information is available in the macros R_MAJOR, R_MINOR, R_YEAR, R_MONTH and
R_DAY: see the header file ‘Rversion.h’ for their format. Note that the minor version includes
the patchlevel (as in ‘9.0’).

6.14 Inlining C functions

The C99 keyword inline should be recognized by all compilers now used to build R. Portable
code which might be used with earlier versions of R can be written using the macro R_INLINE

(defined in file ‘Rconfig.h’ included by ‘R.h’), as for example from package cluster

#include <R.h>

static R_INLINE int ind_2(int l, int j)

{

...

}

2 http://en.wikipedia.org/wiki/Endianness.

http://CRAN.R-project.org/package=cluster
http://en.wikipedia.org/wiki/Endianness

Chapter 6: The R API: entry points for C code 130

Be aware that using inlining with functions in more than one compilation unit is almost
impossible to do portably, see http://www.greenend.org.uk/rjk/2003/03/inline.html, so
this usage is for static functions as in the example. All the R configure code has checked is
that R_INLINE can be used in a single C file with the compiler used to build R. We recommend
that packages making extensive use of inlining include their own configure code.

6.15 Controlling visibility

Header ‘R_ext/Visibility’ has some definitions for controlling the visibility of entry points.
These are only effective when ‘HAVE_VISIBILITY_ATTRIBUTE’ is defined – this is checked when
R is configured and recorded in header ‘Rconfig.h’ (included by ‘R_ext/Visibility.h’). It is
generally defined on modern Unix-alikes with a recent compiler (e.g. gcc4), but not supported on
Windows. Minimizing the visibility of symbols in a shared library will both speed up its loading
(unlikely to be significant) and reduce the possibility of linking to the wrong entry points of the
same name.

C/C++ entry points prefixed by attribute_hidden will not be visible in the shared object.
There is no comparable mechanism for FORTRAN entry points, but there is a more comprehen-
sive scheme used by, for example package stats. Most compilers which allow control of visibility
will allow control of visibility for all symbols via a flag, and where known the flag is encap-
sulated in the macros ‘C_VISIBILITY’ and F77_VISIBILITY for C and FORTRAN compilers.
These are defined in ‘etc/Makeconf’ and so available for normal compilation of package code.
For example, ‘src/Makevars’ could include

PKG_CFLAGS=$(C_VISIBILITY)

PKG_FFLAGS=$(F77_VISIBILITY)

This would end up with no visible entry points, which would be pointless. However, the
effect of the flags can be overridden by using the attribute_visible prefix. A shared object
which registers its entry points needs only for have one visible entry point, its initializer, so for
example package stats has

void attribute_visible R_init_stats(DllInfo *dll)

{

R_registerRoutines(dll, CEntries, CallEntries, FortEntries, NULL);

R_useDynamicSymbols(dll, FALSE);

...

}

The visibility mechanism is not available on Windows, but there is an equally
effective way to control which entry points are visible, by supplying a definitions file
‘pkgnme/src/pkgname-win.def’: only entry points listed in that file will be visible. Again
using stats as an example, it has

LIBRARY stats.dll

EXPORTS

R_init_stats

6.16 Using these functions in your own C code

It is possible to build Mathlib, the R set of mathematical functions documented in ‘Rmath.h’,
as a standalone library ‘libRmath’ under both Unix-alikes and Windows. (This includes the
functions documented in Section 6.7 [Numerical analysis subroutines], page 121 as from that
header file.)

The library is not built automatically when R is installed, but can be built in the directory
‘src/nmath/standalone’ in the R sources: see the file ‘README’ there. To use the code in your
own C program include

http://www.greenend.org.uk/rjk/2003/03/inline.html

Chapter 6: The R API: entry points for C code 131

#define MATHLIB_STANDALONE

#include <Rmath.h>

and link against ‘-lRmath’ (and perhaps ‘-lm’. There is an example file ‘test.c’.

A little care is needed to use the random-number routines. You will need to supply the
uniform random number generator

double unif_rand(void)

or use the one supplied (and with a dynamic library or DLL you will have to use the one supplied,
which is the Marsaglia-multicarry with an entry points

set_seed(unsigned int, unsigned int)

to set its seeds and

get_seed(unsigned int *, unsigned int *)

to read the seeds).

6.17 Organization of header files

The header files which R installs are in directory ‘R_INCLUDE_DIR’ (default ‘R_HOME/include’).
This currently includes

‘R.h’ includes many other files
‘S.h’ different version for code ported from S
‘Rinternals.h’ definitions for using R’s internal structures
‘Rdefines.h’ macros for an S-like interface to the above
‘Rmath.h’ standalone math library
‘Rversion.h’ R version information
‘Rinterface.h’ for add-on front-ends (Unix-alikes only)
‘Rembedded.h’ for add-on front-ends
‘R_ext/Applic.h’ optimization and integration
‘R_ext/BLAS.h’ C definitions for BLAS routines
‘R_ext/Callbacks.h’ C (and R function) top-level task handlers
‘R_ext/GetX11Image.h’ X11Image interface used by package trkplot
‘R_ext/Lapack.h’ C definitions for some LAPACK routines
‘R_ext/Linpack.h’ C definitions for some LINPACK routines, not all

of which are included in R

‘R_ext/Parse.h’ a small part of R’s parse interface: not part of the
stable API.

‘R_ext/RConvertors.h’
‘R_ext/RStartup.h’ for add-on front-ends
‘R_ext/Rdynload.h’ needed to register compiled code in packages
‘R_ext/R-ftp-http.h’ interface to internal method of download.file
‘R_ext/Riconv.h’ interface to iconv

‘R_ext/Visibility.h’ definitions controlling visibility
‘R_ext/eventloop.h’ for add-on front-ends and for packages that need

to share in the R event loops (on all platforms)

The following headers are included by ‘R.h’:

‘Rconfig.h’ configuration info that is made available
‘R_ext/Arith.h’ handling for NAs, NaNs, Inf/-Inf
‘R_ext/Boolean.h’ TRUE/FALSE type
‘R_ext/Complex.h’ C typedefs for R’s complex
‘R_ext/Constants.h’ constants
‘R_ext/Error.h’ error handling
‘R_ext/Memory.h’ memory allocation

Chapter 6: The R API: entry points for C code 132

‘R_ext/Print.h’ Rprintf and variations.
‘R_ext/RS.h’ definitions common to ‘R.h’ and ‘S.h’, including

F77_CALL etc.

‘R_ext/Random.h’ random number generation
‘R_ext/Utils.h’ sorting and other utilities
‘R_ext/libextern.h’ definitions for exports from ‘R.dll’ on Windows.

The graphics systems are exposed in headers ‘R_ext/GraphicsEngine.h’,
‘R_ext/GraphicsDevice.h’ (which it includes) and ‘R_ext/QuartzDevice.h’. Some
entry points from the stats package are in ‘R_ext/stats_package.h’ (currently related to the
internals of nls and nlminb).

Chapter 7: Generic functions and methods 133

7 Generic functions and methods

R programmers will often want to add methods for existing generic functions, and may want to
add new generic functions or make existing functions generic. In this chapter we give guidelines
for doing so, with examples of the problems caused by not adhering to them.

This chapter only covers the ‘informal’ class system copied from S3, and not with the S4
(formal) methods of package methods.

The key function for methods is NextMethod, which dispatches the next method. It is quite
typical for a method function to make a few changes to its arguments, dispatch to the next
method, receive the results and modify them a little. An example is

t.data.frame <- function(x)

{

x <- as.matrix(x)

NextMethod("t")

}

Also consider predict.glm: it happens that in R for historical reasons it calls predict.lm di-
rectly, but in principle (and in S originally and currently) it could use NextMethod. (NextMethod
seems under-used in the R sources. Do be aware that there are S/R differences in this area, and
the example above works because there is a next method, the default method, not that a new
method is selected when the class is changed.)

Any method a programmer writes may be invoked from another method by NextMethod,
with the arguments appropriate to the previous method. Further, the programmer cannot predict
which method NextMethod will pick (it might be one not yet dreamt of), and the end user calling
the generic needs to be able to pass arguments to the next method. For this to work

A method must have all the arguments of the generic, including ... if the generic
does.

It is a grave misunderstanding to think that a method needs only to accept the arguments it
needs. The original S version of predict.lm did not have a ... argument, although predict

did. It soon became clear that predict.glm needed an argument dispersion to handle over-
dispersion. As predict.lm had neither a dispersion nor a ... argument, NextMethod could
no longer be used. (The legacy, two direct calls to predict.lm, lives on in predict.glm in R,
which is based on the workaround for S3 written by Venables & Ripley.)

Further, the user is entitled to use positional matching when calling the generic, and the
arguments to a method called by UseMethod are those of the call to the generic. Thus

A method must have arguments in exactly the same order as the generic.

To see the scale of this problem, consider the generic function scale, defined as

scale <- function (x, center = TRUE, scale = TRUE)

UseMethod("scale")

Suppose an unthinking package writer created methods such as

scale.foo <- function(x, scale = FALSE, ...) { }

Then for x of class "foo" the calls

scale(x, , TRUE)

scale(x, scale = TRUE)

would do most likely do different things, to the justifiable consternation of the end user.

To add a further twist, which default is used when a user calls scale(x) in our example?
What if

Chapter 7: Generic functions and methods 134

scale.bar <- function(x, center, scale = TRUE) NextMethod("scale")

and x has class c("bar", "foo")? It is the default specified in the method that is used, but the
default specified in the generic may be the one the user sees. This leads to the recommendation:

If the generic specifies defaults, all methods should use the same defaults.

An easy way to follow these recommendations is to always keep generics simple, e.g.

scale <- function(x, ...) UseMethod("scale")

Only add parameters and defaults to the generic if they make sense in all possible methods
implementing it.

7.1 Adding new generics

When creating a new generic function, bear in mind that its argument list will be the maximal
set of arguments for methods, including those written elsewhere years later. So choosing a good
set of arguments may well be an important design issue, and there need to be good arguments
not to include a ... argument.

If a ... argument is supplied, some thought should be given to its position in the argument
sequence. Arguments which follow ... must be named in calls to the function, and they must
be named in full (partial matching is suppressed after ...). Formal arguments before ... can
be partially matched, and so may ‘swallow’ actual arguments intended for Although it is
commonplace to make the ... argument the last one, that is not always the right choice.

Sometimes package writers want to make generic a function in the base package, and request
a change in R. This may be justifiable, but making a function generic with the old definition as
the default method does have a small performance cost. It is never necessary, as a package can
take over a function in the base package and make it generic by something like

foo <- function(object, ...) UseMethod("foo")

foo.default <- function(object, ...) base::foo(object)

Earlier versions of this manual suggested assigning foo.default <- base::foo. This is not a
good idea, as it captures the base function at the time of installation and it might be changed
as R is patched or updated.

The same idea can be applied for functions in other packages with namespaces.

Chapter 8: Linking GUIs and other front-ends to R 135

8 Linking GUIs and other front-ends to R

There are a number of ways to build front-ends to R: we take this to mean a GUI or other
application that has the ability to submit commands to R and perhaps to receive results back
(not necessarily in a text format). There are other routes besides those described here, for
example the package Rserve (from CRAN, see also http://www.rforge.net/Rserve/) and
connections to Java in the Omegahat package ‘SJava’ and ‘JRI’ (part of the rJava package on
CRAN).

Note that the APIs described in this chapter are only intended to be used in an alternative
front-end: they are not part of the API made available for R packages and can be dangerous to
use in a conventional package (although packages may contain alternative front-ends).

8.1 Embedding R under Unix-alikes

R can be built as a shared library1 if configured with ‘--enable-R-shlib’. This shared library
can be used to run R from alternative front-end programs. We will assume this has been
done for the rest of this section. Also, it can be built as a static library if configured with
‘--enable-R-static-lib’, and this can be used in a very similar way.

The command-line R front-end, ‘R_HOME/bin/exec/R’ is one such example, and the former
GNOME (see package gnomeGUI on CRAN’s ‘Archive’ area) and Mac OS X consoles are others.
The source for ‘R_HOME/bin/exec/R’ is in file ‘src/main/Rmain.c’ and is very simple

int Rf_initialize_R(int ac, char **av); /* in ../unix/system.c */

void Rf_mainloop(); /* in main.c */

extern int R_running_as_main_program; /* in ../unix/system.c */

int main(int ac, char **av)

{

R_running_as_main_program = 1;

Rf_initialize_R(ac, av);

Rf_mainloop(); /* does not return */

return 0;

}

indeed, misleadingly simple. Remember that ‘R_HOME/bin/exec/R’ is run from a shell script
‘R_HOME/bin/R’ which sets up the environment for the executable, and this is used for

• Setting R_HOME and checking it is valid, as well as the path R_SHARE_DIR and R_DOC_DIR

to the installed ‘share’ and ‘doc’ directory trees. Also setting R_ARCH if needed.

• Setting LD_LIBRARY_PATH to include the directories used in linking R. This is recorded as
the default setting of R_LD_LIBRARY_PATH in the shell script ‘R_HOME/etcR_ARCH/ldpaths’.

• Processing some of the arguments, for example to run R under a debugger and to launch
alternative front-ends to provide GUIs.

The first two of these can be achieved for your front-end by running it via R CMD. So, for example

R CMD /usr/local/lib/R/bin/exec/R

R CMD exec/R

will both work in a standard R installation. (R CMD looks first for executables in ‘R_HOME/bin’.)
If you do not want to run your front-end in this way, you need to ensure that R_HOME is set
and LD_LIBRARY_PATH is suitable. (The latter might well be, but modern Unix/Linux systems

1 In the parlance of Mac OS X this is a dynamic library, and is the normal way to build R on that platform.

http://CRAN.R-project.org/package=Rserve
http://www.rforge.net/Rserve/
http://CRAN.R-project.org/package=rJava

Chapter 8: Linking GUIs and other front-ends to R 136

do not normally include ‘/usr/local/lib’ (‘/usr/local/lib64’ on some architectures), and R
does look there for system components.)

The other senses in which this example is too simple are that all the internal defaults
are used and that control is handed over to the R main loop. There are a number of small
examples2 in the ‘tests/Embedding’ directory. These make use of Rf_initEmbeddedR in
‘src/main/Rembedded.c’, and essentially use

#include <Rembedded.h>

int main(int ac, char **av)

{

/* do some setup */

Rf_initEmbeddedR(argc, argv);

/* do some more setup */

/* submit some code to R, which is done interactively via

run_Rmainloop();

A possible substitute for a pseudo-console is

R_ReplDLLinit();

while(R_ReplDLLdo1() > 0) {

/* add user actions here if desired */

}

*/

Rf_endEmbeddedR(0);

/* final tidying up after R is shutdown */

return 0;

}

If you don’t want to pass R arguments, you can fake an argv array, for example by

char *argv[]= {"REmbeddedPostgres", "--silent"};

Rf_initEmbeddedR(sizeof(argv)/sizeof(argv[0]), argv);

However, to make a GUI we usually do want to run run_Rmainloop after setting up various
parts of R to talk to our GUI, and arranging for our GUI callbacks to be called during the R
mainloop.

One issue to watch is that on some platforms Rf_initEmbeddedR and Rf_endEmbeddedR

change the settings of the FPU (e.g. to allow errors to be trapped and to set extended precision
registers).

The standard code sets up a session temporary directory in the usual way, unless R_TempDir

is set to a non-NULL value before Rf_initEmbeddedR is called. In that case the value is assumed
to contain an existing writable directory (no check is done), and it is not cleaned up when R is
shut down.

Rf_initEmbeddedR sets R to be in interactive mode: you can set R_Interactive (defined in
‘Rinterface.h’) subsequently to change this.

Note that R expects to be run with the locale category ‘LC_NUMERIC’ set to its default value
of C, and so should not be embedded into an application which changes that.

2 but these are not part of the automated test procedures and so little tested.

Chapter 8: Linking GUIs and other front-ends to R 137

8.1.1 Compiling against the R library

Suitable flags to compile and link against the R (shared or static) library can be found by

R CMD config --cppflags

R CMD config --ldflags

If R is installed, pkg-config is available and sub-architectures have not been used, alterna-
tives for a shared R library are

pkg-config --cflags libR

pkg-config --libs libR

and for a static R library

pkg-config --cflags libR

pkg-config --libs --static libR

8.1.2 Setting R callbacks

For Unix-alikes there is a public header file ‘Rinterface.h’ that makes it possible to change the
standard callbacks used by R in a documented way. This defines pointers (if R_INTERFACE_PTRS
is defined)

extern void (*ptr_R_Suicide)(const char *);

extern void (*ptr_R_ShowMessage)(const char *);

extern int (*ptr_R_ReadConsole)(const char *, unsigned char *, int, int);

extern void (*ptr_R_WriteConsole)(const char *, int);

extern void (*ptr_R_WriteConsoleEx)(const char *, int, int);

extern void (*ptr_R_ResetConsole)();

extern void (*ptr_R_FlushConsole)();

extern void (*ptr_R_ClearerrConsole)();

extern void (*ptr_R_Busy)(int);

extern void (*ptr_R_CleanUp)(SA_TYPE, int, int);

extern int (*ptr_R_ShowFiles)(int, const char **, const char **,

const char *, Rboolean, const char *);

extern int (*ptr_R_ChooseFile)(int, char *, int);

extern int (*ptr_R_EditFile)(const char *);

extern void (*ptr_R_loadhistory)(SEXP, SEXP, SEXP, SEXP);

extern void (*ptr_R_savehistory)(SEXP, SEXP, SEXP, SEXP);

extern void (*ptr_R_addhistory)(SEXP, SEXP, SEXP, SEXP);

which allow standard R callbacks to be redirected to your GUI. What these do is generally
documented in the file ‘src/unix/system.txt’.

[Function]void R_ShowMessage (char *message)
This should display the message, which may have multiple lines: it should be brought to the
user’s attention immediately.

[Function]void R_Busy (int which)
This function invokes actions (such as change of cursor) when R embarks on an extended
computation (which=1) and when such a state terminates (which=0).

[Function]int R_ReadConsole (const char *prompt, unsigned char *buf, int buflen,
int hist)

[Function]void R_WriteConsole (const char *buf, int buflen)
[Function]void R_WriteConsoleEx (const char *buf, int buflen, int otype)
[Function]void R_ResetConsole ()
[Function]void R_FlushConsole ()

Chapter 8: Linking GUIs and other front-ends to R 138

[Function]void R_ClearErrConsole ()
These functions interact with a console.

R_ReadConsole prints the given prompt at the console and then does a fgets(3)–like oper-
ation, transferring up to buflen characters into the buffer buf. The last two bytes should be
set to ‘"\n\0"’ to preserve sanity. If hist is non-zero, then the line should be added to any
command history which is being maintained. The return value is 0 is no input is available
and >0 otherwise.

R_WriteConsoleEx writes the given buffer to the console, otype specifies the output type
(regular output or warning/error). Call to R_WriteConsole(buf, buflen) is equivalent to
R_WriteConsoleEx(buf, buflen, 0). To ensure backward compatibility of the callbacks,
ptr_R_WriteConsoleEx is used only if ptr_R_WriteConsole is set to NULL. To ensure that
stdout() and stderr() connections point to the console, set the corresponding files to NULL

via

R_Outputfile = NULL;

R_Consolefile = NULL;

R_ResetConsole is called when the system is reset after an error. R_FlushConsole is called
to flush any pending output to the system console. R_ClearerrConsole clears any errors
associated with reading from the console.

[Function]int R_ShowFiles (int nfile, const char **file, const char **headers,
const char *wtitle, Rboolean del, const char *pager)

This function is used to display the contents of files.

[Function]int R_ChooseFile (int new, char *buf, int len)
Choose a file and return its name in buf of length len. Return value is 0 for success, > 0
otherwise.

[Function]int R_EditFile (const char *buf)
Send a file to an editor window.

[Function]SEXP R_loadhistory (SEXP, SEXP, SEXP, SEXP);
[Function]SEXP R_savehistory (SEXP, SEXP, SEXP, SEXP);
[Function]SEXP R_addhistory (SEXP, SEXP, SEXP, SEXP);

.Internal functions for loadhistory, savehistory and timestamp.

If the console has no history mechanism these can be as simple as

SEXP R_loadhistory (SEXP call, SEXP op, SEXP args, SEXP env)

{

errorcall(call, "loadhistory is not implemented");

return R_NilValue;

}

SEXP R_savehistory (SEXP call, SEXP op , SEXP args, SEXP env)

{

errorcall(call, "savehistory is not implemented");

return R_NilValue;

}

SEXP R_addhistory (SEXP call, SEXP op , SEXP args, SEXP env)

{

return R_NilValue;

}

The R_addhistory function should return silently if no history mechanism is present, as a
user may be calling timestamp purely to write the time stamp to the console.

Chapter 8: Linking GUIs and other front-ends to R 139

[Function]void R_Suicide (const char *message)
This should abort R as rapidly as possible, displaying the message. A possible implementation
is

void R_Suicide (const char *message)

{

char pp[1024];

snprintf(pp, 1024, "Fatal error: %s\n", s);

R_ShowMessage(pp);

R_CleanUp(SA_SUICIDE, 2, 0);

}

[Function]void R_CleanUp (SA TYPE saveact, int status, int RunLast)
This function invokes any actions which occur at system termination. It needs to be quite
complex:

#include <Rinterface.h>

#include <Rembedded.h> /* for Rf_KillAllDevices */

void R_CleanUp (SA_TYPE saveact, int status, int RunLast)

{

if(saveact == SA_DEFAULT) saveact = SaveAction;

if(saveact == SA_SAVEASK) {

/* ask what to do and set saveact */

}

switch (saveact) {

case SA_SAVE:

if(runLast) R_dot_Last();

if(R_DirtyImage) R_SaveGlobalEnv();

/* save the console history in R_HistoryFile */

break;

case SA_NOSAVE:

if(runLast) R_dot_Last();

break;

case SA_SUICIDE:

default:

break;

}

R_RunExitFinalizers();

/* clean up after the editor e.g. CleanEd() */

R_CleanTempDir();

/* close all the graphics devices */

if(saveact != SA_SUICIDE) Rf_KillAllDevices();

fpu_setup(FALSE);

exit(status);

}

These callbacks should never be changed in a running R session (and hence cannot be called
from an extension package).

Chapter 8: Linking GUIs and other front-ends to R 140

8.1.3 Registering symbols

An application embedding R needs a different way of registering symbols because it is not a
dynamic library loaded by R as would be the case with a package. Therefore R reserves a
special DllInfo entry for the embedding application such that it can register symbols to be
used with .C, .Call etc. This entry can be obtained by calling getEmbeddingDllInfo, so a
typical use is

DllInfo *info = R_getEmbeddingDllInfo();

R_registerRoutines(info, cMethods, callMethods, NULL, NULL);

The native routines defined by cMethod and callMethods should be present in the embedding
application. See Section 5.4 [Registering native routines], page 85 for details on registering
symbols in general.

8.1.4 Meshing event loops

One of the most difficult issues in interfacing R to a front-end is the handling of event loops, at
least if a single thread is used. R uses events and timers for

• Running X11 windows such as the graphics device and data editor, and interacting with
them (e.g., using locator()).

• Supporting Tcl/Tk events for the tcltk package (for at least the X11 version of Tk).

• Preparing input.

• Timing operations, for example for profiling R code and Sys.sleep().

• Interrupts, where permitted.

Specifically, the Unix-alike command-line version of R runs separate event loops for

• Preparing input at the console command-line, in file ‘src/unix/sys-unix.c’.

• Waiting for a response from a socket in the internal functions underlying FTP and
HTTP transfers in download.file() and for direct socket access, in files ‘src/modules/
internet/nanoftp.c’, ‘src/modules/internet/nanohttp.c’ and ‘src/modules/
internet/Rsock.c’

• Mouse and window events when displaying the X11-based dataentry window, in file
‘src/modules/X11/dataentry.c’. This is regarded as modal, and no other events are
serviced whilst it is active.

There is a protocol for adding event handlers to the first two types of event loops, using
types and functions declared in the header ‘R_ext/eventloop.h’ and described in comments in
file ‘src/unix/sys-std.c’. It is possible to add (or remove) an input handler for events on a
particular file descriptor, or to set a polling interval (via R_wait_usec) and a function to be
called periodically via R_PolledEvents: the polling mechanism is used by the tcltk package.

An alternative front-end needs both to make provision for other R events whilst waiting for
input, and to ensure that it is not frozen out during events of the second type. This is not
handled very well in the existing examples. The GNOME front-end can run a own handler for
polled events by setting

extern int (*R_timeout_handler)();

extern long R_timeout_val;

if (R_timeout_handler && R_timeout_val)

gtk_timeout_add(R_timeout_val, R_timeout_handler, NULL);

gtk_main ();

whilst it is waiting for console input. This obviously handles events for Gtk windows (such as the
graphics device in the gtkDevice package), but not X11 events (such as the X11() device) or for
other event handlers that might have been registered with R. It does not attempt to keep itself

Chapter 8: Linking GUIs and other front-ends to R 141

alive whilst R is waiting on sockets. The ability to add a polled handler as R_timeout_handler
is used by the tcltk package.

8.1.5 Threading issues

Embedded R is designed to be run in the main thread, and all the testing is done in that context.
There is a potential issue with the stack-checking mechanism where threads are involved. This
uses two variables declared in ‘Rinterface.h’ (if CSTACK_DEFNS is defined) as

extern uintptr_t R_CStackLimit; /* C stack limit */

extern uintptr_t R_CStackStart; /* Initial stack address */

Note that uintptr_t is a C99 type for which a substitute is defined in R, so your code needs to
define HAVE_UINTPTR_T appropriately.

These will be set3 when Rf_initialize_R is called, to values appropriate to the main thread.
Stack-checking can be disabled by setting R_CStackLimit = (uintptr_t)-1, but it is better to
if possible set appropriate values. (What these are and how to determine them are OS-specific,
and the stack size limit may differ for secondary threads. If you have a choice of stack size, at
least 8Mb is recommended.)

You may also want to consider how signals are handled: R sets signal handlers for sev-
eral signals, including SIGINT, SIGSEGV, SIGPIPE, SIGUSR1 and SIGUSR2, but these can all be
suppressed by setting the variable R_SignalHandlers (declared in ‘Rinterface.h’) to 0.

Note that these variables must not be changed by an R package: a package should not calling
R internals which makes use of the stack-checking mechanism on a secondary thread.

8.2 Embedding R under Windows

All Windows interfaces to R call entry points in the DLL ‘R.dll’, directly or indirectly. Simpler
applications may find it easier to use the indirect route via (D)COM.

8.2.1 Using (D)COM

(D)COM is a standard Windows mechanism used for communication between Windows appli-
cations. One application (here R) is run as COM server which offers services to clients, here
the front-end calling application. The services are described in a ‘Type Library’ and are (more
or less) language-independent, so the calling application can be written in C or C++ or Visual
Basic or Perl or Python and so on. The ‘D’ in (D)COM refers to ‘distributed’, as the client and
server can be running on different machines.

The basic R distribution is not a (D)COM server, but two addons are currently available
that interface directly with R and provide a (D)COM server:

• There is a (D)COM server called StatConnector written by Thomas Baier available via
http://CRAN.R-project.org/other-software.html or http://sunsite.univie.ac.

at/rcom/, which works with package rscproxy to support transfer of data to and from R
and remote execution of R commands, as well as embedding of an R graphics window. The
rcom package on CRAN provides a (D)COM server in a running R session.

• Another (D)COM server, RDCOMServer, is available from http://www.omegahat.org/.
Its philosophy is discussed in http://www.omegahat.org/RDCOMServer/Docs/Paradigm.

html and is very different from the purpose of this section.

8.2.2 Calling R.dll directly

The R DLL is mainly written in C and has _cdecl entry points. Calling it directly will be tricky
except from C code (or C++ with a little care).

3 at least on platforms where the values are available, that is having getrlimit and on Linux or having sysctl

supporting KERN_USRSTACK, including FreeBSD and Mac OS X.

http://CRAN.R-project.org/other-software.html
http://sunsite.univie.ac.at/rcom/
http://sunsite.univie.ac.at/rcom/
http://CRAN.R-project.org/package=rscproxy
http://CRAN.R-project.org/package=rcom
http://www.omegahat.org/
http://www.omegahat.org/RDCOMServer/Docs/Paradigm.html
http://www.omegahat.org/RDCOMServer/Docs/Paradigm.html

Chapter 8: Linking GUIs and other front-ends to R 142

There is a version of the Unix-alike interface calling

int Rf_initEmbeddedR(int ac, char **av);

void Rf_endEmbeddedR(int fatal);

which is an entry point in ‘R.dll’. Examples of its use (and a suitable ‘Makefile.win’) can
be found in the ‘tests/Embedding’ directory of the sources. You may need to ensure that
‘R_HOME/bin’ is in your PATH so the R DLLs are found.

Examples of calling ‘R.dll’ directly are provided in the directory ‘src/gnuwin32/
front-ends’, including a simple command-line front end ‘rtest.c’ whose code is

#define Win32

#include <windows.h>

#include <stdio.h>

#include <Rversion.h>

#define LibExtern __declspec(dllimport) extern

#include <Rembedded.h>

#include <R_ext/RStartup.h>

/* for askok and askyesnocancel */

#include <graphapp.h>

/* for signal-handling code */

#include <psignal.h>

/* simple input, simple output */

/* This version blocks all events: a real one needs to call ProcessEvents

frequently. See rterm.c and ../system.c for one approach using

a separate thread for input.

*/

int myReadConsole(const char *prompt, char *buf, int len, int addtohistory)

{

fputs(prompt, stdout);

fflush(stdout);

if(fgets(buf, len, stdin)) return 1; else return 0;

}

void myWriteConsole(const char *buf, int len)

{

printf("%s", buf);

}

void myCallBack(void)

{

/* called during i/o, eval, graphics in ProcessEvents */

}

void myBusy(int which)

{

/* set a busy cursor ... if which = 1, unset if which = 0 */

}

static void my_onintr(int sig) { UserBreak = 1; }

int main (int argc, char **argv)

{

structRstart rp;

Rstart Rp = &rp;

char Rversion[25], *RHome;

sprintf(Rversion, "%s.%s", R_MAJOR, R_MINOR);

if(strcmp(getDLLVersion(), Rversion) != 0) {

fprintf(stderr, "Error: R.DLL version does not match\n");

exit(1);

}

Chapter 8: Linking GUIs and other front-ends to R 143

R_setStartTime();

R_DefParams(Rp);

if((RHome = get_R_HOME()) == NULL) {

fprintf(stderr, "R_HOME must be set in the environment or Registry\n");

exit(1);

}

Rp->rhome = RHome;

Rp->home = getRUser();

Rp->CharacterMode = LinkDLL;

Rp->ReadConsole = myReadConsole;

Rp->WriteConsole = myWriteConsole;

Rp->CallBack = myCallBack;

Rp->ShowMessage = askok;

Rp->YesNoCancel = askyesnocancel;

Rp->Busy = myBusy;

Rp->R_Quiet = TRUE; /* Default is FALSE */

Rp->R_Interactive = FALSE; /* Default is TRUE */

Rp->RestoreAction = SA_RESTORE;

Rp->SaveAction = SA_NOSAVE;

R_SetParams(Rp);

R_set_command_line_arguments(argc, argv);

FlushConsoleInputBuffer(GetStdHandle(STD_INPUT_HANDLE));

signal(SIGBREAK, my_onintr);

GA_initapp(0, 0);

readconsolecfg();

setup_Rmainloop();

#ifdef SIMPLE_CASE

run_Rmainloop();

#else

R_ReplDLLinit();

while(R_ReplDLLdo1() > 0) {

/* add user actions here if desired */

}

/* only get here on EOF (not q()) */

#endif

Rf_endEmbeddedR(0);

return 0;

}

The ideas are

• Check that the front-end and the linked ‘R.dll’ match – other front-ends may allow a looser
match.

• Find and set the R home directory and the user’s home directory. The former
may be available from the Windows Registry: it will be in HKEY_LOCAL_

MACHINE\Software\R-core\R\InstallPath from an administrative install and
HKEY_CURRENT_USER\Software\R-core\R\InstallPath otherwise, if selected during
installation (as it is by default).

• Define startup conditions and callbacks via the Rstart structure. R_DefParams sets the
defaults, and R_SetParams sets updated values.

• Record the command-line arguments used by R_set_command_line_arguments for use by
the R function commandArgs().

• Set up the signal handler and the basic user interface.

• Run the main R loop, possibly with our actions intermeshed.

• Arrange to clean up.

Chapter 8: Linking GUIs and other front-ends to R 144

An underlying theme is the need to keep the GUI ‘alive’, and this has not been done in
this example. The R callback R_ProcessEvents needs to be called frequently to ensure that
Windows events in R windows are handled expeditiously. Conversely, R needs to allow the GUI
code (which is running in the same process) to update itself as needed – two ways are provided
to allow this:

• R_ProcessEvents calls the callback registered by Rp->callback. A version of this is used
to run package Tcl/Tk for tcltk under Windows, for the code is

void R_ProcessEvents(void)

{

while (peekevent()) doevent(); /* Windows events for GraphApp */

if (UserBreak) { UserBreak = FALSE; onintr(); }

R_CallBackHook();

if(R_tcldo) R_tcldo();

}

• The mainloop can be split up to allow the calling application to take some action after each
line of input has been dealt with: see the alternative code below #ifdef SIMPLE_CASE.

It may be that no R GraphApp windows need to be considered, although these include
pagers, the windows() graphics device, the R data and script editors and various popups such
as choose.file() and select.list(). It would be possible to replace all of these, but it seems
easier to allow GraphApp to handle most of them.

It is possible to run R in a GUI in a single thread (as ‘RGui.exe’ shows) but it will normally
be easier4 to use multiple threads.

Note that R’s own front ends use a stack size of 10Mb, whereas MinGW executables default
to 2Mb, and Visual C++ ones to 1Mb. The latter stack sizes are too small for a number of R
applications, so general-purpose front-ends should use a larger stack size.

8.2.3 Finding R HOME

Both applications which embed R and those which use a system call to invoke R (as
Rscript.exe, Rterm.exe or R.exe) need to be able to find the R ‘bin’ directory. The sim-
plest way to do so is the ask the user to set an environment variable R_HOME and use that, but
naive users may be flummoxed as to how to do so or what value to use.

The R for Windows installers have for a long time allowed the value of R_HOME to be recorded
in the Windows Registry: this is optional but selected by default. Where it is recorded has
changed over the years to allow for multiple versions of R to be installed at once, and to allow
32- and 64-bit versions of R to be installed on the same machine.

The basic Registry location is Software\R-core\R. For an administrative install this is
under HKEY_LOCAL_MACHINE and on a 64-bit OS HKEY_LOCAL_MACHINE\Software\R-core\R is
by default redirected for a 32-bit application, so a 32-bit application will see the information for
the last 32-bit install, and a 64-bit application that for the last 64-bit install. For a personal
install, the information is under HKEY_CURRENT_USER\Software\R-core\R which is seen by both
32-bit and 64-bit applications and so records the last install of either architecture. To circumvent
this, there are locations Software\R-core\R32 and Software\R-core\R64 which always refer
to one architecture.

When R is installed and recording is not disabled then two string values are written at that
location for keys InstallPath and Current Version, and these keys are removed when R is
uninstalled. To allow information about other installed versions to be retained, there is also a

4 An attempt to use only threads in the late 1990s failed to work correctly under Windows 95, the predominant
version of Windows at that time.

Chapter 8: Linking GUIs and other front-ends to R 145

key named something like 2.11.0 or 2.11.0 patched or 2.12.0 Pre-release with a value for
InstallPath.

So a comprehensive algorithm to search for R_HOME is something like

• Decide which of personal or administrative installs should have precedence. There are argu-
ments both ways: we find that with roaming profiles that HKEY_CURRENT_USER\Software
often gets reverted to an earlier version. Do the following for one or both of HKEY_CURRENT_
USER and HKEY_LOCAL_MACHINE.

• If the desired architecture is known, look in Software\R-core\R32 or Software\R-

core\R64, and if that does not exist or the architecture is immaterial, in Software\R-

core\R.

• If key InstallPath exists then this is R_HOME (recorded using backslashes). If it does
not, look for version-specific keys like 2.11.0 alpha, pick the latest (which is of itself a
complicated algorithm as 2.11.0 patched > 2.11.0 > 2.11.0 alpha > 2.8.1) and use its
value for InstallPath.

Prior to R 2.12.0 ‘R.dll’ and the various front-end executables were in ‘R_HOME\bin’, but
they are now in ‘R_HOME\bin\i386’ or ‘R_HOME\bin\x64’. So you need to arrange to look first
in the architecture-specific subdirectory and then in ‘R_HOME\bin’.

Function and variable index 146

Function and variable index

*
*Riconv_open . 128

.

.C . 82

.Call . 94, 103

.External . 94, 104

.Fortran . 82

.Last.lib . 36

.onAttach . 36

.onLoad . 36

.onUnload . 36

.Random.seed . 119

\
\acronym . 57
\alias . 49
\arguments . 51
\author . 52
\bold . 55
\cite . 57
\code . 56
\command . 57
\concept . 60
\cr . 55
\deqn . 58
\describe . 57
\description . 50
\details . 51
\dfn . 57
\dontrun . 52
\dontshow . 52
\dots . 59
\dQuote . 55
\email . 56
\emph . 55
\enc . 60
\enumerate . 57
\env . 57
\eqn . 58
\examples . 52
\figure . 59
\file . 56
\format . 54
\href . 56
\if . 61
\ifelse . 61
\itemize . 57
\kbd . 56
\keyword . 53
\ldots . 59
\link . 58
\method . 50
\name . 49
\newcommand . 62
\note . 52
\option . 57
\out . 61
\pkg . 56

\preformatted . 56
\R . 59
\RdOpts . 61
\references . 52
\renewcommand . 62
\S3method . 51
\samp . 56
\section . 55
\seealso . 52
\Sexpr . 61
\source . 54
\sQuote . 55
\strong . 55
\tabular . 57
\title . 50
\url . 56
\usage . 50
\value . 51
\var . 56
\verb . 56

B
bessel_i . 123
bessel_j . 123
bessel_k . 123
bessel_y . 123
beta . 123
BLAS_LIBS . 16
browser . 71

C
Calloc . 118
CAR . 105
CDR . 105
cgmin . 125
choose . 123
CITATION . 11, 46
cPsort . 127

D
debug . 74
debugger . 73
defineVar . 101
digamma . 122
dump.frames . 73
duplicate . 102
dyn.load . 84
dyn.unload . 84

E
exp_rand . 119
expm1 . 123
export . 35
exportClasses . 39
exportClassPattern . 39
exportMethods . 39
exportPattern . 35, 39

Function and variable index 147

F
FALSE . 125
findInterval . 127
findVar . 101
FLIBS . 16
fmax2 . 124
fmin2 . 124
fprec . 124
Free . 118
fround . 124
fsign . 124
ftrunc . 124

G
gammafn . 122
gctorture . 76
getAttrib . 99
getCharCE . 116
GetRNGstate . 119

H
hsv2rgb . 128

I
imax2 . 124
imin2 . 124
import . 35
importClassesFrom . 40
importFrom . 35
importMethodsFrom . 40
install . 99
iPsort . 127
ISNA . 106, 119
ISNAN . 106, 119

L
LAPACK_LIBS . 16
lbeta . 123
lbfgsb . 125
lchoose . 123
lgamma1p . 123
lgammafn . 122
library.dynam . 9, 84
log1p . 123
log1pexp . 123
log1pmx . 123
logspace_add . 124
logspace_sub . 124

M
M_E . 124
M_PI . 124
mkChar . 101
mkCharCE . 116
mkCharLen . 101
mkCharLenCE . 116

N
NA_REAL . 119
nmmin . 125
norm_rand . 119

O
OBJECTS . 17, 89

P
pentagamma . 122
PKG_CFLAGS . 89
PKG_CPPFLAGS . 89
PKG_CXXFLAGS . 89
PKG_FCFLAGS . 89
PKG_FFLAGS . 89
PKG_LIBS . 89
PKG_OBJCFLAGS . 89
prompt . 49
PROTECT . 95
PROTECT_WITH_INDEX . 96
psigamma . 122, 123
PutRNGstate . 119

Q
qsort3 . 127
qsort4 . 127

R
R CMD build . 26
R CMD check . 23
R CMD config . 14
R CMD Rd2pdf . 63
R CMD Rdconv . 63
R CMD SHLIB . 89
R CMD Stangle . 63
R CMD Sweave . 63
R_addhistory . 138
R_alloc . 117
R_Busy . 137
R_ChooseFile . 138
R_CleanUp . 139
R_ClearErrConsole . 137
R_csort . 127
R_EditFile . 138
R_ExpandFileName . 128
R_FINITE . 119
R_FlushConsole . 137
R_GetCCallable . 88
R_GetCurrentSrcref . 113
R_GetSrcFilename . 113
R_INLINE . 129
R_IsNaN . 119
R_isort . 127
R_LIBRARY_DIR . 15
R_loadhistory . 138
R_max_col . 127
R_NegInf . 119
R_PACKAGE_DIR . 15
R_PACKAGE_NAME . 15
R_ParseVector . 113

Function and variable index 148

R_PosInf . 119
R_pow . 123
R_pow_di . 123
R_qsort . 127
R_qsort_I . 127
R_qsort_int . 127
R_qsort_int_I . 127
R_ReadConsole . 137
R_RegisterCCallable . 88
R_registerRoutines . 86
R_ResetConsole . 137
R_rsort . 127
R_savehistory . 138
R_ShowFiles . 138
R_ShowMessage . 137
R_Srcref . 113
R_Suicide . 139
R_tmpnam . 128
R_tmpnam2 . 128
R_Version . 129
R_WriteConsole . 137
R_WriteConsoleEx . 137
Rdqagi . 126
Rdqags . 126
Realloc . 118
recover . 74
reEnc . 116
REprintf . 120
REPROTECT . 96
REvprintf . 120
revsort . 127
rgb2hsv . 128
Riconv . 128
Riconv_close . 128
Rprintf . 120
Rprof . 65, 67
Rprofmem . 68
rPsort . 127
rsort_with_index . 127
Rvprintf . 120

S
S_alloc . 117
S_realloc . 117
S3method . 35
SAFE_FFLAGS . 17
samin . 125
seed_in . 119
seed_out . 119
setAttrib . 99
setVar . 101
sign . 124
summaryRprof . 67
system . 82
system.time . 82
system2 . 82

T
tetragamma . 122
trace . 75
traceback . 72
tracemem . 68
translateChar . 116
translateCharUTF8 . 116
trigamma . 122
TRUE . 125

U
undebug . 75
unif_rand . 119
UNPROTECT . 95
UNPROTECT_PTR . 96
untracemem . 68
useDynLib . 36

V
vmaxget . 117
vmaxset . 117
vmmin . 125

Concept index 149

Concept index

.

.install extras file . 30

.Rbuildignore file . 26

.Rinstignore file . 11

\
\linkS4class . 58

A
Allocating storage . 96
Attributes . 98

B
Bessel functions . 123
Beta function . 123
Building binary packages . 28
Building source packages . 26

C
C++ code, interfacing . 90
Calling C from FORTRAN and vice versa 120
Checking packages . 23
citation . 11, 46
Classes . 99
cleanup file . 3
conditionals . 61
configure file . 3
Copying objects . 102
CRAN . 31
CRAN submission . 31
Creating packages . 2
Creating shared objects . 89
Cross-references in documentation 58
cumulative hazard . 122

D
Debugging . 78
DESCRIPTION file . 4
Details of R types . 97
Distribution functions from C 121
Documentation, writing . 48
Dynamic loading . 84
dynamic pages . 61

E
Editing Rd files . 64
encoding . 62
Error handling from C . 118
Error handling from FORTRAN 119
Evaluating R expressions from C 106
external pointer . 114

F
Figures in documentation . 59
finalizer . 114
Finding variables . 101

G
Gamma function . 122
Garbage collection . 95
Generic functions . 133

H
handling character data . 100
Handling lists . 100
Handling R objects in C . 94

I
IEEE special values . 106, 119
INDEX file . 8
Indices . 60
Inspecting R objects when debugging 79
integration . 126
Interfaces to compiled code 82, 103
Interfacing C++ code . 90
Interrupts . 129

L
LICENCE file . 3
LICENSE file . 3
Lists and tables in documentation 57

M
Marking text in documentation 55
Mathematics in documentation 58
Memory allocation from C . 117
Memory use . 67
Method functions . 133
Missing values . 106, 119

N
namespaces . 34
Numerical analysis subroutines from C 121
Numerical derivatives . 109

O
OpenMP . 19, 129
Operating system access . 82
optimization . 125

P
Package builder . 26
Package bundles . 12

Concept index 150

Package structure . 3
Package subdirectories . 9
Packages . 2
Parsing R code from C . 112
Platform-specific documentation 60
Printing from C . 120
Printing from FORTRAN . 120
Processing Rd format . 63
Profiling . 65, 67, 68

R
Random numbers in C . 119, 122
Random numbers in FORTRAN 121
Registering native routines . 85

S
Setting variables . 101
Sort functions from C . 127
Submitting to CRAN . 31
Sweave . 28

T
tarballs . 26
Tidying R code . 65

U
user-defined macros . 62

V
Version information from C . 129
vignettes . 28
Visibility . 130

W
weak reference . 114

Z
Zero-finding . 108

	Acknowledgements
	Creating R packages
	Package structure
	The DESCRIPTION file
	The INDEX file
	Package subdirectories
	Package bundles
	Data in packages
	Non-R scripts in packages

	Configure and cleanup
	Using Makevars
	OpenMP support
	Using pthreads
	Compiling in sub-directories

	Configure example
	Using F95 code

	Checking and building packages
	Checking packages
	Building package tarballs
	Building binary packages

	Writing package vignettes
	Encodings and vignettes

	Submitting a package to CRAN
	PDF size
	Package timing
	Windows external software

	Package namespaces
	Specifying imports and exports
	Registering S3 methods
	Load hooks
	useDynLib
	An example
	Summary -- converting an existing package
	Namespaces with S4 classes and methods

	Writing portable packages
	Encoding issues
	Binary distribution

	Diagnostic messages
	Internationalization
	C-level messages
	R messages
	Installing translations
	Makefile support

	CITATION files
	Package types
	Frontend

	Services

	Writing R documentation files
	Rd format
	Documenting functions
	Documenting data sets
	Documenting S4 classes and methods
	Documenting packages

	Sectioning
	Marking text
	Lists and tables
	Cross-references
	Mathematics
	Figures
	Insertions
	Indices
	Platform-specific documentation
	Conditional text
	Dynamic pages
	User-defined macros
	Encoding
	Processing Rd format
	Editing Rd files

	Tidying and profiling R code
	Tidying R code
	Profiling R code for speed
	Profiling R code for memory use
	Memory statistics from Rprof
	Tracking memory allocations
	Tracing copies of an object

	Profiling compiled code
	Linux
	sprof
	oprofile

	Solaris
	Mac OS X

	Debugging
	Browsing
	Debugging R code
	Using gctorture and valgrind
	Using gctorture
	Using valgrind

	Debugging compiled code
	Finding entry points in dynamically loaded code
	Inspecting R objects when debugging

	System and foreign language interfaces
	Operating system access
	Interface functions .C and .Fortran
	dyn.load and dyn.unload
	Registering native routines
	Speed considerations
	Linking to native routines in other packages

	Creating shared objects
	Interfacing C++ code
	Fortran I/O
	Linking to other packages
	Unix-alikes
	Windows

	Handling R objects in C
	Handling the effects of garbage collection
	Allocating storage
	Details of R types
	Attributes
	Classes
	Handling lists
	Handling character data
	Finding and setting variables
	Some convenience functions
	Semi-internal convenience functions

	Named objects and copying

	Interface functions .Call and .External
	Calling .Call
	Calling .External
	Missing and special values

	Evaluating R expressions from C
	Zero-finding
	Calculating numerical derivatives

	Parsing R code from C
	Accessing source references

	External pointers and weak references
	An example

	Vector accessor functions
	Character encoding issues

	The R API: entry points for C code
	Memory allocation
	Transient storage allocation
	User-controlled memory

	Error handling
	Error handling from FORTRAN

	Random number generation
	Missing and IEEE special values
	Printing
	Printing from FORTRAN

	Calling C from FORTRAN and vice versa
	Numerical analysis subroutines
	Distribution functions
	Mathematical functions
	Numerical Utilities
	Mathematical constants

	Optimization
	Integration
	Utility functions
	Re-encoding
	Allowing interrupts
	Platform and version information
	Inlining C functions
	Controlling visibility
	Using these functions in your own C code
	Organization of header files

	Generic functions and methods
	Adding new generics

	Linking GUIs and other front-ends to R
	Embedding R under Unix-alikes
	Compiling against the R library
	Setting R callbacks
	Registering symbols
	Meshing event loops
	Threading issues

	Embedding R under Windows
	Using (D)COM
	Calling R.dll directly
	Finding R_HOME

	Function and variable index
	Concept index

